Computational Thinking
Across Curriculum

Two papers on teaching computational thinking to non-CS students

Pejman Khadivi
CS Department, Virginia Tech

Who am 1?

Virginia Pejman Khadivi
[MlTech php. Student, Computer Science
- Working with Prof. Ramakrishnan

B.Sc. Computer Engineering, Isfahan University of Technology,1994-1998
M.Sc. Computer Engineering, Isfahan University of Technology, 1998-2000
Ph.D. Electrical Engineering, Isfahan University of Technology, 2000-2006

MCMaster Visiting researcher, McMaster University, 2003
University & Lecturer, Isfahan University of Technology, 2000-2006
gi*‘é Assistant Professor, Isfahan University of Technology, 2006-2011

')‘m\‘

Papers

1. S. Hambrusch, et al. “A Multidisciplinary Approach
Towards Computational Thinking for Science
Majors”, SIGCSE’09, March 3-7, 20009.

2. L. Perkovi¢, et al. “A Framework for Computational
Thinking across the Curriculum?, ITICSE10, June
26—-30, 2010.

First Paper

- S. Hambrusch, et al. “A Multidisciplinary Approach

Towards Computational Thinking for Science Majors”,
SIGCSE’09, March 3—7, 20009.

- Summary:

- This paper is about a course which has been designed to teach CT
to students from Physics, Chemistry, and Bioinformatics majors.
During the course students learn how to program in Python.

Domain-specific examples (from each field) are presented in class
and students have to do term-projects.

Main Principles

e Lay the groundwork for computational thinking
e Formulating problem, abstraction, algorithms, visualization

e Present examples in a language familiar to the students

e Science majors, conversant in the basics of the classical disciplines, will
comprehend computational concepts more easily if those concepts can
be motivated by examples from their scientific subdisciplines

e Teach in a problem-driven way
e Start description from a real world problem

e Thermodynamic system — computational perspective — randomized
models and Monte Carlo techniques

Main Principles

e The programming language should right away allow a

focus on computational principles
e Write meaningful problems in a short time
e Libraries used by scientific community

e Make effective use of visualization
e Better understand scientific questions
e Better understand computational principles and processes

L
Disciplines

- Physics
- Better understanding of computation
- New computational opportunities for learning and research
- New perspective on physics and applied mathematics

- Chemistry

- Computational methods relevant in chemical research (Monte Carlo, Simulated
Annealing and Molecular Dynamics)

- Use and integrate existing Fortran programs
- Visualizing techniques

- Bioinformatics

- Use of R for statistical computing and visualization
- Program in a language for which bioinformatics software packages exist or can
easily be integrated.

Course Syllabus

I. Basic Programming Tools (6 weeks)
e Introduction to Python. Elementary values and data types.

o Straight line programs, assignments to variables, type con-
version, math library.

e Strings, lists, and tuples. Vectors and arrays.
e Conditionals and loop structures.
e Plotting using MatPlotLib and 3D visualization in VPython.

e Functions, parameters, and scope. Recursion.

Course Syllabus

I1. Computational Tools and Methods (6 weeks)

e Arithmetic and random numbers. Using NumPy. Examples
of numerical stability and problem stability.

e Introduction to simulations and Monte Carlo methods.

e Computational Physics: Ideal gas and Ising Spin simula-
tions; adapting a generic Demon algorithm and estimating
parameters in a physical system.(1 week)

e Trees as a data structure, traversal and exploration.

e Introduction to graphs, graph operations using NetworkX,
graphs in science applications.

e Bioinformatics: Modeling protein interactions using tree and
graph representations. Visualizing graphs in Cytoscape and
analyzing protein interactions using clustering techniques. (1
week)

e Grand challenges in scientific computing.

Course Syllabus

I1I. Looking Under the Hood at Computer Science (3 weeks)

o Object-oriented design. Use and design of classes, OO con-
cepts. Dictionaries and spatial queries as examples.

e History of computer science.
e Limits of computing, intractability, computability.

¢ Future models of computation: DNA computing, quantum
computing.

Course Projects

- Two parts:
Programming part

Experimental part
Students can use their own program or another program
Most of them decided to use their own

- All projects asked students to produce visualizations of
computational results and provide a write-up on their
observations

Course Projects

- Manipulating Digital Audio
- Computational Experiments on Percolation in Grids
- Simulating Physical Systems

- Analyzing Protein-Protein Interactions

Evaluation

Comparison of responses

Spring 2008 with only 13 students
10 Physics, 3 Chemistry

: * a EEE
Q1: Taking another computer L]] |
science course? 0
g’ EEE O
9 O [] O a O
Q2: Pursuing a career that v
requires programming skills? 3 =
L
0
X! B B
¢ a

Answers: 0 to 4
0) not interested : ol
4) very interested

3 [

l entry suwéy response

Evaluation

- Students interest in taking other CS courses increased
Previous programming experience had no effect

Responses indicate that 60% of the students plan to take
another CS course

- In other introductory programming courses for majors a
decrease In interest in computer science is observed

- This is not a fair comparison
Example: Different instructors

Discussion

»This course seems to be a special "Programming
Course" with a flavor of applications in science fields,
not a CT course.

»"If all you have is a hammer, everything looks like a
nail”
» People do not know how to teach CT, so they teach
Programming

Second Paper

- L. Perkovig, et al. “A Framework for Computational
Thinking across the Curriculum?, ITICSE’ 10, June 26—
30, 2010.

- Summary:

This paper is about a framework that helps to integrate CT into
different curriculums based on Denning’s great principles of
computing. Different domains are considered in arts, sciences,
humanities, and social sciences. Authors ultimate goal was to
augment people productivity in their fields.

Principles

- Computation: execution of an algorithm

° Communication: transmission of information from one
process or object to another

- Coordination: control of the timing of computation at
participating processes

- Recollection: encoding and organization of data in ways to
make it efficient to search and perform other operations

- Automation: mapping of computation to physical systems

- Evaluation: statistical, numerical, or experimental analysis,
and visualization of data

- Design: organization (using abstraction, modularization,
aggregation, decomposition) of a system, process, object, etc.

Framework

- Common Core
- First-year, two-course sequence in Math and Technology Literacy
- Apply quantitative reasoning and information
- Evaluate real-world problems using modern IT
- Spreadsheets, databases, programming algorithms, ...
- Authors think that this is necessary to teach CT in other courses

- Domain-specific courses
- Courses in various learning domains
- Students are required to take 2-3 courses

Re-worked Courses

Course Title
_Scienti{Enquiry
CSC 233 Codes and Ciphers
CSC 235 Problem Solving
CSC 239 Personal Computing
ECT 250 Internet, Commerce, and Society
ENV 216 Earth System Science
ENV 230 Global Climate Change
ENV 340 Urban Ecology
GEO 241 Geographic Information Systems I
HCI 201 Multimedia and the WWW
I'T 130 The Internet and the Web
Arts and Literature
ANI 201 Animation [
ANI 230 3D Modeling
DC 201 Introduction to Screenwriting
GAM 224 Introduction to Game Design
HAA 130 Principles of European Art
Understanding the Past
HST 221 Early Russia
HST 250 Origins of the Second World War
First Year Program
LSP 112 Focal Point Seminar (The Moon)
" Honors Program
HON 207 Introduction to Cognitive Science

Re-worked Courses

Course Title
_Scientifmnquiry
CSC 233 Codes and Ciphers
CSC 235 Problem Solving
CSC 239 Personal Computing
ECT 250 Internet, Commerce, and Society
ENV 216 Earth System Science
ENV 230 Global Climate Change
ENV 340 Urban Ecology
GEO 241 Geographic Information Systems [
HCI 201 Multimedia and the WWW
I'T" 130 The Internet and the Web
Arts and Literature
ANI 201 Animation [
ANI 230 3D Modeling I
201 ntroduction to gcreenwriting
GAM 224 Introduction to Game Design
130 rinciples orEuropean Art
Understanding the Past
HST 221 Early Russia
HST 250 Origins of the Second World War
First Year Program
LSP 112 Focal Point Seminar (The Moon)
Honors I-Drogram
HON 207 Introduction to Cognitive Science

Covered concepts

Course Coor. Desi. Eval. Reco.
Scientific Inquiry
CSC 233 XX
CSC 235 XX
Course Auto. Comm. Comp.
Sci:ntiﬁc Inquiry - - EI%(\:/- 223196 XX X
Lol 228 G ENV 230 XX
CSC 235 HE ENV 340 XX XX
BET25e 0 GEO 241 XX
IT 130 XX HCI 201 XX XX
Arts and Literature IT 130 XX XX
ANT 201 XX Arts and Literature
ANI 230 XX XX ANI 230 XX XX
First Year Program DC 201 XX
LSP 112 XX GAM 224 XX XX
Honors Program HAA 130 XX XX
HON 207 XX Understanding the Past
HST 221 XX
HST 250 XX
First Year Program
LSP 112 XX

Honors Program
HON 207 XX

What discussed for each course

- (A) catalog course description

- (B) high-level description of the course and computational
thinking concepts covered

- (C) computational thinking learning goal
- (D) a case discussion and several guiding questions

- (E) assessment for the specified learning goal

Geographic Information Systems |

- An introduction to the fundamentals of geospatial
iInformation processing

- Introduces basic concepts and methods that underlie

Information systems designed to deal with geographically
referenced data.

- Design (data modeling, ...)

- Comparing two different data representations

Introduction to Game Design

- Computer Games from Three Perspectives:
- Media: elements, structure, interactive appreciation
- Complex software artifact
- Cultural artifact

- Game rules:
- Constituative, operational, and implicit

- Design (Abstracting game rules, ...)

- Relationship between different abstractions of rules, the modeling
of game behavior, and the underlying structure of a game

L
3D Modeling

- Introductory modeling and texturing technigques required
to construct 3D objects and scenes to be used for
animation and gaming

- Modularization in 3D modeling

- Design, Automation, Computation

Discussion

- Proposed method: Talk about a domain specific
problem with existing computational solutions to teach
a CS/CT skill

- Alternative method: which concept is relevant to our
problems?

Some simple familiar examples help students to absorb CS
concepts not as an "only CS" concept but as a multi-domain
concept. Then, domain specific examples can show up and do
their magic.

Discussion

- Example: Teaching Object Oriented Design

Al

OOP Concepts OOP Concepts

* Real-world objects share two characteristics: They
all have state and behavior

* Bicycles have state
* current gear, current pedal cadence, current speed
¢ and behavior
¢ changing gear, changing pedal cadence, applying brakes

+ Identifying the state and behavior for real-world objects is a
great way to begin thinking in terms of object-oriented
programming.

Discussion

- Example of alternative method:

» Concepts and methods: Abstraction, simulation, ...

=i | ¢ Simple familiar examples

* What is the performance of that physical system?
« What agricultural process results in more crops?
« What will happen when a Mars rover wants to land on Mars?

* Is there any CS concept useful here?
 e.g. Can we use simulation to answer those questions?

Relevancy

Discussion

- Which approach do you like more: attacking a domain-
specific problem (e.g. in Physics) or building a
fundation first?

- Should we explicitly tell to students that the goal is to
learn computational thinking or not?

- Should we tell the students that "now you are familiar
wit abstraction" or any other concept in CT/CS, or
hot?

