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The picture

string −→ tree structure −→ meaning representation −→ evaluation in a model
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The picture

string −→ tree structure −→ meaning representation −→ evaluation in a model

Yesterday:

• How to systematically map tree structures to meaning representations
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The picture

string −→ tree structure −→ meaning representation −→ evaluation in a model

Today:

• Why the meanings we constructed up to now don’t always suffice
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Outline

1 Meaning as reference

2 Meaning as intension

Types and model structures

Meaning w.r.t. possible worlds

Meaning w.r.t. time
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Meaning as reference

Recapitulation: Meaning as reference

Until now we identified meaning with reference.

• Names denote individual constants (type e), which represent the
entities they refer to.

• Sentences denote truth-values (type t).

• Predicates denote functions from individuals to truth-values.
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Meaning as reference

Extensionality

Extensionality

In a complex expression E , a sub-expression can be substituted by another
expression that has the same meaning without changing the meaning of E .

If meaning is reference:
Expressions with the same reference should be interchangeable without
changing the truth-value of the sentences they occur in.
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Meaning as reference

Extensional contexts

• Alonzo greeted the queen of the Netherlands.

• Alonzo greeted Beatrix.

• Eight is greater than seven.

• The number of planets in our solar system is greater than seven.
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Meaning as reference

Opaque contexts

• Eight is necessarily greater than seven.

• The number of planets in our solar system is necessarily greater than
seven.

• I believe that Alonzo greeted the queen of the Netherlands.

• I believe Alonzo greeted Beatrix.

• Alonzo is looking for the queen of the Netherlands.

• Alonzo is looking for Beatrix.

Since those sentences mean different things, meaning seems to be more
than reference.
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Meaning as reference

Sense and reference

Frege proposed to distinguish:

• the conceptual content of an expression (Sinn, or intension)

• its actual reference (Bedeutung, or extension)

Example:

• the queen of the Netherlands
• Intension: royal head of the state of the Netherlands
• Extension: Juliana (1949-1980), Beatrix (1980-present), . . .

• Slovenian number category
• Intension: grammatical category that expresses count distinction in

Slovene
• Extension: {singular,dual,plural}

• For a sentence, the intension is its truth conditions and the extension
is its actual truth-value.
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Meaning as reference

Intension and extension

So usually the intension is fixed, while the extension varies from context to
context.

But vice versa, the extension could be the same, while the intension differs.

Example: morning star, evening star

• The morning star is the evening star.

• The morning star is the morning star.
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Meaning as reference

Intensions

When we want to determine the reference of an expression, we have to
consider the context, i.e. reference is not absolute anymore but depends
on the context (time, possible worlds, anaphoric potential,. . . ).
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Meaning as intension

Meaning as intension
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Meaning as intension

Meaning as intension

The meaning of an expression is not its extension (reference) anymore but
its intension, i.e. a function that determines the reference given a certain
context.

Intensions are functions from contexts to extensions.
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Meaning as intension

Context: Possible worlds

Hintikka, Kripke

A possible world is a state of affairs that can differ from the actual state of
affairs in any point.

Possible worlds can be represented as sets of propositional constants,
namely all the propositions that hold in that world.
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Meaning as intension

Examples

Truth and reference depend on the actual as well as possible situation.

• The lecturer’s team might have won.

• If the argonauts had recognized the Dolions, they wouldn’t have killed
them.

To determine the truth of modal statements like

• Possibly the Higgs boson exists.

• The Higgs boson necessarily exists.

it is not important to know whether The Higgs boson exists is true in the
actual world, but rather whether it is true in some world (so it is possible
that it is true) or in all worlds (so there is no other way than for it to be
true).
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Meaning as intension Types and model structures

Capturing intensionality:
Types and model structures

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 15 / 52



Meaning as intension Types and model structures

Plan

1 Add possible worlds to the model.

2 Relativize meaning to possible worlds.

We will have:

• world-dependent meanings

• world-independent meanings

• meanings that quantify over worlds
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Meaning as intension Types and model structures

Adding possible worlds to the model

A model is a quadruple M = (D,W ,R, I), where

• D is a non-empty set of entities, the domain

• W is a non-empty set of possible worlds

• R is a binary relation on W , the accessibility relation (where wRw ′

expresses that w ′ is accessible from w)

• I is an interpretation function that assigns an extension to all
constants with respect to a possible world
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Meaning as intension Types and model structures

Accessibility between possible worlds

Properties of the accessibility relation determine the behaviour of
possibility and necessity, e.g. whether the following statements hold.

• (reflexive) If something is necessary, it is the case.

• (serial) If something is necessary, it is possible.

• (transitive) If something is necessary, it is necessarily necessary.

• (symmetric) If something is the case, it is necessarily possible.

• (euclidean) If something is possible, it is necessarily possible.
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Meaning as intension Types and model structures

Implementation: Possible worlds

data World = W1 | W2 | W3 | W4 | W5 | W6

deriving (Eq,Show ,Bounded ,Enum ,Ord)

--worlds

ws :: [World]

ws = [minBound .. maxBound]

-- accessibility relation

wsAcc :: [(World ,World)]

wsAcc = rtc worlds [(W1 ,W2),(W2 ,W3),(W3 ,W4),(W4 ,W5),(W5 ,W6)]

Where rtc is the reflexive transitive closure.
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Meaning as intension Types and model structures

Implementation: Interpretation of constants

Now, the interpretation function for constants should be parametrized
w.r.t. possible worlds.

int :: String -> World -> Entity -> Bool

int "wizard" w = \ [x] -> case w of

W1 -> x ‘elem ‘ [B]

W2 -> x ‘elem ‘ [A,B]

W3 -> False

W4 -> x ‘elem ‘ [C,D,F]

W5 -> x ‘elem ‘ [E]

W6 -> x ‘elem ‘ [A,C,E]

int "admire" w = \ [x,y] -> case w of

W1 -> (x,y) ‘elem ‘ [(B,B)]

W2 -> (x,y) ‘elem ‘ [(C,A),(A,C)]

W4 -> (x,y) ‘elem ‘ [(B,D),(D,F)]

W5 -> (x,y) ‘elem ‘ [(A,C),(B,C),(E,F)]

_ -> False
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Meaning as intension Meaning w.r.t. possible worlds

Evaluation in a model

Expressions are evaluated w.r.t. a model M, a variable assignment g and a
possible world w .

[[Rn(t1, . . . , tn)]]M,g ,w = 1 iff (I(t1)(w), . . . , I(tn)(w)) ∈ I(R)(w)

[[F1 ∧ F2]]M,g ,w = 1 iff [[F1]]M,g ,w = 1 and [[F2]]M,g ,w = 1

[[¬F ]]M,g ,w = 1 iff [[F ]]M,g ,w = 0

[[∃v .F ]]M,g ,w = 1 iff there is some d ∈ D such that

[[F ]]M,g [v :=d ],w = 1

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 21 / 52



Meaning as intension Meaning w.r.t. possible worlds

Implementation

eval :: Model -> Assignment -> World -> Formula -> Bool

eval m g w (Atom s ts) = (interpretation m) s w (map (intTerm m g) ts)

eval m g w (Neg f) = not $ eval m g w f

eval m g w (Conj fs) = and $ map (eval m g w) fs

eval m g w (Disj fs) = or $ map (eval m g w) fs

eval m g w (Impl f1 f2) = not $ (eval m g w f1) && not (eval m g w f2)

eval m g w (Forall n f) = all (\d -> eval m (change g n d) w f) (domain m)

eval m g w (Exists n f) = any (\d -> eval m (change g n d) w f) (domain m)
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Meaning as intension Meaning w.r.t. possible worlds

Relativizing meanings to possible worlds

Goal: a systematic mapping from extensional meaning representations and
types to their intensional counterparts

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 23 / 52



Meaning as intension Meaning w.r.t. possible worlds

Intensional types

Types

τ ::= e | t | τ → τ | s → τ

Where s is a new base type, the type for possible worlds. (Note that it can
only occur as input to a function.)

• Propositions are functions of type s → t and map possible worlds to
truth values.

• Individual concepts are functions of type s → e and map possible
worlds to entities.
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Meaning as intension Meaning w.r.t. possible worlds

Intensionalization

The intensional counterpart of an extensional type τ is the type i1(τ),
where i1 is a mapping that replaces each occurence of an atomic type by
its intensional counterpart, i.e. replaces type e by type s → e and type t
by s → t.

extensional type intensional type
sentence t s → t
definite description e s → e
noun e → t (s → e)→ (s → t)
transitive verb e → (e → t) (s → e)→ ((s → e)→ (s → t))
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Meaning as intension Meaning w.r.t. possible worlds

Intensionalization (Montague)

The intensional counterpart of an extensional type τ is s → i2(τ), where i2
is the following mapping:

i2(e) = e

i2(t) = t

i2(τ → τ ′) = (s → τ)→ τ ′

extensional type intensional type
sentence t s → t
definite description e s → e
noun e → t s → ((s → e)→ t)
transitive verb e → (e → t) s → ((s → e)→ ((s → e)→ t))
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Meaning as intension Meaning w.r.t. possible worlds

Intensionalization

There is a close correspondence between those two approaches to
intensionalization: We can go from one type to another by repeatedly
changing the order of arguments (τ → τ ′ → τ ′′  τ ′ → τ → τ ′′).

Example:

i1(e → e → t) = (s → e)→ (s → e)→ s → t

 (s → e)→ s → (s → e)→ t

 s → (s → e)→ (s → e)→ t

= i2(e → e → t)
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Meaning as intension Meaning w.r.t. possible worlds

Intensionalization and extensionalization operator

Intensionalization:

• ∩ :: (s → τ)→ i1(τ) takes a function that gives an extension for
every world, and maps that to an intensional function that does the
same job.

Extensionalization:

• ∪ :: i1(τ)→ (s → τ) cancels the lifting effect of ∩ again, i.e. ∪∩x = x .

These operators can be defined by mutual recursion over the structure of
an expression (cf. Chapter 8 of the book).
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Meaning as intension Meaning w.r.t. possible worlds

World-independent meanings

Kripke proposed that names are rigid designators, i.e. that their reference
is the same in all world. Thus for all possible worlds w it holds:

• [[Atreyu ]]M,g ,w = a

• [[Dorothy ]]M,g ,w = d

• [[Goldilocks ]]M,g ,w = e

• . . .
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Meaning as intension Meaning w.r.t. possible worlds

World-dependent meanings

The reference of other expressions can vary in different worlds.

Examples:

• [[the nobel prize winner ]]M,g ,w1 = b

• [[the nobel prize winner ]]M,g ,w2 = f

• [[Germany wins the world championship ]]M,g ,w1 = 1

• [[Germany wins the world championship ]]M,g ,w2 = 0
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Meaning as intension Meaning w.r.t. possible worlds

Relativizing meaning to possible worlds

Translation Type

Atreyu λw .a ie

wizard λxλw .((wizard w) (x w)) ie → it

laughed λxλw .((laugh w) (x w)) ie → it

happy λxλw .((happy w) (x w)) ie → it

defeat λxλyλw .(((defeat w) (x w)) (y w)) ie → ie → it

every λPλQλw ∀x .(((P w) (x w))→ ((Q w) (x w))) (ie → it)→ (ie → it)→ it

some λPλQλw ∃x .(((P w) (x w)) ∧ ((Q w) (x w))) (ie → it)→ (ie → it)→ it

Where ie is shorthand for (s → e) and it is shorthand for (s → t).
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Meaning as intension Meaning w.r.t. possible worlds

Example

Example: Atreyu laughed.

(λxλw .((laugh w) (x w)) λw ′.a)

B λw .((laugh w) (λw ′.a w))

B λw .((laugh w) a)
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Meaning as intension Meaning w.r.t. possible worlds

Expressions quantifying over possible worlds

We add modal operators ♦ (possibly) and � (necessarily) to our language.
They quantify over possible worlds:

[[♦F ]]M,g ,w = 1 iff there is some w ′ ∈W such that

[[F ]]M,g ,w ′
= 1

[[�F ]]M,g ,w = 1 iff for all w ′ ∈W :

[[F ]]M,g ,w ′
= 1

Good enough?
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Meaning as intension Meaning w.r.t. possible worlds
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Meaning as intension Meaning w.r.t. possible worlds

Example

[[S]] :: (s → t)
S → SMOD S [[S]] = ([[SMOD]] [[S]])

[[SMOD]] :: (s → t)→ (s → t)
SMOD → possibly [[SMOD]] = λpλw .♦(p w)
SMOD → necessarily [[SMOD]] = λpλw .�(p w)

Example: Possibly, Atreyu laughed.

(λpλw .♦(p w) λw ′.((laugh w ′) a))

B λw .♦(λw ′.((laugh w ′) a) w)

B λw .♦((laugh w) a)
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Meaning as intension Meaning w.r.t. possible worlds

Example

Now we can also capture the meaning difference between

• Necessarily, eight is greater than seven.

• Necessarily, the number of planets in our solar system is greater than
seven.

by means of a model that is such that in every possible world eight is
greater than seven is true, but the number of planets in our solar system
differs between worlds. Then the first sentence holds while the latter does
not.
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Meaning as intension Meaning w.r.t. possible worlds

Implementation

data Formula = Atom String [Term]

| Neg Formula

| Conj [Formula]

| Disj [Formula]

| Impl Formula Formula

| Forall Int Formula

| Exists Int Formula

| Poss Formula

| Ness Formula

deriving Eq

instance Show Formula where

...

show (Poss f) = "<>" ++ show f

show (Ness f) = "[]" ++ show f
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Meaning as intension Meaning w.r.t. possible worlds

Implementation

eval :: Model -> Assignment -> World -> Formula -> Bool

eval m g w (Atom s ts) = (interpretation m) s w (map (intTerm m g) ts)

eval m g w (Neg f) = not $ eval m g w f

eval m g w (Conj fs) = and $ map (eval m g w) fs

eval m g w (Disj fs) = or $ map (eval m g w) fs

eval m g w (Impl f1 f2) = not $ (eval m g w f1) && not (eval m g w f2)

eval m g w (Forall n f) = all (\d -> eval m (change g n d) w f) (domain m)

eval m g w (Exists n f) = any (\d -> eval m (change g n d) w f) (domain m)

eval m g w (Poss f) = any (\w’ -> (w,w’) ‘elem‘ (accessibility m)

&& eval m g w’ f)

(worlds m)

eval m g w (Ness f) = all (\w’ -> not ((w,w’) ‘elem‘ (accessibility m))

|| eval m g w’ f)

(worlds m)
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Meaning as intension Meaning w.r.t. possible worlds

Example

Day4_FOL> eval model ass W1 (Poss (Atom "laugh" [Const "a"]))

True

Day4_FOL> eval model ass W3 (Ness (Atom "laugh" [Const "a"]))

False

Day4_FOL> eval model ass W1 (Forall 1 (Impl (Atom "evil" [Var 1])

(Exists 2 (Atom "defeat" [Var 2,Var 1]))))

True

Day4_FOL> eval model ass W1 (Ness (Forall 1 (Impl (Atom "evil" [Var 1])

(Exists 2 (Atom "defeat" [Var 2,Var 1])))))

True
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Meaning as intension Meaning w.r.t. possible worlds

Implementation

transS :: Tree String String -> Formula

transS (Branch "S" [np@(Branch "NP" _),vp]) = (transNP np) (transVP vp)

transS (Branch "S" [smod,s]) = (transSMOD smod) (transS s)

transSMOD :: Tree String String -> Formula -> Formula

transSMOD (Branch "SMOD" [Leaf "possibly"]) = \ p -> Poss p

transSMOD (Branch "SMOD" [Leaf "necessarily"]) = \ p -> Ness p

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 39 / 52



Meaning as intension Meaning w.r.t. time

Meaning w.r.t. time
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Meaning as intension Meaning w.r.t. time

We can capture time analogously to possible worlds.

1 Add time parameter to the model.

2 Relativize meaning to time.

We will have:

• time-dependent meanings (the queen of the Netherlands)

• time-independent meanings (Beatrix)

• meanings that quantify over time points (former)
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Meaning as intension Meaning w.r.t. time

Adding time points to the model

A model is a quadruple M = (D,T ,R, I), where

• D is a non-empty set of entities, the domain

• T is a set of time points

• R is a linear ordering on T (where i < i ′ expresses that time point i
‘lies before’ time point i ′)

• I is an interpretation function that assigns an extension to all
constants with respect to a point in time
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Meaning as intension Meaning w.r.t. time

Relativizing meaning to time

Types

τ ::= e | t | τ → τ | i → τ

Where i is a new base type, the type for time points.

extensional type intensional type
sentence t i → t
definite description e i → e
noun e → t (i → e)→ (i → t)
transitive verb e → (e → t) (i → e)→ ((i → e)→ t)
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Meaning as intension Meaning w.r.t. time

Relativizing meaning to time

Translation Type

Atreyu λt.a ie

wizard λxλt.((wizard t) (x t)) ie → it

laughed λxλt.((laugh t) (x t)) ie → it

happy λxλt.((happy t) (x t)) ie → it

defeat λxλyλt.(((defeat t) (x t)) (y t)) ie → ie → it

every λPλQλt ∀x .(((P t) (x t))→ ((Q t) (x t))) (ie → it)→ (ie → it)→ it

some λPλQλt ∃x .(((P t) (x t)) ∧ ((Q t) (x t))) (ie → it)→ (ie → it)→ it

Where ie is shorthand for (i → e) and it is shorthand for (i → t).
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Meaning as intension Meaning w.r.t. time

Example

Example: Atrey laughed.

(λxλt.((laugh t) (x t)) λt.a)

B λt.((laugh t) (λw .a t))

B λt.((laugh t) a)
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Meaning as intension Meaning w.r.t. time

Truth w.r.t. time

In order to check for truth of an expression E in a model, we do not
compute [[E ]]M,g but [[E ]]M,g ,t , where M is a model, g is an assignment
function of variables to entities, and t is some time point.
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Meaning as intension Meaning w.r.t. time

Time-dependent expressions

The reference of some expressions changes over time.

Example: the queen of the Netherlands

• [[the queen of the Netherlands]]M,g ,t0 = b

• [[the queen of the Netherlands]]M,g ,t1 = j
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Meaning as intension Meaning w.r.t. time

Quantifying over time: ‘former’

Some expressions switch the relevant time point for evaluation to the past
or future.

Example: former queen of the Netherlands

• λtλx .¬((queenOfNL t) (x t))∧∃t ′.(t ′ < t)∧ ((queenOfNL t ′) (x t ′))

(Note that we have to add the relation symbol < to our language.)

N → ADJ N [[ADJ]] = λx .(([[ADJ]] x) ∧ ([[N]] x))

N → ADJ N [[ADJ]] = ([[ADJ]] [[N]])

ADJ → former [[ADJ]] = λPλxλt.¬((P t) (x t))
∧∃t ′.(t ′ < t) ∧ ((P t ′) (x t ′))
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Meaning as intension Meaning w.r.t. time

Quantifying over time: Past tense

We can specify the meaning of a past tense verb like laughed as follows:

λxλt.∃t ′.(t ′ < t) ∧ ((laugh t ′) (x t ′)) :: ie → it

Example: Atreyu laughed.

(λxλt.∃t ′.(t ′ < t) ∧ ((laugh t ′) (x t ′)) λt ′′.a)

B λt.∃t ′.(t ′ < t) ∧ ((laugh t ′) a)
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Meaning as intension Meaning w.r.t. time

Example: Past tense

Or more systematically by adding an operator PAST (and a corresponding
operator FUTURE) to our language.

• PAST = λPλxλt.∃t ′.(t ′ < t) ∧ ((P t ′) (x t ′)) :: (ie → it)→ (ie → it)

• FUTURE = λPλxλt.∃t ′.(t ′ > t)∧((P t ′) (x t ′)) :: (ie → it)→ (ie → it)

Example: Atreyu laughed.

((PAST λxλt.((laugh t ′) (x t ′))) λt ′′.a)

B (λxλt.∃t ′.(t ′ < t) ∧ ((laugh t ′) (x t ′)) λt ′′.a)

B λt.∃t ′.(t ′ < t) ∧ ((laugh t ′) a)
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Meaning as intension Meaning w.r.t. time

Implementation

The implementation can be done analogously to the case of possible
worlds.

• Extend the model with time points and a corresponding ordering
relation.

• Extend our predicate logical language with modal operators Past and
Future.

• Evaluate predicate logical formulas w.r.t. a model, an assignment,
and a time point.

(Feel free to try it!)
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Meaning as intension Meaning w.r.t. time

Course overview

Day 2:
Meaning representations and (predicate) logic

Day 3:
Lambda calculus and the composition of meanings

Day 4:
Extensionality and intensionality

• Day 5:
From strings to truth conditions and beyond
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