
 Computer Architecture 2013– Out-of-Order Execution 1

Computer Architecture

Out-of-order Execution

By Yoav Etsion
With acknowledgement to Dan Tsafrir, Avi Mendelson, Lihu Rappoport, and Adi Yoaz

 Computer Architecture 2013– Out-of-Order Execution 2

The need for speed: Superscalar
• Remember our goal: minimize CPU Time

CPU Time = duration of clock cycle × CPI × IC
• So far we have learned that in order to

 Minimize clock cycle ⇒ add more pipe stages
 Minimize CPI ⇒ utilize pipeline
 Minimize IC ⇒ change/improve the architecture

• Why not make the pipeline deeper and deeper?

 Beyond some point, adding more pipe stages doesn’t help, because
 Control/data hazards increase, and become costlier

• (Recall that in a pipelined CPU, CPI=1 only w/o hazards)

• So what can we do next?
 Reduce the CPI by utilizing ILP (instruction level parallelism)
 We will need to duplicate HW for this purpose…

 Computer Architecture 2013– Out-of-Order Execution 3

A simple superscalar CPU
• Duplicates the pipeline to accommodate ILP (IPC > 1)

 ILP=instruction-level parallelism

• Note that duplicating HW in just one pipe stage doesn’t help
 e.g., when having 2 ALUs,
 the bottleneck moves to other stages

• Conclusion:
 Getting IPC > 1 requires to fetch/decode/exe/retire >1

instruction per clock:

IF ID EXE MEM WB

IF ID EXE MEM WB

 Computer Architecture 2013– Out-of-Order Execution 4

Example: Pentium Processor

• Pentium fetches & decodes 2 instructions per cycle

• Before register file read, decide on pairing
 Can the two instructions be executed in parallel? (yes/no)

• Pairing decision is based…
 On data dependencies (instructions must be independent)
 On resources (v-pipe can only execute some of the instructions;

and also, some instruction use resources from both pipes)

IF ID
u-pipe

v-pipe

 Computer Architecture 2013– Out-of-Order Execution 6

Is superscalar good enough?
• A superscalar processor can fetch, decode, execute, and retire,

e.g., 2 instructions in parallel

• But…
 Can execute only independent instructions in parallel

• Whereas adjacent instructions are often dependent
 So the utilization of the second pipe is often low

• Solution: out-of-order execution

 Execute instructions based on the “data flow” graph,
(rather than program order)

 Still need to keep the semantics of the original program

 Computer Architecture 2013– Out-of-Order Execution 7

Out-of-order in a nutshell

• HW examines a sliding window of consecutive instructions
 The “instruction window”

• Ready instructions get picked up from window

• Executed out of program order

• Instruction results are committed to the machine state

(memory+reg. file) in original program order
 Why?

• User is unaware (except that the program runs faster)

 Computer Architecture 2013– Out-of-Order Execution 8

Superscalar basics: Data flow analysis
• Example:

 (1) r1 ← r4 / r7 /* assume division takes 20 cycles */
 (2) r8 ← r1 + r2
 (3) r5 ← r5 + 1
 (4) r6 ← r6 - r3
 (5) r4 ← r5 + r6
 (6) r7 ← r8 * r4

1 3 4 5 2 6
In-order execution

1
3
4

5 2 6

Out-of-order execution

1 3 4

2 5

6

Data Flow Graph

r1 r5 r6

r4 r8

1
3

5 4 2 6

In-order (2-way superscalar)

 Computer Architecture 2013– Out-of-Order Execution 9

OoO – general scheme
• Fetch & decode in order

 Multiple instructions are
fetched/decoded in parallel

 Insts. put in reservation stations (RS)
• Execute instructions that are ready

in the reservation stations
 Instruction operands must be ready
 Available execution resources

• Following execution:
 Broadcast result on bypass network
 Signal all dependent instructions that

data is ready
• Commit instructions in-order

 Can commit an instruction only after
all preceding instructions (in program
order) have committed

 Computer Architecture 2013– Out-of-Order Execution 10

Out of order execution (OoO)
• Advantages: Better performance!

 Exploit Instruction Level Parallelism (ILP)
 Hide latencies (e.g., L1 data cache miss, divide)

• Disadvatages:

 HW is much more complex than that of in-order processors

• Can compilers do this work?

 In a very limited way – can only statically schedule instructions (VLIW)
 Compilers lack runtime information

• Conditional branch direction (→ compiler limited to basic blocks)
• Data values, which may affect calculation time and control
• Cache miss / hit

The key is dynamic analysis and resolution of data dependencies

 Computer Architecture 2013– Out-of-Order Execution 11

OoO: data dependencies
• Example:

 (1) r8 ← 20

(2) r1 ← addr1
(3) r2 ← addr2

 (4) r3 ← addr3

LOOP:
(5) r4 ← MEM[r1]

 (6) r1 ← r1 + 4
 (7) r5 ← MEM[r2]
 (8) r2 ← r2 + 4
 (9) r6 ← r4 + r5
 (10) MEM[r3] ← r6
 (11) r3 ← r3 + 4
 (12) r8 ← r8 - 1
 (13) bnz r8, LOOP

5 7 12

6 8

10

Instruction dependence graph

r4 r5 r2

r6
9

r1

11

r3

13

r8

Are all dependencies equal?

 Computer Architecture 2013– Out-of-Order Execution 12

Data dependency types (I)

• True dependence: RaW (Read-after-Write)
 (7) r5 ← MEM[r2]
 (9) r6 ← r4 + r5

•An instruction consumes data that was
produced by an earlier instruction

• Can we eliminate such dependencies?
 Not without a time machine… (or value speculation)

 Computer Architecture 2013– Out-of-Order Execution 13

RaW examples

 (1) r8 ← 20

(2) r1 ← addr1
(3) r2 ← addr2

 (4) r3 ← addr3

LOOP:
(5) r4 ← MEM[r1]

 (6) r1 ← r1 + 4
 (7) r5 ← MEM[r2]
 (8) r2 ← r2 + 4
 (9) r6 ← r4 + r5
 (10) MEM[r3] ← r6
 (11) r3 ← r3 + 4
 (12) r8 ← r8 - 1
 (13) bnz r8, LOOP

5 7 12

6 8

10

r4 r5 r2

r6
9

r1

11

r3

13

r8

 Computer Architecture 2013– Out-of-Order Execution 14

Data dependency types (II)

• Anti-dependence: WaR (Write-after-Read)
 (5) r4 ← MEM[r1]

 (6) r1 ← r1 + 4

• False dependence: WaW (Write-after-Write)
 (7) r5 ← MEM[r2]
 (7*) r5 ← MEM[r2] // * next iteration

• Can we eliminate such dependencies?
 Yes! if we divert the second write to an alternate

storage location
 Also known as Register Renaming

 Computer Architecture 2013– Out-of-Order Execution 15

WaR examples

 (1) r8 ← 20

(2) r1 ← addr1
(3) r2 ← addr2

 (4) r3 ← addr3

LOOP:
(5) r4 ← MEM[r1]

 (6) r1 ← r1 + 4
 (7) r5 ← MEM[r2]
 (8) r2 ← r2 + 4
 (9) r6 ← r4 + r5
 (10) MEM[r3] ← r6
 (11) r3 ← r3 + 4
 (12) r8 ← r8 - 1
 (13) bnz r8, LOOP

5 7 12

6 8

10

r4 r5 r2

r6
9

r1

11

r3

13

r8

 Computer Architecture 2013– Out-of-Order Execution 16

WaW examples
1st iteration:

(5) r4 ← MEM[r1]
 (6) r1 ← r1 + 4
 (7) r5 ← MEM[r2]
 (8) r2 ← r2 + 4
 (9) r6 ← r4 + r5
 (10) MEM[r3] ← r6
 (11) r3 ← r3 + 4
 (12) r8 ← r8 - 1
 (13) bnz r8, LOOP

2nd iteration:

(5) r4 ← MEM[r1]
 (6) r1 ← r1 + 4
 (7) r5 ← MEM[r2]
 (8) r2 ← r2 + 4
 (9) r6 ← r4 + r5
 (10) MEM[r3] ← r6
 (11) r3 ← r3 + 4
 (12) r8 ← r8 - 1
 (13) bnz r8, LOOP

5 7 12

6 8

10

r4 r5 r2

r6
9

r1

11

r3

13

r8

5 7 12

6 8

10

r4 r5 r2

r6
9

r1

11

r3

13

r8

 Computer Architecture 2013– Out-of-Order Execution 17

OoO: Main ingredients

• Wide fetch/issue/decode/commit
 If only one inst. goes into the pipeline each cycle, then on average

only one inst. will commit each cycle IPC=1

• Branch prediction
 Not much parallelism in basic blocks (insts. seq. between branches)
 Identify ILP across branch (and loop) boundaries

• Register renaming

 Break False- and Anti-dependencies

• Speculative execution

 Speculate branch outcome without affecting correctness

 Computer Architecture 2013– Out-of-Order Execution 18

OoO Pipeline
• Fetch

• Branch prediction

• Decode
• Register renaming

• Reservation stations (RS)
• Instructions wait for the inputs
• Instructions wait for functional units

• Functional units (FU)
• Bypass network

• Broadcast computed values back to
reservation stations and PRF

• Reorder buffer (ROB)
 De-speculate execution, mostly by

Committing instructions in-order

• The instruction window is

instantiated as RS & ROB

 Computer Architecture 2013– Out-of-Order Execution 19

Benefits of Register Renaming
1st iteration:

(5) r4 ← MEM[r1]
 (6) r1 ← r1 + 4
 (7) r5 ← MEM[r2]
 (8) r2 ← r2 + 4
 (9) r6 ← r4 + r5
 (10) MEM[r3] ← r6
 (11) r3 ← r3 + 4
 (12) r8 ← r8 - 1
 (13) bnz r8, LOOP

2nd iteration:

(5) r4 ← MEM[r1]
 (6) r1 ← r1 + 4
 (7) r5 ← MEM[r2]
 (8) r2 ← r2 + 4
 (9) r6 ← r4 + r5
 (10) MEM[r3] ← r6
 (11) r3 ← r3 + 4
 (12) r8 ← r8 - 1
 (13) bnz r8, LOOP

5 7 12

6 8

10

r4 r5 r2

r6
9

r1

11

r3

13

r8

5 7 12

6 8

10

r4 r5 r2

r6
9

r1

11

r3

13

r8

Remove WaW

Remove WaR

Critical path: 8 instructions

Result…

 Computer Architecture 2013– Out-of-Order Execution 20

Benefits of Register Renaming
1st iteration:

(5) r4 ← MEM[r1]
 (6) r1 ← r1 + 4
 (7) r5 ← MEM[r2]
 (8) r2 ← r2 + 4
 (9) r6 ← r4 + r5
 (10) MEM[r3] ← r6
 (11) r3 ← r3 + 4
 (12) r8 ← r8 - 1
 (13) bnz r8, LOOP

2nd iteration:

(5) r4 ← MEM[r1]
 (6) r1 ← r1 + 4
 (7) r5 ← MEM[r2]
 (8) r2 ← r2 + 4
 (9) r6 ← r4 + r5
 (10) MEM[r3] ← r6
 (11) r3 ← r3 + 4
 (12) r8 ← r8 - 1
 (13) bnz r8, LOOP

5 7 12 6 8

10

r4 r5

r6
9 11 13

r8

5 7

10

r4 r5

r6
9

12

13

r8

New critical path: 4 instructions!

r1 r2

r3 11

 Computer Architecture 2013– Out-of-Order Execution 21

Register renaming: How does it work?
• Data is stored in a physical register file (PRF)

• Architected register file (ARF) holds pointers to PRF registers

 Each register in ARF represents a register in the ISA
 Registers in ARF point to the latest version of the datum in PRF
 An instruction that writes to a register triggers a “rename” operation

• Allocate new PRF register
• Update pointer in ARF

• Naturally, PRF > ARF

• Note: Other methods to implement

register renaming have been proposed
in the past…

ARF

r4

r32

r3

r2

r1

PRF

 Computer Architecture 2013– Out-of-Order Execution 22

Register renaming: Example
Original code:

(5) r4 ← MEM[r1]
 (6) r1 ← r1 + 4
 (7) r5 ← MEM[r2]
 (8) r2 ← r2 + 4
 (9) r6 ← r4 + r5
 (10) MEM[r3] ← r6
 (11) r3 ← r3 + 4
 (12) r8 ← r8 - 1
 (13) bnz r8, LOOP

Post-decode(as seen by RS):

(5) pr5 ← MEM[40]
 (6) pr6 ← 40 + 4
 (7) pr7 ← MEM[120]
 (8) pr8 ← 120 + 4
 (9) pr9 ← pr5 + pr7
 (10) MEM[200] ← pr9
 (11) pr10 ← 200 + 4
 (12) pr11 ← 20 - 1
 (13) bnz pr11, LOOP

ARF

r4

r3

r2

r1

PRF

r5

r6

r8

r7

pr1 40

120 pr2

pr3 200

pr4 20

pr6 X

pr5 X

pr7 X

pr9 X

X pr10

pr11 X

pr12

pr14

pr13

pr15

pr16 pr8 X

 Computer Architecture 2013– Out-of-Order Execution 23

OoO Pipeline: Execution
• Fetch

• Branch prediction

• Decode
• Register renaming

• Reservation stations (RS)
• Instructions wait for the inputs
• Instructions wait for functional units

• Functional units (FU)
• Bypass network

• Broadcast computed values back to
reservation stations and PRF

• Reorder buffer (ROB)
 De-speculate execution, mostly by

Committing instructions in-order

• The instruction window is

instantiated as RS & ROB

 Computer Architecture 2013– Out-of-Order Execution 24

Out-of-order execution
• Insts. registered in ROB

 ROB acts like a cyclic buffer

• Decoded insts. sent to RS
 If operands a ready, inst. is

sent to FU
 Otherwise, listen on bypass

network and wait for operands
 Values sent on bypass network

are tagged by phys. Register

• Executed insts. are marked in
ROB as completed
 Computed value is sent over

bypass network to consumers

 Computer Architecture 2013– Out-of-Order Execution 25

OoO execution example

Instructions waiting in

reservation stations:

 (5) pr5 ← MEM[40]
 (6) pr6 ← 40 + 4
 (7) pr7 ← MEM[120]
 (8) pr8 ← 120 + 4
 (9) pr9 ← pr5 + pr7
 (10) MEM[200] ← pr9
 (11) pr10 ← 200 + 4
 (12) pr11 ← 20 - 1
 (13) bnz pr11, LOOP

 broadcast pr5 & pr8
 (9) receives pr5
 broadcast pr6 & pr7
 (9) receives pr7
 broadcast pr9 & pr11
 (10) receives pr9
 (13) receives pr11

5 7 12 6 8

10

pr5 pr7

pr9
9 13

pr11
11

Instructions execute as soon as their
operands become ready, rather than
in program order

 Computer Architecture 2013– Out-of-Order Execution 26

OoO Pipeline: ROB & de-speculation
• Fetch

• Branch prediction

• Decode
• Register renaming

• Reservation stations (RS)
• Instructions wait for the inputs
• Instructions wait for functional units

• Functional units (FU)
• Bypass network

• Broadcast computed values back to
reservation stations and PRF

• Reorder buffer (ROB)
 De-speculate execution, mostly by

Committing instructions in-order

• The instruction window is

instantiated as RS & ROB

 Computer Architecture 2013– Out-of-Order Execution 27

Managing speculative execution
• Insts. must not affect machine state while they are speculative

• Mis-predicted paths need to be flushed

• Precise interrupts

 Traps/Exceptions/Interrupts leave pipeline in well-known state
 As if the offending instruction just executed

• Renamed registers must not be freed until a path is validated

 In practice, ARF is saved (checkpoint) whenever the decoder
encounters a branch instruction

 Computer Architecture 2013– Out-of-Order Execution 28

Managing speculative execution

• Common implementation:
 Fetch/Decode instructions from the predicted execution path
 Instructions can execute as soon as their operands become ready
 Instructions can graduate and commit to memory only once it is

certain they should have been executed
• An instruction commits only when all previous (in-order) instructions

have committed ⇒ instructions commit in-order
• Instructions on a mis-predicted execution path are flushed

 Computer Architecture 2013– Out-of-Order Execution 29

Instructions in ROB

 (5) pr5 ← MEM[40]
 (6) pr6 ← 40 + 4
 (7) pr7 ← MEM[120]
 (8) pr8 ← 120 + 4
 (9) pr9 ← pr5 + pr7
 (10) MEM[200] ← pr9
 (11) pr10 ← 200 + 4
 (12) pr11 ← 20 - 1
 (13) bnz pr11, LOOP
 (5) pr5 ← MEM[40]
 (6) pr6 ← 40 + 4
 (7) pr7 ← MEM[120]
 (8) pr8 ← 120 + 4
 (9) pr9 ← pr5 + pr7
 (10) MEM[200] ← pr9
 (11) pr10 ← 200 + 4
 (12) pr11 ← 20 - 1
 (13) bnz pr11, LOOP

Example: Managing speculation
• ROB contains both normal

and speculative insts.
 Some have already executed

• Can we commit any?

• Remember: some insts.

might fail
 Memory faults/exceptions
 Divide-by-zero
 Cannot commit younger insts.,

even if branches were resolved

• Only the oldest executed

instructions can commit
 Multiple insts. per cycle (n-way)

Sp
ec

ul
at

iv
e

pa
th

?

?

?

?

?

?

 Computer Architecture 2013– Out-of-Order Execution 30

Scalability of Speculative Execution
• Examining a large instruction window requires highly

accurate branch prediction

• Example:
 Window size: 150 insts.
 30 branches to fill a window (avg. of branch every 5 instruction)

 Case 1: Prediction rate=95%

• Probability to predict 30 branches: 0.95^30=0.22

 Case 2: Prediction rate=98%
• Probability to predict 30 branches: 0.98^30=0.55

 Case 2: Prediction rate=99%

• Probability to predict 30 branches: 0.99^30=0.74

 Computer Architecture 2013– Out-of-Order Execution 31

OoO scalability: VLSI considerations
• Many large ported arrays

 Register files (ARF and PRF)
 Reservation stations
 For example, a 4-way OoO pipeline requires:

• Reg. files with 8 RD ports and 4 WR ports (decode width)
• RS and ROB with 4 ports each (execute/commit width)

• More logic is needed, and it is more complex

 Examples:
• Register renaming
• Wakeup logic in RS (which instructions are selected to run?)

• All reservation stations must be checked whenever a FU

broadcasts a tagged result
• Many, many comparators

 Computer Architecture 2013– Out-of-Order Execution 32

OoO scalability: VLSI considerations
• Very wide buses

 Multiple results sent on the bypass network on each cycle

• Timing is a challenge - need additional pipe stages
 Rename analysis
 Rename sources
 Access available sources from committed register file
 Allocate entry in reservation station
 “Ready” Decision

Balancing the machine is essential and complex

 Computer Architecture 2013– Out-of-Order Execution 33

OoO summary
• Advantages

 Help exploit Instruction Level Parallelism (ILP)
 Help hide latencies (e.g., cache miss, divide)
 Superior/complementary to inst. Scheduler in the compiler

• Dynamic instruction window

• Complex micro-architecture

 Complex wakeup logic (instruction scheduler)
 Requires reordering mechanism (retirement) in the back-end for:

• Precise interrupt resolution
• Misprediction/speculation recovery

• Speculative Execution

 Advantage: larger scheduling window ⇒ reveals more ILP
 Issues:

• Complex logic needed to recover from mis-prediction
• Runtime cost incurred when recovering from a mis-prediction

 Computer Architecture 2013– Out-of-Order Execution 34

OoO summary
• First appeared in floating point unit of IBM mainframes

 Tomasulo’s algorithm, published in 1967

• Generalized by Patt, Hwu and Shebanow [1985]
 After that, quickly adopted by industry

• DEC Alpha, Intel Pentium Pro

• Today it is ubiquitous:
 Intel: 4-way OoO; instruction windows up to 150-200 insts.
 AMD: 4-way OoO; instruction windows of ~70 insts.
 ARM (Cortex-A9/A15): 2/5-way OoO; instruction window 40-100+

• Many ARM implementations exist…

• Numerous variations and optimizations and extensions have
been studied, and are used in commercial products

 Computer Architecture 2012 – out-of-order execution 35

THE P6 MICROARCHITECTURE

OOO Processor Example

 Computer Architecture 2012 – out-of-order execution 36

The P6 family (i686)
• Features

– 1st out of order x86 (=> data flow analysis)
– Speculative execution (across branches; requires flush+recovery)
– Multiple branch prediction (wide op window contains 5 branch on avg)
– Register renaming (solves false dependencies, gives more regs)
– Super-pipeline: ~12 pipe stages (P-IV had 31! i7 back to 14)

Processor Year Freq (MHz) Bus (MHz) L2 cache Feature size**
Pentium® Pro 1995 150~200 60/66 256/512K* 0.5, 0.35μm
Pentium® II 1997 233~450 66/100 512K* 0.35, 0.25μm
Pentium® III 1999 450~1400 100/133 256/512K 0.25, 0.18,

0.13μm
Pentium® M 2003 900~2260 400/533 1M / 2M 0.13, 90nm
CoreTM 2005 1660~2330 533/667 2M 65nm
CoreTM 2 2006 1800~2930 800/1066 2/4/8M 65nm

*off die ** size of smallest part is smaller than the feature size

 Computer Architecture 2012 – out-of-order execution 37

The P6 family (i686)
• Was used until 2011:
MacBook Air (1.4GHz Core 2 Duo)
Due to relative low power consumption

• Clock frequency ~proportional to feature size
• After P-III came P-IV… which wasn’t ideal for mobile computing
• Much (not all) of the improvement comes from feature size minimization

Processor Year Freq (MHz) Bus (MHz) L2 cache Feature size**
Pentium® Pro 1995 150~200 60/66 256/512K* 0.5, 0.35μm
Pentium® II 1997 233~450 66/100 512K* 0.35, 0.25μm
Pentium® III 1999 450~1400 100/133 256/512K 0.25, 0.18,

0.13μm
Pentium® M 2003 900~2260 400/533 1M / 2M 0.13, 90nm
CoreTM 2005 1660~2330 533/667 2M 65nm
CoreTM 2 2006 1800~2930 800/1066 2/4/8M 65nm

*off die ** size of smallest part is smaller than the feature size

 Computer Architecture 2012 – out-of-order execution 38

Chip logically partitioned to 3

• Front end
– In order, get and ops from memory
– Decode them + turn them
 from CISC ops
 to >=1 u-ops (RISC-like)

– So x86 input=CISC, but internally it’s actually RISC
– The front-end is responsible for making the transition

• Core
– Out of order, speculative, superscalar, renames registers

• Retire
– In order
– Commits when speculation ends
– Can simultaneously commit up to 3 ops (“width” of machine)

 Computer Architecture 2012 – out-of-order execution 39

• In-Order Front End
– BIU: Bus Interface Unit
– IFU: Instruction Fetch Unit (includes IC)
– BPU: Branch Prediction Unit
– ID: Instruction Decoder
– MS: Micro-Instruction Sequencer
– RAT: Register Alias Table

• Out-of-order Core
– ROB: Reorder Buffer
– RRF: Real Register File
– RS: Reservation Stations
– IEU: Integer Execution Unit
– FEU: Floating-point Execution Unit
– AGU: Address Generation Unit
– MIU: Memory Interface Unit
– DCU: Data Cache Unit
– MOB: Memory Order Buffer
– L2: Level 2 cache

• In-Order Retire

P6 µArch

MS

AGU

MOB

External
Bus

IEU

MIU

FEU

BPU

BIU

IFU

I
D

RAT

R
S

L2

DCU

ROB

 Computer Architecture 2012 – out-of-order execution 40

In-Order Front End

• BIU: Bus Interface Unit

(fetches instructions)

• IFU: Instruction Fetch Unit
(includes i-cache)

• BPU: Branch Prediction Unit

• ID: Instruction Decoder

• MS: Micro-Instruction Sequencer
(complex ops are comprised of a
sequence of μ-ops; simple ops are
comprised of only 1 μ-op)

• RAT: Register Alias Table
(solves false dep.; most recent arch =>
physical mapping)

P6 µArch

MS

AGU

MOB

External
Bus

IEU

MIU

FEU

BPU

BIU

IFU

I
D

RAT

R
S

L2

DCU

ROB

 Computer Architecture 2012 – out-of-order execution 41

Out-of-order Core
• L2: Level 2 cache

• MOB: Memory Order Buffer
• DCU: Data Cache Unit
• MIU: Memory Interface Unit
• AGU: Address Generation Unit

• RRF: “Real” Register File

(not shown; the machine’s state)

• IEU: Integer Execution Unit
• FEU: Floating-point Execution Unit

• RS: Reservation Stations

(All those ops whose dependencies aren’t
yet met; up to 20; 5 ports to exe units)

• ROB: Reorder Buffer
(The physical regs; one entry per op – the
reg is the dest of the op; in order!)

P6 µArch

MS

AGU

MOB

External
Bus

IEU

MIU

FEU

BPU

BIU

IFU

I
D

RAT

R
S

L2

DCU

ROB

 Computer Architecture 2012 – out-of-order execution 42

O1 O2

R1 R2

Ex

I1 I2 I3 I4 I5 I6 I7 I8

Next
IP

Reg
Ren

RS
Wr Icache Decode

RS
dispatch

Retirement

 In-Order Front End

Out-of-order
Core

In-order
Retirement

1: Next IP
2: ICache lookup
3: ILD (instruction length decode)
4: rotate
5: ID1 (instruction decoded 1)
6: ID2 (instruction decoded 2)
7: RAT - rename sources &
 ALLOC - assign destinations
8: ROB - read sources
 RS - schedule data-ready uops for dispatch
9: RS - dispatch uops
10:EX
11-12: Retirement

P6 pipeline - 12 stages (10<=P6<=14)

[O1]

[O2]
[R1]
[R2]

 Computer Architecture 2012 – out-of-order execution 43

In-order front-end

• BPU – Branch Prediction Unit – predict next fetch address
• IFU – Instruction Fetch Unit

– iTLB translates virtual to physical address (next lecture)
– ICache supplies 16byte/cyc (on miss: access L2, maybe memory)

• ILD – Instruction Length Decode – split bytes to instructions
• IQ – Instruction Queue – buffer the instructions
• ID – Instruction Decode – decode instructions into uops
• MS – Micro-Sequencer – provides uops for complex instructions
• IDQ – Instruction Decode Queue – buffer the uops

Next IP
Mux

BPU

ID

MS

ILD IQ IDQ IFU

Bytes Instructions uops

 Computer Architecture 2012 – out-of-order execution 44

Branch prediction
• Implementation

– Use local history to predict direction
– Need to predict multiple branches
⇒ Need to predict branches before previous branches are resolved
⇒ Branch history updated first based on prediction, later based on

actual execution (speculative history)
– Target address taken from BTB

• Prediction rate: ~92%
– High prediction rate is crucial for long pipelines
– Especially important for OOOE, speculative execution:

 On misprediction all instructions following the branch in the instruction
window are flushed

 Effective size of the window is determined by prediction accuracy

 Computer Architecture 2012 – out-of-order execution 45

Branch prediction – clustering
• Given a fetched line (bytes), need to know which line to fetch next

– Perhaps there’s more than one branch in the line
– We must use 1st (leftmost) taken branch (>= the current fetched IP)

• Implemented by
– Splitting IP into setOfLine + tagOfLine + offsetWithinLine
– If there’s a match

 The offsets of the matching ways are ordered
 Ways with offset smaller than the fetch IP offset are discarded
 The 1st branch that’s predicted taken is chosen as the predicted branch

Jump into
the fetch line

Jump out
of the line

jmp jmp jmp jmp
Predict

not taken
Predict
taken

Predict
taken

Predict
taken

line

IP

 Computer Architecture 2012 – out-of-order execution 46

P6 BTB
• 2-level, local histories, per-set counters
• 4-way set associative: 512 entries in 128 sets

IP Tag Hist

1001

Pred=
msb of
counter

9

0

15

Way 0

Target

9 4 32

counters

128
sets

P T V

2 1 1 32

LRR

2

Per-Set

Branch Type
00- cond
01- ret
10- call
11- uncond

Return
Stack
Buffer

offset

4

ofst

• Up to 4 branches can have the same set/tag match (since there
are 4 ways)

 Computer Architecture 2012 – out-of-order execution 47

Determine where each
x86 op starts

In-order front-end – decoder

Buffers ops in queue

Convert ops into uops
• D0 handles complex ops

(translate to up to 4 uops)
• D1-3 for simple ops that translate

to 1uop
• In case ops aligned with D1-3

decode into >1 uops, defer them
to following cycle (whereby D0
will be used)

IQ

Instruction Length
Decode

16 Instruction
bytes from IFU

1 uop

D1

IDQ

D2
1 uop

D0
≤4 uops

Buffers uops
• Smooth decoder’s variable

throughput (we want the same
number of uops every cycle (=4))

D3
1 uop

 Computer Architecture 2012 – out-of-order execution 48

Micro operations (uops)
• Each CISC inst is broken into one or more RISC uops

– Simplicity
 Each uop is (relatively) simple
 Canonical representation of src/dest (2 src, 1 dest)

– But increased instruction count
• Simple instructions translate to a few uops

– Typical uop count (not necessarily cycle count!)
 Reg-Reg ALU/Mov inst: 1 uop
 Mem-Reg Mov (load) 1 uop
 Mem-Reg ALU (load + op) 2 uops
 Reg-Mem Mov (store) 2 uops (st addr, st data)
 Reg-Mem ALU (ld + op + st) 4 uops

• Complex instructions translate into more uops

 Computer Architecture 2012 – out-of-order execution 49

Out-of-order core: ROB + RS

MIS

AGU

MOB

External
Bus

IEU

MIU

FEU

BTB

BIU

IFU

I
D

RAT

R
S

L2

DCU

ROB

• Reorder Buffer (ROB):
– Holds all “not yet retired” instructions
– 40 ordered entries (cyclic array)
– Retired in-order
– It’s possible some instruction already

executed (their result known), but cannot
be retired since

– still have speculative status
– and/or are waiting for previous

instructions to retire in order
• Reservation Stations (RS):

– Holds “not yet executed” instructions
– 20 entries (subset of ROB)
– Up to 4 simultaneous ops can get in and

out of RS simultaneously
• After execution

• Results written to both ROB & possibly
to RS (when source of other instructions)

 Computer Architecture 2012 – out-of-order execution 50

Out-of-order core: execution units

MIS

AGU

MOB

External
Bus

IEU

MIU

FEU

BTB

BIU

IFU

I
D

RAT

R
S

L2

DCU

ROB

• Basic execution units (*EU; *=I|F)
– IEU: Integer Execution Unit
– FEU: Floating-point Execution Unit

• Memory-related execution units
– DCU: Data Cache Unit
– AGU: Address Generation Unit

– Computes effective address & sends
to DCU to fetch from cache)

– MOB: Orders memory loads and stores
– L2: Level 2 cache
– MIU: Memory Interface Unit

• MIU feeds execution units
– Positioned between RS & exe units
– Has 5 ports (see next slide)
– Some units may be similar between ports,

others exclusive

 Computer Architecture 2012 – out-of-order execution 51

MIU

Port 0

Port 1

Port 2

Port 3,4

SHF
FMU

FDIV
IDIV

FAU
IEU

JEU
IEU

AGU

AGU

Load Address

Store Address

Out-of-order core: execution units
internal 0-dealy
bypass within
each EU

2nd
bypass
in RS

RS

1st
bypass
in MIU

DCU SDB

Bypass: shorten path of
source to exe unit, e.g., if
current outcome of a
certain exe unit is its source
for next round, can use
outcome directly, etc.

 Computer Architecture 2012 – out-of-order execution 52

RAT & ALLOC
• There are ≤ 4 new uops/cyc; for each such uop

– Perform register allocation & renaming. Specifically…
• For each new uop , use RAT (Register Alias Table) to

– Source reg(s): map arch reg(s) to physical reg(s)
 arch reg => latest phys reg that updated arch reg

– Target reg: (1) allocate new phys reg; (2) update RAT accordingly
 Now arch reg points to newly allocated phys reg (for next time)

 RAT:

• The Allocator (Alloc)
– Assigns each uop with new ROB & RS entries
– Write up the matching phys regs to RS (along with the rest of the uop)
– Allocate Load & Store buffers in the MOB (for load & store ops)

arch reg phys
reg#

location

EAX 0 RRF
EBX 19 ROB
ECX 23 ROB

 Computer Architecture 2012 – out-of-order execution 53

Reorder buffer (ROB)
• Holds 40 uops which are “not yet committed”

– Same order as program (cyclic array)
– Provides large physical register space for reg renaming
– A physical register is actually an item within a matching ROB entry
 phys reg number = ROB entry number
 phys reg = uop’s target destination (there’s always exactly one)
 phys regs buffer the execution results until retirement

– Valid data is set after uop executed (& result written to physical reg)

#entry entryValid dataValid data (physical reg) arch target reg
0 1 1 12H EBX
1 1 1 33H ECX
2 1 0 xxx ESI
…
39 0 0 xxx XXX

 Computer Architecture 2012 – out-of-order execution 54

RRF – real register file

• Holds the Architectural Register File
– Architectural registers are numbered: 0 = EAX, 1 = EBX, …
– This is “the state” of the chip (can’t roll back)

• The value of an architectural register
– Is the value written to it by the last committed uop (which writes

to that reg)
– So long as we don’t change the RRF, we don’t change the state

RRF:

#entry Arch Reg
Data

0 (EAX) 9AH

1 (EBX) F34H

 Computer Architecture 2012 – out-of-order execution 55

Uop flow through the ROB
• Uops are entered in order (there’s a head and a tail)

– Registers renamed by the entry #
• Once assigned

– Execution order unimportant, only dependencies
• After execution:

– Entries marked “executed” (dataValid=1) & wait for retirement
– Retirement occurs once all prior instruction have retired
– => Commit architectural state only after speculation was resolved

• Retirement
– Detect exceptions and misprediction
 Branch result might impact uops down the road
 Initiate repair to get machine back on track

– Update “real” regs (in RRF) with value of renamed (phys) regs
– Update memory
– Clear ROB entry

 Computer Architecture 2012 – out-of-order execution 56

Reservation station (RS)
• Pool of all “not yet executed” uops

– Holds the uop code & source data (until it is dispatched=scheduled)
• When a uop is allocated in RS, operand values are updated

– If operand is arch reg => value taken from the RRF
– If operand is phys reg (with dataValid =1) => value taken from ROB
– If operand is phys reg (with dataValid=0) => wait for value

• The RS maintains operands status “ready / not-ready”
– Each cycle, executed uops make more operands “ready”
 RS arbitrates WB busses between exe units
 RS monitors WB bus to capture data needed by waiting uops
 Data can bypass directly from WB bus to exe unit (like we’ve seen)

– Uops whose operands are ready (all of them)
 can be dispatched
 Dispatcher chooses which ready uop to execute next
 Dispatcher sends chosen uops to appropriate functional units
 (Of course, need said appropriate functional units to be vacant)

 Computer Architecture 2012 – out-of-order execution 57

Register Renaming example

RS

RAT / Alloc

⇒

IDQ
Add EAX, EBX, EAX

#reg
EAX 0 RRF
EBX 19 ROB
ECX 23 ROB

ROB37 = ROB19 + RRF0

ROB

⇒
Data

Valid Data DST
19 V V 12H EBX
23 V V 33H ECX
37 I x xxx XXX
38 I x xxx XXX

v src1 v src2 Pdst

add 1 97H 1 12H 37

RRF: 0 EAX 97H

Data
Valid Data DST

19 V V 12H EBX
23 V V 33H ECX
37 V I xxx EAX
38 I x xxx XXX

#reg
EAX 37 ROB
EBX 19 ROB
ECX 23 ROB

 Computer Architecture 2012 – out-of-order execution 58

Register Renaming example

RS

RAT / Alloc

⇒

IDQ
Add EAX, EBX, EAX

#reg
EAX 0 RRF
EBX 19 ROB
ECX 23 ROB

ROB37 = ROB19 + RRF0

ROB

⇒
Data

Valid Data DST
19 V V 12H EBX
23 V V 33H ECX
37 I x xxx XXX
38 I x xxx XXX

v src1 v src2 Pdst

add 1 97H 1 12H 37

RRF: 0 EAX 97H

Data
Valid Data DST

19 V V 12H EBX
23 V V 33H ECX
37 V I xxx EAX
38 I x xxx XXX

#reg
EAX 37 ROB
EBX 19 ROB
ECX 23 ROB

allocate new ROB
entry (phys reg) for EAX

 Computer Architecture 2012 – out-of-order execution 59

Register Renaming example

RS

RAT / Alloc

⇒

IDQ
Add EAX, EBX, EAX

#reg
EAX 0 RRF
EBX 19 ROB
ECX 23 ROB

ROB37 = ROB19 + RRF0

ROB

⇒
Data

Valid Data DST
19 V V 12H EBX
23 V V 33H ECX
37 I x xxx XXX
38 I x xxx XXX

v src1 v src2 Pdst

add 1 97H 1 12H 37

RRF: 0 EAX 97H

Data
Valid Data DST

19 V V 12H EBX
23 V V 33H ECX
37 V I xxx EAX
38 I x xxx XXX

#reg
EAX 37 ROB
EBX 19 ROB
ECX 23 ROB

Update RAT (alias
table) accordingly

 Computer Architecture 2012 – out-of-order execution 60

Register Renaming example

RS

RAT / Alloc

⇒

IDQ
Add EAX, EBX, EAX

#reg
EAX 0 RRF
EBX 19 ROB
ECX 23 ROB

ROB37 = ROB19 + RRF0

ROB

⇒
Data

Valid Data DST
19 V V 12H EBX
23 V V 33H ECX
37 I x xxx XXX
38 I x xxx XXX

v src1 v src2 Pdst

add 1 97H 1 12H 37

RRF: 0 EAX 97H

Data
Valid Data DST

19 V V 12H EBX
23 V V 33H ECX
37 V I xxx EAX
38 I x xxx XXX

#reg
EAX 37 ROB
EBX 19 ROB
ECX 23 ROB

Update RS
 accordingly

 Computer Architecture 2012 – out-of-order execution 61

Register Renaming example (2)

RS

RAT / Alloc

⇒

IDQ
sub EAX, ECX, EAX

#reg
EAX 37 ROB
EBX 19 ROB
ECX 23 ROB

ROB38 = ROB23 - ROB37

ROB

⇒
Data

Valid Data DST
19 V V 12H EBX
23 V V 33H ECX
37 I x xxx XXX
38 I x xxx XXX

v src1 v src2 Pdst

add 1 97H 1 12H 37

sub 0 rob37 1 33H 38

RRF: 0 EAX 97H

Data
Valid Data DST

19 V V 12H EBX
23 V V 33H ECX
37 V I xxx EAX
38 V I xxx EAX

#reg
EAX 38 ROB
EBX 19 ROB
ECX 23 ROB

 Computer Architecture 2012 – out-of-order execution 62

Register Renaming example (2)

RS

RAT / Alloc

⇒

IDQ
sub EAX, ECX, EAX

#reg
EAX 37 ROB
EBX 19 ROB
ECX 23 ROB

ROB38 = ROB23 - ROB37

ROB

⇒
Data

Valid Data DST
19 V V 12H EBX
23 V V 33H ECX
37 I x xxx XXX
38 I x xxx XXX

v src1 v src2 Pdst

add 1 97H 1 12H 37

sub 0 rob37 1 33H 38

RRF: 0 EAX 97H

Data
Valid Data DST

19 V V 12H EBX
23 V V 33H ECX
37 V I xxx EAX
38 V I xxx EAX

#reg
EAX 38 ROB
EBX 19 ROB
ECX 23 ROB

allocate another new ROB
entry (phys reg) for EAX

 Computer Architecture 2012 – out-of-order execution 63

Register Renaming example (2)

RS

RAT / Alloc

⇒

IDQ
sub EAX, ECX, EAX

#reg
EAX 37 ROB
EBX 19 ROB
ECX 23 ROB

ROB38 = ROB23 - ROB37

ROB

⇒
Data

Valid Data DST
19 V V 12H EBX
23 V V 33H ECX
37 I x xxx XXX
38 I x xxx XXX

v src1 v src2 Pdst

add 1 97H 1 12H 37

sub 0 rob37 1 33H 38

RRF: 0 EAX 97H

Data
Valid Data DST

19 V V 12H EBX
23 V V 33H ECX
37 V I xxx EAX
38 V I xxx EAX

#reg
EAX 38 ROB
EBX 19 ROB
ECX 23 ROB

Update RAT (alias
table) accordingly

 Computer Architecture 2012 – out-of-order execution 64

Register Renaming example (2)

RS

RAT / Alloc

⇒

IDQ
sub EAX, ECX, EAX

#reg
EAX 37 ROB
EBX 19 ROB
ECX 23 ROB

ROB38 = ROB23 - ROB37

ROB

⇒
Data

Valid Data DST
19 V V 12H EBX
23 V V 33H ECX
37 I x xxx XXX
38 I x xxx XXX

v src1 v src2 Pdst

add 1 97H 1 12H 37

sub 0 rob37 1 33H 38

RRF: 0 EAX 97H

Data
Valid Data DST

19 V V 12H EBX
23 V V 33H ECX
37 V I xxx EAX
38 V I xxx EAX

#reg
EAX 38 ROB
EBX 19 ROB
ECX 23 ROB

	Computer Architecture� �Out-of-order Execution
	The need for speed: Superscalar
	A simple superscalar CPU
	Example: Pentium Processor
	Is superscalar good enough?
	Out-of-order in a nutshell
	Superscalar basics: Data flow analysis
	OoO – general scheme
	Out of order execution (OoO)
	OoO: data dependencies
	Data dependency types (I)
	RaW examples
	Data dependency types (II)
	WaR examples
	WaW examples
	OoO: Main ingredients
	OoO Pipeline
	Benefits of Register Renaming
	Benefits of Register Renaming
	Register renaming: How does it work?
	Register renaming: Example
	OoO Pipeline: Execution
	Out-of-order execution
	OoO execution example
	OoO Pipeline: ROB & de-speculation
	Managing speculative execution
	Managing speculative execution
	Example: Managing speculation
	Scalability of Speculative Execution
	OoO scalability: VLSI considerations
	OoO scalability: VLSI considerations
	OoO summary
	OoO summary
	The P6 Microarchitecture �
	The P6 family (i686)
	The P6 family (i686)
	Chip logically partitioned to 3
	P6 Arch
	P6 Arch
	P6 Arch
	P6 pipeline - 12 stages (10<=P6<=14)
	In-order front-end
	Branch prediction
	Branch prediction – clustering
	P6 BTB
	In-order front-end – decoder
	Micro operations (uops)
	Out-of-order core: ROB + RS
	Out-of-order core: execution units
	Out-of-order core: execution units
	RAT & ALLOC
	Reorder buffer (ROB)
	RRF – real register file
	Uop flow through the ROB
	Reservation station (RS)
	Register Renaming example
	Register Renaming example
	Register Renaming example
	Register Renaming example
	Register Renaming example (2)
	Register Renaming example (2)
	Register Renaming example (2)
	Register Renaming example (2)

