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• “Simple yet effective”

• Trade-off between software and firmware

• Code reusability 

• Tuning multiple parameters    

• Safety controllers

• Machine Learning Solutions

• Data

• Security and privacy    

• Time to market

• Designing for heterogeneous systems

• Controller composability across internal IPs

• Controller composability between vendors

OUTLINE

Parameters

Linear – Good!

Exponential – OK But Don’t Panic…

Combinatorial Explosion - <GULP>
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FEEDBACK CONTROL: STATE-OF-THE-ART

3

HEURISTICS-BASED 
DESIGNS

PID AND ADAPTIVE 
CONTROLLERS

ADVANCED CONTROL 
THEORY

• If (A < Threshold) do B else do C

• Simple and easy to implement

• Lots of parameters. Hence hard 
to tune

• Verifying correctness is 
expensive for complex systems

• Examples

• CoScale (2012) [1]

• Crank It Up or Dial It Down 
(2013) [2]

• Harmonia (2015) [3] 

• PID is simple. Hence a popular 
choice

• Single Input Single Output 
(SISO)

• PID is great for Newtonian 
systems 

• Computers are inherently non-
linear

• Adaptive gain controllers 
address some non-linearities

• Examples:

• Temperature Aware 
Microarchitecture [4]

• Adaptive Gain Power Regulator 
[5]

• Mathematically rigorous

• Multi – Objective optimization

• Linear Quadratic Gaussian 
regulator (LQG), Model 
Predictive Control (MPC)

• Multiple Input Multiple Output 
(MIMO)

• Examples:

• DTM with MPC (2009) [6]

• DTM with Convex Optimization 
(2008) [7]

• MIMO and LQG [8]
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• Heuristics-Based and PID controllers are great candidates for simple designs

• Thresholds in heuristics and Gains in PID require tuning

• Time consuming process

• Software implementation (e.g., cpufreq) 

• Suits firmware implementation as well! (e.g., System Management Unit (SMU) [9])

• Faster response times compared to software

• Small code size

• Meets real-time constraints

• Core reusability is very important

• Must be applicable across products with “minimal” tuning

• Time to market 

• Basically, works like a charm! Until… 

HEURISTICS-BASED DESIGNS
SIMPLE YET EFFECTIVE

Capture local die data
• CPU current
• Voltage Levels
• Non-CPU power
• Temperature
• State information

Compute global frequency 
request

• CPU current loop
• CPU voltage loop
• Package power loop
• Temperature loop

Compute local frequency
• Apply local limits
• Set each CPU core 

frequency
• Apply local voltages 

to each CPU core

Frequency Request

Acknowledge

External 
Voltage
Regulator

Master SMUSlave SMU
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• Performance, Power, Temperature and Energy (PPTE) – high-level outcomes

• Parameters affecting PPTE
• Cache sizes, associativity, issue width

• Capacitance, frequency, voltage, leakage current

• Application behavior: compute vs. memory, bursty vs. steady, CPU vs. GPU

• Ideal situation: PPTE = f (All possible parameters) and sensitivity of PPTE w.r.t. each parameter is well understood

• Reality: The model f is hard to characterize. Shmoo–ing each parameter is practically infeasible
• Cache size affects performance and power and hence temperature which in turn affects leakage currents

• Power dissipated in GPU reduces boost clock frequency of CPU (Cooperative Boosting 2013 [10])

• The BIG UNKNOWN: Application behavior
• Characterize the system and tune for a generic set of applications (3DMark®, PCMark®, Cinebench®, SPEC Power®, etc.)

• Heuristics-based methods and PID controllers begin to show their limitations in such complex 
environments

• CHALLENGES: What is the best approach to handling multiple parameters?
• Smaller, simplified piece-wise linearized models? If yes, what determines the metric “simplified”?

MULTI – PARAMETER TUNING
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• Potential Hazards on a typical processor

• Over heating (> Tj), Thermal Design Power (TDP), Thermal Design Current (TDC), Electrical Design Current (EDC), 
Current spikes (dI/dt)

• SMU firmware monitors each individual hazard at fine granularity 

• Academic proposals do not always consider them

• Designing within TDP and temperature limits as constraints is only the first step

• A well-rounded, practical power management solution MUST address these critical hazards swiftly and 
effectively

• Control theory (e.g., Robust control) provides some guarantees on PPTE 

• But without explicitly addressing safety hazards can render them practically unsuitable 

• CHALLENGES: How should we integrate safety controllers alongside PPTE optimization controllers?

• Softmax? 

• Use Machine Learning to classify hazard scenarios?

• Composability (will talk about it in a few slides) 

SAFETY CONTROLLERS
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• “New kid on the block” challenging traditional PID and heuristics-based techniques

• Hank will give an in-depth review later

• Seems to work great when there is lots and lots of training data
• But how much data is “sufficient”? Does it cover all possible use-cases?

• Should we simply let ML handle everything? 

• User Data Collection: Not the most popular set of three words these days
• AMD cares about security and privacy

• Cannot necessarily train on user-specific data (could cause overfitting)

• Model Training Time
• ML training is time consuming

• Product shipping deadlines are tight: Time to market is extremely critical

• CHALLENGES: If we decide to take the ML route,
• Which ML algorithm is best suited for practical implementation? (Recall: Firmware has tight real-time and space constraints)

• Do we know if applications X, Y and Z represent the full spectrum?

• What about code reusability?

USING MACHINE LEARNING
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Cores + Cache

8

HETEROGENEOUS 
SYSTEMS

Mem Ctrl + IO

DSP,

Network

GPU
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• AMD’s Accelerated Processing Unit (APU): Heterogeneity in 
processor types

• AMD Ryzen™ 7 3750H Mobile Processor with Radeon™ RX Vega 10 
Graphics

• Arm® big.LITTLE: Heterogeneity in CPU types

• Power management is a challenge, but all IPs are “in-house” 

• Power and thermal models are well understood

• Application characteristics driven power sharing between CPU and 
GPU (between big and LITTLE cores)

• Chiplet based architecture 

• Great for performance scaling

• Challenging for power management

HETEROGENEITY WITHIN A PROCESSOR
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• Intel uses Dynamic Power and Thermal Framework (DTPF) [11]
• Centralized Kernel driver

• Each chip exposes sensor data 

• DTPF controls the chip inputs

• IBM POWER9 uses On Chip Controller (OCC) [12]
• Centralized hardware controller

• Master – Slave strategy for 2 – socket configurations

• Composability of controllers in heterogeneous systems
• Each vendor optimizes its IP “locally”. Does it imply “global” optimality as well?

• Will locally stable controllers work harmoniously when composed together in a large system? 

• Centralized controllers do not scale

• What is the right granularity for de-centralizing individual controllers? 

• Computing systems can be assembled with parts from multiple vendors (AMD, Intel , NVIDIA etc.)

• How should we separate power control between OS and FW?

• Control theory could shed some light on these questions: Raghav will talk in detail next

SYSTEM–WIDE HETEROGENEITY 
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IN MEMORY OF MY ADVISOR

DR. SUDHAKAR YALAMANCHILI
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THANK YOU !

QUESTIONS?

Thanks to Joseph Greathouse, Indrani Paul, and Leonardo Piga for their inputs! 
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