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The need for speed: Superscalar 
• Remember our goal: minimize CPU Time 

CPU Time =  duration of clock cycle × CPI × IC 
• So far we have learned that in order to 

 Minimize clock cycle  ⇒ add more pipe stages  
 Minimize CPI   ⇒ utilize pipeline  
 Minimize IC   ⇒ change/improve the architecture 

• Why not make the pipeline deeper and deeper?  

 Beyond some point, adding more pipe stages doesn’t help, because 
 Control/data hazards increase, and become costlier 

• (Recall that in a pipelined CPU, CPI=1 only w/o hazards) 

• So what can we do next? 
 Reduce the CPI by utilizing ILP (instruction level parallelism) 
 We will need to duplicate HW for this purpose… 
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A simple superscalar CPU 
• Duplicates the pipeline to accommodate ILP (IPC > 1) 

 ILP=instruction-level parallelism 
 

• Note that duplicating HW in just one pipe stage doesn’t help  
 e.g., when having 2 ALUs, 
 the bottleneck moves to other stages 

 
 
 

• Conclusion: 
 Getting IPC > 1 requires to fetch/decode/exe/retire >1 

instruction per clock: 
 
 

IF      ID       EXE    MEM    WB 

IF      ID       EXE    MEM    WB 
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Example: Pentium Processor 
 

• Pentium fetches & decodes 2 instructions per cycle 
 

• Before register file read, decide on pairing 
 Can the two instructions be executed in parallel? (yes/no) 

 
 
 
 

• Pairing decision is based… 
 On data dependencies (instructions must be independent) 
 On resources (v-pipe can only execute some of the instructions; 

and also, some instruction use resources from both pipes) 
 
 

IF     ID 
u-pipe 

v-pipe 
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Is superscalar good enough? 
• A superscalar processor can fetch, decode, execute, and retire, 

e.g., 2 instructions in parallel 
 

• But… 
 Can execute only independent instructions in parallel 

• Whereas adjacent instructions are often dependent 
 So the utilization of the second pipe is often low 

 
• Solution: out-of-order execution 

 Execute instructions based on the “data flow” graph, 
(rather than program order) 

 Still need to keep the semantics of the original program 
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Out-of-order in a nutshell 
 

• HW examines a sliding window of consecutive instructions 
 The “instruction window” 

 
• Ready instructions get picked up from window 

 
• Executed out of program order 

 
• Instruction results are committed to the machine state 

(memory+reg. file) in original program order 
 Why? 

 
• User is unaware (except that the program runs faster) 
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Superscalar basics: Data flow analysis 
• Example: 

 (1) r1 ← r4 / r7   /* assume division takes 20 cycles */ 
 (2) r8 ← r1 + r2 
 (3) r5 ← r5 + 1 
 (4) r6 ← r6 - r3   
 (5) r4 ← r5 + r6 
 (6) r7 ← r8 * r4 

 
 

1 3 4 5 2 6 
In-order execution 

1 
3 
4 

5 2 6 

Out-of-order execution 

1 3 4 

2 5 

6 

Data Flow Graph 

r1 r5 r6 

r4 r8 

1 
3 

5 4 2 6 

In-order (2-way superscalar) 
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OoO – general scheme 
• Fetch & decode in order 

 Multiple instructions are 
fetched/decoded in parallel 

 Insts. put in reservation stations (RS) 
• Execute instructions that are ready 

in the reservation stations 
 Instruction operands must be ready 
 Available execution resources 

• Following execution: 
 Broadcast result on bypass network 
 Signal all dependent instructions that 

data is ready 
• Commit instructions in-order  

 Can commit an instruction only after 
all preceding instructions (in program 
order) have committed 
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Out of order execution (OoO) 
• Advantages: Better performance! 

 Exploit Instruction Level Parallelism (ILP) 
 Hide latencies (e.g., L1 data cache miss, divide) 

 
• Disadvatages: 

 HW is much more complex than that of in-order processors 
 

• Can compilers do this work? 

 In a very limited way – can only statically schedule instructions (VLIW) 
 Compilers lack runtime  information  

• Conditional branch direction (→ compiler limited to basic blocks) 
• Data values, which may affect calculation time and control 
• Cache miss / hit 

The key is dynamic analysis and resolution of data dependencies 
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OoO: data dependencies 
• Example: 
 
 (1)  r8 ← 20 

(2)  r1 ← addr1 
(3)  r2 ← addr2 

 (4)  r3 ← addr3 
 

LOOP: 
(5)  r4 ← MEM[r1] 

 (6)  r1 ← r1 + 4 
 (7)  r5 ← MEM[r2] 
 (8)  r2 ← r2 + 4 
 (9)  r6 ← r4 + r5 
 (10) MEM[r3] ← r6   
 (11) r3 ← r3 + 4 
 (12) r8 ← r8 - 1 
 (13) bnz r8, LOOP 
 

5 7 12 

6 8 

10 

Instruction dependence graph 

r4 r5 r2 

r6 
9 

r1 

11 

r3 

13 

r8 

Are all dependencies equal? 
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Data dependency types (I) 
 

• True dependence: RaW   (Read-after-Write) 
 (7)  r5 ← MEM[r2] 
 (9)  r6 ← r4 + r5 

•An instruction consumes data that was 
produced by an earlier instruction 

 

• Can we eliminate such dependencies? 
 Not without a time machine…  (or value speculation) 
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RaW examples 
 
 
 (1)  r8 ← 20 

(2)  r1 ← addr1 
(3)  r2 ← addr2 

 (4)  r3 ← addr3 
 

LOOP: 
(5)  r4 ← MEM[r1] 

 (6)  r1 ← r1 + 4 
 (7)  r5 ← MEM[r2] 
 (8)  r2 ← r2 + 4 
 (9)  r6 ← r4 + r5 
 (10) MEM[r3] ← r6   
 (11) r3 ← r3 + 4 
 (12) r8 ← r8 - 1 
 (13) bnz r8, LOOP 
 

5 7 12 

6 8 

10 

r4 r5 r2 

r6 
9 

r1 

11 

r3 

13 

r8 
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Data dependency types (II) 
 

• Anti-dependence: WaR   (Write-after-Read) 
 (5)  r4 ← MEM[r1] 

  (6)  r1 ← r1 + 4 
 

• False dependence: WaW   (Write-after-Write) 
 (7)   r5 ← MEM[r2] 
 (7*)  r5 ← MEM[r2] // * next iteration 

 

• Can we eliminate such dependencies? 
 Yes!  if we divert the second write to an alternate 

storage location 
 Also known as Register Renaming 
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WaR examples 
 
 
 (1)  r8 ← 20 

(2)  r1 ← addr1 
(3)  r2 ← addr2 

 (4)  r3 ← addr3 
 

LOOP: 
(5)  r4 ← MEM[r1] 

 (6)  r1 ← r1 + 4 
 (7)  r5 ← MEM[r2] 
 (8)  r2 ← r2 + 4 
 (9)  r6 ← r4 + r5 
 (10) MEM[r3] ← r6   
 (11) r3 ← r3 + 4 
 (12) r8 ← r8 - 1 
 (13) bnz r8, LOOP 
 

5 7 12 

6 8 

10 

r4 r5 r2 

r6 
9 

r1 

11 

r3 

13 

r8 
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WaW examples 
1st iteration: 

(5)  r4 ← MEM[r1] 
 (6)  r1 ← r1 + 4 
 (7)  r5 ← MEM[r2] 
 (8)  r2 ← r2 + 4 
 (9)  r6 ← r4 + r5 
 (10) MEM[r3] ← r6   
 (11) r3 ← r3 + 4 
 (12) r8 ← r8 - 1 
 (13) bnz r8, LOOP 
 
2nd iteration: 

(5)  r4 ← MEM[r1] 
 (6)  r1 ← r1 + 4 
 (7)  r5 ← MEM[r2] 
 (8)  r2 ← r2 + 4 
 (9)  r6 ← r4 + r5 
 (10) MEM[r3] ← r6   
 (11) r3 ← r3 + 4 
 (12) r8 ← r8 - 1 
 (13) bnz r8, LOOP 
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10 
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r6 
9 

r1 

11 

r3 

13 

r8 

5 7 12 

6 8 

10 

r4 r5 r2 

r6 
9 

r1 
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r3 
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OoO: Main ingredients 
 

• Wide fetch/issue/decode/commit 
 If only one inst. goes into the pipeline each cycle, then on average 

only one inst. will commit each cycle  IPC=1 
 

• Branch prediction 
 Not much parallelism in basic blocks (insts. seq. between branches) 
 Identify ILP across branch (and loop) boundaries 

 
• Register renaming 

 Break False- and Anti-dependencies 
 
• Speculative execution 

 Speculate branch outcome without affecting correctness 
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OoO Pipeline 
• Fetch  

• Branch prediction 

• Decode 
• Register renaming 

• Reservation stations (RS) 
• Instructions wait for the inputs 
• Instructions wait for functional units 

• Functional units (FU) 
• Bypass network 

• Broadcast computed values back to 
reservation stations and PRF 

• Reorder buffer (ROB) 
 De-speculate execution, mostly by 

Committing instructions in-order 

 
• The instruction window is 

instantiated as RS & ROB 
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Benefits of Register Renaming 
1st iteration: 

(5)  r4 ← MEM[r1] 
 (6)  r1 ← r1 + 4 
 (7)  r5 ← MEM[r2] 
 (8)  r2 ← r2 + 4 
 (9)  r6 ← r4 + r5 
 (10) MEM[r3] ← r6   
 (11) r3 ← r3 + 4 
 (12) r8 ← r8 - 1 
 (13) bnz r8, LOOP 
 
2nd iteration: 

(5)  r4 ← MEM[r1] 
 (6)  r1 ← r1 + 4 
 (7)  r5 ← MEM[r2] 
 (8)  r2 ← r2 + 4 
 (9)  r6 ← r4 + r5 
 (10) MEM[r3] ← r6   
 (11) r3 ← r3 + 4 
 (12) r8 ← r8 - 1 
 (13) bnz r8, LOOP 
 

5 7 12 

6 8 

10 

r4 r5 r2 

r6 
9 

r1 

11 

r3 

13 

r8 

5 7 12 

6 8 

10 

r4 r5 r2 

r6 
9 

r1 

11 

r3 

13 

r8 

Remove WaW 

Remove WaR 

Critical path: 8 instructions 

Result… 
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Benefits of Register Renaming 
1st iteration: 

(5)  r4 ← MEM[r1] 
 (6)  r1 ← r1 + 4 
 (7)  r5 ← MEM[r2] 
 (8)  r2 ← r2 + 4 
 (9)  r6 ← r4 + r5 
 (10) MEM[r3] ← r6   
 (11) r3 ← r3 + 4 
 (12) r8 ← r8 - 1 
 (13) bnz r8, LOOP 
 
2nd iteration: 

(5)  r4 ← MEM[r1] 
 (6)  r1 ← r1 + 4 
 (7)  r5 ← MEM[r2] 
 (8)  r2 ← r2 + 4 
 (9)  r6 ← r4 + r5 
 (10) MEM[r3] ← r6   
 (11) r3 ← r3 + 4 
 (12) r8 ← r8 - 1 
 (13) bnz r8, LOOP 
 

5 7 12 6 8 

10 

r4 r5 

r6 
9 11 13 

r8 

5 7 

10 

r4 r5 

r6 
9 

12 

13 

r8 

New critical path: 4 instructions! 

r1 r2 

r3 11 
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Register renaming: How does it work? 
• Data is stored in a physical register file (PRF) 

 
• Architected register file (ARF) holds pointers to PRF registers 

 Each register in ARF represents a register in the ISA 
 Registers in ARF point to the latest version of the datum in PRF 
 An instruction that writes to a register triggers a “rename” operation 

• Allocate new PRF register 
• Update pointer in ARF 

 
• Naturally, PRF > ARF 

 
• Note: Other methods to implement 

register renaming have been proposed 
in the past… 

ARF 

r4 

r32 

r3 

r2 

r1 

PRF 
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Register renaming: Example 
Original code: 

(5)  r4 ← MEM[r1] 
 (6)  r1 ← r1 + 4 
 (7)  r5 ← MEM[r2] 
 (8)  r2 ← r2 + 4 
 (9)  r6 ← r4 + r5 
 (10) MEM[r3] ← r6   
 (11) r3 ← r3 + 4 
 (12) r8 ← r8 - 1 
 (13) bnz r8, LOOP 
 
Post-decode(as seen by RS): 

(5)  pr5  ← MEM[40] 
 (6)  pr6  ← 40 + 4 
 (7)  pr7  ← MEM[120] 
 (8)  pr8  ← 120 + 4 
 (9)  pr9  ← pr5 + pr7 
 (10) MEM[200] ← pr9   
 (11) pr10 ← 200 + 4 
 (12) pr11 ← 20 - 1 
 (13) bnz  pr11, LOOP 
 

ARF 

r4 

r3 

r2 

r1 

PRF 

r5 

r6 

r8 

r7 

pr1 40 

120 pr2 

pr3 200 

pr4 20 

pr6 X 

pr5 X 

pr7 X 

pr9 X 

X pr10 

pr11 X 

pr12 

pr14 

pr13 

pr15 

pr16 pr8 X 
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OoO Pipeline: Execution 
• Fetch  

• Branch prediction 

• Decode 
• Register renaming 

• Reservation stations (RS) 
• Instructions wait for the inputs 
• Instructions wait for functional units 

• Functional units (FU) 
• Bypass network 

• Broadcast computed values back to 
reservation stations and PRF 

• Reorder buffer (ROB) 
 De-speculate execution, mostly by 

Committing instructions in-order 

 
• The instruction window is 

instantiated as RS & ROB 
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Out-of-order execution 
• Insts. registered in ROB 

 ROB acts like a cyclic buffer 
 

• Decoded insts. sent to RS 
 If operands a ready, inst. is  

sent to FU 
 Otherwise, listen on bypass 

network and wait for operands 
 Values sent on bypass network 

are tagged by phys. Register 
 

• Executed insts. are marked in 
ROB as completed 
 Computed value is sent over 

bypass network to consumers 
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OoO execution example 
 
Instructions waiting in 

reservation stations: 
 

 (5)  pr5  ← MEM[40] 
 (6)  pr6  ← 40 + 4 
 (7)  pr7  ← MEM[120] 
 (8)  pr8  ← 120 + 4 
 (9)  pr9  ← pr5 + pr7 
 (10) MEM[200] ← pr9   
 (11) pr10 ← 200 + 4 
 (12) pr11 ← 20 - 1 
 (13) bnz  pr11, LOOP 
 
 broadcast pr5 & pr8  
 (9) receives pr5 
 broadcast pr6 & pr7  
 (9) receives pr7 
 broadcast pr9 & pr11  
 (10) receives pr9 
 (13) receives pr11 
 

5 7 12 6 8 

10 

pr5 pr7 

pr9 
9 13 

pr11 
11 

Instructions execute as soon as their 
operands become ready, rather than 
in program order 
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OoO Pipeline: ROB & de-speculation 
• Fetch  

• Branch prediction 

• Decode 
• Register renaming 

• Reservation stations (RS) 
• Instructions wait for the inputs 
• Instructions wait for functional units 

• Functional units (FU) 
• Bypass network 

• Broadcast computed values back to 
reservation stations and PRF 

• Reorder buffer (ROB) 
 De-speculate execution, mostly by 

Committing instructions in-order 

 
• The instruction window is 

instantiated as RS & ROB 
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Managing speculative execution 
• Insts. must not affect machine state while they are speculative 

 
• Mis-predicted paths need to be flushed  

 
• Precise interrupts 

 Traps/Exceptions/Interrupts leave pipeline in well-known state 
 As if the offending instruction just executed 

 
• Renamed registers must not be freed until a path is validated  

 In practice, ARF is saved (checkpoint) whenever the decoder 
encounters a branch instruction 
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Managing speculative execution 
 

• Common implementation: 
 Fetch/Decode instructions from the predicted execution path 
 Instructions can execute as soon as their operands become ready 
 Instructions can graduate and commit to memory only once it is 

certain they should have been executed 
• An instruction commits only when all previous (in-order) instructions 

have committed  ⇒ instructions commit in-order 
• Instructions on a mis-predicted execution path are flushed 
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Instructions in ROB 
  
 (5)  pr5  ← MEM[40] 
 (6)  pr6  ← 40 + 4 
 (7)  pr7  ← MEM[120] 
 (8)  pr8  ← 120 + 4 
 (9)  pr9  ← pr5 + pr7 
 (10) MEM[200] ← pr9   
 (11) pr10 ← 200 + 4 
 (12) pr11 ← 20 - 1 
 (13) bnz  pr11, LOOP 
 (5)  pr5  ← MEM[40] 
 (6)  pr6  ← 40 + 4 
 (7)  pr7  ← MEM[120] 
 (8)  pr8  ← 120 + 4 
 (9)  pr9  ← pr5 + pr7 
 (10) MEM[200] ← pr9   
 (11) pr10 ← 200 + 4 
 (12) pr11 ← 20 - 1 
 (13) bnz  pr11, LOOP 

Example: Managing speculation 
• ROB contains both normal 

and speculative insts. 
 Some have already executed 

 
• Can we commit any? 

 
• Remember: some insts. 

might fail 
 Memory faults/exceptions 
 Divide-by-zero 
 Cannot commit younger insts., 

even if branches were resolved 

 
• Only the oldest executed 

instructions can commit 
 Multiple insts. per cycle (n-way) 
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Scalability of Speculative Execution 
• Examining a large instruction window requires highly 

accurate branch prediction 
 

• Example:  
 Window size: 150 insts. 
 30 branches to fill a window (avg. of branch every 5 instruction) 

 
 Case 1: Prediction rate=95% 

• Probability to predict 30 branches: 0.95^30=0.22 
 

 Case 2: Prediction rate=98% 
• Probability to predict 30 branches: 0.98^30=0.55 

 
 Case 2: Prediction rate=99% 

• Probability to predict 30 branches: 0.99^30=0.74 
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OoO scalability: VLSI considerations 
• Many large ported arrays 

 Register files (ARF and PRF) 
 Reservation stations 
 For example, a 4-way OoO pipeline requires: 

• Reg. files with 8 RD ports and 4 WR ports (decode width) 
• RS and ROB with 4 ports each (execute/commit width) 

 
• More logic is needed, and it is more complex 

 Examples: 
• Register renaming 
• Wakeup logic in RS (which instructions are selected to run?) 

 
• All reservation stations must be checked whenever a FU 

broadcasts a tagged result 
• Many, many comparators 
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OoO scalability: VLSI considerations 
• Very wide buses 

 Multiple results sent on the bypass network on each cycle 
 

• Timing is a challenge - need additional pipe stages  
 Rename analysis 
 Rename sources 
 Access available sources from committed register file 
 Allocate entry in reservation station 
 “Ready” Decision 

 

Balancing the machine is essential and complex 
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OoO summary 
• Advantages 

 Help exploit Instruction Level Parallelism (ILP) 
 Help hide latencies (e.g., cache miss, divide) 
 Superior/complementary to inst. Scheduler in the compiler 

• Dynamic instruction window 

• Complex micro-architecture 

 Complex wakeup logic (instruction scheduler) 
 Requires reordering mechanism (retirement) in the back-end for: 

• Precise interrupt resolution 
• Misprediction/speculation recovery 

• Speculative Execution  

 Advantage: larger scheduling window ⇒ reveals more ILP  
 Issues:  

• Complex logic needed to recover from mis-prediction  
• Runtime cost incurred when recovering from a mis-prediction 
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OoO summary 
• First appeared in floating point unit of IBM mainframes 

 Tomasulo’s algorithm, published in 1967 
 

• Generalized by Patt, Hwu and Shebanow [1985] 
 After that, quickly adopted by industry  

• DEC Alpha, Intel Pentium Pro 
 

• Today it is ubiquitous: 
 Intel: 4-way OoO; instruction windows up to 150-200 insts. 
 AMD: 4-way OoO; instruction windows of ~70 insts. 
 ARM (Cortex-A9/A15): 2/5-way OoO; instruction window 40-100+ 

• Many ARM implementations exist… 
 

• Numerous variations and optimizations and extensions have 
been studied, and are used in commercial products 
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THE P6 MICROARCHITECTURE  
 

OOO Processor Example 
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The P6 family (i686) 
• Features 

– 1st out of order x86 (=> data flow analysis) 
– Speculative execution (across branches; requires flush+recovery) 
– Multiple branch prediction (wide op window contains 5 branch on avg) 
– Register renaming (solves false dependencies, gives more regs) 
– Super-pipeline: ~12 pipe stages (P-IV had 31! i7 back to 14) 

Processor Year Freq (MHz) Bus (MHz) L2 cache Feature size** 
Pentium® Pro 1995 150~200 60/66 256/512K* 0.5, 0.35μm 
Pentium® II 1997 233~450 66/100 512K* 0.35, 0.25μm 
Pentium® III 1999 450~1400 100/133 256/512K 0.25, 0.18, 

0.13μm 
Pentium® M 2003 900~2260 400/533 1M / 2M 0.13, 90nm 
CoreTM 2005 1660~2330 533/667 2M 65nm 
CoreTM 2 2006 1800~2930 800/1066 2/4/8M 65nm 

*off die ** size of smallest part is smaller than the feature size 
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The P6 family (i686) 
• Was used until 2011: 
MacBook Air (1.4GHz Core 2 Duo) 
Due to relative low power consumption 

• Clock frequency ~proportional to feature size 
• After P-III came P-IV… which wasn’t ideal for mobile computing 
• Much (not all) of the improvement comes from feature size minimization 

Processor Year Freq (MHz) Bus (MHz) L2 cache Feature size** 
Pentium® Pro 1995 150~200 60/66 256/512K* 0.5, 0.35μm 
Pentium® II 1997 233~450 66/100 512K* 0.35, 0.25μm 
Pentium® III 1999 450~1400 100/133 256/512K 0.25, 0.18, 

0.13μm 
Pentium® M 2003 900~2260 400/533 1M / 2M 0.13, 90nm 
CoreTM 2005 1660~2330 533/667 2M 65nm 
CoreTM 2 2006 1800~2930 800/1066 2/4/8M 65nm 

*off die ** size of smallest part is smaller than the feature size 
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Chip logically partitioned to 3 

• Front end 
– In order, get and ops from memory 
– Decode them + turn them  
 from CISC ops 
 to >=1 u-ops (RISC-like) 

– So x86 input=CISC, but internally it’s actually RISC 
– The front-end is responsible for making the transition 

• Core 
– Out of order, speculative, superscalar, renames registers 

• Retire 
– In order 
– Commits when speculation ends 
– Can simultaneously commit up to 3 ops (“width” of machine) 



      Computer Architecture 2012 – out-of-order execution 39 

• In-Order Front End 
– BIU: Bus Interface Unit 
– IFU: Instruction Fetch Unit (includes IC) 
– BPU: Branch Prediction Unit 
– ID: Instruction Decoder 
– MS: Micro-Instruction Sequencer 
– RAT: Register Alias Table 

• Out-of-order Core 
– ROB: Reorder Buffer 
– RRF: Real Register File 
– RS: Reservation Stations 
– IEU: Integer Execution Unit 
– FEU: Floating-point Execution Unit  
– AGU: Address Generation Unit 
– MIU: Memory Interface Unit 
– DCU: Data Cache Unit 
– MOB: Memory Order Buffer 
– L2: Level 2 cache 

•  In-Order Retire 

P6 µArch 

MS 

AGU 

MOB 

External  
Bus 

IEU 

MIU 

FEU 

BPU 

BIU 

IFU 

I 
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RAT 

R 
S 

L2 

DCU 

ROB 
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In-Order Front End 
 
• BIU: Bus Interface Unit 

(fetches instructions) 
 

• IFU: Instruction Fetch Unit  
(includes i-cache) 
 

• BPU: Branch Prediction Unit 
 

• ID: Instruction Decoder 
 

• MS: Micro-Instruction Sequencer 
(complex ops are comprised of a 
sequence of μ-ops; simple ops are 
comprised of only 1 μ-op) 
 

• RAT: Register Alias Table 
(solves false dep.; most recent arch => 
physical mapping)  

P6 µArch 
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AGU 

MOB 

External  
Bus 

IEU 

MIU 
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DCU 

ROB 
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Out-of-order Core 
• L2: Level 2 cache 

 
• MOB: Memory Order Buffer 
• DCU: Data Cache Unit 
• MIU: Memory Interface Unit 
• AGU: Address Generation Unit 

 
• RRF: “Real” Register File 

(not shown; the machine’s state) 
 

• IEU: Integer Execution Unit 
• FEU: Floating-point Execution Unit  

 
• RS: Reservation Stations 

(All those ops whose dependencies aren’t 
yet met; up to 20; 5 ports to exe units) 
 
 

• ROB: Reorder Buffer 
(The physical regs; one entry per op – the 
reg is the dest of the op; in order!) 
 

P6 µArch 

MS 

AGU 

MOB 

External  
Bus 

IEU 

MIU 

FEU 

BPU 

BIU 

IFU 

I 
D 

RAT 

R 
S 

L2 

DCU 

ROB 
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O1 O2 

R1 R2 

Ex 

I1 I2 I3 I4 I5 I6 I7 I8 

Next 
IP 

Reg 
Ren 

RS 
Wr Icache Decode 

RS  
dispatch 

Retirement 

 In-Order Front End 

Out-of-order  
Core 

In-order  
Retirement 

1:  Next IP 
2:  ICache lookup 
3:  ILD (instruction length decode) 
4:  rotate 
5:  ID1 (instruction decoded 1) 
6:  ID2 (instruction decoded 2) 
7:  RAT      - rename sources & 
     ALLOC - assign destinations 
8:  ROB - read sources 
     RS - schedule data-ready uops for dispatch 
9:  RS - dispatch uops 
10:EX 
11-12: Retirement 

P6 pipeline - 12 stages (10<=P6<=14) 

 
 
 
 
 
 
 
 
[O1] 
 
[O2] 
[R1] 
[R2] 
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In-order front-end 

• BPU – Branch Prediction Unit – predict  next fetch address 
• IFU – Instruction Fetch Unit 

– iTLB translates virtual to physical address (next lecture) 
– ICache supplies 16byte/cyc (on miss: access L2, maybe memory) 

• ILD – Instruction Length Decode – split bytes to instructions 
• IQ – Instruction Queue – buffer the instructions 
• ID – Instruction Decode – decode instructions into uops 
• MS – Micro-Sequencer – provides uops for complex instructions 
• IDQ – Instruction Decode Queue – buffer the uops 

Next IP 
Mux 

BPU                    

ID 

MS                 

ILD IQ IDQ IFU 

Bytes Instructions uops 
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Branch prediction  
• Implementation 

– Use local history to predict direction 
– Need to predict multiple branches  
⇒ Need to predict branches before previous branches are resolved 
⇒ Branch history updated first based on prediction, later based on  

actual execution (speculative history) 
– Target address taken from BTB 

• Prediction rate: ~92% 
– High prediction rate is crucial for long pipelines 
– Especially important for OOOE, speculative execution: 

 On misprediction all instructions following the branch in the instruction 
window are flushed 

 Effective size of the window is determined by prediction accuracy 
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Branch prediction – clustering 
• Given a fetched line (bytes), need to know which line to fetch next 

– Perhaps there’s more than one branch in the line 
– We must use 1st (leftmost) taken branch (>= the current fetched IP) 

 
 
 
 

 
 

• Implemented by  
– Splitting IP into setOfLine + tagOfLine + offsetWithinLine 
– If there’s a match 

 The offsets of the matching ways are ordered  
 Ways with offset smaller than the fetch IP offset are discarded 
 The 1st branch that’s predicted taken is chosen as the predicted branch 

Jump into  
the fetch line 

Jump out  
of the line 

jmp jmp jmp jmp 
Predict 

not taken 
Predict 
taken 

Predict 
taken 

Predict 
taken 

line 

IP 
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P6 BTB 
• 2-level, local histories, per-set counters 
• 4-way set associative: 512 entries in 128 sets 

IP Tag Hist 

1001 

Pred= 
msb of  
counter 

9 

0 

15 

Way 0 

Target 

9 4 32 

counters 

128 
sets 

P T V 

2 1 1 32 

LRR 

2 

Per-Set 

Branch Type 
00- cond 
01- ret 
10- call 
11- uncond 

Return 
Stack 
Buffer 

offset 

4 

ofst 

• Up to 4 branches can have the same set/tag match (since there 
are 4 ways) 
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Determine where each  
x86 op starts 

In-order front-end – decoder 

Buffers ops in queue 

Convert ops into uops 
• D0 handles complex ops 

(translate to up to 4 uops) 
• D1-3 for simple ops that translate 

to 1uop 
• In case ops aligned with D1-3 

decode into >1 uops, defer them 
to following cycle (whereby D0 
will be used) 

IQ 

Instruction Length  
Decode 

16 Instruction  
bytes from IFU 

1 uop 

D1 

IDQ 

D2 
1 uop 

D0 
≤4 uops 

Buffers uops 
• Smooth decoder’s variable 

throughput (we want the same 
number of uops every cycle (=4)) 

D3 
1 uop 
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Micro operations (uops) 
• Each CISC inst is broken into one or more RISC uops 

– Simplicity 
 Each uop is (relatively) simple 
 Canonical representation of src/dest (2 src, 1 dest) 

– But increased instruction count 
• Simple instructions translate to a few uops 

– Typical uop count (not necessarily cycle count!) 
 Reg-Reg ALU/Mov inst:  1 uop 
 Mem-Reg Mov (load)  1 uop 
 Mem-Reg ALU (load + op) 2 uops 
 Reg-Mem Mov (store)  2 uops (st addr, st data) 
 Reg-Mem ALU (ld + op + st) 4 uops 

• Complex instructions translate into more uops 
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Out-of-order core: ROB + RS 

MIS 

AGU 

MOB 

External  
Bus 

IEU 

MIU 

FEU 

BTB 

BIU 

IFU 

I 
D 

RAT 

R 
S 

L2 

DCU 

ROB 

• Reorder Buffer (ROB): 
– Holds all “not yet retired” instructions 
– 40 ordered entries (cyclic array) 
– Retired in-order 
– It’s possible some instruction already 

executed (their result known), but cannot 
be retired since 

– still have speculative status  
– and/or are waiting for previous 

instructions to retire in order 
• Reservation Stations (RS):  

– Holds “not yet executed” instructions 
– 20 entries (subset of ROB) 
– Up to 4 simultaneous ops can get in and 

out of RS simultaneously 
• After execution 

• Results  written to both ROB & possibly 
to RS (when source of other instructions) 
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Out-of-order core: execution units 

MIS 

AGU 

MOB 

External  
Bus 

IEU 

MIU 

FEU 

BTB 

BIU 

IFU 

I 
D 

RAT 

R 
S 

L2 

DCU 

ROB 

• Basic execution units (*EU; *=I|F) 
– IEU: Integer Execution Unit 
– FEU: Floating-point Execution Unit  

• Memory-related execution units 
– DCU: Data Cache Unit 
– AGU: Address Generation Unit 

– Computes effective address & sends 
to DCU to fetch from cache) 

– MOB: Orders memory loads and stores 
– L2: Level 2 cache 
– MIU: Memory Interface Unit 

• MIU feeds execution units 
– Positioned between RS & exe units 
– Has 5 ports (see next slide) 
– Some units may be similar between ports, 

others exclusive 
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MIU 

Port 0 

Port 1 

Port 2 

Port 3,4 

SHF 
FMU 

FDIV 
IDIV 

FAU 
IEU 

JEU 
IEU 

AGU 

AGU 

Load Address 

Store Address 

Out-of-order core: execution units 
internal 0-dealy 
bypass within 
each EU 

2nd 
bypass 
in RS 

RS 

1st 
bypass 
in MIU 

DCU SDB 

Bypass: shorten path of  
source to exe unit, e.g., if 
current outcome of a  
certain exe unit is its source 
for next round, can use 
outcome directly, etc. 
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RAT & ALLOC 
• There are ≤ 4 new uops/cyc; for each such uop 

– Perform register allocation & renaming. Specifically… 
• For each new uop , use RAT (Register Alias Table) to 

– Source reg(s): map arch reg(s) to physical reg(s) 
 arch reg     =>    latest phys reg that updated arch reg 

– Target reg: (1) allocate new phys reg; (2) update RAT accordingly 
 Now arch reg points to newly allocated phys reg (for next time) 

 
 

                                          RAT: 
 

• The Allocator (Alloc)  
– Assigns each uop with new ROB & RS entries 
– Write up the matching phys regs to RS (along with the rest of the uop) 
– Allocate Load & Store buffers in the MOB (for load & store ops) 

arch reg phys 
reg# 

location 

EAX 0 RRF 
EBX 19 ROB 
ECX 23 ROB 
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Reorder buffer (ROB) 
• Holds 40 uops which are “not yet committed” 

– Same order as program (cyclic array) 
– Provides large physical register space for reg renaming 
– A physical register is actually an item within a matching ROB entry 
 phys reg number = ROB entry number 
 phys reg = uop’s target destination (there’s always exactly one) 
 phys regs buffer the execution results until retirement 

 
 
 
 
 
 
 

– Valid data is set after uop executed (& result written to physical reg) 

#entry entryValid dataValid data (physical reg) arch target reg 
0 1 1 12H EBX 
1 1 1 33H ECX 
2 1 0 xxx ESI 
… 
39 0 0 xxx XXX 
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RRF – real register file 

• Holds the Architectural Register File 
– Architectural registers are numbered: 0 = EAX, 1 = EBX, … 
– This is  “the state” of the chip (can’t roll back) 

• The value of an architectural register  
– Is the value written to it by the last committed uop (which writes 

to that reg) 
– So long as we don’t change the RRF, we don’t change the state  

RRF: 

#entry Arch Reg 
Data 

0 (EAX) 9AH 

1 (EBX) F34H 
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Uop flow through the ROB 
• Uops are entered in order (there’s a head and a tail) 

– Registers renamed by the entry # 
• Once assigned 

– Execution order unimportant, only dependencies 
• After execution:  

– Entries marked “executed” (dataValid=1) & wait for retirement 
– Retirement occurs once all prior instruction have retired 
– => Commit architectural state only after speculation was resolved 

• Retirement 
– Detect exceptions and misprediction 
 Branch result might impact uops down the road 
 Initiate repair to get machine back on track 

– Update “real” regs (in RRF) with value of renamed (phys) regs 
– Update memory 
– Clear ROB entry 
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Reservation station (RS) 
• Pool of all “not yet executed” uops 

– Holds the uop code & source data (until it is dispatched=scheduled) 
• When a uop is allocated in RS, operand values are updated 

– If operand is arch reg => value taken from the RRF 
– If operand is phys reg (with dataValid =1) => value taken from ROB 
– If operand is phys reg (with dataValid=0) => wait for value 

• The RS maintains operands status “ready / not-ready” 
– Each cycle, executed uops make more operands “ready” 
 RS arbitrates WB busses between exe units 
 RS monitors WB bus to capture data needed by waiting uops 
 Data can bypass directly from WB bus to exe unit (like we’ve seen) 

– Uops whose operands are ready (all of them) 
 can be dispatched 
 Dispatcher chooses which ready uop to execute next 
 Dispatcher sends chosen uops to appropriate functional units 
 (Of course, need said appropriate functional units to be vacant) 
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Register Renaming example 

RS 

RAT / Alloc 
 

⇒ 

IDQ 
Add EAX, EBX, EAX 

#reg 
EAX 0 RRF 
EBX 19 ROB 
ECX 23 ROB 

ROB37 = ROB19 + RRF0 

ROB 
 

⇒ 
# Data  

Valid Data DST 
19 V V 12H EBX 
23 V V 33H ECX 
37 I x xxx XXX 
38 I x xxx XXX 

v src1 v src2 Pdst 

add 1 97H 1 12H 37 

RRF: 0 EAX 97H 

# Data  
Valid Data DST 

19 V V 12H EBX 
23 V V 33H ECX 
37 V I xxx EAX 
38 I x xxx XXX 

#reg 
EAX 37 ROB 
EBX 19 ROB 
ECX 23 ROB 
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Register Renaming example 

RS 

RAT / Alloc 
 

⇒ 

IDQ 
Add EAX, EBX, EAX 

#reg 
EAX 0 RRF 
EBX 19 ROB 
ECX 23 ROB 

ROB37 = ROB19 + RRF0 

ROB 
 

⇒ 
# Data  

Valid Data DST 
19 V V 12H EBX 
23 V V 33H ECX 
37 I x xxx XXX 
38 I x xxx XXX 

v src1 v src2 Pdst 

add 1 97H 1 12H 37 

RRF: 0 EAX 97H 

# Data  
Valid Data DST 

19 V V 12H EBX 
23 V V 33H ECX 
37 V I xxx EAX 
38 I x xxx XXX 

#reg 
EAX 37 ROB 
EBX 19 ROB 
ECX 23 ROB 

allocate new ROB 
entry (phys reg) for EAX 
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Register Renaming example 

RS 

RAT / Alloc 
 

⇒ 

IDQ 
Add EAX, EBX, EAX 

#reg 
EAX 0 RRF 
EBX 19 ROB 
ECX 23 ROB 

ROB37 = ROB19 + RRF0 

ROB 
 

⇒ 
# Data  

Valid Data DST 
19 V V 12H EBX 
23 V V 33H ECX 
37 I x xxx XXX 
38 I x xxx XXX 

v src1 v src2 Pdst 

add 1 97H 1 12H 37 

RRF: 0 EAX 97H 

# Data  
Valid Data DST 

19 V V 12H EBX 
23 V V 33H ECX 
37 V I xxx EAX 
38 I x xxx XXX 

#reg 
EAX 37 ROB 
EBX 19 ROB 
ECX 23 ROB 

Update RAT (alias 
table) accordingly 
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Register Renaming example 

RS 

RAT / Alloc 
 

⇒ 

IDQ 
Add EAX, EBX, EAX 

#reg 
EAX 0 RRF 
EBX 19 ROB 
ECX 23 ROB 

ROB37 = ROB19 + RRF0 

ROB 
 

⇒ 
# Data  

Valid Data DST 
19 V V 12H EBX 
23 V V 33H ECX 
37 I x xxx XXX 
38 I x xxx XXX 

v src1 v src2 Pdst 

add 1 97H 1 12H 37 

RRF: 0 EAX 97H 

# Data  
Valid Data DST 

19 V V 12H EBX 
23 V V 33H ECX 
37 V I xxx EAX 
38 I x xxx XXX 

#reg 
EAX 37 ROB 
EBX 19 ROB 
ECX 23 ROB 

Update RS 
 accordingly 
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Register Renaming example (2) 

RS 

RAT / Alloc 
 

⇒ 

IDQ 
sub EAX, ECX, EAX 

#reg 
EAX 37 ROB 
EBX 19 ROB 
ECX 23 ROB 

ROB38 = ROB23 - ROB37 

ROB 
 

⇒ 
# Data  

Valid Data DST 
19 V V 12H EBX 
23 V V 33H ECX 
37 I x xxx XXX 
38 I x xxx XXX 

v src1 v src2 Pdst 

add 1 97H 1 12H 37 

sub 0 rob37 1 33H 38 

RRF: 0 EAX 97H 

# Data  
Valid Data DST 

19 V V 12H EBX 
23 V V 33H ECX 
37 V I xxx EAX 
38 V I xxx EAX 

#reg 
EAX 38 ROB 
EBX 19 ROB 
ECX 23 ROB 
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Register Renaming example (2) 

RS 

RAT / Alloc 
 

⇒ 

IDQ 
sub EAX, ECX, EAX 

#reg 
EAX 37 ROB 
EBX 19 ROB 
ECX 23 ROB 

ROB38 = ROB23 - ROB37 

ROB 
 

⇒ 
# Data  

Valid Data DST 
19 V V 12H EBX 
23 V V 33H ECX 
37 I x xxx XXX 
38 I x xxx XXX 

v src1 v src2 Pdst 

add 1 97H 1 12H 37 

sub 0 rob37 1 33H 38 

RRF: 0 EAX 97H 

# Data  
Valid Data DST 

19 V V 12H EBX 
23 V V 33H ECX 
37 V I xxx EAX 
38 V I xxx EAX 

#reg 
EAX 38 ROB 
EBX 19 ROB 
ECX 23 ROB 

allocate another new ROB 
entry (phys reg) for EAX 
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Register Renaming example (2) 

RS 

RAT / Alloc 
 

⇒ 

IDQ 
sub EAX, ECX, EAX 

#reg 
EAX 37 ROB 
EBX 19 ROB 
ECX 23 ROB 

ROB38 = ROB23 - ROB37 

ROB 
 

⇒ 
# Data  

Valid Data DST 
19 V V 12H EBX 
23 V V 33H ECX 
37 I x xxx XXX 
38 I x xxx XXX 

v src1 v src2 Pdst 

add 1 97H 1 12H 37 

sub 0 rob37 1 33H 38 

RRF: 0 EAX 97H 

# Data  
Valid Data DST 

19 V V 12H EBX 
23 V V 33H ECX 
37 V I xxx EAX 
38 V I xxx EAX 

#reg 
EAX 38 ROB 
EBX 19 ROB 
ECX 23 ROB 

Update RAT (alias 
table) accordingly 
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Register Renaming example (2) 

RS 

RAT / Alloc 
 

⇒ 

IDQ 
sub EAX, ECX, EAX 

#reg 
EAX 37 ROB 
EBX 19 ROB 
ECX 23 ROB 

ROB38 = ROB23 - ROB37 

ROB 
 

⇒ 
# Data  

Valid Data DST 
19 V V 12H EBX 
23 V V 33H ECX 
37 I x xxx XXX 
38 I x xxx XXX 

v src1 v src2 Pdst 

add 1 97H 1 12H 37 

sub 0 rob37 1 33H 38 

RRF: 0 EAX 97H 

# Data  
Valid Data DST 

19 V V 12H EBX 
23 V V 33H ECX 
37 V I xxx EAX 
38 V I xxx EAX 

#reg 
EAX 38 ROB 
EBX 19 ROB 
ECX 23 ROB 
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