Computational Semantics: Lambda Calculus

Scott Farrar
CLMA, University of Washington
farrar@u.washington.edu

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

February 24, 2010

Today's lecture

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington farrar@u.washington.ed
(1) Semantic Analysis

- Problems
(2) One Solution: λ-Calculus
- λ-calculus and FOL
- λ-calculus and compositionality
(3) The semantics of words based on syntactic category

Semantic analysis

Definition

Semantic analysis is the derivation of a semantic representation from a string of words (perhaps marked up with syntactic structure). In other words, map sentences of NL onto logical formulas.

Map Jim loves Betty to love(JIM, BETTY)
Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

There are several competing approaches for doing this, as there are several competing standards for the right semantic representation (use of event vs. relations).

Compositionality

Definition

Recall the principle of compositionality: the meaning of a complex expression is a function of the meaning of its parts.

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

The syntax of NL and the syntax of predicate logic are similar, but ultimately not one-to-one compatible: translation between the two is a non-trivial task.

Event structure

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington far-
rar@u.washington.ed

Semantic Analysis

A sailboat heels.

One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Event structure

Computational
Semantics: Lambda Calculus

Scott Farrar CLMA, University of Washington farrar@u.washington.ed

Semantic Analysis
A sailboat heels.
$\exists e \exists b[$ SailBoat $(b) \wedge$ HeelingEvent $(e) \wedge \operatorname{actor}(e, b)]$

Problems
One Solution: λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Event structure

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington farrar@u.washington.ed

Semantic Analysis
A sailboat heels.
$\exists e \exists b[\operatorname{SailBoat}(b) \wedge$ HeelingEvent $(e) \wedge \operatorname{actor}(e, b)]$

My sailboat is on the bottom.

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Event structure

A sailboat heels.
$\exists e \exists b[$ SailBoat $(b) \wedge$ HeelingEvent $(e) \wedge \operatorname{actor}(e, b)]$

My sailboat is on the bottom.
$\exists e[$ SpatialLocating $(e) \wedge$ theme $(e, M Y S B) \wedge$ loc(e, SEAFLOOR)]

Semantic attachments

Consider the problem of two-place predicates in a non-event-style semantics: we need to map Jim loves Betty to something like:

Scott Farrar
CLMA, University
of Washington far-
rar@u.washington.ed

Semantic Analysis
love(JIM, BETTY)

Problems
One Solution: λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Semantic attachments

Consider the problem of two-place predicates in a non-event-style semantics: we need to map Jim loves Betty to something like:
love(JIM, BETTY)

Semantic Analysis
λ-calculus and FOL

Let's assume strict compositionality and say that the meaning of each syntactic constituent contributes to the meaning of the parent constituent. We could come up with something like XP.sem to stand for the semantics of some constituent XP.

Semantic attachments

Consider the problem of two-place predicates in a non-event-style semantics: we need to map Jim loves Betty to something like:
love(JIM, BETTY)

Semantic Analysis

One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
Let's assume strict compositionality and say that the meaning of each syntactic constituent contributes to the meaning of the parent constituent. We could come up with something like XP.sem to stand for the semantics of some constituent XP.

Definition

Semantic attachment refers to the adornment of phrase structure rules with such semantic information.

Semantic attachments

Computational
Semantics：
Lambda Calculus
Scott Farrar
CLMA，University
of Washington far－
rar＠u．washington．ed

Semantic Analysis
Problems
One Solution：
λ－Calculus
λ－calculus and FOL
λ－calculus and
compositionality
The semantics of
words based on
syntactic category

Example: Semantic attachments

Assume that the + symbol stands for the compositionality operator:

Example: Semantic attachments

Assume that the + symbol stands for the compositionality operator:

Scott Farrar
CLMA, University
of Washington farrar@u.washington.ed

Semantic Analysis

- S.sem $=$ NP.sem + VP.sem

Problems
One Solution: λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Example: Semantic attachments

Assume that the + symbol stands for the compositionality operator:

- S.sem $=$ NP.sem + VP.sem
- VP.sem $=$ V.sem + NP.sem

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Example: Semantic attachments

Assume that the + symbol stands for the compositionality operator:

Scott Farrar
CLMA, University
of Washington farrar@u.washington.ed

Semantic Analysis

- S.sem = NP.sem + VP.sem
- VP.sem $=$ V.sem + NP.sem
- V.sem $=$ love.sem

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Example: Semantic attachments

Assume that the + symbol stands for the compositionality operator:

- S.sem $=$ NP.sem + VP.sem
- VP.sem $=$ V.sem + NP.sem
- V.sem $=$ love.sem
- love.sem $=$ love (x, y)

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Example: Semantic attachments

Assume that the + symbol stands for the compositionality operator:

- S.sem $=$ NP.sem + VP.sem
- VP.sem $=$ V.sem + NP.sem
- V.sem $=$ love.sem
- love.sem $=$ love (x, y)
- NP.sem $=$ NNP.sem

Example: Semantic attachments

Assume that the + symbol stands for the compositionality operator:

- S.sem $=$ NP.sem + VP.sem
- VP.sem $=$ V.sem + NP.sem
- V.sem $=$ love.sem
- love.sem $=$ love (x, y)
- NP.sem = NNP.sem
- NNP.sem $=$ Betty.sem or Jim.sem

Example: Semantic attachments

Assume that the + symbol stands for the compositionality operator:

- S.sem $=$ NP.sem + VP.sem
- VP.sem $=$ V.sem + NP.sem
- V.sem $=$ love.sem
- love.sem $=$ love (x, y)
- NP.sem = NNP.sem
- NNP.sem $=$ Betty.sem or Jim.sem
- Betty.sem $=$ BETTY

Example: Semantic attachments

Assume that the + symbol stands for the compositionality operator:

- S.sem $=$ NP.sem + VP.sem
- VP.sem $=$ V.sem + NP.sem
- V.sem $=$ love.sem
- love.sem $=$ love (x, y)
- NP.sem = NNP.sem
- NNP.sem $=$ Betty.sem or Jim.sem
- Betty.sem $=$ BETTY
- Jim.sem $=$ JIM
loves(JIM, BETTY)

Analysis problem

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington far-
rar@u.washington.ed
But what about other examples:
Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on
syntactic category

Analysis problem

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington far-
rar@u.washington.ed
But what about other examples:

- Betty is loved by Jim.

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on
syntactic category

Analysis problem

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington far-
rar@u.washington.ed
But what about other examples:

- Betty is loved by Jim.
- It's Jim who loves Betty.

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on
syntactic category

Analysis problem

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington far-
rar@u.washington.ed
But what about other examples:

- Betty is loved by Jim.
- It's Jim who loves Betty.
- Betty is the one loved by Jim.

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

Analysis problem

But what about other examples:

- Betty is loved by Jim.
- It's Jim who loves Betty.
- Betty is the one loved by Jim.

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

All clues to how the semantic representation might look are found in the syntactic structure of NL. All this, without even considering the ambiguity problem.

Analysis problem

The analysis problem: there is no (elegant) way to fill in the arguments of formulas at the level of semantic representation, in a way that is consistent with the syntax. In other words, there is no formal means of combining parts

Semantic Analysis

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

Even with passive verbs for example, we need to get BETTY to fill the second argument position of the predicate love (x, y).

Representation problem

Representation problem: no way to represent the meaning for some kinds of constituents.

Semantic Analysis
Problems
One Solution: λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Representation problem

Representation problem: no way to represent the meaning for some kinds of constituents.

We can very easily express the meaning of full sentences in plain FOL. We can say that a sentence is true given some state of the world.
John kissed Mary is T just in case John really did kiss Mary.

One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Representation problem

Representation problem: no way to represent the meaning for some kinds of constituents.

We can very easily express the meaning of full sentences in plain FOL. We can say that a sentence is true given some state of the world. John kissed Mary is T just in case John really did kiss Mary.

One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

With standard truth-conditional semantics, where the truth of propositions can either be T or F, such logical expressions have a truth value. BUT...

Representation problem

What about constituents like VPs: kissed Opra. The semantics would something like VP.sem, or $\operatorname{kiss}(x$, OPRA)
of Washington farrar@u.washington.ed

Semantic Analysis
Problems
One Solution: λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Representation problem

What about constituents like VPs: kissed Opra. The semantics would something like VP.sem, or $\operatorname{kiss}(x, O P R A)$
of Washington farrar@u.washington.ed

Semantic Analysis
Problems
One Solution: λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Representation problem

What about constituents like VPs: kissed Opra. The semantics would something like VP.sem, or $\operatorname{kiss}(x, O P R A)$

- But kiss $(x, O P R A)$ has no truth value. This is because there are unbound variables: x has no connection to the $U D$. Such open sentences are neither T or F.

One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

Representation problem

What about constituents like VPs: kissed Opra. The semantics would something like VP.sem, or $\operatorname{kiss}(x, O P R A)$

- But kiss $(x, O P R A)$ has no truth value. This is because there are unbound variables: x has no connection to the $U D$. Such open sentences are neither T or F.
- Intuitively however, we know what a NL predicate/VP means: e.g., ... kissed Opra means something like a " kissing Opra event", reguardless of who does the kissing.

Representation problem

What about constituents like VPs: kissed Opra. The semantics would something like VP.sem, or $\operatorname{kiss}(x, O P R A)$

- But kiss $(x, O P R A)$ has no truth value. This is because there are unbound variables: x has no connection to the $U D$. Such open sentences are neither T or F.
- Intuitively however, we know what a NL predicate/VP means: e.g., ... kissed Opra means something like a " kissing Opra event", reguardless of who does the kissing.
- But we cannot express the meaning of this in FOL given our current machinery, since we'll always have an unbound variable.

Summary

In summary then, we have at least two problems for compositionality:
(1) Analysis problem: No systematic way to use syntax to guide the construction of a semantic representation

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
(2) Representation problem: Unsatisfying approach to representing the meanings of certain constituents; deriving truth values for certain kinds of constituents is ill defined.

Today's lecture

(1) Semantic Analysis

Semantic Analysis

- Problems
(2) One Solution: λ-Calculus
- λ-calculus and FOL
- λ-calculus and compositionality

3 The semantics of words based on syntactic category

back to Church

Alonzo Church created a calculus for describing arbitrary functions, called λ-calculus. (It was developed to give a functional foundation for mathematics.) It wasn't picked up by mathematicians, but it did become a versatile tool for computer scientists.

back to Church

Alonzo Church created a calculus for describing arbitrary functions, called λ-calculus. (It was developed to give a functional foundation for mathematics.) It wasn't picked up by mathematicians, but it did become a versatile tool for computer scientists.

Remember Lisp? The second oldest high-level programming language, and still used today (invented by John McCarthy, 1958). Lisp (pure Lisp at least) deals exclusively with

One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of functions, and functions can be created on the fly and without names.

back to Church

Alonzo Church created a calculus for describing arbitrary functions, called λ-calculus. (It was developed to give a functional foundation for mathematics.) It wasn't picked up by mathematicians, but it did become a versatile tool for computer scientists.

Remember Lisp? The second oldest high-level programming language, and still used today (invented by John McCarthy, 1958). Lisp (pure Lisp at least) deals exclusively with functions, and functions can be created on the fly and without names.

In Lisp, this expression evaluates to an anonymous function: (lambda $(x y)(+x y))$, read as "the pair x and y are mapped to $x+y$ ".

back to Church

Alonzo Church created a calculus for describing arbitrary functions, called λ-calculus. (It was developed to give a functional foundation for mathematics.) It wasn't picked up by mathematicians, but it did become a versatile tool for computer scientists.

Remember Lisp? The second oldest high-level programming language, and still used today (invented by John McCarthy, 1958). Lisp (pure Lisp at least) deals exclusively with functions, and functions can be created on the fly and without names.

In Lisp, this expression evaluates to an anonymous function: (lambda $(x y)(+x y))$, read as "the pair x and y are mapped to $x+y$ ".

back to Church

Alonzo Church created a calculus for describing arbitrary functions, called λ-calculus. (It was developed to give a functional foundation for mathematics.) It wasn't picked up by mathematicians, but it did become a versatile tool for computer scientists.

Remember Lisp? The second oldest high-level programming language, and still used today (invented by John McCarthy, 1958). Lisp (pure Lisp at least) deals exclusively with functions, and functions can be created on the fly and without names.

In Lisp, this expression evaluates to an anonymous function: (lambda $(x y)(+x y))$, read as "the pair x and y are mapped to $x+y$ ".
Otherwise, we'd have a named function, something like: $\operatorname{add}(x, y)$

Functions and arguments

More generally, we can describe what's going on by assuming that every expression is either a function or argument. For rar@u.washington.ed instance, suppose we want to create: $(+x y)$:

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Functions and arguments

More generally, we can describe what's going on by assuming that every expression is either a function or argument. For rar@u.washington.ed instance, suppose we want to create: $(+x y)$:

- Start with three symbols:,$+ x$, and y

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Functions and arguments

More generally, we can describe what's going on by assuming that every expression is either a function or argument. For rar@u.washington.ed

Semantic Analysis instance, suppose we want to create: $(+x y)$:

- Start with three symbols:,$+ x$, and y
- Treat each symbol as either a function or argument

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

Functions and arguments

More generally, we can describe what's going on by assuming that every expression is either a function or argument. For rar@u.washington.ed

Semantic Analysis instance, suppose we want to create: $(+x y)$:

- Start with three symbols:,$+ x$, and y
- Treat each symbol as either a function or argument
- $+x$ yields $(+x)$

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

Functions and arguments

More generally, we can describe what's going on by assuming that every expression is either a function or argument. For instance, suppose we want to create: $(+x y)$:

- Start with three symbols:,$+ x$, and y
- Treat each symbol as either a function or argument
- $+x$ yields $(+x)$

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

- $(+x)$ y yields $((+x) y)$

Functions and arguments

More generally, we can describe what's going on by assuming that every expression is either a function or argument. For instance, suppose we want to create: $(+x y)$:

- Start with three symbols:,$+ x$, and y
- Treat each symbol as either a function or argument
- $+x$ yields $(+x)$

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

- $(+x)$ y yields $((+x) y)$

Thus, when an expression (function) is applied to another expression (argument), a third expression (result) is obtained.

λ-calculus: Formal definition

Definition

Expressions in the language Λ are composed of:

- variables $\{a, b, c, \ldots, x, y, z\}$

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
(2) T is of the form (MN) where M and N are in Λ.
(3) T is of the form $(\lambda X . Y)$ where X is a variable and Y is in Λ.
Λ is the smallest language with this property. (MN) is called an application and $\lambda X . Y$ is an abstraction.

Examples

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington farrar@u.washington.ed

Semantic Analysis
The following are all examples of λ expressions:

One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Examples

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington farrar@u.washington.ed

Semantic Analysis
The following are all examples of λ expressions:
(1) $\lambda x \cdot x$

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Examples

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington farrar@u.washington.ed

Semantic Analysis
The following are all examples of λ expressions:
(1) $\lambda x \cdot x$
(2) $\lambda x \cdot y(\lambda x \cdot z x)$

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on
syntactic category

Examples

The following are all examples of λ expressions:
(1) $\lambda x \cdot x$

Semantic Analysis
(2) $\lambda x \cdot y(\lambda x \cdot z x)$
(3) $\lambda x \cdot x(y)$

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Examples

The following are all examples of λ expressions:
(1) $\lambda x \cdot x$

Semantic Analysis
(2) $\lambda x \cdot y(\lambda x \cdot z x)$
(3) $\lambda x \cdot x(y)$

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

λ-calculus and FOL

Standard definitions of FOL can be augmented with λ-calculus. The point is that we can use standard FOL formulas as functions and create new FOL formulas compositionally.
λ-calculus and FOL

λ-calculus and FOL

Standard definitions of FOL can be augmented with λ-calculus. The point is that we can use standard FOL formulas as functions and create new FOL formulas compositionally.

Definition

If in some formula a variable is bound by the λ operator, the formula is called a lambda expression.

One Solution: λ-Calculus
λ-calculus and FOL λ-calculus and
compositionality
The semantics of

λ-calculus and FOL

Standard definitions of FOL can be augmented with λ-calculus. The point is that we can use standard FOL formulas as functions and create new FOL formulas compositionally.

Definition

If in some formula a variable is bound by the λ operator, the

One Solution:

λ-Calculus
λ-calculus and FOL
λ-calculus and formula is called a lambda expression.

Syntactically, a λ-expression looks just like any other quantified expression:

$$
\begin{gathered}
\lambda x . \operatorname{red}(x) \\
\forall y . \text { boat }(y) \\
\exists z . f l o a t s(z)
\end{gathered}
$$

Application expressions

To symbolize compositionality, we can create a new formula from $\lambda x \cdot \operatorname{dog}(x)$ by treating it as a function and then applying it to an argument:
$\lambda x \cdot \operatorname{dog}(x)($ FIDO $)$
λ-calculus and FOL

Application expressions

To symbolize compositionality, we can create a new formula from $\lambda x \cdot \operatorname{dog}(x)$ by treating it as a function and then applying it to an argument:
$\lambda x \cdot \operatorname{dog}(x)($ FIDO $)$
λ-calculus and FOL

Application expressions

To symbolize compositionality, we can create a new formula from $\lambda x \cdot \operatorname{dog}(x)$ by treating it as a function and then applying it to an argument:
$\lambda x \cdot \operatorname{dog}(x)($ FIDO $)$

The result is:

$$
\operatorname{dog}(F I D O)
$$

One Solution:
λ-Calculus
λ-calculus and FOL λ-calculus and
compositionality
The semantics of

Application expressions

To symbolize compositionality, we can create a new formula from $\lambda x \cdot \operatorname{dog}(x)$ by treating it as a function and then applying it to an argument:

$$
\lambda x \cdot \operatorname{dog}(x)(\text { FIDO })
$$

The result is:

$$
\operatorname{dog}(F I D O)
$$

Definition

Given some application expression $F A$ the function can be reduced by a process called β-reduction, such that the result is F with all occurrences of variables bound by λ replaced by A. (The terminology has roots in the original papers of Church and Kleene.)

NLTK notes

The λ operator is represented by the single back slash \backslash, and is indicated with a raw string:
(9) \x $\cdot \operatorname{dog}(\mathrm{x})$ (FIDO)

The Python string is the equivalent of the following application expression:
$\lambda x \cdot \operatorname{dog} x($ FIDO)

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Scope of λ

In the augmented FOL, the λ operator ranges over sets and
Semantic Analysis individuals, not just individuals as with \forall and \exists.

```
example
(\P. P) (walk(x))
```

Problems
One Solution:
λ-Calculus
λ-calculus and FOL λ-calculus and
compositionality
The semantics of
words based on
syntactic category

reduces to:

boat (x)

Summary of terminology

- abstraction: the process of creating a λ function from a predicate logic formula.

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Summary of terminology

- abstraction: the process of creating a λ function from a predicate logic formula.
- λ expression: one with variables bound by the λ operator, sometimes called a λ function.

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

Summary of terminology

- abstraction: the process of creating a λ function from a predicate logic formula.
- λ expression: one with variables bound by the λ operator, sometimes called a λ function.
- application expression: one with a function and an

Semantic Analysis

One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of argument.

Summary of terminology

- abstraction: the process of creating a λ function from a predicate logic formula.
- λ expression: one with variables bound by the λ operator, sometimes called a λ function.
- application expression: one with a function and an

Semantic Analysis

One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

- β-reduction: where subparts of a function are evaluated and rewritten until the function itself is reduced to a simpler form.

Steps in compositionality

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington farrar@u.washington.ed

Steps in compositionally deriving a semantic representation:

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Steps in compositionality

Steps in compositionally deriving a semantic representation:
(1) Express the semantics of each constituent in terms of lambda expressions;

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Steps in compositionality

Steps in compositionally deriving a semantic representation:
(1) Express the semantics of each constituent in terms of lambda expressions;
(2) Determine which expression is the function and which is the argument;

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

Steps in compositionality

Steps in compositionally deriving a semantic representation:
(1) Express the semantics of each constituent in terms of lambda expressions;
(2) Determine which expression is the function and which is the argument;

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
(3) Apply the function to the argument;

Steps in compositionality

Steps in compositionally deriving a semantic representation:
(1) Express the semantics of each constituent in terms of lambda expressions;
(2) Determine which expression is the function and which is the argument;

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
(3) Apply the function to the argument;
(9) β-reduce the conjoined elements to arrive at the final semantic representation.

Example: Sue bikes

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington far-
rar@u.washington.ed

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Example: Sue bikes

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington far-
rar@u.washington.ed

Semantic Analysis
Given:

- λ-expression for Sue: \ P . P (SUE)

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Example: Sue bikes

Sue bikes \Rightarrow bikes(SUE)

of Washington farrar@u.washington.ed

Semantic Analysis

Given:

- λ-expression for Sue: \ P . P (SUE)
- λ-expression for bikes: \x. bikes(x)

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Example: Sue bikes

Sue bikes \Rightarrow bikes(SUE)

Given:

- λ-expression for Sue: \ P . P (SUE)
- λ-expression for bikes: \x. bikes(x)

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Example: Sue bikes

Sue bikes \Rightarrow bikes(SUE)

Semantic Analysis

Given:

- λ-expression for Sue: \ P . P (SUE)
- λ-expression for bikes: \x. bikes(x)

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

- An application expression:
\P . P (SUE) (\x . bikes(x))

Example: Sue bikes

Sue bikes \Rightarrow bikes(SUE)

Semantic Analysis

Given:

- λ-expression for Sue: \ P . P (SUE)
- λ-expression for bikes: \x. bikes(x)

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

Derivation

- An application expression:
\P . P (SUE) (\x . bikes(x))
- \x. bikes(x) (SUE) by β-reduction

Example: Sue bikes

Sue bikes \Rightarrow bikes(SUE)

Given:

- λ-expression for Sue: \ P . P (SUE)
- λ-expression for bikes: \x. bikes(x)

Derivation

- An application expression:
\P . P (SUE) (\x . bikes(x))
- \x. bikes(x) (SUE) by β-reduction
- bikes (SUE) by β-reduction

Today's lecture

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington farrar@u.washington.ed
(1) Semantic Analysis

- Problems
(2) One Solution: λ-Calculus
- λ-calculus and FOL
- λ-calculus and compositionality

3 The semantics of words based on syntactic category

General strategy for using λ－calculus

The point is to enrich each lexical entry with a semantics， and then derive the semantic representation of the entire sentence or phrase．

We＇ll need to express the semantics of everything using λ－calculus．Namely，we＇ll need to express the semantics of lexical items using the functional notation．NNP \rightarrow Sue $N N P[s e m=\backslash \mathrm{S} . \mathrm{S}$（SUE）$] \rightarrow$ Sue

Intransitive verbs

Intransitive verbs, in non-event style FOL, are mapped to unary predicates. The semantic attachment for run would be $\lambda x . r u n(x)$, a predicate waiting for an argument. Bill runs:

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Intransitive verbs

Intransitive verbs, in non-event style FOL, are mapped to unary predicates. The semantic attachment for run would be $\lambda x . r u n(x)$, a predicate waiting for an argument. Bill runs:

```
x.run(x) (BILL) reduces to: run(BILL)
```

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Intransitive verbs

Intransitive verbs, in non-event style FOL, are mapped to unary predicates. The semantic attachment for run would be $\lambda x . r u n(x)$, a predicate waiting for an argument. Bill runs:

```
\ x.run(x) (BILL) reduces to: run(BILL)
```

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

But, Bill comes before the verb in the syntax.

Proper nouns

Ordinarily. the semantic attachment for Bill would be a constant like BILL, as proper nouns are (non-logical) constants, i.e., always arguments of other expressions. But in a λ system, the semantic attachment is $\backslash \mathrm{P} . \mathrm{P}$ (BILL)

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Proper nouns

Ordinarily. the semantic attachment for Bill would be a constant like BILL, as proper nouns are (non-logical) constants, i.e., always arguments of other expressions. But in a λ system, the semantic attachment is $\backslash \mathrm{P} . \mathrm{P}$ (BILL)

Why? Because we need the semantics of a proper noun to be a function in order to get our representations to come out correctly.

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Intransitive verbs, proper order

We need to preserve the order from the syntax. For Bill runs, we need to find a semantic representation for the word Bill and then for runs:

Semantic Analysis
Problems
One Solution: λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Intransitive verbs, proper order

We need to preserve the order from the syntax. For Bill runs, we need to find a semantic representation for the word Bill and then for runs:

Semantic Analysis

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Intransitive verbs, proper order

We need to preserve the order from the syntax. For Bill runs, we need to find a semantic representation for the word Bill and then for runs:

Semantic Analysis

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Thus, order from the syntax can be used as is, which makes things much easier for compositionality.

Transitive Verbs

More care has to be taken to specify the order of reduction for the semantics of transitive verbs and di-transitive verbs. These are respectively binary and ternary predicates in FOL. For a transitive verb like love:

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Transitive Verbs

More care has to be taken to specify the order of reduction
for the semantics of transitive verbs and di-transitive verbs. These are respectively binary and ternary predicates in FOL. For a transitive verb like love:

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality

- \y. \x. love(x,y)

The semantics of words based on syntactic category

Transitive Verbs

More care has to be taken to specify the order of reduction for the semantics of transitive verbs and di-transitive verbs. These are respectively binary and ternary predicates in FOL. For a transitive verb like love:

- \y. \x. love (x, y)
- \ y. \x. love(x,y) (BETTY)

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Transitive Verbs

More care has to be taken to specify the order of reduction for the semantics of transitive verbs and di-transitive verbs. These are respectively binary and ternary predicates in FOL. For a transitive verb like love:

- \ y. \x. love (x,y)
- \y. \x. love(x, y) (BETTY)
- \x. love($\mathrm{x}, \mathrm{BETTY}$)

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Transitive Verbs

More care has to be taken to specify the order of reduction for the semantics of transitive verbs and di-transitive verbs. These are respectively binary and ternary predicates in FOL. For a transitive verb like love:

- \y. \x. love(x,y)
- \y. \x. love(x,y) (BETTY)
- \x. love(x, BETTY)
- \x. love(x, BETTY) (JIM)

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Transitive Verbs

More care has to be taken to specify the order of reduction for the semantics of transitive verbs and di-transitive verbs. These are respectively binary and ternary predicates in FOL. For a transitive verb like love:

- \y. \x. love (x, y)
- \y. \x. love(x, y) (BETTY)
- \x. love(x, BETTY)
- \x. love(x, BETTY) (JIM)
- love(JIM, BETTY)

Transitive Verbs, proper order

But, how do we deal with the linear order of the NL string? Due to subject and object order, the following will not reduce, since JIM is not a function:

Scott Farrar
CLMA, University
of Washington far-
rar@u.washington.ed

Semantic Analysis
Problems
One Solution: λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Transitive Verbs, proper order

But, how do we deal with the linear order of the NL string? Due to subject and object order, the following will not reduce, since JIM is not a function:

Consider:

Transitive Verbs, proper order

But, how do we deal with the linear order of the NL string? Due to subject and object order, the following will not reduce, since JIM is not a function:

Consider:

- \Q. Q (JIM) which is another form of simply JIM

Semantic Analysis
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of

Transitive Verbs, proper order

But, how do we deal with the linear order of the NL string? Due to subject and object order, the following will not reduce, since JIM is not a function:

Consider:

- \Q. Q (JIM) which is another form of simply JIM
- \X y. X($\backslash \mathrm{x}$. loves (y, x))

Transitive Verbs, proper order

But, how do we deal with the linear order of the NL string? Due to subject and object order, the following will not reduce, since JIM is not a function:

Consider:

- \Q. Q (JIM) which is another form of simply JIM
- \X y. X($\backslash \mathrm{x}$. loves (y, x))

Transitive Verbs, proper order

But, how do we deal with the linear order of the NL string? Due to subject and object order, the following will not reduce, since JIM is not a function:

Consider:

- \Q. Q (JIM) which is another form of simply JIM
- \X y. X($\backslash \mathrm{x}$. loves (y, x))
- \X y. X ($\backslash \mathrm{x} . \operatorname{loves}(\mathrm{y}, \mathrm{x}))(\backslash \mathrm{Q} \cdot \mathrm{Q}$ (BETTY))
just the inner terms

Transitive Verbs, proper order

But, how do we deal with the linear order of the NL string? Due to subject and object order, the following will not reduce, since JIM is not a function:

Consider:

- \Q. Q (JIM) which is another form of simply JIM
- \X y. X($\backslash \mathrm{x}$. loves (y, x))
- \X y. X ($\backslash \mathrm{x}$. $\operatorname{loves}(\mathrm{y}, \mathrm{x})$) (\ Q . Q (BETTY)) just the inner terms
- ($\backslash \mathrm{Q} \cdot \mathrm{Q}(\mathrm{BETTY}))(\backslash \mathrm{x}$. loves (y, x))

Transitive Verbs, proper order

But, how do we deal with the linear order of the NL string? Due to subject and object order, the following will not reduce, since JIM is not a function:

Consider:

- \Q. Q (JIM) which is another form of simply JIM
- \X y. X($\backslash \mathrm{x}$. loves (y, x))
- \X y. X ($\backslash \mathrm{x}$. $\operatorname{loves}(\mathrm{y}, \mathrm{x})$) (\ Q . Q (BETTY))
just the inner terms
- ($\backslash \mathrm{Q} \cdot \mathrm{Q}(\mathrm{BETTY}))(\backslash \mathrm{x}$. loves (y, x))
- \x. loves (y,x) (BETTY)

Transitive Verbs, proper order

But, how do we deal with the linear order of the NL string? Due to subject and object order, the following will not reduce, since JIM is not a function:

Consider:

- \Q. Q (JIM) which is another form of simply JIM
- \X y. X($\backslash \mathrm{x}$. loves (y, x))
- \X y. X ($\backslash \mathrm{x}$. $\operatorname{loves}(\mathrm{y}, \mathrm{x})$) (\ Q . Q (BETTY))
just the inner terms
- ($\backslash \mathrm{Q} \cdot \mathrm{Q}(\mathrm{BETTY}))(\backslash \mathrm{x}$. loves (y, x))
- \x. loves (y,x) (BETTY)
- loves (y, BETTY)

Transitive Verbs, proper order

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington far-
rar@u.washington.ed

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Transitive Verbs, proper order

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington far-
rar@u.washington.ed

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on
syntactic category

Transitive Verbs, proper order

Computational
Semantics:
Lambda Calculus
Scott Farrar
CLMA, University
of Washington farrar@u.washington.ed

Semantic Analysis
Problems

- \} \mathrm { y } .loves (\mathrm { y } , \mathrm { BETTY })
- \P . P (JIM) ($\backslash \mathrm{y}$.loves (y, BETTY))

One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Transitive Verbs, proper order

Computational
Semantics: Lambda Calculus

Scott Farrar CLMA, University of Washington farrar@u.washington.ed

Semantic Analysis Problems

- \} \mathrm { y } .loves (\mathrm { y } , \mathrm { BETTY })
- \P . P (JIM) (\backslash y.loves (y, BETTY))
- \ y.loves(y,BETTY) (JIM)

One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of
words based on syntactic category

Transitive Verbs, proper order

Computational
Semantics: Lambda Calculus

Scott Farrar CLMA, University of Washington farrar@u.washington.ed

Semantic Analysis Problems

- \} \mathrm { y } .loves (\mathrm { y } , \mathrm { BETTY })
- \P . P (JIM) (\backslash y.loves (y, BETTY))
- \ y.loves(y,BETTY) (JIM)
- loves(JIM,BETTY)

Full transitive verb example

And the mostly unreadable full lambda epression for Jim loves Betty:
$\backslash P$. P (JIM) ($\backslash \mathrm{X} y . \quad \mathrm{X}(\backslash \mathrm{x}$. loves $(\mathrm{y}, \mathrm{x}))(\backslash \mathrm{Q}$

- Q (BETTY)))

Nouns

Common nouns work just like intransitive verbs, i.e., the semantic attachment is a unary predicate.

Nouns

Common nouns work just like intransitive verbs, i.e., the semantic attachment is a unary predicate.

For example, the semantic attachment for dog would be:
$\backslash \mathrm{x} \cdot \mathrm{dog}(\mathrm{x})$ in λ-calculus.

Copulas

The copula (am, is, are, etc.) is a special kind of transitive verb, as it equates the subject and object. We introduce a special binary predicate eq for the semantics of the copula: \X y. X(\x. eq(y,x))

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Copulas

The copula (am, is, are, etc.) is a special kind of transitive verb, as it equates the subject and object. We introduce a special binary predicate eq for the semantics of the copula: \X y. X(\x. eq(y,x))

The semantics of the copula looks just like the sematnics of any transitive verb (see previous).

One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Copulas

The copula (am, is, are, etc.) is a special kind of transitive verb, as it equates the subject and object. We introduce a special binary predicate eq for the semantics of the copula: \X y. X(\x. eq(y,x))

The semantics of the copula looks just like the sematnics of any transitive verb (see previous).

For the negative copula (ain't, isn't, etc.) we have a slightly different formula:
\X y. X (\x.-eq(y,x))

Semantic Analysis
Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Auxiliaries

An auxiliary verb such as does is transparent at the level of semantic representation, at least concerning propositional content. Thus, does go would simply be:
\z. go(z).
Semantic Analysis

Problems
One Solution:
λ-Calculus
λ-calculus and FOL
λ-calculus and
compositionality
The semantics of words based on syntactic category

Auxiliaries

An auxiliary verb such as does is transparent at the level of semantic representation, at least concerning propositional content. Thus, does go would simply be:
\z. go(z).

If we want to specify a semantics for does that will turn out to contribute nothing to higher constituents, this will suffice: The lambda expression for the semantics of an auxiliary contributing nothing would be:

Auxiliaries

An auxiliary verb such as does is transparent at the level of semantic representation, at least concerning propositional content. Thus, does go would simply be:
\z. go(z).

If we want to specify a semantics for does that will turn out to contribute nothing to higher constituents, this will suffice: The lambda expression for the semantics of an auxiliary contributing nothing would be:
\Px. $\mathrm{P}(\mathrm{x})(\backslash \mathrm{z}$. go(z))

- does go

Auxiliaries

An auxiliary verb such as does is transparent at the level of semantic representation, at least concerning propositional content. Thus, does go would simply be:
\z. go(z).

If we want to specify a semantics for does that will turn out to contribute nothing to higher constituents, this will suffice: The lambda expression for the semantics of an auxiliary contributing nothing would be:

- does go
- \P x. $\mathrm{P}(\mathrm{x})(\backslash \mathrm{z}$. go (z) $)$

Auxiliaries

An auxiliary verb such as does is transparent at the level of semantic representation, at least concerning propositional content. Thus, does go would simply be:
\z. go(z).

If we want to specify a semantics for does that will turn out to contribute nothing to higher constituents, this will suffice: The lambda expression for the semantics of an auxiliary contributing nothing would be:

- does go
- \P x. $P(x)(\backslash z . \quad g o(z))$
- \x. (x z. go(z)) (x)

Auxiliaries

An auxiliary verb such as does is transparent at the level of semantic representation, at least concerning propositional content. Thus, does go would simply be:
\z. go(z).

If we want to specify a semantics for does that will turn out to contribute nothing to higher constituents, this will suffice: The lambda expression for the semantics of an auxiliary contributing nothing would be:

- does go
- \P x. $\mathrm{P}(\mathrm{x})(\backslash \mathrm{z}$. go (z))
- \x . ($\backslash \mathrm{z}$. go (z)) (x)
- \ z. go (z) (same as we started with; does is transparent)

