
Computational Thinking 

Across Curriculum 
Two papers on teaching computational thinking to non-CS students 

 

Pejman Khadivi 

CS Department, Virginia Tech 



Who am I? 

B.Sc. Computer Engineering, Isfahan University of Technology,1994-1998 

M.Sc. Computer Engineering, Isfahan University of Technology, 1998-2000 

Ph.D. Electrical Engineering, Isfahan University of Technology, 2000-2006 

 

Visiting researcher, McMaster University, 2003 

Lecturer, Isfahan University of Technology, 2000-2006 

Assistant Professor, Isfahan University of Technology, 2006-2011 

Pejman Khadivi 

Ph.D. Student, Computer Science 

Working with Prof. Ramakrishnan 



Papers 

1. S. Hambrusch, et al. “A Multidisciplinary Approach 

Towards Computational Thinking for Science 

Majors”, SIGCSE’09, March 3–7, 2009. 

 

2. L. Perkoviḉ, et al. “A Framework for Computational 

Thinking across the Curriculum”, ITiCSE’10, June 

26–30, 2010. 



First Paper 

• S. Hambrusch, et al. “A Multidisciplinary Approach 

Towards Computational Thinking for Science Majors”, 

SIGCSE’09, March 3–7, 2009. 

 

• Summary: 

• This paper is about a course which has been designed to teach CT 

to students from Physics, Chemistry, and Bioinformatics majors. 

During the course students learn how to program in Python. 

Domain-specific examples (from each field) are presented in class 

and students have to do term-projects. 



Main Principles 

● Lay the groundwork for computational thinking 
● Formulating problem, abstraction, algorithms, visualization 

 

● Present examples in a language familiar to the students 
● Science majors, conversant in the basics of the classical disciplines, will 

comprehend computational concepts more easily if those concepts can 

be motivated by examples from their scientific subdisciplines 
 

● Teach in a problem-driven way 
● Start description from a real world problem  

● Thermodynamic system → computational perspective → randomized 

models and Monte Carlo techniques 
 



Main Principles 

● The programming language should right away allow a 

focus on computational principles 
● Write meaningful problems in a short time  

● Libraries used by scientific community 
 

● Make effective use of visualization 
● Better understand scientific questions 

● Better understand computational principles and processes 
 



Disciplines 

• Physics 
• Better understanding of computation 

• New computational opportunities for learning and research 

• New perspective on physics and applied mathematics 

 

• Chemistry 
• Computational methods relevant in chemical research (Monte Carlo, Simulated 

Annealing and Molecular Dynamics) 

• Use and integrate existing Fortran programs 

• Visualizing techniques 

 

• Bioinformatics 
• Use of R for statistical computing and visualization 

• Program in a language for which bioinformatics software packages exist or can 

easily be integrated. 
 

 



Course Syllabus 



Course Syllabus 



Course Syllabus 



Course Projects 

• Two parts: 
• Programming part 

• Experimental part 
• Students can use their own program or another program 

• Most of them decided to use their own 

 

• All projects asked students to produce visualizations of 

computational results and provide a write-up on their 

observations 

 

 

 

 



Course Projects 

• Manipulating Digital Audio 

 

• Computational Experiments on Percolation in Grids 

 

• Simulating Physical Systems 

 

• Analyzing Protein-Protein Interactions 



Evaluation 

Spring 2008 with only 13 students 

10 Physics, 3 Chemistry 

 

Q1: Taking another computer 

science course? 

 

Q2: Pursuing a career that 

requires programming skills? 

 

 

Answers: 0 to 4 

0) not interested 

4) very interested 



Evaluation 

• Students interest in taking other CS courses increased 

• Previous programming experience had no effect 

• Responses indicate that 60% of the students plan to take 

another CS course 

 

• In other introductory programming courses for majors a 

decrease in interest in computer science is observed 

 

• This is not a fair comparison 
• Example: Different instructors 



Discussion 

This course seems to be a special “Programming 
Course” with a flavor of applications in science fields, 
not a CT course. 

 

“If all you have is a hammer, everything looks like a 
nail” 
 People do not know how to teach CT, so they teach 
Programming 



Second Paper 

• L. Perkoviḉ, et al. “A Framework for Computational 

Thinking across the Curriculum”, ITiCSE’10, June 26–

30, 2010. 

 

• Summary: 

• This paper is about a framework that helps to integrate CT into 

different curriculums based on Denning’s great principles of 

computing. Different domains are considered in arts, sciences, 

humanities, and social sciences. Authors ultimate goal was to 

augment people productivity in their fields. 

 



Principles 

• Computation: execution of an algorithm 

• Communication: transmission of information from one 
process or object to another 

• Coordination: control of the timing of computation at 
participating processes 

• Recollection: encoding and organization of data in ways to 
make it efficient to search and perform other operations 

• Automation: mapping of computation to physical systems 

• Evaluation: statistical, numerical, or experimental analysis, 
and visualization of data 

• Design: organization (using abstraction, modularization, 
aggregation, decomposition) of a system, process, object, etc. 



Framework 

• Common Core 

• First-year, two-course sequence in Math and Technology Literacy 

• Apply quantitative reasoning and information 

• Evaluate real-world problems using modern IT 

• Spreadsheets, databases, programming algorithms, … 

• Authors think that this is necessary to teach CT in other courses 

 

• Domain-specific courses 

• Courses in various learning domains 

• Students are required to take 2-3 courses 



Re-worked Courses 



Re-worked Courses 



Covered concepts 



What discussed for each course 

• (A) catalog course description 

 

• (B) high-level description of the course and computational 

thinking concepts covered 

 

• (C) computational thinking learning goal 

 

• (D) a case discussion and several guiding questions 

 

• (E) assessment for the specified learning goal 



Geographic Information Systems I 

• An introduction to the fundamentals of geospatial 

information processing 

 

• Introduces basic concepts and methods that underlie 

information systems designed to deal with geographically 

referenced data. 

 

• Design (data modeling, …) 

 

• Comparing two different data representations 



Introduction to Game Design 

• Computer Games from Three Perspectives: 

• Media: elements, structure, interactive appreciation 

• Complex software artifact 

• Cultural artifact 

 

• Game rules: 

• Constituative, operational, and implicit 

 

• Design (Abstracting game rules, …) 

• Relationship between different abstractions of rules, the modeling 

of game behavior, and the underlying structure of a game 

 



3D Modeling 

• Introductory modeling and texturing techniques required 

to construct 3D objects and scenes to be used for 

animation and gaming 

 

• Modularization in 3D modeling 

 

• Design, Automation, Computation 



Discussion 

• Proposed method: Talk about a domain specific 
problem with existing computational solutions to teach 
a CS/CT skill 

 

• Alternative method: which concept is relevant to our 
problems? 

• Some simple familiar examples help students to absorb CS 
concepts not as an “only CS” concept but as a multi-domain 
concept. Then, domain specific examples can show up and do 
their magic. 



Discussion 

• Example: Teaching Object Oriented Design 

 

 

 

 

 

 

 

 

 



Discussion 

• Example of alternative method: 

Foundation 

• Concepts and methods: Abstraction, simulation, … 

• Simple familiar examples 

Issues 

• What is the performance of that physical system? 

• What agricultural process results in more crops? 

• What will happen when a Mars rover wants to land on Mars? 

Relevancy 

• Is there any CS concept useful here? 

• e.g. Can we use simulation to answer those questions? 



Discussion 

• Which approach do you like more: attacking a domain-
specific problem (e.g. in Physics) or building a 
fundation first? 

 

• Should we explicitly tell to students that the goal is to 
learn computational thinking or not? 

 

• Should we tell the students that "now you are familiar 
wit abstraction" or any other concept in CT/CS, or 
not? 




