
Victor P. Nelson
VLSI Design & Test Seminar

11/05/2011

Computer-Aided Design of ASICs
Concept to Silicon

IC Design Flow

 Digital ASIC Design Flow
Behavioral

Model
VHDL/Verilog

Gate-Level
Netlist

Transistor-Level
Netlist

Physical
Layout

Map/Place/Route

DFT/BIST
& ATPG

Verify
Function

Verify
Function

Verify Function
& Timing

Verify
Timing

DRC & LVS
Verification

IC Mask Data/FPGA Configuration File

Standard Cell IC
& FPGA/CPLD

Synthesis

Test vectors Full-custom IC

Front-End
Design

Back-End
Design

Mentor Graphics Analog/Mixed-Signal
IC Nanometer Design Flow

ASIC CAD tools available in ECE
 Modeling and Simulation

 Questa ADMS = Questa+Modelsim+Eldo+ADiT (Mentor Graphics)
 Verilog-XL, NC_Verilog, Spectre (Cadence)

 Design Synthesis (digital)
 Leonardo Spectrum (Mentor Graphics)
 Design Compiler (Synopsys), RTL Compiler (Cadence)

 Design for Test and Automatic Test Pattern Generation
 Tessent DFT Advisor, Fastscan, SoCScan (Mentor Graphics)

 Schematic Capture & Design Integration
 Design Architect-IC (Mentor Graphics)
 Design Framework II (DFII) - Composer (Cadence)

 Physical Layout
 IC Station (Mentor Graphics)
 SOC Encounter, Virtuoso (Cadence)

 Design Verification
 Calibre DRC, LVS, PEX (Mentor Graphics)
 Diva, Assura (Cadence)

Mentor Graphics ASIC Design Kit (ADK)

 Technology files & standard cell libraries
 AMI: ami12, ami05 (1.2, 0.5 μm)
 TSMC: tsmc035, tsmc025, tsmc018 (0.35, 0.25**, 0.18 μm) **also have VT Cadence lib
 Current MOSIS Instructional: IBM 180nm CMOS (7RF), ON Semi 0.5um CMOS
 Current MOSIS Unfunded Research: IBM 130nm CMOS (8RF), 130nm SiGE BiCMOS(8HP)

 IC flow & DFT tool support files:
 Simulation models

 VHDL/Verilog/Mixed-Signal models (Modelsim SE/Questa ADMS)
 Analog (SPICE) models (Eldo, ADiT)
 *Post-layout timing (Mach TA) * obsolete: Mach TA replaced by ADiT
 *Digital schematic (Quicksim II, Quicksim Pro) * obsolete: HDL or Eldo now used

 Standard cell synthesis libraries (LeonardoSpectrum)
 Design for test & ATPG libraries (DFT Advisor, Fastscan)
 Schematic capture (Design Architect-IC)
 IC physical design (standard cell & custom)

 Standard cell models, symbols, layouts (IC Station)
 Design rule check, layout vs schematic, parameter extraction (Calibre)

We also have ADK’s for Cadence tools for several technologies

Xilinx/Altera FPGA/CPLD Design Tools
 Simulate designs in Modelsim

 Behavioral models (VHDL,Verilog)
 Synthesized netlists (VHDL, Verilog)

 Requires “primitives” library for the target technology

 Synthesize netlist from behavioral model
 Leonardo (Levels 1,2,3) has libraries for most FPGAs (ASIC-only license currently installed)
 Xilinx ISE and Altera Quartus II have own synthesis tools

 Vendor tools for back-end design
 Map, place, route, configure device, timing analysis, generate timing models
 Xilinx Integrated Software Environment (ISE)
 Altera Quartus II & Max+Plus2

 Higher level tools for system design & management
 Mentor Graphics FPGA Advantage
 Xilinx Platform Studio : SoC design, IP management, HW/SW codesign

Automated ASIC Design Flow
Source: CMOS IC Layout, Dan Clein

Std Cell ASIC Full Custom IC

Behavioral Design & Verification
Create Behavioral/RTL

 HDL Model(s)

Simulate to Verify
Functionality

Synthesize
Circuit

Leonardo Spectrum,
Synopsys -
Design Compiler,
Xilinx ISE (digital)

Modelsim
(digital)

VHDL-AMS
Verilog-AMS

Questa ADMS
(analog/mixed signal)

VHDL
Verilog

SystemC

Technology
Libraries

Technology-Specific Netlist
& Timing to Back-End Tools

Simulate to Verify
Function/Timing

VITAL
Library

Design Constraints

Questa ADMS (replaced ADVance MS)

 Four simulation engines integrated for SoC designs
 Questa – mixed signal simulation (VHDL-AMS, Verilog-AMS)
 QuestaSim (Modelsim) – VHDL/Verilog/SystemC digital simulation
 Eldo/Eldo RF – analog (SPICE) simulation (replaced Accusim)
 ADiT – accelerated transistor-level (Fast-SPICE) simulation (replaced Mach TA)

 Engines, languages, standards can be mixed in a simulation
 IEEE 1497 Standard Delay File Format (SDF)
 IEEE 1076.1 VHDL-AMS
 IEEE 1076 VHDL
 IEEE 1364 Verilog
 IEEE 1800 SystemVerilog
 IEEE 1666 SystemC
 Accellera standard Verilog-AMS Language
 SPICE Eldo, HSPICE, and Spectre dialects.

Questa ADMS
Analog, Digital, Mixed-Signal Simulation

Questa ADMS

Working
Library

Design_1
Design_2

VITAL

IEEE 1164 Resource
Libraries

Simulation
Setup

EZwave

Input
Stimuli

VHDL,Verilog,
VHDL-AMS, Verilog-AMS,

SPICE Netlists

Eldo,
Eldo RF Modelsim

View Results ADiT Analog
(SPICE) Digital

(VHDL,Verilog)

Mixed Signal
(VHDL-AMS,
 Verilog-AMS)

SPICE
models

Xilinx
SIMPRIMS

Module
Generators

Questa ADMS : mixed-signal simulation

A/D converter

digital

analog
VHDL-AMS

digital nets

analog nets

Questa ADMS: mixed Verilog-SPICE

SPICE
subcircuit

Verilog top
(test bench)

Automated Synthesis with
LeonardoSpectrum/Synopsys Design Compiler

Leonardo Spectrum
(Level 3)

Synopsys Design Compiler
& Design Vision (GUI)

VHDL/Verilog
Behavioral/RTL Models

FPGA

ASIC

Technology
Synthesis
Libraries

Technology-
Specific
Netlist

Design
Constraints

VHDL, Verilog, SDF,
EDIF, XNF

Leonardo Spectrum:
Level 1 – FPGA
Level 2 – FPGA + Timing
Level 3 – ASIC + FPGA
(we have Level 3 ASIC only)

Mentor ADK:
 AMI 0.5, 1.2
 TSMC 0.35, 0.25
Cadence ADKs
 TSMC 0.25
 Others

DW

Synopsys
“DesignWare”
Modules

Leonardo – ASIC Synthesis Flow

Read &
check HDL

Synthesize
generic gates
& modules

Map to technology
cells & optimize

Write netlist,
SDF, reports

Sample LeonardoSpectrum synthesis script
 load_library /linux_apps/ADK3.1/technology/leonardo/tsmc025_typ
 analyze "../src/mux.vhd" "../src/shiftreg.vhd" "../src/alu.vhd"

"../src/dcontrol.vhd" "../src/divider.vhd“
 elaborate
 clock_cycle 2 CLOCK
 optimize -hierarchy preserve
 optimize_timing -through C/reg_State(2)/Q
 write divider_0.vhd
 write divider_0.v
 write_divider_0.sdf
 report_area div_area.rpt -cell_usage –hierarchy
 report_delay div_delay.rpt
 report_delay -longest_path -to Q* mod6_outdelay.rpt
 report_delay -longest_path -from [list I* L_Cbar] mod6_indelay.rpt

Post-synthesis simulation of
synthesized netlist

 Verify that synthesized netlist matches behavioral model
 Create library of std cell simulation primitives:
 >vlib adk
 >vcom $ADK/technology/adk.vhd
 >vcom $ADK/technology/adk_comp.vhd

 Insert library/package declaration into netlist
 library adk;
 use adk.adk_components.all;
 Simulate in Modelsim, using “do file” or test bench from

behavioral simulation
 results should match

 Simulate netlist with synthesize-produced SDF file to study
timing (delays, constraints, etc.)

VITAL models
of ADK std cells

Post-synthesis timing analysis
 Synthesis tools generate SDF (std. delay format) file with technology-

specific, VITAL-compliant timing parameters (from cell library)
(CELLTYPE "dffr")
 (INSTANCE Q_0_EXMPLR_EXMPLR)
 (DELAY
 (ABSOLUTE
 (PORT D (::0.00) (::0.00))
 (PORT CLK (::0.00) (::0.00))
 (PORT R (::0.00) (::0.00))
 (IOPATH CLK Q (::0.40) (::0.47))
 (IOPATH R Q (::0.00) (::0.55))
 (IOPATH CLK QB (::0.45) (::0.36))
 (IOPATH R QB (::0.53) (::0.00))))
 (TIMINGCHECK
 (SETUP D (posedge CLK) (0.47))
 (HOLD D (posedge CLK) (-0.06))))

Path delays
(min:typ:max)

Delays lumped at pins

Clock constraints

VITAL Std. Cell Model (1)
library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.VITAL_Primitives.all; use IEEE.VITAL_Timing.all;
entity and02 is
 generic (
 tipd_A0 : VitalDelayType01Z := VitalZeroDelay01Z;
 tipd_A1 : VitalDelayType01Z := VitalZeroDelay01Z;
 tpd_A0_Y : VitalDelayType01Z := VitalZeroDelay01Z;
 tpd_A1_Y : VitalDelayType01Z := VitalZeroDelay01Z
);
 port (
 A0 : in STD_LOGIC;
 A1 : in STD_LOGIC;
 Y : out STD_LOGIC
);
 attribute VITAL_LEVEL0 of and02 : entity is TRUE;
end and02;

Delays from
SDF file

VITAL Std. Cell Model (2)
architecture and02_arch of and02 is
 attribute VITAL_LEVEL1 of and02_arch : architecture is TRUE;
 signal A0_ipd : STD_LOGIC := 'X';
 signal A1_ipd : STD_LOGIC := 'X';
begin
 WireDelay : Block
 begin
 VitalWireDelay (A0_ipd, A0, tipd_A0);
 VitalWireDelay (A1_ipd, A1, tipd_A1);
 end Block;

 VitalBehavior : Process (A0_ipd, A1_ipd)
 VARIABLE INT_RES_0 : STD_LOGIC := 'X';
 VARIABLE GlitchData_Y : VitalGlitchDataType;
 begin
 -- FUNCTIONALITY SECTION --
 INT_RES_0 := VitalAnd2 (A0_ipd, A1_ipd);

Determine input
pin delays (if any)

Ideal (zero-delay)
AND function

VITAL Std. Cell Model (3)
 -- PATH DELAY SECTION --
 VitalPathDelay01Z (-- VITAL Function Call
 OutSignal => Y,
 OutSignalName => "Y",
 OutTemp => INT_RES_0,
 Paths => (
 0 => (InputChangeTime => A0_ipd'LAST_EVENT,
 PathDelay => tpd_A0_Y,
 PathCondition => TRUE
),
 1 => (InputChangeTime => A1_ipd'LAST_EVENT,
 PathDelay => tpd_A1_Y,
 PathCondition => TRUE
)
),
 GlitchData => GlitchData_Y,
 Mode => OnDetect,
 MsgOn => TRUE, Xon => TRUE,
 MsgSeverity => WARNING

Determine delay along
each input-output path

Design for test & test generation
 Consider test during initial design phase
 Test development more difficult after design frozen

 Basic steps:
 Design for test (DFT) – insert test points, scan chains, etc. to

improve testability
 Insert built-in self-test (BIST) circuits
 Generate test patterns (ATPG)
 Determine fault coverage (Fault Simulation)

 Mentor Graphics Tessent Silicon Test tools support the above

Tesssent – Test & Yield Analysis Tools

 Tessent FastScan

Tessent SoCScan
& DFTAdvisor

Mentor Graphics “Tessent” Products
 Tessent Fastscan – ATPG and Fault Simulation
 Fault models supported: stuck-at, IDDQ, transition, path delay and

bridge.
 Tessent SoC Scan (insert hierarchical scan)
 Absorbs functionality of older DFTAdvisor

 Tessent DFTAdvisor – insert full/partial scan and test ckts
 Also:
 Tessent TestKompress (ATPG for scan tests)
 Tessent Boundary Scan (IEEE 1149.1)
 Tessent LogicBIST
 Tessent MemoryBIST
 Tessent Diagnosis (failure diagnosis)
 Tessent YieldInsight (statistical analysis of diagnosis data to find

systematic yield limiters)

ASIC DFT Flow

Insert Internal
Scan Circuitry

Generate/Verify
Test Vectors

Synthesized VHDL/Verilog Netlist

adk.atpg

ATPG Library

Tessent
DFTAdvisor

Tessent
Fastscan

VHDL/Verilog
Netlist With

Scan Elements

Test Pattern File

DFT & test design flow

Memory
& Logic
BIST Boundary

Scan

Internal
Scan Design

ATPG

DFTadvisor/FastScan Design Flow

Source: FlexTest Manual

DFT/ATPG
Library:
adk.atpg

count4.vhd

count4_0.vhd
count4.v

count4_scan.v

Leonardo

Example DFTadvisor script (Chan Hao)

 dftadvisor –verilog count4.v –lib $ADK/technology/adk.atpg
 analyze control signals -auto_fix
 set scan type mux_Scan
 set system mode dft
 setup scan identification full_scan
 run
 //here you can determine how many scan chains you want to create
 insert test logic -scan on -number 3
 //another way to create scan chains by giving maximum scan chain length
 //insert test logic -scan on -max_length 30
 write netlist s1423_scan.v -verilog -replace
 //write dofile and procedure file for fastscan
 write atpg setup s1423_scan -procfile -replace
 exit

count4 – without scan design

count4 – scan inserted by DFTadvisor

Scan Control

Scan In

Scan FF

ATPG with FastScan (full-scan circuit)

 Invoke:
 fastscan –verilog count4.v –lib $ADK/technology/adk.atpg

 Generate test pattern file in FastScan:
 dofile count4_scan.dofile (defines scan path & procedure) **
 set system mode atpg
 create patterns –auto (generate test patterns)
 save patterns

** “count4_scan.dofile” was created by DFTadvisor

Test file: scan chain definition and
load/unload procedures

 scan_group "grp1" =
 scan_chain "chain1" =
 scan_in = "/scan_in1";
 scan_out = "/output[3]";
 length = 4;
 end;
 procedure shift "grp1_load_shift" =
 force_sci "chain1" 0;
 force "/clock" 1 20;
 force "/clock" 0 30;
 period 40;
 end;
 procedure shift "grp1_unload_shift" =
 measure_sco "chain1" 10;
 force "/clock" 1 20;
 force "/clock" 0 30;
 period 40;
 end;

procedure load "grp1_load" =
 force "/clear" 0 0;
 force "/clock" 0 0;
 force "/scan_en" 1 0;
 apply "grp1_load_shift" 4 40;
 end;
procedure unload "grp1_unload" =
 force "/clear" 0 0;
 force "/clock" 0 0;
 force "/scan_en" 1 0;
 apply "grp1_unload_shift" 4 40;
 end;
end;

Generated scan-based test
// send a pattern through the scan chain
CHAIN_TEST =
 pattern = 0;
 apply "grp1_load" 0 = (use grp1_load procedure)
 chain "chain1" = "0011"; (pattern to scan in)
 end;
 apply "grp1_unload" 1 = (use grp1_unload procedure)
 chain "chain1" = "1100"; (pattern scanned out)
 end;
end;
// one of 14 patterns for the counter circuit
 pattern = 0; (pattern #)
 apply "grp1_load" 0 = (load scan chain)
 chain "chain1" = "1000"; (scan-in pattern)
 end;
 force "PI" "00110" 1; (PI pattern)
 measure "PO" "0010" 2; (expected POs)
 pulse "/clock" 3; (normal op. cycle)
 apply "grp1_unload" 4 = (read scan chain)
 chain "chain1" = "0110"; (expected pattern)
 end;

 ASIC Physical Design (Standard Cell)
(can also do full custom layout)

Floorplan
Chip/Block

Place & Route
Std. Cells

Component-Level Netlist (EDDM format)

IC Mask Data

Design Rule
Check

Std. Cell
Layouts

Mentor Graphics
“IC Station”

(Linux cmd: adk_ic)

Mach TA/Eldo Simulation Model

Backannotate
Schematic

Generate
Mask Data

Layout vs.
Schematic

Check

Design Rules

Process Data

Libraries

Calibre Calibre Calibre

ICblocks

Cell-Based IC

I/O pads

Cell-Based Block

Source: Weste “CMOS VLSI Design”

Basic standard
Cell layout

Preparation for Layout
1. Use Design Architect-IC to convert Verilog netlist to Mentor

Graphics EDDM netlist format
 Invoke Design Architect-IC (adk_daic)
 On menu bar, select File > Import Verilog

 Netlist file: count4.v (the Verilog netlist)
 Output directory: count4 (for the EDDM netlist)
 Mapping file $ADK/technology/adk_map.vmp

2. Open the generated schematic for viewing
 Click Schematic in DA-IC palette
 Select schematic in directory named above (see next slide)
 Click Update LVS in the schematic palette to create a netlist to be used later by

“Calibre”
3. Create design viewpoints for ICstation tools

 adk_dve count4 –t tsmc035 (V.P’s: layout, lvs, sdl, tsmc035)
 Can also create gate/transistor schematics directly in DA-IC using

components from the ADK library

DA-IC generated schematic

Eldo simulation from DA-IC
 Run simulations from within DA-IC
 Eldo, Questa ADMS, ADiT

 DA-IC “netlister” creates a circuit model from the schematic
 SPICE model for Eldo & ADiT

 Eldo analyses, forces, probes, etc. same as SPICE
 View results in EZwave

SPICE netlist for modulo7 counter SPICE “circuit” file generated by DA-IC

Force values (created interactively)

From ADK
library

Automated Layout Design Flow

IC Station create cell dialog box
 (Linux command: adk_ic)

$ADK/technology/ic

Use schematic
to drive layout

Auto-”floorplan” the block
place & route > autofp

Auto-place the std cells
Autoplc > StdCel

Auto-place ports (signal connections on cell boundaries)
Autoplc > Ports

AutoRoute all nets
(hand-route any unrouted “overflows”)

Then: Add > Port Text to copy port names from schematic – for Calibre

Layout design rule check (DRC)

 Technology-specific design rules specify minimum sizes,
spacing, etc. of features to ensure reliable fabrication
 Design rules file specified at startup
 Ex. tsmc035.rules

 From main palette, select ICrules
 Click Check and then OK in prompt box
 (optionally select a specific area to check)
 Rules checked in numeric order

Common errors detected by DRC

 To fix, click on First in palette to highlight first error
 Error is highlighted in the layout
 Click View to zoom in to the error (see next)
 Example: DRC9_2: Metal2 spacing = 3L
 Fix by drawing a rectangle of metal2 to fill in the gap between

contacts that should be connected
 Click Next to go to next error, until all are fixed

NOTE: MOSIS will not fabricate a chip with DRC errors –

they perform their own DRC.

Sample error: DRC9_2 metal2 spacing = 3L

Draw
rectangle
of metal2
to fill gap

It also called contact-to-contact metal 2 spacing DRC9_2 error

Layout vs schematic check using
Calibre Interactive LVS

 Compare extracted transistor-level netlist against netlist saved
in DA-IC

 From ICstation menu: Calibre > Run LVS
 In popup, Calibre location: $MGC_HOME/../Calibre
 Rules: $ADK/technology/ic/process/tsmc035.calibre.rules
 Input: count4.src.net (previously created in DA-IC)
 H-cells: $ADK/technology/adk.hcell (hierarchical cells)
 Extracted file: count4.lay.net

Post-layout parameter extraction via
Calibre Interactive PEX

 Extract Spice netlist, including parasitic RC
 Simulate in Eldo or MachTA

 ICstation menu: Calibre>Run PEX
 Options are similar to Calibre LVS
 Extraction options:
 lumped C + coupling cap’s
 distributed RC
 distributed RC + coupling cap’s

 Output file: count4.pex.netlist

Post-layout simulation: ADiT

• Fast-SPICE simulator
• Analog & mixed-signal
• 10X to 100X faster than
 other SPICE simulators
• Integrated with Questa
•Examples: $MGC_AMS_HOME/examples/adit/

Top level layout design flow**
 Create a symbol for each core block (adk_daic)
 Create a chip-level schematic from core blocks and pads

(adk_daic)
 Generate design viewpoints (adk_dve)
 Create a layout cell for the chip (adk_ic)
 Place core logic blocks from the schematic
 Generate a pad frame
 Move/alter core blocks to simplify routing
 Route pads to core blocks
 Design rule check & fix problems

 Generate mask data

** Refer to on-line tutorials by Yan/Xu and by Dixit/Poladia

Chip-level schematic (1)
 Generate a symbol for each “core” logic block
 In DA-IC, open the schematic (eg. modulo7)
 Select: Miscellaneous > Generate Symbol
 Add “phy_comp” property to the symbol
 Select the body of the symbol
 From the popup menu: Properties > Add

 Enter property name: phy_comp
 Enter property value: mod7b

 (layout cell name for the block created in IC Station)

 Check & save

Example on next slide

Symbol with phy_comp property
(associate layout with symbol)

Layout
cell is
“mod7b”
for logic
schematic
“modulo7”

Chip-level schematic (2)
 In DA-IC, create a schematic for the chip
 Instantiate core blocks
 Menu pallete: Add > Instance
 Select and place generated symbol

 Add pads from ADK Library>Std. Cells>Pads >tsmc035 : In, Out,
BiDir, VDD, GND

 Wire pads to logic blocks and connectors
 Assign pin numbers, if known
 Change pad instance name to PINdd (dd = 2-digit pin #)

 Check & save

 Create design viewpoints with adk_dve

Example on next slide

Top-level schematic for “modulo7” chip

Hierarchical
connectors
on “Pad” pins

Wire block I/O pins
to pad signal pins

VDD/GND
Pads

Core block

Instance
name =
PINxx
(chip pin #)

Assigning PAD pin numbers
Change instance name property on pads to PINxx

xx = 2-digit pin number (01 – 40 for Tiny Chip package)

Place pad on
chip pin 01

Default
instance
names

Top-level chip layout
 Start IC Station (adk_ic) & create a new layout cell
 enter cell name
 logic source is “layout” viewpoint of chip schematic
 same library, process file, rules file, and options as standard cell layout

 Open the schematic
 ADK Edit menu: Logic Source > Open
 In the schematic, select all core cells (but not pads)
 Place the cells: Place > Inst

 Generate the pad frame
 Top menu bar: ADK > Generate Padframe > tsmc035
 (Only: AMI 1.2um, AMI 0.5um, TSMC 0.35um)

Chip layout (2)
 Move, rotate, flip core logic cells as desired to make routing

easier
 DO NOT EDIT OR MOVE PAD CELLS

 Autoroute all connections
 Select autoroute all on P&R menu
 Click “options” on prompt bar, and unselect “Expand Channels”

(prevents pads from being moved)
 Add missing VDD/GND wires, if necessary
 Autorouter might only create 1 VDD/GND wire, even if multiple

VDD/GND pads
 Manually add others: Objects>Add>Path
 VDD/GND net width = 50
 VDD/GND net vias = 6x6 (copy an existing via)

Modulo-7 counter in pad frame

	Computer-Aided Design of ASICs�Concept to Silicon
	IC Design Flow
	 Digital ASIC Design Flow
	Mentor Graphics Analog/Mixed-Signal IC Nanometer Design Flow
	ASIC CAD tools available in ECE
	Mentor Graphics ASIC Design Kit (ADK)
	Xilinx/Altera FPGA/CPLD Design Tools
	Slide Number 8
	Behavioral Design & Verification
	Questa ADMS (replaced ADVance MS)
	Questa ADMS�Analog, Digital, Mixed-Signal Simulation
	Questa ADMS : mixed-signal simulation
	Questa ADMS: mixed Verilog-SPICE
	Automated Synthesis with �LeonardoSpectrum/Synopsys Design Compiler
	Leonardo – ASIC Synthesis Flow
	Sample LeonardoSpectrum synthesis script
	Post-synthesis simulation of synthesized netlist
	Post-synthesis timing analysis
	VITAL Std. Cell Model (1)
	VITAL Std. Cell Model (2)
	VITAL Std. Cell Model (3)
	Design for test & test generation
	Tesssent – Test & Yield Analysis Tools
	Mentor Graphics “Tessent” Products
	ASIC DFT Flow
	DFT & test design flow
	DFTadvisor/FastScan Design Flow
	Example DFTadvisor script (Chan Hao)
	count4 – without scan design
	count4 – scan inserted by DFTadvisor
	ATPG with FastScan (full-scan circuit)
	Test file: scan chain definition and load/unload procedures
	Generated scan-based test
	 ASIC Physical Design (Standard Cell)�(can also do full custom layout)
	Cell-Based IC
	Cell-Based Block
	Slide Number 37
	Preparation for Layout
	DA-IC generated schematic
	Eldo simulation from DA-IC
	Slide Number 41
	Automated Layout Design Flow
	IC Station create cell dialog box� (Linux command: adk_ic)
	Auto-”floorplan” the block�place & route > autofp
	Auto-place the std cells�Autoplc > StdCel
	Auto-place ports (signal connections on cell boundaries)�Autoplc > Ports
	AutoRoute all nets�(hand-route any unrouted “overflows”)
	Layout design rule check (DRC)
	Common errors detected by DRC
	Sample error: DRC9_2 metal2 spacing = 3L
	Layout vs schematic check using�Calibre Interactive LVS
	Post-layout parameter extraction via�Calibre Interactive PEX
	Post-layout simulation: ADiT
	Top level layout design flow**
	Chip-level schematic (1)
	Symbol with phy_comp property�(associate layout with symbol)
	Chip-level schematic (2)
	Top-level schematic for “modulo7” chip
	Assigning PAD pin numbers
	Top-level chip layout
	Chip layout (2)
	Modulo-7 counter in pad frame

