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T he limitations of analytical methods in practical applications have led
mathematicians to evolve numerical methods.

     We know that exact methods often fail in drawing plausible inferences
from a given set of tabulated data or in finding roots of transcendental equations
or in solving non-linear differential equations.

Even if analytical solutions are available, they are not amenable to direct
numerical interpretation.

The aim of numerical analysis is, therefore, to provide constructive methods
for obtaining answers to such problems in a numerical form. With the advent
of high speed computers and increasing demand for numerical solutions to
various problems, numerical techniques have become indispensible tools in
the hands of engineers and scientists.

We can solve equations x2 – 5x + 6 = 0, ax2 + bx + c = 0, y″ + 3y′ + 2y = 0 by
analytical methods, but  transcendental equations such as a cos2 x + bex = 0
cannot be solved by analytical methods. Such equations are solved by numerical
analysis.

Methods of numerical analysis are used to approximate the problem
satisfactorily so that an approximate solution, amenable to precise analysis,
within a desired degree of accuracy is obtained.

To attain a desired degree of accuracy, insight into the process and resulting
error is essential.

Chapt e r1 INTRODUCTION
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Consequently,  numerical analysis may be regarded as a process to develop
and evaluate the methods for computing required mathematical numerical
results from the given numerical data.

Three broad steps are incorporated in the process
(i) Given data, called input information

(ii) Algorithm
(iii) The results obtained, called output information.

Input
Information

The
Algorithm

Output
Information

Computers have changed, almost revolutionized, the field of numerical
methods as a whole as well as many individual methods. That development is
continuing.

Much research is devoted to creating new methods, adapting existing
methods to new computer generations, improving existing methods, and
investigating stability and accuracy of methods. In large scale work, even small
improvements bring large savings in time and storage space.

1.1 INTRODUCTION TO COMPUTERS

The computer is an information-processing and an information-accessing tool.
It accepts information or data from the outside world and processes it to produce
new information. It also retrieves the stored information efficiency.

Hence, “The computer is an electronic device capable of accepting
information, applying prescribed processes to the information, and supplying
the results of these processes.”

A computer usually consists of input and output devices, storage, arithmetic
and logical units, and a control unit.

1.2 DEFINITIONS

Cursor

A position indicator or blinking character employed in a display on a video
terminal to indicate a character to be corrected or a position in which data is to
be entered.
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Algorithm

A finite, step-by-step procedure made up of mathematical and/or logical
operations designed to solve a problem is called an algorithm.

Flow-chart

A pictorial or  graphical representation of a specific sequence of steps to be
used by a computer is called a flow-chart. It is, essentially, a convenient way of
planning the order of operations involved in an algorithm and helps in writing
a program.

A flow-chart contains certain symbols to represent the various operations .
These symbols are connected by arrows to indicate the flow of information. The
commonly used symbols with meanings are given below:

1. This oval shaped symbol is used to indicate
‘Start’ or ‘Stop/End’ of a program. It is also
used to mark the end  of a sub-program by
writing ‘Return’.

2. This parallelogram shaped symbol is used to
indicate an input or output of data.

3. This rectangle-shaped symbol is a processing
symbol, e.g., addition, subtraction, or movement
of data to computer memory.

4. This diamond shaped symbol is a decision-
making symbol. A particular path is chosen
depending on ‘Yes’ or ‘No’ answer.

5. A small circle with any number or letter in it is
used as a connector symbol. It connects various
parts of a flow-chart which are far apart or
spread over pages.

(Subprocess symbol) (Subroutine) (Connector arrows)

G

(Terminal point)

(Input/output)

(Processing
operation box)

(Decision logic)

(Connector point)
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A rectangle with double vertical sides is used to denote a subprocess which
is given elsewhere as indicated by connector symbol.

When this box is encountered, the flow goes to the subroutine and it
continues till a ‘Return’ statement is encountered. Then it goes back to main
flow-chart and flow resumes onward processing.

The flow-chart can be translated into any computer language and can also
be executed on the computer.

PROGRAM. A computer does not have the capability of reading and
understanding instructions written in a natural language like English.
Thus, it is necessary to express the algorithm in a language understood
by the computer. An algorithm coded in a computer language is called
a program and the language used for coding is called a programming
language.

INSTRUCTION. A single operation to be executed by the computer is
called an instruction.

LOGIC. The science that deals with the canons and criteria of validity
in thought and demonstration, or the science of the formal principles of
reasoning is called logic.

LOOP. A series of instructions or one instruction in a program that is
repeated for a prescribed number of times, followed by a branch
instruction that exits the program from the loop.

COMPILER. A program designed to translate high level language
(source program into machine language object program) is called a
compiler.

ASSEMBLER. A machine language program that converts all
instructions into the binary format.

LOADER. A program required on practically all systems that loads
the user’s program along with required system routines into the central
processor for execution.
SYNTAX. The set of grammatical rules defining the structure of a
programming language is called syntax.
GARBAGE. An accumulation of unwanted, meaningless data after
processing of any program is called Garbage.

1.3 INTRODUCTION TO “C” LANGUAGE

In 1960, a number of computer languages had come into existence, among them
COBOL and FORTRAN. A drawback of these languages was that they were
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only suitable for specific purposes. There was a need for a single computer
language that could cater to the needs of different applications uniformly and
efficiently.

This led to the formation of an International Committee to develop such a
language. The result was a language called ALGOL 60. It did not become popular
as it was too abstract and too general. Successive refinements on ALGOL 60
resulted in the birth of language CPL (combined programming language), BCPL,
and ‘B’ language. These languages were again found to be either very big and
exhaustive or  less powerful. Finally, in 1972, ‘Dennis Ritchie’ developed the
‘C’ language at AT and T Bell Laboratories, USA. He inherited the features of
‘B’ and BCPL languages and added some of his own in development of ‘C’
language.

Languages can be classified into two categories:
(i) High level languages (Problem Oriented Languages). e.g.,—

FORTRAN, BASIC, PASCAL, etc.
(ii) Low level languages (Machine Oriented Languages). e.g.,—Assembly

and machine language.
‘C’ language was designed to give both a relatively good programming

efficiency and a relatively good machine efficiency. Hence ‘C’ is said to be a
Middle level language as it stands between the above two categories.

1.4 ADVANTAGES/FEATURES OF ‘C’ LANGUAGE

Following are some advantages of ‘C’ language:
(i) Portability

(ii) Suitable for low level programming
(iii) Fewer Key words
(iv) ‘C’ is a structured language
(v) ‘C’ is a programmers language

1.5 ‘C’ CHARACTER SET

“Character” denotes any alphabet, digit or special symbol used to represent
information. The following table shows the valid alphabets, digits, and special
symbols allowed in ‘C’;

Alphabets: A, B, C, ......, Y, Z.
a, b, c, ......, y, z.
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Digits: 0, 1, 2, ......, 8, 9.
Special Symbols: ‘–’, ‘–’, + , = , /, \, {}, [ ], < >,?.

The alphabets, digits, and special symbol, when properly combined, form
constants, variables, and keywords.

1.6 ‘C’ CONSTANTS

A constant  is a quantity that doesn’t change. ‘C’ constants can be divided into
two major categories:

(i) Primary constants (also called primary data types).
(ii) Secondary constants (also called secondary data types).
Primary constants can be of three types:
(a) Integer constant
(b) Real constant
(c) Character constant.

Secondary data types or constants are:
(a) Array (b) Pointer (c) Structure (d) Union (e) Enum.
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1.6.1 Primary Data Types

Data types Byte Range Format
occupied

(i) Signed character One – 128 to + 127 % C

(ii) Unsigned character One 0 to 255 % C

(iii) Short signed integer Two – 32768 to + 32767 % d

(iv) Short unsigned integer Two 0 to 65535 % u

(v) Long signed integer Four – 2147483648 to  + 214748 3647 % l

(vi) Float Four ± 3.4 e – 38 to  ± 3.4 e + 38 % f

(vii) Double Eight ± 1.7 e – 308 to  ± 1.7 e  + 308 % lf

1.7 “C” VARIABLES

Suppose we want to find  the average of three numbers. The three numbers are
the input and the average is the output.

Following are the tasks to be performed by the computer.
1. Read the three numbers.
2. Calculate the average.
3. Output the average.

The computer actually works as follows:
� Reads the three numbers and stores them in three locations of memory.

� Adds the contents of the three locations and divides the result by 3. The
result is stored in a fourth location.

� The content of the fourth location is printed as output.
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String variableInteger variables

C Variables

Real variables

Floating
point

Double

IntegerUnsigned
integer

Short
integer

Long
integer Unsigned

character
Signed

character

Character
variable

When numbers are stored in various locations of memory, it becomes
necessary to name each of the memory locations. The name of the memory
location is called variable.

Memory locations may contain integer, real, or character constants.
Depending upon the data contained in the memory location, the variables are
classified as integer, real, character, and string variables.

Secondary variables can be
(a) Array variables (b) Pointer variables (c) Structure variables
(d) Union variables (e) Enum variables.

1.8 ‘C’ KEY WORDS

Key words (also called reserved words) are an integral part of a language.
Their meanings are predefined and hence these words cannot be used as variable
names. There are 32 key words in C language.

1.9 “C INSTRUCTIONS”

The constants, variables, and key words are combined to form instructions.
Basically,  there are four types of instructions in ‘C’:
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(a) Type declaration Instruction:
e.g.: int bas_sal;

float tot_sal;
char name;

(b) Arithmetic Instruction:

e.g.: int a;

float b, C;

C = a * b;

    assignment operator.
(c) Input/Output Instruction:

e.g.: printf (‘‘<format string>’’,<list of variables>);

<format string> could be
% f — for real values
% d — for integer values
% C — for character values
% S — for printing a string (sequence of character).

(d) Control Instruction:

Control Instructions specify the order in which the various instructions in
a program are to be executed by  the computer. They define the flow of
control in a program.
There are four types of Control Instructions in ‘C’
(i) Sequence Control Instruction

(ii) Selection or Decision Control Instruction
(iii) Repetition or Loop Control Instruction
(iv) Case Control Instruction

1.10 HIERARCHY OF OPERATIONS

The order or priority in which the arithmetic operations are performed in an
arithmetic statement is called the hierarchy of operations. Hierarchy of
operations is given below:

Priority Operators
1. Parentheses—All parentheses are evaluated first
2. Multiplication and division
3. Addition and Subtraction.
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1.11 ESCAPE SEQUENCES

In ‘C’ the backslash symbol (\) is called an escape character.
\ t — Tab
\ n — New line character takes control to the next line
\ b — Backspace character moves the cursor one position to the left of  its

current position.
\ r — Carriage return character takes the cursor to the beginning of the line

in which it is currently placed.
\ a — Alert character alerts the user by sounding the speaker inside the

computer.

1.12 BASIC STRUCTURE OF ‘‘C’’ PROGRAM

A program is defined as a valid set of instructions which perform a given task.
Each instruction in C  program is written as a separate statement. However
big a problem or program is, the following rules are applicable to all ‘C’
Statements:

(a) Blank spaces may be inserted between two words to improve readability
of the statement.

(b) All statements are usually entered in small case letters.
(c) C is free from language, i.e., there is no restriction on position of

statements within the program.
(d) A ‘C’ statement always ends with a semicolon (;).
Any ‘C’ program is a combination of functions. Main( ) is one such function.

Empty parentheses after main is a must. The set of statements belonging to a
function is enclosed within a pair of braces. For example,

main( )
{

Statement 1;
Statement 2;
Statement 3;

}

Functions can be of two types:
(i) Library functions or Built-in functions or intrinsic functions

(ii) User defined functions.
Library functions are those which are available as a part of ‘C’ language (C

Compiler). These can be used by the programmers (users) directly to do a specific
task. For example, the input/output operations are performed by a group as



INTRODUCTION    13

functions which belong to a particular set. These sets are called header files in
‘C’. The header file is denoted by the file extension h.

The following table shows some popular library  functions.

S. Functions Meaning Argument Value
No.

1. sqrt (x) x float float

2. log (x) loge x float float

3. abs (x) | x | integer integer

4. fabs (x) | x | float float

5. exp (x) ex float float

6. pow (x, y) xy float float

7. ceil (x) Rounding x to next float float
integer value

8. f mod (x, y) returns the remainder float float
of x/y

9. rand ( ) generates a (+) ve — integer
random integer

10. srand (v) to initialize the random Unsigned —
number generator

11. sin (x) sin x float in radian measure float

12. cos (x) cos x ’’ ’’

13. tan (x) tan x float in radian measure float

14. toascii (x) returns integer value to character integer integer
particular character

15. tolower (x) To convert character ’’ character
to lower case

16. toupper (x) To convert character character ’’
to upper case

1.12.1. Simple ‘C’ Program

#include<stdio.h>

/*program for average of three numbers*/
main( )

{
int a, b, c, d;
a = 2;
b = 3;
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c = 6;
d = (a + b + c)/3;
Printf(‘‘% d’’, d);

}

In the above C-program, the first line contains a reference to a header  file.
Since any standard program will have some i/o functions, the above statement
appears as the first line in every C program.

Library functions of stdio.h are scanf , printf, getchr, putchr, putc, puts.
If we want to use certain mathematical functions then the header file

math.h is included  using statement
#include <math.h>

Library functions of  math.h are cos, cosh, sin, sinh, tan, log, a cos, a sin,
exp.

The second line of  the above  program is a comment line. It can be anywhere
in the program and any number of comment lines are allowed. This comment
line improves the readability and helps the programmer to understand the
program.

The function name main( ) is written next. Function name is always followed
by a set of parentheses. Arguments, if any, are placed within the parentheses.
The opening brace and the closing brace indicate the beginning and end of the
function.

Next the variables are declared as integers. The declaration part must be
written as the first part of the function.

Next, a, b, c values are assigned and d  is calculated.
In the next line, d is printed using printf function.
The basic rules for a program can be stated as follows:

1. Proper header file must be referred to.
2. There should be one and only one main function.
3. Contents of the function should be enclosed by opening and closing

braces.
4. Variables must be declared first in the function.
5. Every C statement except the comment line headlines and function

names in a function must end with a semicolon.

1.13 DECISION MAKING INSTRUCTIONS IN “C”

The ability to make decisions regarding execution of the instructions in a ‘‘C’’
program is accomplished using decision control instructions. C has three major
decision-making instructions:
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(i) The if statement;
(ii) The if-else statement; and

(iii) The switch statement.
(i) The if statement. The general form (syntax) of this statement is as follows:

if (this condition is true)
execute this statement;

e.g.,: if (exp > 5)
{

bonus = 3000;

printf (“% d”, bonus);

}

(ii) The if-else statement. The if statement executes a single statement or a
group of statements if  the  condition following if is true. The ability to execute a group
of statements if the condition is true and to execute another group of statements if the
condition is false is provided by if-else statement.

The general syntax of if-else is as follows:
if (condition)

statement  1;

else

statement  2;

or

if (condition)

{

statement 1;

statement 2;

}

else

{

statement 1;

statement 2;

}

The group of statements after the if, up to and not including the else, is
called as if block. Similarly, the statements after the else form the else block.

(iii) Decision using switch. The control structure which allows decisions to be
made from a number of choices is called as switch or switch-case-default. These 3
keywords together make up the control structure.
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Syntax is as follows:
Switch (integer expression)

{

case constant 1;

do this;

break;

case constant 2:

do this;

break;

default:

do this;

}

The integer expression following the keyword switch in any C expression
will yield an integer value. The keyword case is followed by an integer or a
character constant.

Each constant in each case must be different from all others. The break
statement helps in getting out of the control structure.

There is no need for a break statement after the default, since the control
automatically comes out of the control structure as it is last.
e.g.,:
main( )

{
int i = 6;
switch (i)
{
case 1:

printf (‘‘This is case 1’’);
break;

case 2:
printf (‘‘This is case 2’’);
break;
default:
printf (‘‘This is default’’);

}
}

Points to Remember. (i) The cases need not be arranged in any specific order.
(ii) It is allowed to use char values in case and switch.

(iii) There may be no statements in some of the cases in switch, but they can
still be useful.

(iv) The switch statement is very useful while writing menu-driven programs.

NOTE



INTRODUCTION    17

1.14 LOOP CONTROL STRUCTURE

The process of repeating some portion of the program either a specified number
of times or until a particular condition is satisfied is called looping.

Three methods of implementing a loop in ‘‘C’’ are:
(a) using a for  statement
(b) using a while statement
(c) using a do-while  statement.

(a) The for statement. It is the most popular loop control structure.
General form is as below:
for (initialize counter; test counter; increment counter).
This control structure allows us to specify 3 things about a loop in a single
line.
(i) Setting a loop counter to an initial value.

(ii) Testing the loop counter to determine whether its value has reached
the number of repetitions desired.

(iii) Increasing the value of the loop counter each time the program segment
within the loop has been executed.
e.g.,:

for (i = 1; i < = 10; i = i + 1)

| i = i + 1  may be written as i++
printf (“% d”, i);

o/p = prints values from 1 to 10.
(b) The while loop. General form is:

initialize the loop counter;

while (test of loop counter using a condition)

{

do this;

: Body of while loop
increment loop counter;

}

(i) The statement within the loop keep on getting executed as long as the
condition being tested remains true. As soon as it becomes false, the
control passes to the first statement that follows the body of the while
loop.

(ii) The condition being tested may use relational or logical operators.

O

Q

P
P
P

NOTE
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(iii) Instead of incrementing the loop counter, it can be decremented also.
e.g.: int i = 4;

while (i > = 1)

{

printf (“% d”, i);

i = i – 1;

}

(iv) The loop counter need not be of int type, it can be of float type also.

(c) The do-while loop. General form (syntax)
do

{

this;

and this;

and this;

} while (this condition is true);

The difference between while and do-while is that the do-while executes
its statements at least once even if the condition fails for the first time itself.
The while loop, however, does not execute the statements even once if the
condition is false.

The break and continue keywords are usually associated with all three
loops, i.e., for, while, and do-while. A break keyword inside the loop takes the
control out of the loop, bypassing the conditional test. A continue keyword, on
the other hand, takes the control to the conditional test.

1.15 ARRAYS AND STRING

Arrays. An array is a collection of similar elements. These elements could all
be ints, or all floats or all charcs, etc. However, there are situations in which it
is required to store more than one value at a time in a single variable.

e.g.,:  if it is required to arrange the scores obtained by 100 students in a
particular subject, then the two following methods can be used.

(a) Construct 100 variables to store scores obtained by 100 students in a
particular subject.
or

(b) Construct a single variable (called as a subscripted variable) capable
of holding all 100 values of the students is a particular subject.
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A subscripted variable is a collective name given to a group of similar
quantities.

e.g.,: scores = {20, 50, 60, 80}
Array declaration. In order to use an array in the program, we need to

declare it in order to tell the ‘C’ Compiler what type and size of array we want.
e.g.,: int scores [100];
An  array can be of more than one dimension. The two dimensional array is

also called a Matrix.
e.g.,: Scores [i] [J];
String. The character arrays are called strings. Character arrays or strings

are the data types used by programming languages to manipulate text such as
words or sentences. e.g., :

Static character name [ ] = {‘A’, ‘S’, ‘H’, ‘I’, ‘\o’};
Static character name [ ] = ‘‘ASHISH’’;

(i) The length of the string entered while using scanf should not exceed the
size of the character array.

(ii) Scanf is not capable of receiving multiword strings. Hence, names such
as ‘‘Mansi Choubey’’ would be unacceptable. In order to get around this
limitation of scanf function, gets ( ) and puts ( ) functions are used.

Syntax: gets (Name);
 puts (‘‘ Hello ! ”);

1.16 POINTERS

When a variable is declared in a program, the compiler does three things

(i) Reserves space in memory for this variable.
(ii) Associates the name of the variable with the memory location.

(iii) If some value is assigned to the variable, this value is stored at this
location.

It is possible to find the memory address of a variable using an “address of”
(&) operator. If the integer variable i is stored in memory as follows:

Memory Value Location name

location (address)
1000 2 i

NOTE
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then its memory address can be printed using a printf  statement as shown
below:

printf (‘‘Address of i = % d”, and i);

Similarly, there is another operator called ‘value at address’ (*) operator
which returns the value stored at a particular address.

printf (“value of i = % d”, * (& i));

1.17 STRUCTURE AND UNIONS

Structures. A structure is a data type which facilitates storage of similar or
dissimilar types of information about a particular entity.

all information regarding an employee.
 struct employee
{

char name [10];

int code;

char address [20];

char sex;

};

The keyword struct is used to declare a structure data type.
Union. In ‘C’, a union is a memory location that is shared by two or more

different variables, generally of different types, at different times.
Defining a union is similar to defining a structure.
Its general form is;
union union_name

{

type variable_name;

type variable_name;

:

} union_variables;

Example:
union item

{

int i;

char ch;

};
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Unions are useful when:
(i) It is required to produce portable (machine independent) code. This is,

because the compiler keeps track of actual sizes of the variables that
make up the union, so no machine dependecies are produced.

(ii) When type  conversions are needed because we can refer to the data
held in the union in different ways.

1.18 STORAGE CLASSES IN ‘C’

In order to fully define a variable, two things are required:
(i) The type of the variable

(ii) The storage class of the variable.
There are four storage classes provided in ‘C’
(a) Automatic storage classes (b) Register storage classes
(c) Static storage classes (d) Extern storage classes

EXAMPLES

Example 1. Draw a flow-chart to find real roots of the equation
ax2 + bx + c = 0

Sol. We know that the roots of quadratic equation ax2 + bx + c = 0 are given by

x1 = 
− + −b b ac

a

2 4
2

and x2 = 
− − −b b ac

a

2 4
2

or x1 = 
− +b d

a2
,

x2 = 
− −b d

a2
, where d = b2 – 4ac.
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START

Read
a, b, c

Is
a = 0 ?

d = b – 4 ac
2

Is
d < 0 ?

No

No

x = (– b + )/2a1 d

x = (– b – )/2a2 d

Print
x , x1 2

Print x1

STOP

Print roots
are complex

Is
b = 0 ?

No

x = –1
c
b

STOP

Yes

Yes

Yes

Flow-chart
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Example 2. Develop a flow-chart to select the largest number of a given set of
100 numbers.
Sol.

START

Read n

Max = n
Count = 1

Is
count = 100 ?

Yes
1

Read n

No

Is
n > Max ?

No

Count = Count + 1

1

Max = n

Print
Max

STOP

Yes

Example 3. Write  an  algorithm to find the real roots of  the equation ax2 + bx + c
= 0 ; a, b, c are real and a, b ≠ 0.
Sol. We know that the roots of the equation

ax2 + bx + c = 0
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are x1 = 
− +b e

a2
, x2 = 

− −b e
a2

where e = b ac d2 4− =
Algorithm is
Step 1. Input a, b, c.

Step 2. Calculate d = b2 – 4ac.

Step 3. Check if d < 0. If yes, then print roots are complex, go to step 8.

Step 4. Calculate e = d .

Step 5. Calculate x1 = 
− +b e

a2
.

Step 6. Calculate x2 = 
− −b e

a2
.

Step 7. Print x1 and x2.

Step 8. Stop.

Example 4. Write an algorithm for converting a temperature from centigrade
to Fahrenheit. Also write its program in ‘C’.

Sol. For this problem, the centigrade is the input and Fahrenheit is the output.

Let c be the variable name for centigrade and  f  be the variable name for
Fahrenheit.

The formula for converting temperature from centigrade to Fahrenheit is

f = (9/5) * c + 32

So, the algorithm is

1. read c

2. f = (9/5) * c + 32

3. printf

4. end

In the first section, we name the header file to be included.

1. # include<stdio.h>

Then the function name is written as

main( )

In the second section, the variables c and f are declared as floating point
variables.
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2. float c, f;

In the third section, reading the values for c, calculating f and printing the
value of f takes place.

3. scanf (“% f ”, & c);

f = (9.0 /5.0) * c + 32.0;

printf (“Fahrenheit = % f”, f);

The complete program is given below:

# include<stdio.h>

main( )

{

float c, f;

scanf  (“% f”, & c);

f = (9.0/5.0) * c + 32.0;

printf (“Fahrenheit = % f”, f);

}

The sample output is shown below:

40.0

Fahrenheit = 104.00.
Example 5. Write a C program to determine the area of a triangle using the
formula

area = s(s a) (s b) (s c)− − − , where s = 
a b c

2
+ +

.

Sol. The algorithm is
1. read a, b, c

2. s = 
a b c+ +

2
3. area = sqrt (s * (s – a) * (s – b) * (s – c))

4. print area

5. end.

The program is given below

# include<stdio.h>

# include<math.h>

main( )



26 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

{

float a, b, c, s, area;

printf (“Type the sides a, b, c”);

scanf (“%f  %f  %f”, & a, & b, & c );

s = (a + b + c) /2.0;

area  = sqrt (s * (s – a) * (s – b) * (s – c));

printf (“Area = % f ”, area);

}

Following is a sample output

Type the sides a, b, c

2.0 3.0 4.0

Area = 2.905.

Example 6. Write a flow-chart to evaluate the sum of  the series

1 + x + x2 + x3 + ..... + xn.
Sol.

START

Read x, n

Sum = 1

i < n

i = 0

i = i + 1

Sum = Sum + x
i

Print Sum

STOP

FalseTrue
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Example 7. Write a C-program to print all the Fibonacci numbers less than 50.
Sol. The following are the Fibonacci numbers.

0, 1, 1, 2, 3, 5, 8, 13, .......
The first Fibonacci number is 0. The second Fibonacci number is 1.
Any kth Fibonacci number = (k – 1)th Fibonacci number + (k – 2)th Fibonacci

number
The algorithm is
1. n0 = 0
2. n1 = 1
3. print n0, n1

4. n = n0 + n1
5. if n > = 50 stop
6. print n
7. n0 = n1
8. n1 = n
9. goto step 4.
For this problem, there is no input.
The C–program is given below:
/* Program for Fibonacci Numbers */

# include<stdio.h>

main( )

{

int n, n0, n1;

n0 = 0;

n1 = 1;

printf (‘‘% d \t %d”, n0, n1);

step 1: n = n1 + n0;

if (n > = 50)

goto end;

else

{ print f (“\ t % d”, n);

n0 = n1;

n1 = n;

goto step 1;}

end: printf (“  ”);

}

The sample output is
0 1 1 2 3 5 8 13 21 34
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Example 8. Write a C-program to
(i) print integers from 1 to 10 (ii) print odd numbers from 1 to 10.

Sol. (i) # include<stdio.h>
main( )

{

int i;

for (i = 1; i < = 10; i + +)

printf (‘‘% d\t’’ , i);

}

The output will be
1 2 3 4 5 6 7 8 9 10

(ii) # include<stdio.h>
main( )

{

int i;

for (i = 1; i < = 10; i + = 2)

printf (“%d\t”, i);

}

The output will be
1 3 5 7 9

ASSIGNMENT 1.1

1. Write a C-program to find the magnitude of a vector a  = a1i + a2j + a3k.
2.  State whether the following statements are correct or not:

(i) scanf (‘‘Enter the value of A% d’’, a); (ii) scanf (“%d; %d, %d”, & a, & b, & c);
3. Write a C program to solve a set of linear equations with two variables

a1x + b1y  = c1

a2x + b2y = c2

L

NM
Hint: Solution is x = 

b c b c
a b a b

2 1 1 2

1 2 2 1

−
−

, y = 
a c a c
a b a b

1 2 2 1

1 2 2 1

−
−

O

Q
P .

4. Write a C-program to read the principal, rate of interest, and the number of years and
find the simple interest using the formula

Simple interest = 
PNR
100

5. Write a printf statement to print “The given value is 22.23.”
6. Give an algorithm and write a program in C to check whether a given number is prime

or not.
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7. What will be the value of x and the sum after the execution of the following program?
x = 1;
sum = 0;

 step 1: if (x < 10)
{

sum + = 1.0/x;
x + = 1;
goto step 1

}

8. Write a program in C to determine whether a number is odd or even. Also, draw its flow-
chart.

9. Given a circle x2 + y2 = c,
Write a C-program to determine whether a point (x, y) lies inside the circle, on the circle,
or outside the  circle.

10. Draw a flow-chart for adding marks of 5 subjects for a student and print the total.
11. Write a C-program to print the message CRICKET WORLD CUP-2007 six times.
12. Give any five library functions in “C”.
13. Write a program in C to print the following triangle of numbers

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6

14. Write an algorithm for addition of two matrices of same order.
15. Write a C-program to find the multiplication of two square matrices each of order 2.
16. Write a C-program to find factorial of a given number.
17. Give a flow-chart for finding the determinant of a square non-singular matrix.
18. Write an algorithm for finding the inverse of a square non-singular matrix.
19. What is the maximum length allowed in defining a variable in “C”?
20. Write a C-program to find whether a year is leap year.
21. Develop a flow-chart to select the largest number of a given set of 500 numbers.
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2.1 ERRORS AND THEIR ANALYSIS

2.1.1 Sources of Errors

Following are the broad sources of errors in numerical analysis:

(1) Input errors. The input information is rarely exact since it comes
from the experiments and any experiment can give results of only
limited accuracy. Moreover, the quantity used can be represented
in a computer for only a limited number of digits.

(2) Algorithmic errors. If direct algorithms based on a finite sequence
of operations are used, errors due to limited steps don’t amplify the
existing errors, but if infinite algorithms are used, exact results
are expected only after an infinite number of steps. As this cannot
be done in practice, the algorithm has to be stopped after a finite
number of steps and the results are not exact.

(3) Computational errors. Even when elementary operations such
as multiplication and division are used, the number of digits
increases greatly so that the results cannot be held fully in a register
available in a given computer. In such cases, a certain number of
digits must be discarded. Furthermore, the errors here accumulate
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one after another from operation to operation, changing during the
process and producing new errors.

The following diagram gives a schematic sequence for solving a problem
using a digital computer pointing out the sources of errors.

Errors

Real
problem Model Algorithm

Program-
ming

Compu-
tation Result

Our effort will be to minimize these errors so as to get the best possible
results.
We begin by explaining the various kinds of errors and approximations
that may occur in a problem and derive some results on error
propagation in numerical calculations.

2.2 ACCURACY OF NUMBERS

(1) Approximate numbers. There are two types of numbers: exact and

approximate. Exact numbers are 2, 4, 9, 
7
2

, 6.45, ...... etc. but  there  are

numbers such that

4
3

 (= 1.333 ......),  2 (= 1.414213 ...)  and π (= 3.141592......) which cannot

be expressed by a finite number of digits. These may be approximated
by numbers 1.3333, 1.4141, and 3.1416, respectively.
Such numbers, which represent the given numbers to a certain degree
of accuracy, are called approximate numbers.

(2) Significant digits. The digits used to express a number are called
significant digits.
The digits 1, 2, 3, 4, 5, 6, 7, 8, 9 are significant digits. ‘0’ is also a
significant digit except when it is used to fix the decimal point or to fill
the places of unknown or discarded digits.
For example, each of the numbers 7845, 3.589, and 0.4758 contains 4
significant figures while the numbers 0.00386, 0.000587, 0.0000296
contain only three significant figures (since zeros only help to fix the
position of the decimal point).



ERRORS    33

Similarly, in the number 0.0003090, the first four ‘0’ s’ are not
significant digits since they serve only to fix the position of the decimal
point and indicate the place values of the other digits. The other two
‘0’ s’ are significant.

To be more clear, the number 3.0686 contains five significant digits.
A. The significant figure in a number in positional notation consists

of
(i) All non-zero digits

(ii) Zero digits which
(a) lie between significant digits;
(b) lie to the right of decimal point and at the same time to the

right of a non-zero digit;
(c) are specifically indicated to be significant.

B. The significant figure in a number written in scientific notation
(e.g., M × 10k) consists of all the digits explicitly in M.

Significant digits are counted from left to right starting with the non-
zero digit on the left.

A list is provided to help students understand how to calculate
significant digits in a given number:

Number Significant digits Number of significant digits

3969 3, 9, 6, 9 04

3060 3, 0, 6 03

3900 3, 9 02

39.69 3, 9, 6, 9 04

0.3969 3, 9, 6, 9 04

39.00 3, 9, 0, 0 04

0.00039 3, 9 02

0.00390 3, 9, 0 03

3.0069 3, 0, 0, 6, 9 05

3.9 × 106 3, 9 02

3.909 × 105 3, 9, 0, 9 04

6 × 10–2 6 01

NOTE



34 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

(3) Rounding-off. There are numbers with many digits, e.g., 
22
7

 =

3.142857143. In practice, it is desirable to limit such numbers to a
manageable number of digits, such as 3.14 or 3.143. This process of
dropping unwanted digits is called rounding-off.
Numbers are rounded-off according to the following rule:
To round-off a number to n significant digits, discard all digits to the
right of the nth digit and if this discarded number is
(i) less than 5 in (n + 1)th place, leave the nth digit unaltered. e.g.,

7.893 to 7.89.
(ii) greater than 5 in (n + 1)th place, increase the nth digit by unity, e.g.,

6.3456 to 6.346.
(iii) exactly 5 in (n + 1)th place, increase the nth digit by unity if it is odd,

otherwise leave it unchanged.
e.g.,    12.675 ~  12.68

12.685 ~  12.68
The number thus rounded-off is said to be correct to n significant figures.
A list is provided for explanatory proposes:

Number Rounded-off to

Three digits Four digits Five digits

00.543241 00.543 00.5432 00.54324

39.5255 39.5 39.52 39.526

69.4155 69.4 69.42 69.416

00.667676 00.668 00.6677 00.66768

2.3 ERRORS

Machine epsilon

We know that a computer has a finite word length, so only a fixed number of
digits is stored and used during computation. Hence, even in storing an exact
decimal number in its converted form in the computer memory, an error is
introduced. This error is machine dependant and is called machine epsilon.

Error = True value – Approximate value
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In any numerical computation, we come across the following types of
errors:

(1) Inherent errors. Errors which are already present in the statement
of a problem before its solution are called inherent errors. Such errors
arise either due to the fact that the given data is approximate or due to
limitations of mathematical tables, calculators, or the digital computer.
Inherent errors can be minimized by taking better data or by using high
precision* computing aids. Accuracy refers to the number of significant
digits in a value, for example, 53.965 is accurate to 5 significant digits.
Precision refers to the number of decimal positions or order of magnitude
of the last digit in the value. For example, in 53.965, precision is 10–3.

Example. Which of the following numbers has the greatest precision?
4.3201, 4.32, 4.320106.

Sol. In 4.3201, precision is 10–4

In 4.32, precision is 10–2

In 4.320106, precision is 10–6.
Hence, the number 4.320106 has the greatest precision.

(2) Rounding errors. Rounding errors arise from the process of rounding-
off numbers during the computation. They are also called procedual
errors or numerical errors. Such errors are unavoidable in most of the
calculations due to limitations of computing aids.
These errors can be reduced, however, by
(i) changing the calculation procedure so as to avoid subtraction of

nearly equal numbers or division by a small number
(ii) retaining at least one more significant digit at each step and

rounding-off at the last step. Rounding-off may be executed in two
ways:
(a) Chopping. In chopping, extra digits are dropped by truncation

of number. Suppose we are using a computer with a fixed word
length of four digits, then a number like 12.92364 will be stored
as 12.92.
We can express the number 12.92364 in the floating print form
as

True x = 12.92364

= 0.1292364 × 102 = (0.1292 + 0.0000364) × 102

= 0.1292 × 102 + 0.364 × 10–4 + 2

= fx . 10E + gx . 10E – d

= Approximate x + Error

*Concept of accuracy and precision are closely related to significant digits.
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∴ Error = gx . 10E – d, 0 ≤ gx ≤ d
Here, gx is the mantissa, d is the length of mantissa and E is
exponent
Since 0 ≤ gx < 1
∴ Absolute error ≤ 10E – d

Case I. If gx < 0.5 then approximate x = fx . 10E

Case II. If gx ≥ .5 then approximate x = fx . 10E + 10E – d

Error = True value – Approximate value
 = fx . 10E + gx . 10E – d – fx .10E – 10E – d

= (gx – 1) . 10E – d

absolute error ≤ 0.5.(10)E – d.
(b) Symmetric round-off. In symmetric round-off, the last

retained significant digit is rounded up by unity if the first
discarded digit is ≥ 5, otherwise the last retained digit is
unchanged.

(3) Truncation errors
Truncation errors are caused by using approximate results or by
replacing an infinite process with a finite one.
If we are using a decimal computer having a fixed word length of 4
digits, rounding-off of 13.658 gives 13.66, whereas truncation gives
13.65.

e.g., If S = a xi i
i =

∞

∑
1

 is replaced by or truncated to S = a xi i

n

1
∑ , then the

error developed is a truncation error.
A truncation error is a type of algorithm error. Also,

if ex = 1 + x + 
x x x2 3 4

2 3 4! ! !
+ +  + ...... ∞ = X (say) is truncated to

1 + x + 
x x2 3

2 3! !
+  = X′ (say), then truncation error = X – X′

Example. Find the truncation error for ex at x = 
1
5

 if

(i) The first three terms are retained in expansion.
(ii) The first four terms are retained in expansion.
Sol. (i) Error = True value – Approximate value

= 1
2 3

1
2

2 3 2

+ + + +
F

HG
I

KJ
− + +
F

HG
I

KJ
x

x x
x

x
! !

......
!

 = + + +x x x3 4 5

3 4 5! ! !
......
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NOTE

Put x = 
1
5

 error = 
.008 .00032

6
0016
24 120

+ +.
 + ......

= .0013333 + .0000666 + .0000026 + ... = .0014025

(ii) Similarly the error for case II may be found.
(4) Absolute error. Absolute error is the numerical difference between

the true value of a quantity and its approximate value.
Thus, if X is the true value of a quantity and X′ is its approximate
value, then | X – X′ | is called the absolute error ea.

ea = | X – X′ | = | Error |

(5) Relative error.
The relative error er is defined by

er = 
|Error |

True value
X – X

X
= ′

where X is true value and X – X′ is error.
(6) Percentage error. Percentage error ep is defined as

ep = 100 er = 100
X – X

X
′

.

1. The relative and percentage errors are independent of units used
while absolute error is expressed in terms of these units.

2. If a number is correct to n decimal places, then the error

= 
1
2

 (10–n).

e.g., if the number 3.1416 is correct to 4 decimal places, then the
error

= 
1
2

 (10–4) = .00005.

3. If the first significant digit of a number is k and the number is

correct to n significant digits, then the relative error < 
1

(k 10 )n 1× − .
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EXAMPLES

Example 1. Suppose 1.414 is used as an approximation to 2 . Find the absolute
and relative errors.

Sol. True value = 2  = 1.41421356

Approximate value = 1.414

Error = True value – Approximate value

= 2  – 1.414 = 1.41421356 – 1.414

= 0.00021356

Absolute error ea = | Error |

= | 0.00021356 | = 0.21356 × 10–3

Relative error er = 
ea

True value
 = 

0 21356 10

2

3. × −

= 0.151 × 10–3.

Example 2. If 0.333 is the approximate value of 
1
3

, find the absolute, relative,

and percentage errors.

Sol. True value (X) = 
1
3

Approximate value (X′) = 0.333

∴ Absolute error ea = | X – X′ |

= − = −1
3

0 333 0 333333 0 333. | . . | = .000333

Relative error er = 
ea

X
 = =.

.
.

000333
333333

000999

Percentage error ep = er × 100 = .000999 × 100 = .099%.

Example 3. An approximate value of π is given by 3.1428571 and its true value
is 3.1415926. Find the absolute and relative errors.
Sol. True value = 3.1415926

Approximate value = 3.1428571
Error = True value – Approximate value

= 3.1415926 – 3.1428571
= – 0.0012645
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Absolute error ea = | Error | = 0.0012645

Relative error er = 
ea

True value
 = 

0.0012645
3.1415926

= 0.000402502.

Example 4. Three approximate values of the number 
1
3

 are given as 0.30, 0.33,

and 0.34. Which of these three is the best approximation?
Sol. The best approximation will be the one which has the least absolute error.

True value = 
1
3

 = 0.33333.

Case I. Approximate value = 0.30
 Absolute error = | True value – Approximate value |

= | 0.33333 – 0.30 |
= 0.03333

Case II. Approximate value = 0.33

 Absolute error = | True value – Approximate value |

= | 0.33333 – 0.33 |

= 0.00333.

Case III. Approximate value = 0.34

 Absolute error = | True value – Approximate value |

= | 0.33333 – 0.34 |

= | – 0.00667 | = 0.00667

Since the absolute error is least in case II, 0.33 is the best approximation.

Example 5. Find the relative error of the number 8.6 if both of its digits are
correct.

Sol. Here,  ea = .05 ∵ ea = ×F
HG

I
KJ

−1
2

10 1

∴ er = 
.05
8.6

 = .0058.

Example 6. Find the relative error if 
2
3

 is approximated to 0.667.

Sol. True value = 
2
3

 = 0.666666

Approximate value = 0.667
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Absolute error  ea = | True value – approximate value |

= | .666666 – .667 | = .000334

Relative error er = 
.000334
.666666

.0005= .

Example 7. Find the percentage error if 625.483 is approximated to three
significant figures.

Sol.  ea = | 625.483 – 625 | = 0.483

 er = 
ea

625.483 625.483
= =.483

.000772

∴  ep = er × 100 = .077%.

Example 8. Round-off the numbers 865250 and 37.46235 to four significant
figures and compute ea, er, ep in each case.

Sol. (i) Number rounded-off to four significant digits = 865200

 X = 865250

X′ = 865200

Error = X – X′ = 865250 – 865200 = 50

Absolute error  ea = | error | = 50

Relative error  er = 
ea

X
=

50
865250

 = 5.77 × 10–5

Percentage error  ep = er × 100 = 5.77 × 10–3

(ii) Number rounded-off to four significant digits = 37.46

 X = 37.46235

X′ = 37.46

Error = X – X′ = 0.00235

Absolute error  ea = | error | = 0.00235

Relative error  er = 
ea

X
0.00235

=
37.46235

= 6.2729 × 10–5

Percentage error  ep = er × 100 = 6.2729 × 10–3.
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Example 9. Round-off the number 75462 to four significant digits and then
calculate the absolute error and percentage error.

Sol. Number rounded-off to four significant digits = 75460

Absolute error  ea = | 75462 – 75460 | = 2

Relative error  er = 
ea

75462
2

75462
=  = .0000265

Percentage error  ep = er × 100 = .00265.

Example 10. Find the absolute, relative, and percentage errors if x is rounded-
off to three decimal digits. Given x = 0.005998.

Sol. Number rounded-off to three decimal digits =.006
Error = .005998 – .006 = – .000002
Absolute error  ea = | error | = .000002

Relative error  er = 
ea

.005998
.000002
.005998

=  = .0033344

Percentage error  ep = er × 100 = .33344.

Example 11. Evaluate the sum S = 3 5 7+ +  to 4 significant digits and
find its absolute and relative errors.

Sol. 3  = 1.732, 5  = 2.236, 7  = 2.646

Hence, S = 6.614

and  ea = .0005 + .0005 + .0005 = .0015.

The total absolute error shows that the sum is correct to 3 significant figures
only.

∴ We take,  S = 6.61

then,  er = 
.0015
6.61

 = 0.0002.

Example 12. It is necessary to obtain the roots of X2 – 2X + log10 2 = 0 to four
decimal places. To what accuracy should log10 2 be given?

Sol. Roots of X2 – 2X + log10 2 = 0 are given by

 X = 
2 4 4 2

2
1 1 210

10
± −

= ± −
log

log

∴ | ΔX | = 
1
2

2

1 2

Δ(log )

log−
 < 0.5 × 10–4

or  Δ(log 2) < 2 × .5 × 10–4 (1 – log 2)1/2 < .83604 × 10–4 ≈ 8.3604 × 10–5.
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ASSIGNMENT 2.1

1. Round-off the following numbers correct to four significant digits:

3.26425, 35.46735, 4985561, 0.70035, 0.00032217, 1.6583, 30.0567, 0.859378, 3.14159.

2. The height of an observation tower was estimated to be 47 m. whereas its actual height
was 45 m. Calculate the percentage of relative error in the measurement.

3. If the number p is correct to three decimal places, what will be the error?

4. If true value = 
10
3

, approximate value = 3.33, find the absolute and relative errors.

5. Round-off the following numbers to two decimal places.

48.21416, 2.3742, 52.275, 2.375, 2.385, 81.255.

6. Calculate the value of 102 101−  correct to four significant digits.

7. If X = 2.536, find the absolute error and relative error when

(i) X is rounded-off

(ii) X is truncated to two decimal digits.

8. If π = 
22
7

 is approximated as 3.14, find the absolute error, relative error, and percentage

of relative error.

9. Given the solution of a problem as X′ = 35.25 with the relative error in the solution
atmost 2%, find, to four decimal digits, the range of values within which the exact value
of the solution must lie.

10. Given that:

a = 10.00 ± 0.05, b = 0.0356 ± 0.0002

c = 15300 ± 100, d = 62000 ± 500

Find the maximum value of the absolute error in

(i) a + b + c + d (ii) a + 5c – d (iii) d3.

11. What do you understand by machine epsilon of a computer? Explain.

12. What do you mean by truncation error? Explain with examples.

2 . 4 A GENERAL ERROR FORMULA

Let y = f (x1, x2) be a function of two variables x1, x2.

Let δx1, δx2 be the errors in x1, x2, then the error δy in y is given by

y + δy = f(x1 + δx1, x2 + δx2)
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Expanding R.H.S. by Taylor’s series, we get

y + δy = f(x1, x2) + 
∂
∂

+ ∂
∂

F

HG
I

KJ
f
x

x
f
x

x
1

1
2

2δ δ

+ terms involving higher powers of δx1 and δx2 (1)

If the errors δx1, δx2 are so small that their squares and higher powers can
be neglected, then (1) gives

δy = 
∂
∂

+ ∂
∂

f
x

x
f
x

x
1

1
2

2δ δ  approximately

Hence,  δy = 
∂
∂

+ ∂
∂

y
x

x
y
x

x
1

1
2

2δ δ

In general, the error δy in the function
  y = f(x1, x2, ......, xn)

corresponding to the errors δxi in xi (i = 1, 2, ......, n) is given by

δy ≈ 
∂
∂

+ ∂
∂

+ + ∂
∂

y
x

x
y
x

x
y

x
x

n
n

1
1

2
2δ δ δ......

and the relative error in y is

  er = 
δ δ δ δy
y

y
x

x
y

y
x

x
y

y
x

x
yn

n=
∂
∂

+
∂

∂
+ +

∂
∂1

1

2

2. ...... . .

2.5 ERRORS IN NUMERICAL COMPUTATIONS

(1) Error in addition of numbers

Let X = x1 + x2 + ...... + xn

∴ X + ΔX = (x1 + Δx1) + (x2 + Δx2) + ...... + (xn + Δxn)

The absolute error is

∴     ΔX = Δx1 + Δx2 + ...... + Δxn

⇒    Δ Δ Δ ΔX
X X X X

= + + +
x x xn1 2 ......

which is the relative error.

The maximum relative error is

 Δ Δ Δ ΔX
X X X X

≤ + + +
x x xn1 2 ...... .
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It is clear that if two numbers are added then the magnitude of absolute
error in the result is the sum of the magnitudes of the absolute errors
in the two numbers.

While adding up several numbers of different absolute accuracies, the
following procedure is adopted:
(i) Isolate the number with the greatest absolute error.

(ii) Round-off all other numbers, retaining in them one digit more than in
the isolated number.

(iii) Add up.
(iv) Round-off the sum by discarding one digit.

(2) Error in subtraction of numbers
Let X = x1 – x2

∴ X + ΔX = (x1 + Δx1) – (x2 + Δx2)

= (x1 – x2) + (Δx1 – Δx2)

∴  ΔX = Δx1 – Δx2 is the absolute error

and  
Δ Δ ΔX
X X X

= −
x x1 2  is the relative error.

The maximum relative error   = 
Δ Δ ΔX
X X X

≤ +
x x1 2

and The maximum absolute error = | ΔX | ≤ | Δx1 | + | Δx2 | .

(3) Error in product of numbers

Let X = x1 x2 ......, xn

We know that if X is a function of x1, x2, ......, xn

then,  ΔX = 
∂
∂

+ ∂
∂

+ + ∂
∂

X X X
x

x
x

x
x

x
n

n
1

1
2

2Δ Δ Δ......

Now,  
Δ Δ Δ ΔX
X X

X
X

X
X

X= ∂
∂

+ ∂
∂

+ + ∂
∂

1 1 1

1
1

2
2x

x
x

x
x

x
n

n......

NOTE
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Now,
1 1

1

2 3

1 2 3 1X
X∂

∂
= =

x
x x x
x x x x x

n

n

. ......
......

1 1

2

1 3

1 2 3 2X
X∂

∂
= =

x
x x x

x x x x x
n

n

......
......

� �

1 1
X

X∂
∂

=
x xn n

∴   
Δ Δ Δ ΔX
X

= + + +x
x

x
x

x
x

n

n

1

1

2

2
...... .

∴ The relative and absolute errors are given by,

Maximum relative error  = Δ Δ Δ ΔX
X

≤ + + +
x

x
x

x
x

x
n

n

1

1

2

2
......

Maximum absolute error = 
Δ ΔX
X

X =
X

X
. ( ...... )x x x xn1 2 3

(4) Error in division of numbers

Let,    X = 
x
x

1

2

∴   
Δ Δ ΔX
X X

X
X

X= ∂
∂

+ ∂
∂

1 1

1
1

2
2x

x
x

x. .

= 
Δ Δ Δ Δx

x
x

x
x

x
x

x

x

x
x

x
x

1

1

2

2

2

1

2

1

2
2

1

1

2

2

1
F

HG
I

KJ

+
F

HG
I

KJ

−F

HG
I

KJ
= −.

∴
Δ Δ ΔX
X

≤ +
x

x
x

x
1

1

2

2
 which is relative error.

  Absolute error  = | ΔX | ≤ 
ΔX
X

 . X.
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(5) Error in evaluating xk

X = xk , where k is an integer or fraction

 ΔX = 
d
dx
X

 Δx = kxk – 1 . Δx

Δ ΔX
X

= k
x

x
.

∴ Δ ΔX
X

≤ k
x

x
.

The relative error in evaluating xk = k . 
Δx
x

.

2 . 6 INVERSE PROBLEMS

Now we have to find errors in x1, x2, ......, xn, where X = f(x1, x2, ....., xn), to have a
desired accuracy.

We have  Δ Δ Δ ΔX
X X X= ∂

∂
+ ∂

∂
+ + ∂

∂x
x

x
x

x
x

n
n

1
1

2
2 ......

According to the principle of equal effects,

∂
∂

= ∂
∂

= = ∂
∂

X X X
x

x
x

x
x

x
n

n
1

1
2

2Δ Δ Δ......

∴ ΔX = n
x

x
∂
∂

X

1
1Δ

∴  Δx1 = 
ΔX

X
n

x
∂
∂
F

HG
I

KJ1

Similarly, Δx2 = 
ΔX

X
n

x
∂
∂ 2

 and so on.

The above article is needed when we are to find errors in both independent
variables involved and error in dependent variable is given.

NOTE
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EXAMPLES

Example 1. If u = 
4x y

z

2 3

4
 and errors in x, y, z be 0.001, compute the relative

maximum error in u when x = y = z = 1.

Sol. δu = 
∂
∂

+ ∂
∂

+ ∂
∂

u
x

x
u
y

y
u
z

zδ δ δ

= 8 12 163

4

2 2

4

2 3

5

x y
z

x
x y
z

y
x y
z

zδ δ δ+ −

Since the errors δx, δy, δz may be (+) ve or (–) ve, we take the absolute
values of terms on R.H.S. giving,

 (δu)max. = 
8 12 163

4

2 2

4

2 3

5
xy
z

x
x y
z

y
x y
z

zδ δ δ+ +

= 8(.001) + 12(.001) + 16(.001) = 0.036

∴ Maximum relative error = 
.036

4
 = .009.

Example 2. Find the relative error in the function

y ax x ...... x1
m

2
m

n
m1 2 n= .

Sol. We have log y = log a + m1 log x1 + m2 log x2 + ...... + mn log xn

∴  1 1

1

1

1 2

2

2y
y
x

m
x y

y
x

m
x

∂
∂
F

HG
I

KJ
= = ∂

∂
= , ...... etc.

∴  er = 
∂
∂

+ ∂
∂

+ + ∂
∂

y
x

x
y

y
x

x
y

y
x

x
yn

n

1

1

2

2. . ...... .
δ δ δ

= + + +m
x
x

m
x

x m
x
xn

n

n
1

1

1

2

2
2

δ
δ

δ
...... .

Since errors δx1, δx2 may be (+) ve or (–) ve we take the absolute values of
terms on R.H.S.

This gives,

(er)max. ≤ m1 
δ δ δx
x

m
x
x

m
x
xn

n

n

1

1
2

2

2
+ + +...... .
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Corollary. If   y = x1 x2 ......, xn

 e
x
x

x
x

x
xr

n

n
≈ + + +

δ δ δ1

1

2

2
......

∴ The relative error of a product of n numbers is approximately equal to
the algebraic sum of their relative errors.

Example 3. Compute the percentage error in the time period T = 2π 
l
g

 for

l = 1 m if the error in the measurement of l is 0.01.

Sol.  T = 2π 
l
g

Taking log

  log T = log 2π + 
1
2

1
2

log logl g−

⇒   
1 1

2T
T =δ δl

l

δ δT
T

0.5%× = × =
×

× =100
2

100
01

2 1
100

l
l

.
.

Example 4. If u = 2 V6 – 5V, find the percentage error in u at V = 1 if error in V
is .05.
Sol.  u = 2V6 – 5V

 δu = 
∂
∂

u
V

Vδ = (12 V5 – 5) δV

 
δ δu
u

× = −
−

F

HG
I

KJ
×100

12 5
2 5

V
V V

V 100
5

6 .

= 
( )
( )

(. )
12 5
2 5

05 100
−

−
× ×  = −

7
3

 × 5 = – 11.667%

The maximum percentage error = 11.667%.

Example 5.  If r = 3h(h6 – 2),  find  the percentage error in r at h = 1, if the
percentage error in h is 5.

Sol. δr = 
∂
∂
r
h

hδ  = (21h6 – 6) δh
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δ δr
r

h
h h

h× = −
−

F

HG
I

KJ
×100

21 6
3 6

100
6

7

 = 
21 6
3 6

100
15

3
5%

−
−

F
HG

I
KJ

×F
HG

I
KJ

=
−

δh
h ( )

.  = – 25%

Percentage error  = 
δr
r

× =100 25%.

Example 6. The discharge Q over a notch for head H is calculated by the formula
Q = kH5/2, where k is a given constant. If the head is 75 cm and an error of 0.15
cm is possible in its measurement, estimate the percentage error in computing
the discharge.
Sol. Q = kH5/2

 log Q = log k + 
5
2

 log H

Differentiating,  
δ δQ
Q

H
H

= 5
2

.

 δQ
Q

.15
75

× = × × = =100
5
2

0
100

1
2

0 5. .

Example 7. The error in the measurement of the area of a circle is not allowed
to exceed 0.1%. How accurately should the diameter be measured?

Sol.  A = π 
d2

4

 log A = log π + 2 log d – log 4

  
δ δA
A

× = ×100
2

100
d

d( )

 
δd
d

× = =100
0.1
2

.05.

Example 8. (i) Prove that the absolute error in the common logarithm of a
number is less than half the relative error of the given number.

(ii) Prove that the error in the antilogarithm is many times the error in the
logarithm.
Sol. (i) N = log10 x = .43429 loge x

Hence, ΔN = 0.43429 
Δ Δx
x

x
x

< F
HG
I
KJ

1
2

.
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(ii) From (i), Δx = 
x ΔN

0.43429
 = 2.3026 x(ΔN).

Example 9. Find the smaller root of the equation x2 – 32x + 1 = 0 correct to four
significant figures.
Sol. The roots of the equation x2 – 32x + 1 = 0 are

32 32 4
2

2− −( )
and

32 32 4
2

2+ −( )

The smaller root is 
32 1020

2
16 255

− = −

I Algorithm. Smaller root = 16 255−  = 16 – 15.97 = 0.03
II Algorithm. Smaller root

= ( ) .
.

.16 255
16 255
16 255

1
16 15 97

1
31.97

0 0313− +
+

=
+

= =

The second algorithm is evidently a better one, as gives the result correct
to 4 figures.

Example 10. If X = x + e, prove that X x
e

2 X
− ≈ .

Sol.  X X X X X
X

− = − − = − −F
HG

I
KJ

x e
e

1
1/2

 = X X
X

− −F
HG

I
KJ

1
2
e

 = X X
X X

– + ≈e e

2 2
.

Example 11. In a ΔABC, a = 6 cm, c = 15 cm, ∠B = 90°. Find the possible error
in the computed value of A if the errors in measurements of a and c are 1 mm
and 2 mm respectively.

Sol. Here,  tan A = 
a
c

∴ A = tan–1 
a
c
F
HG
I
KJ

δA = 
∂
∂

+ ∂
∂

A A
a

a
c

cδ δ

= 
c

a c
a

a
a c

c2 2 2 2+
−

+
δ δ
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or | . .δ δ δA|≤
+

+
+

c
a c

a
a

a c
c2 2 2 2

= 
15
261

. (0.1)
6

261
. (0.2)+  = .0103 radians

∴ δA ≤ .0103 radians.

Example 12. In a ΔABC, a = 30 cm, b = 80 cm, ∠B = 90°, find the maximum

error in the computed value of A if possible errors in a and b are 
1
3

% and
1
4

%,

respectively.

Sol. sin A = 
a
b

⇒ A = sin–1 
a
b
F
HG
I
KJ

|δ δ δA|<
A A∂

∂
+ ∂

∂a
a

b
b (2)

Here,
δa
a

× =100
1
3

∴ δa = 0.1

δb
b

× =100
1
4

∴   δb = 0.2

∴     
∂
∂

=
−

A
a b a

1
2 2

,
∂
∂

=
−

−

A
b

a

b b a2 2

Substituting in (2), we get δA < .00135 + .00100 < .00235.

Example 13. The approximate values of 
1
7

 and 
1

11
 correct to 4 decimal places

are 0.1429 and 0.0909, respectively. Find the possible relative error and absolute
error in the sum of .1429 and .0909.
Sol. Numbers 0.1429 and 0.0909 are correct to four places of decimal. The

maximum error in each case is 
1
2

 × .0001 = 0.00005.

(i) Relative error

 
| | | | |

|
.
.

.
.

Δ Δ ΔX|
|X| |X| X|

1 2< + < +
x x 0 00005

0 2338
0 00005
0 2338

(∵ X = x1 + x2)

ΔX
X

0.0001
0.2338

.00043< = .
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(ii) Absolute error

ΔX = Δx1 + Δx2 = 0.00005 + 0.00005 = 0.0001.

Example 14. The approximate values of 
1
7

 and 
1

15
, correct to four decimal

places, are 0.1429 and 0.0667 respectively. Find the relative error for the sum of
0.1429 and 0.0667.

Sol.
ΔX
X

0.0001
0.2096

0.000477< = .

Example 15. 29  = 5.385 and 11  = 3.317 are correct to four significant figures.
Find the relative error in their sum and difference.

Sol. Numbers 5.385 and 3.317 are correct to four significant figures

∴ The maximum error in each case is 
1
2

 × 10–3 = 0.0005

∴ Δx1 = Δx2 = 0.0005

The relative error in their sum is

 
Δ Δ ΔX
X X X

1≤ +x x2 | ∵ X = x1 + x2 = 8.702

≤ + < × −0 0005
8 702

0 0005
8 702

149 10 4.
.

.
.

1.

The relative error in their difference is

Δ Δ ΔX
X X X

≤ +x x1 2 , where X = x1 – x2 = 2.068

≤ + < × −0 0005
2 068

0 0005
2 068

4 835 10 4.
.

.
.

. .

Example 16. Sum the following numbers: 0.1532, 15.45, 0.000354, 305.1, 8.12,
143.3, 0.0212, 0.643, and 0.1734, where digits are correct.

Sol. 305.1 and 143.3 have the greatest absolute error of .05 in each.

Rounding-off all other numbers to two decimal digits, we have 0.15, 15.45,
0.00, 8.12, 0.02, 0.64, and 0.17.

The sum S is given by
S = 305.1 + 143.3 + 0.15 + 15.45 + 0.00 + 8.12 + 0.02 + 0.64 + 0.17
 = 472.59 = 472.6.
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To determine the absolute error, we note that the first two numbers have
absolute errors of 0.05 and the remaining seven numbers have absolute errors
of 0.005 each.

∴ The absolute error in all 9 numbers

= 2(0.05) + 7(0.005) = 0.1 + 0.035 = 0.135 ≈ 0.14.

In addition to the above absolute error, we have to take into account the
rounding error, which is 0.01. Hence the total absolute error in

S = 0.14 + 0.01 = 0.15
Thus,        S = 472.6 ± 0.15.

Example 17. 5.5  = 2.345 and 6.1  = 2.470 correct to four significant figures.
Find the relative error in taking the difference of these numbers.

Sol. The maximum error in each case = 
1
2

 × 0.001 = 0.0005

∴ The relative error < 
Δ Δx x1 2

X X
+  = = F

HG
I
KJ

=2 2
0 0005
0

0 0081Δx
X .125

.
. .

Example 18. 10  = 3.162 and e ~–  2.718 correct to three decimal places. Find
the percentage error in their difference.

Sol. Relative error = 2 × 
0 0005

3 2 718
0 001
444

.
( . )

.
..162 −

=

∴ Percentage error = × �

0.001
100 0.23

.444
.

Example 19. Find the product of 346.1 and 865.2. State how many figures of
the result are trustworthy, given that the numbers are correct to four significant
figures.

Sol. Δx1 = 0.05, Δx2 = 0.05

 X = 346.1 × 865.2 = 299446 (correct to 6 digits)

Maximum relative error  (er) ≤ 
Δ Δx
x

x
x

1

1

2

2
+

  = 
0 05
346.1

0 05
865 2

. .
.

+

= 0.000144 + 0.000058 = 0.000202

∴  Absolute error = er . X = 0.000202 × 299446 ~–  60
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∴ The true value of the product of the numbers given lies between

299446 – 60 = 299386 and 299446 + 60 = 299506.

The mean of these values is 
299386 299506

2
+

 = 299446

which is 299.4 × 103, correct to four significant digits. There is some uncertainty
about the last digit.

Example 20. Two numbers are given as 2.5 and 48.289, both of which are
correct to the significant figures given. Find their product.

Sol. 2.5 is the number with the greatest absolute error. Rounding-off the other
number to three significant digits, we get 48.3.

Their product is given by,

P = 48.3 × 2.5 = 120.75 = 1.2 × 102

where, we have retained only two significant digits.

Example 21. Find the relative error in calculation of 
7.342
0.241

. Numbers are correct

to three decimal places. Determine the smallest interval in which true result
lies.
Sol.  Δx1 = Δx2 = 0.0005

Relative error ≤ 
0 0005
7

0 0005
0

. .
.342 .241

+

≤ +F
HG

I
KJ

0 0005
1

7
1

.
.342 .241

 = 0.0021

Absolute error = 0.0021 × 
x
x

1

2
0 0021

7
0 0639= × =. .

.342
0.241

Now,  
x
x

1

2
= 7.342

0.241
 = 30.4647

∴ The true value of x1/x2 lies between  30.4647 – 0.0639 = 30.4008 and
30.5286.

Example 22. Find the number of trustworthy figures in (0.491)3, assuming
that the number 0.491 is correct to the last figure.

Sol. Relative error er = k 
Δ x
x

= 3 . 
0.0005
0.491

 = 0.003054989
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Absolute error < er . X
= (0.003054989) . (0.491)3

= 0.000361621
The error affects the fourth decimal place, therefore X is correct to three

decimal places.

Example 23. If R = 
1
2

r
h

h
2

+
F

HG
I

KJ
 and the error in R is at the most 0.4%, find the

percentage error allowable in r and h when r = 5.1 cm and h = 5.8 cm.

Sol. Percentage error in R = 
ΔR
R

× 100  = 0.4

∴   ΔR = 
0
100

.4
R×  = 

0 4
100

1
2

5
5 8 0 0206

2. ( )
. .× +

L

N
M

O

Q
P =.1

5.8

(i) Percentage error in r = 
Δr
r

× 100

= 
1
r

 . ΔR

r
2

R∂
∂

F

H
GG

I

K
JJ

 × 100 ∵ 2
2∂

∂
R
r

r
h

=

=
F
HG
I
KJ

=100 50
2r r

h

h
r

.
Δ ΔR

2
R

=
50 5.8
(5.1)2

× × =0 0206 0 22968%. .

(ii) Percentage error in h = 
Δh
h

× 100

  = 
100 100

2
2

1
2

2

2

h
h

h r
h

×
∂
∂

F
HG

I
KJ

=
− +
L

N
M

O

Q
P

Δ ΔR

2
R

R
.

  = 
100

1

100
5

0 0206
0 773186 12

2

h r
h

.
.

( . )
ΔR

.8
− +
F

HG
I

KJ

= ×
− +

  = 
2.

5.8 0.2268
1.

06
5659%

×
= .
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Example 24. Calculate the value of x – x cos θ correct to three significant figures
if x = 10.2 cm, and θ = 5°. Find permissible errors also in x and θ.

Sol. θ = 5° = 
5
180

11
126

π =  radian

   1 – cos θ = 1 – 1
2 4

2 4

− +
L

N
M

O

Q
P

θ θ
! !

– ......

 = 
θ θ2 4 2 4

2 4
1
2

11
126

1
24

11
126! !

...... ......− + = F
HG

I
KJ

− F
HG

I
KJ

+

= 0.0038107 – 0.0000024
~_  0.0038083

∴    X = x(1 – cos θ)
= 10.2 (0.0038083)
= 0.0388446 ~  0.0388

Further,  Δx = 
ΔX

X
2

0 0005
2 0 0038083

0 0656
∂
∂
F
HG
I
KJ

=
×

x

.

.
~– .

  Δθ = 
ΔX

X
2

0 0005
2

0 0005
2 10 2 0 0871907∂

∂θ
F
HG
I
KJ

= =
× ×

.
sin

.
. .x θ

where   sin θ = θ θ− + = − F
HG

I
KJ

+ =
3 3

3
11

126
1
6

11
126

0 0871907
!

...... ...... .

∴  Δθ = 
0 0005

20 4 0 0871907
0 0002809 0 00028

.
. .

~– . ~– .
×

.

2.7. ERROR IN A SERIES APPROXIMATION

The error committed in a series approximation can be evaluated by using the
remainder after n terms.

Taylor’s series for f(x) at x = a is given by

f(x) = f(a) + (x – a) f ′(a) + 
( )

!
x a− 2

2
 f ″(a) + ...... + ( )

( ) !
( ) ( )( )x a

n
f a x

n
n

n
−

−
+

−
−

1
1

1
R

where Rn(x) =
( )

!
( )( )x a

n
f

n
n− ξ ; a < ξ < x.
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For a convergent series, Rn(x) → 0 as n → ∞. If we approximate f(x) first by
n terms of series, then by maximum error committed, we get Rn(x).

If the accuracy required is specified in advance, it would be possible to find
n, the number of terms such that the finite series yields the required accuracy.

EXAMPLES

Example 1. Find the number of terms of the exponential series such that their
sum gives the value of ex correct to six decimal places at x = 1.

Sol.  ex = 1 + x + 
x x x

n
x

n

n

2 3 1

2 3 1! !
......

( ) !
( )+ + +

−
+

−
R (3)

where  Rn(x) = 
x
n

n

!
 eθ, 0 < θ < x

Maximum absolute error (at θ = x) = 
x
n

e
n

x

!

and Maximum relative error   = 
x
n

n

!

Hence,   (er)max. at x = 1 is = 
1
n !

For a six decimal accuracy at x = 1, we have

1 1
2

10 6

n !
< × − i.e., n ! > 2 × 106

which gives  n = 10.

Hence we need 10 terms of series (3) to ensure that its sum is correct to 6
decimal places.

Example 2. Use the series

log
1 x
1 x

2 x
x
3

x
5

......e

3 5+
−

F
HG

I
KJ

= + + +
F

HG
I

KJ

to compute the value of log (1.2) correct to seven decimal places and find the
number of terms retained.

Sol.  loge 
1
1

2
3 5 2 1

3 5 2 1+ x
x

x
x x x

n

n

−
F
HG

I
KJ

= + + + +
−

F

HG
I

KJ
−

...  + Rn(x)
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If we retain n terms, then

 Rn(x) =
2
2 1

1
1

2 1x
n

n

e

+

+
+
−

F

HG
I

KJ
log

ξ
ξ

; 0 < ξ < x

Maximum absolute error (at ξ = x) = 
2
2 1

1
1

2 1x
n

x
x

n

e

+

+
+
−

F
HG

I
KJ

log

and maximum relative error = 
2

2 1n +
 x2n+1

Let
1
1

+
−

x
x

 = 1.2 ⇒ x = 
1

11

Hence  (er)max. at x = 
1

11
 is 

2
2 1

1
11

2 1

n

n

+
F
HG
I
KJ

+

.

For seven decimal accuracy,

2
2 1

1
11

1
2

10
2 1

7

n

n

+
F
HG
I
KJ

< ×
+

−.

(2n + 1) (11)2n + 1 > 4 × 107

which gives n ≥ 3.

Hence, retaining the first three terms of the given series, we get

loge (1.2) = 2
3 5

3 5

x
x x+ +

F

HG
I

KJ
 at x =F
HG

I
KJ

1
11

 = 0.1823215 .

Example 3. The function f(x) = tan–1x can be expanded as

 tan–1x = x
x
3

x
5

...... ( 1) .
x
2n 1

3 5
n 1

2n 1

− + − + −
−

−
−

 + ......

Find n such that the series determines tan–1(1) correct to eight significant
digits.

Sol. If we retain n terms, then (n + 1)th term = (– 1)n . 
x
n

n2 1

2 1

+

+

For x = 1,  (n + 1)th term = 
( )−

+
1

2 1

n

n
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For the determination of tan–1 (1) correct up to eight significant digit
accuracy,

( )−
+

< × −1
2 1

1
2

10 8
n

n

⇒ 2n + 1 > 2 × 108

such as n = 108 + 1.

Example 4. The function f(x) = cos x can be expanded as

cos x = 1 – 
x
2 !

x
4 !

x
6 !

2 4 6

+ −  + ...

Compute the number of terms required to estimate cos 
π
4
F
HG
I
KJ

 so that the result

is correct to at least two significant digits.

Sol.  cos x = 1 – 
x x x2 4 6

2 4 6! ! !
+ −  + ... + Rn(x)

where  Rn(x) = (– 1)n 
x
n

n2

2 !
 cos ξ; 0 < ξ < x

Maximum absolute error (at ξ = x) = ( )
( ) !

cos− 1
2

2
n

nx
n

x  = 
x
n

n2

2( ) !
 cos x

Maximum relative error = 
x
n

n2

2( ) !

At x = 
π
4

, (er)max. = 
( / )
( ) !
π 4
2

2n

n

For two significant digit accuracy,

( / )
( ) !
π 4
2

1
2

2n

n
≤  × 10–2

i.e.,
( ) !

( / )

2

4 2

n
nπ

 ≥ 200

n = 3 satisfies it.



60 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

ASSIGNMENT 2.2

1. If R = 4xy2z–3 and errors in x, y, z be 0.001, show that the maximum relative error at
x = y = z = 1 is 0.006.

2. If R = 10x3y2z2 and errors in x, y, z are 0.03, 0.01, 0.02 respectively at x = 3, y = 1, z = 2.
Calculate the absolute error and percentage relative error in evaluating R.

3. If R = 4x2y3z–4, find the maximum absolute error and maximum relative error in R when
errors in x = 1, y = 2, z = 3, respectively, are equal to 0.001, 0.002, 0.003.

4. If u = 5 2

3
xy

z
 and errors in x, y, z are 0.001 at x = 1, y = 1, z = 1, calculate the maximum

relative error in evaluating u.

5. Find the number of terms of the exponential series such that their sum yields the value
of ex correct to 8 decimal places at x = 1.

6. Find the product of the numbers 56.54 and 12.4, both of which are correct to the significant
digits given.

7. Find the quotient q = 
x
y

, where x = 4.536 and y = 1.32; both x and y being correct to the

digits given. Find also the relative error in the result.

8. Write a short note on error in a series approximation.

9. Explain the procedure of adding several numbers of different absolute accuracies.

10. Find the smaller root of the equation x2 – 30x + 1 = 0 correct to three decimal places.
State different algorithms. Which algorithm is better and why?

11. Write a short note on Errors in numerical computation.

2.8 MATHEMATICAL PRELIMINARIES

Following are certain mathematical results which would be useful in the sequel.

Theorem 1. If f(x) is continuous in a ≤ x ≤ b and if f(a) and f(b) are of opposite
signs then f(c) = 0 for at least one number c such that a < c < b.

Theorem 2. Rolle’s theorem.

If (i) f(x) in continuous in [a, b] (ii) f ′(x) exists in (a, b)

(iii) f(a) = f(b) = 0.

then ∃ at least one value of x, say c, such that
f ′(c) = 0, a < c < b.
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Theorem 3. Mean value theorem for derivatives.
If (i) f(x) is continuous in [a, b] (ii) f ′(x) exists in (a, b)

then, ∃ at least one value of x, say c, between a and b such that

f ′(c) = 
f b f a

b a
( ) ( )−

−
, a < c < b.

Theorem 4. Taylor’s series for a function of one variable. If f(x) is
continuous and possesses continuous derivatives of order n in an interval that
includes x = a, then in that interval

f(x) = f(a) + (x – a) f ′(a) + 
( )

!
x a− 2

2
 f ″(a) + ...... + 

( )
( ) !

( ) ( )( )x a
n

f a x
n

n
n

−
−

+
−

−
1

1

1
R

where Rn(x) is remainder term, can be expressed in the form

Rn(x) = 
( )

!
( )

x a
n

f c
n

n−
, a < c < x.

Theorem 5. Maclaurin’s expansion.

f(x) = f(0) + x f ′(0) + 
x

f
x
n

f
n

n
2

2
0 0

!
( ) ......

!
( ) ......( )″ + + +

Theorem 6. Taylor’s series for a function of two variables.

f(x1 + Δx1, x2 + Δx2) = f(x1, x2) + 
∂
∂

+ ∂
∂

f
x

x
f
x

x
1

1
2

2Δ Δ

+ 
1
2

2
2

1
2 1

2
2

1 2
1 2

2

2
2 2

2∂
∂

+ ∂
∂ ∂

+ ∂
∂

L

N
M
M

O

Q
P
P

f
x

x
f

x x
x x

f
x

x( ) . ( )Δ Δ Δ Δ  + ......

2.9 FLOATING POINT REPRESENTATION OF NUMBERS

There are two types of arithmetic operations available in a computer.
They are:

(i) Integer arithmetic (ii) Real or floating point arithmetic.
Integer arithmetic deals with integer operands and is used mainly in

counting and as subscripts. Real arithmetic uses numbers with fractional parts
as operands and is used in most computations. Computers are usually designed
such that each location, called word, in memory stores only a finite number of
digits. Consequently, all operands in arithmetic operations have only a finite
number of digits.



62 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

Let us assume a hypothetical computer having memory in which each
location can store 6 digits and having provision to store one or more signs. One
method of representing real numbers in that computer would be to assume a
fixed position for the decimal point and store all numbers after appropriate
shifting if necessary with an assumed decimal point.

5 6 5 2 3 1

assumed
decimal point

position

+

One memory
location or word

sign

A memory location storing number 5652.31

In such a convention, the maximum and minimum possible numbers to be
stored are 9999.99 and 0000.01, respectively, in magnitude. This range is quite
inadequate in practice.

For this, a new convention is adopted that aims to preserve the maximum
number of significant digits in a real number and also increase the range of
values of real numbers stored. This representation is called the normalized
floating point mode of representing and storing real numbers.

In this mode, a real number is expressed as a combination of a mantissa
and an exponent. The mantissa is made less than 1 or ≥ .1 and the exponent is
the power of 10 which multiplies the mantissa.

For example, the number 43.76 × 106 is represented in this notation as
.4376 E 8, where E 8 is used to represent 108. The mantissa is .4376 and the
exponent is 8.

The number is stored in memory location as:

4 3 7 6 0 8

+ +

sign of exponentsign of mantissa

mantissa exponent

implied
decimal point

.

Moreover, the shifting of the mantissa to the left until its most significant
digit is non-zero is called normalization.

For example, the number .006831 may be stored as .6831 E–2 because the
leading zeros serve only to locate the decimal point.
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The range of numbers that may be stored is .9999 × 1099 to .1000 × 10–99 in
magnitude, which is obviously much larger than that used earlier in fixed
decimal point notation.

This increment in range has been obtained by reducing the number of
significant digits in a number by 2.

2.10 ARITHMETIC OPERATIONS WITH NORMALIZED FLOATING

POINT NUMBERS

2.10.1 Addition and Subtraction

If two numbers represented in normalized floating point notation are to be
added, the exponents of the two numbers must be made equal and the Mantissa
shifted appropriately. The operation of subtraction is nothing but the addition
of a negative number. Thus the principles are the same.

EXAMPLES

Example 1. Add the following floating point numbers:
(i) .4546 E 5 and .5433 E 5

(ii) .4546 E 5 and .5433 E 7

(iii) .4546 E 3 and .5433 E 7
(iv) .6434 E 3 and .4845 E 3

(v) .6434 E 99 and .4845 E 99.
Sol. (i) Here the exponents are equal ∴ Mantissas are added

∴ Sum = .9979 E 5

(ii) Here exponents are not equal. The operand with the larger exponent is
kept as it is

   .5433 E 7
+ .0045 E 7 | .4546 E 5 = .0045 E 7

   .5478 E 7

(iii) The addition will be as follows:
    .5433 E 7

+ .0000 E 7 | ∵ .4546 E 3 = .0000 E 7

   .5433 E 7
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(iv) The exponents are equal but when the mantissas are added, the sum is
1.1279 E 3. As the mantissa has 5 digits and is > 1, it is shifted right one
place before it is stored.
Hence Sum = .1127 E 4

(v) Here, again the sum of the mantissas exceeds 1. The mantissa is shifted
right and the exponent increased by 1, resulting in a value of 100 for the
exponent. The exponent part cannot store more than two digits. This
condition is called an overflow condition and the arithmetic unit will
intimate an error condition.

Example 2. Subtract the following floating point numbers:
(i) .9432 E – 4 from .5452 E – 3 (ii) .5424 E 3 from .5452 E 3

(iii) .5424E – 99 from .5452 E – 99.
Sol. (i) .5452 E – 3

– .0943 E – 3

.4509 E – 3

(ii) .5452 E 3
– .5424 E 3

.0028 E 3

In a normalized floating point, the mantissa is ≥ .1
Hence, the result is .28 E 1

(iii) .5452 E – 99
– .5424 E – 99

.0028 E – 99

For normalization, the mantissa is shifted left and the exponent is reduced
by 1. The exponent would thus become – 100 with the first left shift, which can
not be accommodated in the exponent part of the number.

This condition is called an underflow condition and the arithmetic unit
will signal an error condition.

If the result of an arithmetic operation gives a number smaller than
.1000 E – 99 then it is called an underflow condition. Similarly, any result
greater than .9999 E 99 leads to an overflow condition.

NOTE
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Example 3. In normalized floating point mode, carry out the following
mathematical operations:

(i) (.4546 E 3) + (.5454 E 8) (ii) (.9432 E – 4) – (.6353 E – 5).

Sol. (i) .5454 E 8
+ .0000 E 8 | ∵ .4546 E 3 = .0000 E 8

.5454 E 8

(ii) .9432 E – 4
– .0635 E – 4 | ∵ .6353 E – 5 = .0635 E – 4

.8797 E – 4

2.10.2 Multiplication

Two numbers are multiplied in the normalized floating point mode by
multiplying the mantissas and adding the exponents. After the multiplication
of the mantissas, the resulting mantissa is normalized as in an addition or
subtraction operation, and the exponent is appropriately adjusted.

EXAMPLES

Example 1. Multiply the following floating point numbers:

(i) .5543 E 12 and .4111 E – 15 (ii) .1111 E 10 and .1234 E 15
(iii) .1111 E 51 and .4444 E 50 (iv) .1234 E – 49 and .1111 E – 54.

Sol. (i) .5543 E 12 × .4111 E – 15 = .2278 E – 3
(ii) .1111 E 10 × .1234 E 15 = .1370 E 24

(iii) .1111 E 51 × .4444 E 50 = .4937 E 100
The result overflows.

(iv) .1234 E – 49 × .1111 E – 54 = .1370 E – 104
The result underflows.

Example 2. Apply the procedure for the following multiplications:

(.5334 × 109) * (.1132 × 10–25)

(.1111 × 1074) * (.2000 × 1080)

Indicate if the result is overflow or underflow.

Sol. (i) .5334 E 9 × .1132 E – 25 = .6038 E – 17

(ii) .1111 E 74 × .2000 E 80 = .2222 E 153

Hence the above result overflows.
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2.10.3 Division

In division, the mantissa of the numerator is divided by that of the denominator.
The denominator exponent is subtracted from the numerator exponent. The
quotient mantissa is normalized to make the most significant digit non-zero
and the exponent is appropriately adjusted. The mantissa of the result is
chopped down to 4 digits.

EXAMPLES

Example 1. Perform the following operations:

(i) .9998 E 1 ÷ .1000 E – 99 (ii) .9998 E – 5 ÷ .1000 E 98

(iii) .1000 E 5 ÷ .9999 E 3.

Sol. (i) .9998 E 1 ÷ .1000 E – 99 = .9998 E 101

Hence the result overflows.

(ii) .9998 E – 5 ÷ .1000 E 98 = .9998 E – 104

Hence the result underflows.

(iii) .1000 E 5 ÷ .9999 E 3 = .1000 E 2.

Example 2. Evaluate, applying normalized floating point arithmetic, for the
following:

1 – cos x at x = .1396 radian

Assume  cos (.1396) = .9903

Compare it when evaluated 2 sin2 
x
2

Assume  sin .0698 = .6974 E – 1.

Sol. 1 – cos (.1396) = .1000 E 1 – .9903 E 0

= .1000 E 1 – .0990 E 1 = .1000 E – 1

Now, sin 
x
2

 = sin (.0698) = .6974 E – 1

 2 sin2 x
2

 = (.2000 E 1) × (.6974 E – 1) × (.6974 E – 1)

= .9727 E – 2

The value obtained by the alternate formula is closer to the true value
.9728 E – 2.



ERRORS     67

Example 3. For x = .4845 and y = .4800, calculate the value of 
x y

x y

2 2−
+

using normalized floating point arithmetic. Compare with the value of (x – y).
Indicate the error in the former.

Sol. x + y = .4845 E 0 + .4800 E 0 = .9645 E 0

 x2 = (.4845 E 0) × (.4845 E 0) = .2347 E 0

 y2 = (.4800 E 0) × (.4800 E 0) = .2304 E 0

x2 – y2 = .2347 E 0 – .2304 E 0 = .0043 E 0

Now,  
x y
x y

2 2−
+

 = .0043 E 0 ÷ .9645 E 0 = .4458 E – 2

Also, x – y = .4845 E 0 – .4800 E 0 = .0045 E 0 = .4500 E – 2

Relative error  = 
.4500 0.4458

.4500
.93%

− = .

Example 4. For e = 2.7183, calculate the value of ex when x = .5250 E 1. The
expression for ex is

e 1 x
x
2 !

x
3 !

x
2 3

= + + + .

Sol. e.5250 E 1 = e5 * e.25

e5 = (.2718 E 1) × (.2718 E 1) × (.2718 E 1) × (.2718 E 1)
× (.2718 E 1)

= .1484 E 3

Also,  e.25 = 1 + + +(.25)
(.25)

2 !
(.25)

3 !

2 3

= 1.25 + .03125 + .002604 = .1284 E 1

Now, e.5250 E 1 = (.1484 E 3) × (.1284 E 1) = .1905 E 3.

Example 5. Find the solution of the following equation using floating point
arithmetic with a 4 digit mantissa

x2 – 1000x + 25 = 0

Give comments or the result so obtained.

Sol. x2 – 1000 x + 25 = 0

⇒  x = 
1000 10 10

2

6 2± −
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Now,  106 = .1000 E 7 and 102 = .1000 E 3

∴  106 – 102 = .1000 E 7

∴ 10 106 2−  = .1000 E 4

∴ Roots are 
.1000 E 4 + .1000 E 4

2
F
HG

I
KJ

and
.1000 E 4 – .1000 E 4

2
F
HG

I
KJ

which are .1000 E 4 and .0000 E 4 respectively. One of the roots becomes zero
due to the limited precision allowed in calculation. Let us reformulate the
problem and remember that in a quadratic equation ax2 + bx + c = 0, the product

of roots is given by 
c
a

, so the smaller root may be obtained by dividing (c/a) by

the larger root.
So,  First root = .1000 E 4

and Second root = 25 2500
1

.1000 E 4
E 2

.1000 E 4
.2500 E= = −.

Such a situation may be recognized in an algorithm by checking to see if
b2 >> | 4 ac |.

Example 6. Find the smaller root of the equation x2 – 400 x + 1 = 0 using four
digit arithmetic.

Sol. Here b2 > > | 4ac | | See Example 5

The roots of the equation ax2 – bx + c = 0 are

b b ac
a

+ −2 4
2

 and b b ac
a

− −2 4
2

The product of the roots is 
c
a

.

∴ The smaller root is 
c a

b b ac
a

i e
c

b b ac

/
. .,

+ −F

H
GG

I

K
JJ

+ −2 24
2

2

4

Here a = 1 = .1000 E 1, b = 400 = .4000 E 3, c = 1 = .1000 E 1

b2 – 4ac = .1600 E 6 – .4000 E 1 = .1600 E 6 (to four digit accuracy)

∴  b ac2 4−  = .4000 E 3

∴ Smaller root = 
2 (.1000 E 1)

.4000 E 3 .4000 E 3
.2000 E 1
.8000 E 3

×
+

=  = .25 E – 2 = .0025.
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Example 7. Compute the middle value of numbers a  = 4.568 and b = 6.762

using four digit arithmetic and compare the result by taking c = a + 
b a

2
−F

HG
I
KJ .

Sol. a = .4568 E 1, b = .6762 E 1

Let c be the middle value of numbers, then

c
a b= + = = =

2
5665

.4568 E 1+ .6762 E 1
.2000 E 1

.1133 E 2

.2000 E 1
E 1.

However, if we use the formula

c = a + 
b a−F
HG

I
KJ2

 = .4568 E 1 + 
.6762 E 1 E

E 1
−F

HG
I
KJ

.
.

4568 1
2000

= .4568 E 1 + .1097 E 1 = .5665 E 1

The results are the same.

Example 8. Obtain  a  second  degree  polynomial  approximation  to
f(x) = (1 + x)1/2, x ∈ [0, 0.1] using Taylor’s series expansion about x = 0. Use the
expansion to approximate f(0.05) and bound the truncation error.

Sol.  f(x) = (1 + x)1/2,  f(0) = 1

  f ′(x) = 
1
2

 (1 + x)–1/2,   f ′(0) = 
1
2

 f ″(x) = – 
1
4

 (1 + x)–3/2,  f ″(0) = – 
1
4

 f ″′(x) = 
3
8

 (1 + x)–5/2

Taylor’s series expansion with remainder term may be written as

(1 + x)1/2 = 1 +
x x x
2 8

1
16 1

2 3

1/2 5− +
+[( ) ]ξ

; 0 < ξ < 0.1

The truncation term is given by

  T = (1 + x)1/2 – 1
2 8

1
16 1

2 3

1/2 5+ −
F

HG
I

KJ
=

+
x x x

.
[( ) ]ξ

We have f(0.05) = 1 + 
0 05

2
0 05

8

2. ( . )−  = 0.10246875 × 101
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Bound of the truncation error, for x ∈ [0, 0.1] is

 | T | ≤ 
( .1)

16 [(1 + )
.1
161/2

0 03

5

3

ξ ]
( )≤  = 0.625 × 10–4.

Example 9. In a case of normalized floating point representation, associative
and distributive laws are not always valid. Give examples to prove this statement.

Or
If the normalization on the floating point is carried out at each stage, prove

the following:
(i) a(b – c) ≠ ab – ac

where a = .5555 E 1, b = .4545 E 1, c = .4535 E 1
(ii) (a + b) – c ≠ (a – c) + b

where a = .5665 E 1, b = .5556 E – 1, c = .5644 E 1.
Sol. This is a consequence of the normalized floating point representation that
the associative and the distributive laws of arithmetic are not always valid.

The following examples are chosen intentionally to illustrate the inaccura-
cies that may build up due to shifting and truncation of numbers in arithmetic
operations.

Non-distributivity of arithmetic

Let a = .5555 E 1

b = .4545 E 1

 c = .4535 E 1

(b – c) = .0010 E 1 = .1000 E – 1

a(b – c) = (.5555 E 1) × (.1000 E – 1)

= (.0555 E 0) = .5550 E – 1

Also, ab = (.5555 E 1) × (.4545 E 1) = .2524 E 2

ac = (.5555 E 1) × (.4535 E 1) = .2519 E 2

∴  ab – ac = .0005 E 2 = .5000 E – 1

Thus, a(b – c) ≠ ab – ac

which shows the non-distributivity of arithmetic.

Non-associativity of arithmetic

Let a = .5665 E 1

b = .5556 E – 1

c = .5644 E 1
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∴ (a + b) = .5665 E 1 + .5556 E – 1

= .5665 E 1 + .0055 E 1 = .5720 E 1

(a + b) – c = .5720 E 1 – .5644 E 1 = .0076 E 1 = .7600 E – 1

a – c = .5665 E 1 – .5644 E 1 = .0021 E 1 = .2100 E – 1

(a – c) + b = .2100 E – 1 + .5556 E – 1 = .7656 E – 1

Thus,  (a + b) – c ≠ (a – c) + b

which proves the non-associativity of arithmetic.

2.11 MACHINE COMPUTATION

To obtain meaningful results for a given problem using computers, there are
five distinct phases:

(i) Choice of a method (ii) Designing the algorithm
(iii) Flow charting (iv) Programming
(v) Computer execution

A method is defined as a mathematical formula for finding the solution of
a given problem. There may be more than one method available to solve the
same problem. We should choose the method which suits the given problem
best. The inherent assumptions and limitations of the method must be studied
carefully.

Once the method has been decided, we must describe a complete and
unambiguous set of computational steps to be followed in a particular sequence
to obtain the solution. This description is called an algorithm. It may be
emphasized that the computer is concerned with the algorithm and not with
the method. The algorithm tells the computer where to start, what information
to use, what operations to be carried out and in which order, what information
to be printed, and when to stop.

An algorithm has five important features:
(1) finiteness: an algorithm must terminate after a finite number of steps.
(2) definiteness: each step of an algorithm must be clearly defined or the

action to be taken must be unambiguously specified.
(3) inputs: an algorithm must specify the quantities which must be read

before the algorithm can begin.
(4) outputs: an algorithm must specify the quantities which are to be

outputted and their proper place.
(5) effectiveness: an algorithm must be effective, which means that all

operations are executable.
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A flow-chart is a graphical representation of a specific sequence of steps
(algorithm) to be followed by the computer to produce the solution of a given
problem. It makes use of the flow chart symbols to represent the basic operations
to be carried out. The various symbols are connected by arrows to indicate the
flow of information and processing. While drawing a flow chart, any logical
error in the formulation of the problem or application of the algorithm can be
easily seen and corrected.

2.12 COMPUTER SOFTWARE

The purpose of computer software is to provide a useful computational tool for
users. The writing of computer software requires a good understanding of
numerical analysis and art of programming. Good computer software must
satisfy certain criteria of self-starting, accuracy and reliability, minimum
number of levels, good documentation, ease of use, and portability.

Computer software should be self-starting as far as possible. A numerical
method very often involves parameters whose values are determined by the
properties of the problem to be solved. For example, in finding the roots of an
equation, one or more initial approximations to the root have to be given. The
program will be more acceptable if it can be made automatic in the sense that
the program will select the initial approximations itself rather than requiring
the user to specify them.

Accuracy and reliability are measures of the performance of an algorithm
on all similar problems. Once an error criterion is fixed, it should produce
solutions of all similar problems to that accuracy. The program should be able
to prevent and handle most of the exceptional conditions like division by zero,
infinite loops, etc.

The structure of the program should avoid many levels. For example, many
programs used to find roots of an equation have three levels:

Program calls zero-finder (parameters, function)
Zero-finder calls function
Function subprogram
The more number of levels in the program, the more time is wasted in

interlinking and transfer of parameters.
Documentation that is accurate and easy to use is a very important criteria.

The program must have some comment lines or comment paragraphs at various
places giving explanation and clarification of the method used and steps
involved. Accurate documentation should clarify what kind of problems can be
solved using this software, what parameters are to be supplied, what accuracy
can be achieved, which method has been used, and other relevant details.
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The criterion of portability means that the software should be made
independent of the computer being used as far as possible. Since most machines
have different hardware configuration, complete independence from the
machine may not be possible. However, the aim of writing the computer software
should be that the same program should be able to run on any machine with
minimum modifications. Machine-dependent constants, for example machine
error EPS, must be avoided or automatically generated. A standard dialect of
the programming language should be used rather than a local dialect.

Most of the numerical methods are available in the form of software, which
is a package of thoroughly tested, portable, and self documented subprograms.
The general purpose packages contain a number of subroutines for solving a
variety of mathematical problems that commonly arise in scientific and
engineering computation. The special purpose packages deal with specified
problem areas. Many computer installations require one or both types of
packages and make it available, on-line, to their users. Most of the software
packages are available for PCs also.

General Purpose Packages
IMSL: (International Mathematical and Statistical Library). The IMSL is
a general purpose library of over 900 subroutines written in ANSI Fortran
for solving a large number of mathematical and statistical problems.
NAG: (Numerical Algorithms Group). This package covers the basic areas
of mathematical and statistical computation. The package is available in
any one of the three languages ANSI Fortran, Algol 60 or Algol 68.

Special Purpose Packages
All the following packages are distributed by IMSL.
BLAS: (Basic Linear Algebra Subroutines). BLAS contains 38 ANSI Fortran
subroutines for the methods in numerical linear algebra. The objective is
fast computer execution.
B-Splines: A package of subroutines for performing calculations with piece-
wise polynomials.
DEPACK: (Differential Equations Package). DEPACK contains Fortran
subprograms for the integration of initial value problems in ordinary
differential equations. This package includes Runge-Kutta methods,
variable step, variable order Adams type methods, and backward
differentiation methods for stiff problems.
EISPACK: (Matrix Eigensystem Routines). EISPACK contains 51 Fortran
subprograms for computing the eigenvalues and/or eigenvectors of a matrix.
ELLPACK: (Elliptic Partial Differential Equations Solver). ELLPACK
contains over 30 numerical method modules for solving elliptic partial
differential equations in two dimensions with general domains and in three
dimensions with rectangular domains. The 5-point discretization is used
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and the resulting system of equations is solved by Gauss elimination for
band matrices and by SOR iterations.
FISHPACK: (Routines for the Helmholtz Problems in Two or Three
Dimensions). FISHPACK contains a set of Fortran programs for solving
Helmholtz problems in two or three dimensions. There are separate
programs for rectangular, polar, spherical and cylindrical coordinates.
FUNPACK: (Special Function Subroutines). The FUNPACK package
contains Fortran and assembly language subroutines for evaluating
important special functions like exponential integral, elliptic integrals of
first and second kind, Bessel functions, Dawson integrals, etc.
ITPACK: (Iterative Methods). ITPACK contains Fortran subprograms for
iterative methods for solving linear system of equations. The package is
oriented towards the sparse matrices that arise in solving partial differential
equations and in other applications.
LINPACK: (Linear Algebra Package). LINPACK contains Fortran
subprograms for direct methods for general, symmetric, symmetric positive
definite, triangular, and tridiagonal matrices. The package also includes
programs for least-squares problems, along with the QR and singular value
decompositions of rectangular matrices.
MINPACK: MINPACK is a package of subroutines for solving systems of
nonlinear equations and nonlinear least-squares problems. The package
also includes programs for minimization and optimization problems.
QUADPACK: QUADPACK contains subroutines for evaluating a definite
integral.
Software packages for PCs are also available for most of the areas mentioned
above.

ASSIGNMENT 2.3

1. Represent 44.85 × 106 in normalized floating point mode.

2. Subtract the following two floating point numbers as

(i) .36143448 E 7 – .36132346 E 7

(ii) (.9682 E – 7) – (.3862 E – 9).

3. Explain underflow and overflow conditions of error in floating point’s addition and
subtraction.

4. Find the solution of the following equation using floating point arithmetic with 4-digit
mantissa.

x2 – 7x + 4 = 0

Give comments on the results so obtained.
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5. Discuss the consequences of normalized floating point representation of numbers.

6. Calculate the value of x2 + 2x – 2 and (2x – 2) + x2

where x = .7320 E 0

using normalized floating point arithmetic and prove that they are not the same. Compare
with value of (x2 – 2) + 2x.

7. Find the value of (1 + x)2 and (x2 + 2x) + 1
when x = .5999 E – 2.

8. Find the value of

sin x ~
! !

− − +x
x x3 5

3 5

with an absolute error smaller than .005 for x = .2000 E 0 using normalized floating
point arithmetic with a 4 digit mantissa.

9. Write a short note on machine computation.
10. Prove the following consequence of the normalized floating point representation of

numbers by taking x = .6667

6x ≠ x + x + x + x + x + x.

11. Define normalized floating point representation of numbers and round off errors in
representation. Find the sum of 0.123 × 103 and 0.456 × 102 and write the result in three
digit mantissa form.

12. (i) Calculate the value of the polynomial

p3(x) = 2.75x3 – 2.95x2 + 3.16x – 4.67

for x = 1.07 using both chopping and rounding-off to three digits, proceeding through
the polynomial term by term from left to right.

(ii) Explain how floating point numbers are stored in computers. What factors affect
their accuracy and range?





Consider the equation of the form f(x) = 0.
If f(x) is a quadratic, cubic, or biquadratic expression, then algebraic

formulae are available for expressing the roots. But when f(x) is a
polynomial of higher degree or an expression involving transcendental
functions, for example, 1 + cos x – 5x, x tan x – cosh x, e–x – sin x, etc.,
algebraic methods are not available.

In this unit, we shall describe some numerical methods for the solution of
f(x) = 0, where f(x) is algebraic or transcendental or both.

3.1 BISECTION (OR BOLZANO) METHOD

This method is based on the repeated application of intermediate value property.
Let the function f(x) be continuous between a and b. For definiteness, let

f(a) be (–)ve and f(b) be (+)ve. Then the first approximation to the root is

x1 = 
1
2

 (a + b).

If f(x1) = 0, then x1 is a root of f(x) = 0, otherwise, the root lies between a and
x1 or x1 and b according to f(x1) is (+)ve or (–)ve. Then we bisect the interval as
before and continue the process until the root is found to the desired accuracy.

Chapt e r3

ALGEBRAIC AND

TRANSCENDENTAL

EQUATIONS

77
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In the adjoining figure, f(x1) is (+)ve so that the root lies between a  and  x1.

The second  approximation  to  the  root  is x2  = 
1
2

 (a + x1). If f (x2) is (–)ve the

root lies between x1 and x2. The third approximation to the root is x3 = 
1
2

 (x1 +

x2), and so on.

Y

XO

a x2

f(a) x3 x1 b

f(b)

y
=

f(x
)

Once the method of calculation has been decided, we must describe clearly
the computational steps to be followed in a particular sequence. These steps
constitute the algorithm of method.

3.2 ALGORITHM

Step 01. Start of the program

Step 02. Input the variables x1, x2 for the task

Step 03. Check f(x1) *f(x2) < 0

Step 04. If yes, proceed

Step 05. If no exit and print error message

Step 06. Repeat 7-11 if conditions are not satisfied

Step 07. x0 = (x1 + x2)/2

Step 08. If f(x0) *f(x1) < 0

Step 09. x2 = x0.

Step 10. ELSE

Step 11. x1 = x0

Step 12. Condition:

Step 13. | (x1-x2)/x1 | < maximum possible error or f(x0) = 0

Step 14. Print output

Step 15. End of program.
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3.3 FLOW-CHART

START

Define F(x)

Get the value of
interval (a, b),

error, iter

Initialize i = 1

Call subroutine
bisect mid

Y

is
F(mid)

< 0
B = X

Yes
A = X

B

Subroutine
bisect

X = (A + B)/2

Iter + +

Print ITER, Xl

RETURN

X

Print iter, Xl

STOP

is
Abs (XI-X)

< Aerr

Yes

Yes

No

No

X

Yi < iter

Print solution does
not converge
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3.4 PROGRAM WRITING

Based on the flow-chart, we write the instructions in a code which the computer
can understand. A series of such instructions is called a program.

If there are any errors in the program, they will be pointed out by the
computer during compilation. After correcting compilation errors, the program
is executed with input data to check for logical errors which may be due to
misinterpretation of the algorithm. The process of finding the errors and
correcting them is called debugging.

3.5 ORDER OF CONVERGENCE OF ITERATIVE METHODS

Convergence of an iterative method is judged by the order at which the error
between successive approximations to the root decreases.

An iterative method is said to be kth order convergent if k is the largest
positive real number, such that

lim
i

i

i
k

e

e→∞

+ 1  ≤ A

where A is a non-zero finite number called asymptotic error constant and it
depends on derivative of f(x) at an approximate root x.
ei and ei+1 are the errors in successive approximations. kth order convergence
gives us the idea that in each iteration, the number of significant digits in each
approximation increases k times.

The error in any step is proportional to the kth power of the error in the
previous step.

3.6 ORDER OF CONVERGENCE OF BISECTION METHOD

In the Bisection method, the original interval is divided into half interval in
each iteration. If we take mid-points of successive intervals to be the
approximations of the root, one half of the current interval is the upper bound
to the error.

In Bisection method,

ei + 1 = 0.5 ei or
e

e
i

i

+ 1  = 0.5 (1)

where ei and ei + 1 are the errors in the ith and (i + 1)th iterations, respectively.
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Comparing (1) with

lim
i

i

i
k

e

e→∞

+ 1  ≤ A

we get k = 1 and A = 0.5

Thus the Bisection method is I order convergent, or linearly convergent.

3.7 CONVERGENCE OF A SEQUENCE

A sequence < xn > of successive approximations of a root x = α of the equation
f(x) = 0 is said to converge to x = α with order p ≥ 1 iff

| xn + 1 – α | ≤ c | xn – α |p, n ≥ 0

c being some constant greater than zero.
Particularly, if | xn + 1 – α | = c | xn – α |, n ≥ 0, 0 < c < 1 then convergence

is called geometric. Also, If p = 1 and 0 < c < 1, then convergence is called
linear or of first order. Constant c is called the rate of linear convergence.
Convergence is rapid or slow depending on whether c is near 0 or 1.

Using induction, the condition for linear convergence can be simplified to
the form

 | xn – α | ≤ cn | x0 – α |, n ≥ 0, 0 < c < 1.

3.8 PROVE THAT BISECTION METHOD ALWAYS CONVERGES

Let [pn, qn] be the interval at nth step of bisection, having a root of the equation
f(x) = 0. Let xn be the nth approximation for the root. Then, initially, p1 = a and
q1 = b.

⇒   x1 = first approximation = 
p q1 1

2
+F

HG
I
KJ

⇒  p1 < x1 < q1

Now either the root lies in [a, x1] or in [x1, b].

∴ either  [p2, q2] = [p1, x1] or [p2, q2] = [x1, q1]

⇒ either p2 = p1, q2 = x1 or p2 = x1, q2 = q1

⇒   p1 ≤ p2, q2 ≤ q1

Also,  x2 = 
p q2 2

2
+

 so that p2 < x2 < q2
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Continuing this way, we obtain that at nth step,

  xn = 
p qn n+

2
, pn < xn < qn

and p1 ≤ p2 ≤ ...... ≤ pn and q1 ≥ q2 ≥ ...... ≥ qn

∴ < p1,  p2, ......,  pn, ...... >  is a bounded, non-decreasing  sequence  bounded
by  b  and < q1, q2, ......, qn,  ...... > is a bounded, non-increasing sequence of
numbers bounded by a.

Hence, both these sequences converge.

Let, lim
n → ∞

 pn = p and lim
n → ∞

 qn = q.

Now, since the length of the interval is decreasing at every step, we get
that

lim
n → ∞

 (qn – pn) = 0 ⇒ q = p

Also, pn < xn < qn

⇒  lim  pn ≤ lim xn ≤ lim qn

⇒ p ≤ lim xn ≤  q

⇒  lim xn = p = q (2)

Further, since a root lies in [pn, qn], we shall have

f(pn) . f(qn) < 0

⇒ 0 ≥
→ ∞

lim
n

n nf p f q[ ( ) . ( )]

⇒   0 ≥ f(p) . f(q)

⇒   0 ≥ [f(p)]2

But, [f(p)]2 ≥ 0 being a square

∴ we get      f(p) = 0

∴ p is a root of   f(x) = 0 (3)

From (2) and (3), we see that <xn> converges necessarily to a root of equation
f(x) = 0

The method is not rapidly converging, but it is useful in the sense that it
converges surely.
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EXAMPLES

Example 1. Find the real root of the equation x log10 x = 1.2 by Bisection method
correct to four decimal places. Also write its program in C-language.

Sol.  f(x) = x log10 x – 1.2

Since f(2.74) = – .000563 i.e., (–)ve

and f(2.75) = .0081649 i.e., (+)ve

Hence, the root lies between 2.74 and 2.75.

∴ First approximation to the root is

x1 = 
2 74 2 75

2
. .+

 = 2.745

Now f(x1) = f(2.745) = .003798 i.e., (+)ve

Hence, the root lies between 2.74 and 2.745.

∴ Second approximation to the root is

x2 = 
2 74 2 745

2
. .+

 = 2.7425

Now f(x2) = f(2.7425) = .001617 i.e., (+)ve

Hence, the root lies between 2.74 and 2.7425.

∴ Third approximation to the root is

x3 = 
2 74 2 7425

2
. .+

 = 2.74125

Now f(x3) = f(2.74125) = .0005267 i.e., (+)ve

Hence, the root lies between 2.74 and 2.74125.

∴ Fourth approximation to the root is

x4 = 
2 74 2 74125

2
. .+

 = 2.740625

Now f(x4) = f(2.740625) = – .00001839 i.e., (–)ve.

Hence, the root lies between 2.740625 and 2.74125.

∴ Fifth approximation to the root is

x5 = 
2 740625 2 74125

2
. .+

 = 2.7409375
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Now f(x5) = f(2.7409375) = .000254 i.e., (+)ve

Hence, the root lies between 2.740625 and 2.7409375.

∴ Sixth approximation to the root is

x6 = 
2 740625 2 7409375

2
. .+

 = 2.74078125

Now f(x6) = f(2.74078125) = .0001178 i.e., (+)ve

Hence, the root lies between 2.740625 and 2.74078125.

∴ Seventh approximation to the root is

x7 = 
2 740625 2 74078125

2
. .+

 = 2.740703125

Now f(x7) = f(2.740703125) = .00004973 i.e., (+)ve

Hence, the root lies between 2.740625 and 2.740703125

∴ Eighth approximation to the root is

x8 = 
2 740625 2 740703125

2
. .+

 = 2.740664063

Now f(x8) = f(2.740664063) = .00001567 i.e., (+)ve

Hence, the root lies between 2.740625 and 2.740664063.

∴ Nineth approximation to the root is

x9 = 
2 740625 2 740664063

2
. .+

 = 2.740644532

Since x8 and x9 are the same up to four decimal places, the approximate
real root is 2.7406. C-program for above problem is given below:

3.9 PROGRAM TO IMPLEMENT BISECTION METHOD

//...Included Header Files

#include<stdio.h>

#include<math.h>

#include<conio.h>

#include<process.h>

#include<string.h>

#define EPS 0.00000005

#define F(x) (x)*log10(x)–1.2
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//...Function Prototype Declaration

void Bisect();

//...Global Variable Declaration field

int count=1,n;

float root=1;

//... Main Function Implementation

void main()

{

clrscr();

printf("\n Solution by BISECTION method \n");

printf("\n Equation is ");

printf("\n\t\t\t x*log(x) – 1.2 = 0\n\n");

printf("Enter the number of iterations:");

scanf("%d",&n);

Bisect();

getch();

}

//... Function Declaration

void Bisect()

{

float x0,x1,x2;

float f0,f1,f2;

int i=0;

/*Finding an Approximate ROOT of Given Equation, Having
+ve Value*/

for(x2=1;;x2++)

{

f2=F(x2);

if (f2>0)

{

break;

}

}

/*Finding an Approximate ROOT of Given Equation, Having
-ve Value*/
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for(x1=x2-1;;x2--)

{

f1=F(x1);

if(f1<0)

{

break;

}

}

//...Printing Result

printf("\t\t-----------------------------------------");

printf("\n\t\t ITERATIONS\t\t ROOTS\n");

printf("\t\t-----------------------------------------");

for(;count<=n;count++)

{

x0=(x1+x2)/2.0;

f0=F(x0);

if(f0==0)

{

root=x0;

}

if(f0*f1<0)

{

x2=x0;

}

else

{

x1=x0;

f1=f0;

}

printf("\n\t\t ITERATION %d", count);

printf("\t :\t %f",x0);

if(fabs((x1-x2)/x1) < EPS)

{

printf("\n\t\t---------------------------------");

printf("\n\t\t Root = %f",x0);
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printf("\n\t\t Iterations = %d\n", count);

printf("\t\t------------------------------------");

getch();

exit(0);

}

}

printf("\n\t\t----------------------------------------");

printf("\n\t\t\t Root = %7.4f",x0);

printf("\n\t\t\t Iterations = %d\n", count-1);

printf("\t\t------------------------------------------");

getch();

}

OUTPUT

Solution by BISECTION method

Equation is

x* log(x) - 1.2=0

Enter the number of iterations: 30

-----------------------------------------
ITERATIONS ROOTS

 -----------------------------------------

ITERATION 1: 2.500000

ITERATION 2: 2.750000

ITERATION 3: 2.625000

ITERATION 4: 2.687500

ITERATION 5: 2.718750

ITERATION 10: 2.741211

ITERATION 11: 2.740723

ITERATION 12: 2.740479

ITERATION 13: 2.740601

ITERATION 14: 2.740662

ITERATION 15: 2.740631

ITERATION 16: 2.740646

ITERATION 17: 2.740639

ITERATION 18: 2.740643

ITERATION 19: 2.740644

ITERATION 20: 2.740645
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ITERATION 21: 2.740646

ITERATION 22: 2.740646

ITERATION 23: 2.740646

ITERATION 24: 2.740646

ITERATION 25: 2.740646

ITERATION 26: 2.740646

ITERATION 27: 2.740646

ITERATION 28: 2.740646

ITERATION 29: 2.740646

ITERATION 30: 2.740646

-----------------------------------------
Root = 2.7406

Iterations = 30

-----------------------------------------
C:\tc\exe>

Example 2. Find a root of the equation

x3 – 4x – 9 = 0
using Bisection method in four stages.

Sol. Let f(x) ≡ x3 – 4x – 9

Since f(2.706) = – .009488 i.e., (–)ve

and f(2.707) = .008487 i.e., (+)ve

Hence, the root lies between 2.706 and 2.707.

∴ First approximation to the root is

x1 = 
2 706 2 707

2
. .+

 = 2.7065

Now f(x1) = – .0005025 i.e., (–)ve

Hence, the root lies between 2.7065 and 2.707.

∴ Second approximation to the root is

x2 = 
2 7065 2 707

2
. .+

 = 2.70675

Now  f(x2) = .003992 i.e., (+)ve

Hence, the root lies between 2.7065 and 2.70675.
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∴ Third approximation to the root is

x3 = 
2 7065 2 70675

2
. .+

 = 2.706625

Now f(x3) = .001744 i.e., (+)ve

Hence, the root lies between 2.7065 and 2.706625.
∴ Fourth approximation to the root is

x4 = 
2 7065 2 706625

2
. .+

 = 2.7065625

Hence, the root is 2.7065625, correct to three decimal places.

Example 3. Find  a  positive  real  root of x – cos x = 0 by bisection method,
correct up to 4 decimal places between 0 and 1.
Sol. Let f(x) = x – cos x

f(0.73) = (–)ve and f(0.74) = (+)ve
Hence, the root lies between 0.73 and 0.74. First approximation to the root

is

 x1 = 
0 73 0 74

2
. .+

 = 0.735

Now  f(0.735) = (–)ve

Hence, the root lies between 0.735 and 0.74. Second approximation to the
root is

  x2 = 
0.73 0.74

2
+

 = 0.7375

Now  f(0.7375) = (–)ve

Hence, the root lies between 0.7375 and 0.74. Third approximation to the
root is

x3 = 
0 7375 0 74

2
. .+

 = 0.73875

Now  f(0.73875) = (–)ve

Hence, the root lies between 0.73875 and 0.74.

Fourth approximation to the root is

  x4 = 
1
2

 (0.73875 + 0.74) = 0.739375

Now f(x4) = f(0.739375) = (+)ve
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Hence, the root lies between 0.73875 and 0.739375.

Fifth approximation to the root is

 x5 = 
1
2

 (0.73875 + 0.739375) = 0.7390625

Now  f(0.7390625) = (–)ve

Hence, the root lies between 0.7390625 and 0.739375

Sixth approximation to the root is

 x6 = 
1
2

 (0.7390625 + 0.739375) = 0.73921875

Now  f(0.73921875) = (+)ve

Hence, the root lies between 0.7390625 and 0.73921875

Seventh approximation to the root is

 x7 = 
1
2

 (0.7390625 + 0.73921875) = 0.73914

Now f(0.73914) = (+)ve

Hence, the root lies between 0.7390625 and 0.73914

Eighth approximate to the root is

 x8 = 
1
2

 (0.7390625 + 0.73914) = 0.73910

Hence, the approximate real root is 0.7391.

Example 4. Perform five iterations of the bisection method to obtain the smallest
positive root of equation

 f(x) ≡ x3 – 5x + 1 = 0.

Sol.  f(x) = x3 – 5x + 1

Since f(.2016) = .0001935 i.e., (+)ve

and f(.2017) = – .0002943 i.e., (–)ve

Hence, the root lies between .2016 and .2017.

First approximation to the root is

 x1 = 
. .2016 2017

2
+

 = .20165

Now f(x1) = – .00005036 i.e., (–)ve
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Hence, the root lies between .2016 and .20165.

Second approximation to the root is

 x2 = 
. .2016 20165

2
+

 = .201625

Now f(x2) = .00007159 i.e., (+)ve
Hence, the root lies between .201625 and .20165.
Third approximation to the root is

x3 = 
. .201625 20165

2
+

 = .2016375

Now f(x3) = .00001061 i.e., (+)ve
Hence, the root lies between .2016375 and .20165.
Fourth approximation to the root is

x4 = 
. .2016375 20165

2
+

 = .20164375

Now f(x4) = – .00001987 i.e., (–)ve
Hence, the root lies between .2016375 and .20164375.
∴ Fifth approximation to the root is

x5 = 
. .2016375 20164375

2
+

 = .201640625

Hence, after performing five iterations, the smallest positive root of the
given equation is .20164, correct to five decimal places.
Example 5. Find a real root of x3 – x = 1 between 1 and 2 by bisection method.
Compute five iterations.

Sol. Here, f(x) = x3 – x – 1

Since f(1.324) = – .00306 i.e., (–)ve

and  f(1.325) = .00120 i.e., (+)ve

Hence, the root lies between 1.324 and 1.325.

∴ First approximation to the root is

x1 = 
1.324 1.325

2
+

 = 1.3245

Now f(x1) = – .000929 i.e., (–)ve

Hence, the root lies between 1.3245 and 1.325

∴ Second approximation to the root is

x2 = 
1.3245 1.325

2
+

 = 1.32475
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Now f(x2) = .000136 i.e., (+)ve
Hence, the root lies between 1.3245 and 1.32475.
Third approximation to the root is

x3 = 
1.3245 1.32475

2
+

 = 1.324625

Now f(x3) = – .000396 i.e., (–)ve

Hence, the root lies between 1.324625 and 1.32475.

∴ Fourth approximation to the root is

x4 = 
1.324625 1.32475

2
+

 = 1.3246875

Now f(x4) = – .0001298 i.e., (–)ve

Hence, the root lies between 1.3246875 and 1.32475

∴ Fifth approximation to the root is

 x5 = 
1.3246875 1.32475

2
+

 = 1.32471875

Hence, the real root of the given equation is 1.324 correct to three decimal
places after computing five iterations.

Example 6. Use  bisection  method  to  find  out  the positive square root of 30
correct to 4 decimal places.

Sol. Let f(x) = x2 – 30

Since f(5.477) = – .00247 i.e., (–)ve

and f(5.478) = .00848 i.e., (+)ve

Hence, the root lies between 5.477 and 5.478

∴ First approximation to the root is

 x1 = 
5 477 5 478

2
. .+

 = 5.4775

Now f(x1) = .003 i.e., (+)ve

Hence, the root lies between 5.477 and 5.4775

∴ Second approximation to the root is

 x2 = 
5 477 5 4775

2
. .+

 = 5.47725
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Now  f(x2) = .00026 i.e., (+)ve

Hence, the root lies between 5.477 and 5.47725
∴ Third approximation to the root is

 x3 = 
5 477 5 47725

2
. .+

 = 5.477125

Now  f(x3) = – .0011 i.e., (–)ve

Hence, the root lies between 5.477125 and 5.47725
∴ Fourth approximation to the root is

x4 = 
5 477125 5 47725

2
. .+

 =  5.4771875

Since x3 and x4 are the same up to four decimal places, the positive square
root of 30, correct to 4 decimal places, is 5.4771.

ASSIGNMENT 3.1

1. (i) Transcendental equation is given as
f(x) = 2x – x – 3

Calculate f(x) for x = – 4, – 3, – 2, – 1, 0, 1, 2, 3, 4 and determine, between which
integer the values roots are lying.

(ii) The equation x2 – 2x – 3cos x = 0 is given. Locate the smallest root in magnitude in
an interval of length one unit.

2. Find a real root of ex = 3x by Bisection method.
3. Find the smallest positive root of x3 – 9x + 1 = 0, using Bisection method correct to three

decimal places.
4. Find the real root lying in interval (1, 2) up to four decimal places for the equation

x6 – x4 – x3 – 1 = 0 by bisection method.

5. Find the root of tan x + x = 0 up to two decimal places which lies between 2 and 2.1 using
Bisection method.

6. Compute the root of log x = cos x correct to 2 decimal places using Bisection method.

7. Compute the root of f(x) = sin 10x + cos 3x by computer using Bisection method. The
initial approximations are 4 and 5.

8. Find the real root correct to three decimal places for the following equations:

(i) x3 – x – 4 = 0 (ii) x3 – x2 – 1 = 0

(iii) x3 + x2 – 1 = 0 (iv) x3 – 3x – 5 = 0.

9. Find a root of x3 – x – 11 = 0 using Bisection method correct to 3 decimal places which
lies between 2 and 3.

10. Find a real root of the equation x3 – 2x – 5 = 0 using Bisection method.

11. Find a positive root of the equation xex = 1 which lies between 0 and 1.
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12. Apply Bisection method to find a root of the equation x4 + 2x3 – x – 1 = 0 in the interval
[0, 1].

13. Obtain a root correct to three decimal places for each of these equations using Bisection
method.

(i) x3 + x2 + x + 7 = 0 (ii) x3 – 18 = 0

(iii) x3 + x – 1 = 0 (iv) x3 – 5x + 3 = 0.

14. By displaying procedure in tabular form, use Bisection method to compute the root of
36.

15. Find a positive root of the equation x3 + 3x – 1 = 0 by bisection method.

16. Find a real root of x3 – 2x – 1 = 0 which lies between 1 and 2 by using Bisection method
correct to 2 decimal places.

17. Find the approximate value of the root of the equation 3x – 1 + sin x  = 0 by Bisection

method.

18. (i) Explain the Bisection method to calculate the roots of an equation. Write an algo-
rithm and implement it in ‘C’.

(ii) Write computer program in a language of your choice which implements bisection
method to compute the real root of the equation 3x + sin x – ex = 0 in a given interval.

19. Solve x3 – 9x + 1 = 0 for the root between x = 2 and x = 4 by the method of Bisection.

20. If a root of f(x) = 0 lies in the interval (a, b), then find the minimum number of iterations
required when the permissible error is E.

21. The negative root of the smallest magnitude of the equation f(x) = 3x3 + 10x2 + 10x + 7 = 0
is to be obtained.

(i) Find an interval of unit length which contains this root.

(ii) Perform two iterations of the bisection method.

22. The smallest positive root of the equation

f(x) = x4 – 3x2 + x – 10 = 0

is to be obtained.

(i) Find an interval of unit length which contains this root.

(ii) Perform two iterations of the bisection method.

3.10 ITERATION METHOD—(Successive Approximation Method)

To find the roots of the equation f(x) = 0 by successive approximations,
we write it in the form x = φ(x)

The roots of f(x) = 0 are the same as the points of intersection of the straight
line y = x and the curve representing

y = φ(x).
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Y

O Xx0 x2 x3 x1

y =
 x

y = (x)φ

(Working of Iteration method)

Let x = x0 be an initial approximation of the desired root α, then first
approximation x1 is given by

x1 = φ(x0)
Now,  treating  x1  as  the  initial  value, the second approximation is

x2 = φ(x1)
Proceeding in this way, the nth approximation is given by

xn = φ(xn – 1).

3.11 SUFFICIENT CONDITION FOR CONVERGENCE OF ITERATIONS

It is not definite that the sequence of approximations x1, x2, ......, xn always
converges to the same number, which is a root of f(x) = 0.

As such, we have to choose the initial approximation x0 suitably so that the
successive approximations x1, x2, ......, xn converge to the root α. The following
theorem helps in making the right choice of x0.

3.12 THEOREM

If (i) α be a root of f(x) = 0 which is equivalent to x = φ(x)*.
(ii) I be any interval containing x = α.

(iii) | φ′(x) | < 1 for all x in I, then the sequence of approximations x0, x1, x2,
......, xn will converge to the root a provided the initial approximation x0 is
chosen in I.

*x is obtained interms of φ(x) such that | φ′(x) | < 1.
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This method of iteration is particularly useful for finding the real roots of
an equation given in the form of an infinite series.

3.13 CONVERGENCE OF ITERATION METHOD

Since α is a root of x = φ(x), we have α = φ(α)

If xn – 1 and xn are two successive approximations to α, we have

xn = φ(xn – 1), xn – α = φ(xn – 1) – φ(α) (4)

By mean value theorem,

φ φ α
α

( ) ( )x

x
n

n

−

−

−
−

1

1
 = φ′(ξ), where xn – 1 < ξ < α

Hence (4) becomes  xn – α = (xn – 1 – α) φ′(ξ)

If  | φ′(xi) | ≤ k < 1 for all i, then,

 | xn – α | ≤ k | xn – 1 – α |, k < 1

Hence it is clear that the iteration method is linearly convergent.

1. The smaller the value of φ′(x), the more rapid will be the convergence.

2. For rapid convergence, f ′(a) ≈ 0.

3.14 ALGORITHM FOR ITERATION METHOD

3.14.1 Algorithm 1

1. Read x0, e, n

x0 is the initial guess, e is the allowed error in root, n is total iterations to be
allowed for convergence.

2. x1 ← g(x0)

Steps 4 to 6 are repeated until the procedure converges to a root or iterations
reach n.

NOTE

NOTE

NOTE

NOTE
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3. For i = 1 to n in steps of 1 do

4. x0 ← x1

5. x1 ← g(x0)

6. If 
x x

x
1 0

1

−
 ≤ e then, GO TO 9

end for.

7. Write ‘Does not converge to a root’, x0, x1

8. Stop

9. Write ‘converges to a root’, i, x1

10. Stop.

3.14.2 Algorithm 2 (Aliter)

1. Define function f(x)

2. Define function df(x)

3. Get the value of a, max_err.

4. Initialize j

5. If df(a) < 1 then b = 1, a = f(a)

6. Print root after j, iteration is f(a)

7. If fabs(b – a) > max_err then

8. j++, goto (5)

End if

Else print root doesn’t exist

9. End.
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3.15 FLOW-CHART FOR ITERATION METHOD

START

STOP

Define F(x)

Get the value of x and max_error0

Set n = 0.

x = f(x )n+1 n

n = n + 1

Is
| x – x | >
max. error

n+1 n

Yes

No

Print the root is x .n
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3.16 COMPUTER PROGRAM

//Program for Solution by ITERATION method

#include<stdio.h>

#include<math.h>

#include<conio.h>

#define EPS 0.00005

#define F(x) (x*x*x + 1)/2

#define f(x) x*x*x - 2*x + 1

void ITER();

void main ()

{

clrscr();

printf("\n\t Solution by ITERATION method \n");

printf("\n\t Equation is ");

printf("\n\t\t\t\t X*X*X - 2*X + 1 = 0\n\n");

ITER();

getch();

}

void ITER()

{

float x1,x2,x0,f0,f1,f2,error;

int i=0,n;

for(x1=1;;x1++)

{

f1=F(x1);

if (f1>0)

break;

}

for(x0=x1-1;;x0--)

{

f0=f(x0);

if(f0<0)

break;

}
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x2=(x0+x1)/2;

printf("Enter the number of iterations:");

scanf("%d",&n);

printf("\n\n\t\t The 1 approximation to the root is: %f",x2);

for(;i<n-1;i++)

{

f2=F(x2);

printf("\n\n\t\t The %d approximation to the root is:
%f",i+2,f2);

x2=F(x2);

error=fabs(f2-f1);

if(error<EPS)

break;

f1=f2;

}

if(error>EPS)

printf("\n\n\t NOTE:- The number of iterations
are not sufficient.");

printf("\n\n\n\t\t\t------------------------------");

printf("\n\t\t\t  The root is %.4f",f2);

printf("\n\t\t\t-----------------------------");

}

3.16.1 Output

Solution by ITERATION method

Equation is

x*x*x-2*x+1=0

Enter the number of iterations: 15

The 1 approximation to the root is: 0.000000

The 2 approximation to the root is: 0.500000

The 3 approximation to the root is: 0.562500

The 4 approximation to the root is: 0.588989

The 5 approximation to the root is: 0.602163

The 6 approximation to the root is: 0.609172

The 7 approximation to the root is: 0.613029
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The 8 approximation to the root is: 0.615190

The 9 approximation to the root is: 0.616412

The 10 approximation to the root is:0.617107

The 11 approximation to the root is:0.617504

The 12 approximation to the root is:0.617730

The 13 approximation to the root is:0.617860

The 14 approximation to the root is:0.617934

The 15 approximation to the root is:0.617977

-----------------------------------------------------

The Root is 0.6179 (Correct to four decimal places)

-----------------------------------------------------

3.16.2 Insufficient Output

Solution by ITERATION method

Equation is

x*x*x-2*x+1=0

Enter the number of Iterations:5

The 1 approximation to the root is: 0.000000

The 2 approximation to the root is: 0.500000

The 3 approximation to the root is: 0.562500

The 4 approximation to the root is: 0.588989

The 5 approximation to the root is: 0.602163

The number of Iterations are not sufficient.

-----------------------------------------------------

The Root is 0.6022

EXAMPLES

Example 1. Use  the  method  of  iteration to find a positive root between 0 and 1
of the equation xex = 1.

Sol. Writing the equation in the form x = e–x

we find, φ(x) = e–x so φ′(x) = – e–x

Hence,  | φ′(x) | < 1 for x < 1, which assures that iteration is convergent.

NOTE
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Starting with x0 = 1, we find that successive iterates are given by

 x1 = 
1
e

 = 0.3678794

x = e– 0.3678794 = 0.6922006

�

x20 = 0.5671477.

Example 2. Find a real root of the equation cos x = 3x – 1 correct to 3 decimal
places using iteration method.
Sol. We have f(x) = cos x – 3x + 1 = 0

Now, f(0) = 2 and f(π/2) = – 
3
2
π

 + 1 = (–)ve

∴ A root lies between 0 and π/2.
Rewriting the given equation as

 x = 
1
3

 (cos x + 1) = φ(x)

We have φ′(x) = – 
sin x

3

and | φ′(x) | = 
1
3

 | sin x | < 1 in (0, π/2)

Hence the iteration method can be applied and we start with x0 = 0. Then
the successive approximations are

x1 = φ(x0) = 
1
3

 (cos 0 + 1) = 0.6667

x2 = φ(x1) = 
1
3

 [cos 0.6667 + 1] = 0.5953

x3 = φ(x2) = 
1
3

 [cos (0.5953) + 1] = 0.6093

x4 = φ(x3) = 0.6067

x5 = φ(x4) = 0.6072

x6 = φ(x5) = 0.6071.

Since x5 and x6 are almost the same, the root is 0.607 correct to three decimal
places.
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Example 3. Find a real root of 2x – log10 x = 7 correct to four decimal places
using the iteration method.

Sol. We have f(x) = 2x – log10 x – 7

f(3) = 6 – log 3 – 7 = 6 – 0.4771 – 7 = – 1.4471

f(4) = 0.398

∴ A root lies between 3 and 4.
Rewriting the given equation as

 x = 
1
2

 (log10 x + 7) = φ(x),

we have φ′(x) = 
1
2

1
10x

elogF
HG

I
KJ

∴ | φ′(x) | < 1 when 3 < x < 4 (∵ log10 e = 0.4343)

Since | f(4) | < | f(3) |, the root is near 4.

Hence the iteration method can be applied.
The successive approximations of x0 = 3.6 are

x1 = φ(x0) = 
1
2

 (log10 3.6 + 7) = 3.77815

x2 = φ(x1) = 
1
2

 (log10 3.77815 + 7) = 3.78863

x3 = φ(x2) = 3.78924

x4 = φ(x3) = 3.78927

Since x3 and x4 are almost equal, the root is 3.7892, correct to four decimal
places.

Example 4. Find the smallest root of the equation

1 – x + 
x

(2 !)

x

(3 !)

x

(4 !)

x

(5 !)
...... 0

2

2

3

2

4

2

5

2− + − + = .

Sol. Writing the given equation as

 x = 1 + 
x x x x

x
2

2

3

2

4

2

5

22 3 4 5( !) ( !) ( !) ( !)
...... ( )− + − + = φ

and omitting x2 and higher powers of x, we get x = 1 approximately.
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Taking x0 = 1, we obtain,

x1 = φ(x0) = 1
1

2

1

3

1

4

1

5
22392 2 2 2+ − + − + =

( !) ( !) ( !) ( !)
...... 1.

x2 = φ(x1) = 1
2239 2239 2239

4
2239
5

2 3 4

2

5

2+ − + − +( ) ( ) ( )
( !)

( )
( !)

......
1.

(2 !)
1.

(3 !)
1. 1.

2 2

= 1.3263

Similarly,  x3 = φ(x2) = 1.38

 x4 = 1.409, x5 = 1.425, x6 = 1.434, x7 = 1.439, x8 = 1.442

Values of x7 and x8 indicate that the root is 1.44, correct to two decimal
places.

Example 5. If α, β are the roots of x2 + ax + b = 0, show that the iteration

xn + 1 = – ax b
x
n

n

+F

HG
I

KJ
 will converge near x = α if | α | > | β | and the iteration

xn + 1 = 
−

+
b

x an
 will converge near x = α if | α | < | β |.

Sol. Since  α, β are the roots of x2 + ax + b = 0,

we have α + β = – a and αβ = b

The formula xn + 1 = – 
ax b

x
n

n

+F

HG
I

KJ
, which is of the form xn + 1 = f(xn), will

converge to x = α if

 
d
dx

ax b
x x xn

− +R
S
T

U
V
W

<
=

( )
1 Using condition

of iteration method

⇒
b

xn
2 1<

⇒ | xn
2 | > | b | or xn

2 > | b |

or | α |2 > | b | as xn → α

or | α |2 > | α | | β | (∵ αβ = b)

or  | α | > | β |
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Similarly, xn + 1 = 
−

+
b

x an
 will converge to x = α if

d
dx

b
x a

x xn

−
+

F
HG

I
KJ

L

N
M

O

Q
P <

=

1

or
b

x an( )+
<2 1

or (xn + a)2 > | b | or (α + a)2 > | b | as xn → α

or   β2 > | b | (∵ α + a = – β)

or  | β |2 > | α | | β |

or  | β | > | α | or | α | < | β |.

Example 6. Show that the following rearrangement of equation x3 + 6x2 + 10x
– 20 = 0 does not  yield  a  convergent  sequence  of  successive approximations by
iteration method near x = 1,

x = (20 – 6x2 – x3)/10.

Sol. Here, x = 
20 6

10

2 3− −x x
 = f(x)

Hence, f ′(x) = 
− −12 3

10

2x x

Clearly, f ′(x) < – 1 in neighborhood of x = 1. Hence | f ′(x) | > 1, and
neither the method nor the sequence <xn> converge.

Example 7. Suggest a value of constant k, so that the iteration formula
x = x + k(x2 – 3) may converge at a good rate, given that x = 3  is a root.

Sol. Formula x = f(x) where f(x) = x + k(x2 – 3)

will converge if

 | f ′(x) | < 1 or  – 1 < f ′(x) < 1

i.e., if  – 1 < 1 + 2kx < 1

Moreover, the convergence will be rapid if f ′(a) ~–  0

i.e., if 1 + 2ka ~–  0

i.e., 1 + 2k 3  ~–  0 ⇒ k = – 
1

2 3
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We may take k = – 
1
4

 to insure a rapid convergence by this formula.

Example 8. If F(x) is sufficiently differentiable and the iteration xn + 1 = F(xn)
converges, prove that the order of convergence is a positive integer.

Sol. Let x = a be a root of the equation x = F(x) then, a = F(a)
Let, for some p(positive integer)

F′(a) = 0, F″(a) = 0, ...... , F(p – 1) (a) = 0 and F(p) (a) ≠ 0

then expanding F(xn) about a, we get

xn + 1 = F(xn) = F(a + xn – a)

= F(a) + (xn – a) F′(a) + ...... + ( )
( ) !

( )
( )

!
( )( ) ( )x a

p
a

x a

p
n

p
p n

p
p−

−
+

−−
−

1
1

1
F F ξ

where ξ is some point between x = xn and x = a.

⇒ xn + 1 = a + 
( )

!
( )( )x a

p
n

p
p−

F ξ

⇒  xn + 1 – a = (xn – a) p . 
F( ) ( )

!

p

p
ξ

∴ The order of convergence is p, a positive integer.

Example 9. The  equation  sin  x  =  5x  –  2  can  be written as x = sin–1 (5x – 2)

and also as x = 
1
5

 (sin x + 2), suggesting two iterating procedures for its solution.

Which of these, if either, would succeed, and which would fail to give a root in
the neighborhood of 0.5?
Sol. In case I,  φ(x) = sin–1 (5x – 2)

∴ φ′(x) = 
5

1 5 2 2− −( )x

Hence, | φ′(x) | > 1 for all x for which (5x – 2)2 < 1 or x < 3/5 or x < 0.6 in
neighborhood of 0.5. Thus the method would not give a convergent sequence.

In case II, φ(x) = 
1
5

 (sin x + 2)

∴   φ′(x) = 
1
5

 cos x
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Hence | φ′(x) | ≤ 
1
5

 for all x because | cos x | ≤ 1

∴ φ(x) will succeed.

Hence, taking x = φ(x) = 
1
5

 (sin x + 2) and the initial value x0 = 0.5, we have

the first approximation x1 given by

x1 = 
1
5

 (sin 0.5 + 2) = 0.4017

x2 = 
1
5

 [sin (0.4017) + 2] = 0.4014

x3 = 
1
5

 [sin (0.4014) + 2] = 0.4014

Hence, up to four decimal places, the value of the required root is 0.4014.

Example 10. Starting with x = 0.12, solve x = 0.21 sin (0.5 + x) by using the
iteration method.
Sol. Here, x = 0.21 sin (0.5 + x)

∴ First approximation of x is given by

x(1) = 0.21 sin (0.5 + 0.12) = 0.122

x(2) = 0.21 sin (0.5 + 0.122) = 0.1224

Similarly, x(3) = 0.12242, x(4) = 0.12242

Obviously, x(3) = x(4)

Hence the required root is 0.12242.

Example 11. Find a real root of the equation f(x) = x3 + x2 – 1 = 0 by using the
iteration method.

Sol. Here, f(0) = – 1 and f(1) = 1 so a root lies between 0 and 1. Now, x = 
1

1 + x
so that,

 φ(x) = 
1

1 + x

∴ φ′(x) = – 
1

2 1 3 2( ) /+ x
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We have, | φ′(x) | < 1 for x < 1

Hence the iterative method can be applied.

Take x0 = 0.5, we get

x1 = φ(x0) = 
1

51.
 = 0.81649

x2 = φ(x1) = 
1

816491.
 = 0.74196

 �

x8 = 0.75487.

Example 12. Find the reciprocal of 41 correct to 4 decimal places by iterative
formula

 xi + 1 = xi(2 – 41xi).

Sol. Iterative formula is xi + 1 = xi (2 – 41 xi) (5)

Putting    i = 0, x1 = x0(2 – 41 x0)

Let x0 = 0.02

x1 = (0.02) (2 – 0.82) = 0.024

Put i = 1 in (5),

 x2 = (0.024) {2 – (41 × 0.024)} = 0.0244

Put i = 2,  x3 = 0.02439

∴ Reciprocal of 41 is 0.0244.

Example 13. Find the square root of 20 correct to 3 decimal places by using
recursion formula

xi + 1 = 
1
2

x
20
xi

i
+

F

HG
I

KJ .

Sol. Put i = 0, x1 = 
1
2

20
0

0
x

x
+

F

HG
I

KJ

Let x0 = 4.5

∴ x1 = 
1
2

4 5
20
4 5

.
.

+F
HG

I
KJ  = 4.47

Put i = 1, x1 = 4.47, x2 = 
1
2

4 47
20

4 47
.

.
+F

HG
I
KJ  = 4.472



ALGEBRAIC AND TRANSCENDENTAL EQUATIONS    109

Put i = 2, x2 = 4.472,  x3 = 4.4721

∴ 20  ~–  4.472 correct to three decimal places.

Example 14. Find the cube root of 15 correct to four significant figures by
iterative method.

Sol. Let x = (15)1/3 ∴ x3 – 15 = 0

The real root of the above equation lies in (2, 3). The equation may be
written as

x = 
15 20

20

3+ −x x
 = φ(x)

Now, φ′(x) = 1 – 
3
20

2x ∴ | φ′(x) | < 1 (for x ≈ 2.5)

Iterative formula is xi + 1 = 
15 20

20

3+ −x xi i (6)

Put i = 0, x0 = 2.5, we get x1 = 2.47

Put i = 1 in (6), x2 = 2.466 (where x1 = 2.47)

Similarly, x3 = 2.4661

∴ 153  correct to 3 decimal places is 2.466.

Example 15. The equation x4 + x = e where e is a small number has a root close
to e. Computation of this root is done by the expression α = e – e4 + 4e7.

(i) Find an iterative formula xn+1 = F(xn), x0 = 0 for the computation. Show that
we get the above expression after three iterations when neglecting terms of
higher order.

(ii) Give a good estimate (of the form Nek, where N and k are integers) of the
maximum error when the root is estimated by the above expression.

Sol. x4 + x = e may be written as

x = 
e

x3 1+

Consider the formula

 xn+1 = 
e

xn
3 1+

Starting with x0 = 0, we get

x1 = e



110 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

x2 = 
e

e1 3+
 = e(1 + e3)–1

= e(1 – e3 + e6 – ...)

= e – e4 + e7 (neglecting higher powers of e)

 x3 = 
e

e e e1 4 7 3+ − +( )

= e – e4 + 4e7 (neglecting higher powers of e)

Taking α = e – e4 + 4e7, we find that

error = α4 + α – e

= (e – e4 + 4e7)4 + (e – e4 + 4e7) – e

= 22e10 + higher powers of e.

ASSIGNMENT 3.2

1. Apply iteration method to solve e–x = 10x.

L

N
M Hint: | φ′(x) | = 

1
10

1
ex  < 1 if x ≥ 0 .

O

Q
P

2. Find by iterative method, the real root of the equation 3x – log10 x = 6 correct to four
significant figures.

3. Solve by iteration method:

(i) 1 + log x = 
x
2

(ii) sin x = 
x
x

+
−

1
1

(iii) x3 = x2 + x + 1 near 2 (use 5 iterations)
(iv) x3 + x + 1 = 0 (v) x3 – 2x2 – 5 = 0 (vi) x3 – 2x2 – 4 = 0.

4. Use the iterative method to find, correct to four significant figures, a real root of each of
the following equations:

(i) x = 1

1 2( )x +
(ii) x = (5 – x)1/3 (iii) sin x = 10(x – 1)

(iv) x sin x = 1 (v) ex = cot x (vi) 1 + x2 – x3 = 0
(vii) x2 – 1 = sin2 x (viii) 5x3 – 20x + 3 = 0.

5. By iteration method, find 30 .

6. The root of the equation x = 
1
2

 + sin x by using the iteration method

xn+1 = 
1
2

 + sin xn, x0 = 1
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x = 1.497300 is correct to 6 decimal places. Determine the number of iteration steps
required to reach the root by the linear iteration.

7. The equation f(x) = 0, where

f(x) = 0.1 – x + 
x x x2

2

3

2

4

22 3 4( !) ( !) ( !)
− +  – ...

has one root in the interval (0, 1). Calculate this root correct to 5 decimal places.

8. Find a catenary y = c cosh 
x a

c
−F

HG
I
KJ

 passing through the points (1, 1) and (2, 3).

[Hint: Eliminate a from c cosh 
1 −F
HG

I
KJ

a
c

 = 1 and c cosh 
2 −F
HG

I
KJ

a
c

 = 3 to get

c = 
1

1

3

1

1

+ F
HG
I
KJ

F
HG
I
KJ

−

−

c
c

c

cosh

cosh
 = φ(c)]

9. The equation x2 + ax + b = 0 has two real roots, α and β. Show that the iteration method

xn+1 = – 
x b

a
n

2 +F

H
G

I

K
J

is convergent near x = α if 2 | α | < | α + β |.
10. The equation x3 – 5x2 + 4x – 3 = 0 has one root near x = 4 which is to be computed by the

iteration

xn+1 = 3 4) 5 2 3+ − + −(k x x x
k

n n n , k integer; x0 = 4

(i) Determine which value of k will give the fastest convergence.

(ii) Using this value of k, iterate three times and estimate the error in x3.

[Hint: Put  xn = α + en, α = 4 + δ,  where  α  is the exact  root.  Find  the  error  eqn.

ken+1 = (k – 12) en + O(δen)]

3.17 THE METHOD OF ITERATION FOR SYSTEM OF NON-LINEAR

EQUATIONS

Let the equation be f(x, y) = 0, g(x, y) = 0 whose real roots are required within a
specified accuracy.

We assume,  x = F(x, y) and y = G(x, y)

where functions F and G satisfy conditions
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∂
∂

+
∂
∂

<
F F
x y

1 and ∂
∂

+
∂
∂

<
G G
x y

1 in neighborhood of root.

Let (x0, y0) be the initial approximation to a root (α, β) of the system. We
then construct successive approximations as

x1 = F(x0, y0),    y1= G(x0, y0)

x2 = F(x1, y1),  y2 = G(x1, y1)

x3 = F(x2, y2),  y3 = G(x2, y2)

........................................................

  xn + 1 = F(xn, yn),    yn + 1 = G(xn, yn)

If the iteration process converges, we get

α = F(α, β)

β = G(α, β) in the limit.

Thus α, β are the roots of the system.

Example. Find a real root of the equations by the iteration method.

  x = 0.2x2  + 0.8, y = 0.3xy2 + 0.7.

Sol. We have  F(x, y) = 0.2x2 + 0.8

   G(x, y) = 0.3xy2 + 0.7

   
∂
∂
F
x

 = 0.4x
∂
∂
G
x

 = 0.3y2

   
∂
∂
F
y

 = 0
∂
∂
G
y

 = 0.6xy

It is easy to see that x = 1 and y = 1 are the roots of the system.

Choosing x0 = 
1
2

, y0 = 
1
2

, we find that

 
∂
∂

+ ∂
∂

= <F F
x yx y x y( , ) ( , )

.
0 0 0 0

0 2 1

and
∂
∂

+
∂
∂

= <
G G
x yx y x y( , ) ( , )

.
0 0 0 0

0 225 1
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∴ Conditions are satisfied. Hence,

x1 = F(x0, y0) = 
0 2
4
.

 + 0.8 = 0.85

and y1 = G(x0, y0) = 
0
8
.3

 + 0.7 = 0.74*

For approximation II, we obtain
x2 = F(x1, y1) = 0.2(0.85)2 + 0.8 = 0.9445

and y2 = G(x1, y1) = 0.3(0.85) × (0.74)2 + 0.7 = 0.81
Convergence to the root (1, 1) is obvious.

3.18 METHOD OF FALSE POSITION Or REGULA-FALSI METHOD

The bisection method guarantees that the iterative process will converge. It is,
however, slow. Thus, attempts have been made to speed up** the bisection
method retaining its guaranteed convergence. A method of doing this is called
the method of false position.

It is sometimes known as the method of linear interpolation.
This is the oldest method for finding the real roots of a numerical equation

and closely resembles the bisection method.
In this method, we choose two points x0 and x1 such that f(x0) and f(x1) are

of opposite signs. Since the graph of y = f(x) crosses the X-axis between these
two points, a root must lie in between these points.

Consequently, f(x0) f(x1) < 0

Y

O X

{x , f(x )}0 0

{x , f(x )}1 1

P(x)x0

x3 x2 x1

B

A

*y1 can also be obtained more accurately by assigning the value of x1 = 0.85.
**Order of convergence greater than 1.
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The equation   of   the   chord   joining   points {x0, f(x0)} and {x1, f(x1)} is

y – f(x0) = 
f x f x

x x
x x

( ) ( )
( )1 0

1 0
0

−
−

−

The method consists in replacing the curve AB by means of the chord AB
and taking the point of intersection of the chord with the X-axis as an
approximation to the root.

So the abscissa of the point where the chord cuts y = 0 is given by

x2 = x0 – 
x x

f x f x
f x1 0

1 0
0

−
−( ) ( )

( ) (7)

which is an approximation to the root.
If f(x0) and f(x2) are now of opposite signs, then the root lies between x0 and

x2. So replacing x1 with x2 in (7), we obtain the next approximation, x3. However,
the root could also lie between x1 and x2 and then we find x3 accordingly.

This procedure is repeated until the root is found to the desired accuracy.

The order of convergence of the Regula Falsi method is 1.618.

3.19 ALGORITHM

Step 01. Start of the program.
Step 02. Input the variables x0, x1, e, n for the task.
Step 03. f0 = f(x0)
Step 04. f1 = f(x1)
Step 05. for i = 1 and repeat if i < = n
Step 06. x2 = (x0 f1-x1 f0)/(f1-f0)
Step 07. f2 = x2
Step 08. if | f2 | < = e
Step 09. Print “convergent”, x2, f2
Step 10. If sign (f2) ! = sign (f0)
Step 11. x1 = x2 & f1 = f2
Step 12. else
Step 13. x0 = x2 & f0 = f2
Step 14. End loop
Step 15. Print output
Step 16. End of program.

NOTE
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3.19.1 Aliter Algorithm: Method of False Position

1. Read x0, x1, e, n

x0 and x1 are two initial guesses to the root such that sign f(x0) ≠ sign f(x1).
The prescribed precision is e and n is maximum number of iterations. Steps
2 and 3 are initialization steps.

2. f0 ← f(x0)

3. f1 ← f(x1)

4. For i = 1 to n in steps of 1 do

5. x2 ← (x0 f1 – x1f0)/(f1 – f0)

6. f2 ← f(x2)

7. If | f2 | ≤ e then

8. Begin write ‘convergent solution’, x2, f2

9. Stop end

10. If sign (f2) ≠ sign (f0)

11. Then begin x1 ← x2

12. f1 ← f2 end

13. Else begin x0 ← x2

14. f0 ← f2 end

end for

15. Write ‘Does not converge in n iterations’

16. Write x2, f2

17. Stop.

NOTE
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3.20 FLOW-CHART

START

Define function f(x)

Define function regula

Get the value of
x , x , aerr, mitr0 1

initialize itr

Call function regula with x , x , x
f(x ), f(x ), itr

2 0 1

0 1

Call function regula with x , x , x
f(x ), f(x ), itr

3 0 1

0 1

A

B

A

x = x1 2 x = x0 2
Yes

Yes

Yes

No

No

No

Is
f(x )*f(x )

<0
0 2

Is
fabs (x – x )

< aerr
3 2 C

x = x2 3

Is itr
< maxitr

Print "Not convergent

STOP

B
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A

C

x = x – (x – x )/(f(x ) – f(x ))*f(x )0 1 0 1 0 0

Print itr, x

Print ‘‘solution’’

Return

RETURN

EXAMPLES

Example 1. Find a real root of the equation 3x + sin x – ex = 0 by the method of
false position correct to four decimal places.

Also write its program in ‘C’ language.

Sol. Let  f(x) ≡ 3x + sin x – ex = 0

 f(0.3) = – 0.154 i.e., (–)ve

and  f(0.4) = 0.0975 i.e., (+)ve

∴ The root lies between 0.3 and 0.4.

Using Regula Falsi method,

x2 = x0 – 
x x

f x f x
f x1 0

1 0
0

−
−( ) ( )

( )

= − −
− −

−( )
( . ) ( )

( . ) ( )
( )0

0 4 0
0 0975 0

0.3
.3

.154
.154

| ∵ x0 = 0.3 and x1 = 0.4 (let)

    = + ×F
HG

I
KJ

=( )0
0 0

0
0.3

.1 .154
.2515

.3612

Now    f(x2) = f(0.3612) = 0.0019 = (+)ve
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Hence, the root lies between 0.3 and 0.3612.

Now again, x3 = x0 – 
( )

( ) ( )
( )

x x
f x f x

f x2 0

2 0
0

−
−

Replacing by1 2x x

= (0.3)
.154

.154−
−

− −
R
S
T

U
V
W

−
( . ) ( . )

( . ) ( )
( )

0 3612 0 3
0 0019 0

0

= (0.3)
.1559

.154+ F
HG

I
KJ

=0 0612
0

0 0 3604
.

( ) .

Now f(x3) = f(0.3604) = – 0.00005 = (–)ve

∴ The root lies between 0.3604 and 0.3612.

Now again,   x4 = x
x x

f x f x
f x3

2 3

2 3
3−

−
−

R
S
T

U
V
W( ) ( )

( ) Replacing by0 3x x

= −
−

− −
L

N
M

O

Q
P −( . )

( . . )
( . ) ( . )

( . )0 3604
0 3612 0 3604

0 0019 0 00005
0 00005

= + F
HG

I
KJ

0 3604
0 0008
0 00195

.
.

.
 (0.00005) = 0.36042

Since x3 and x4 are approximately the same, the required real root is 0.3604,
correct to four decimal places.

/* ********************************************************

Program to Implement the Method of Regula Falsi (False
Position)

******************************************************** */

// ... Included Header files

#include<stdio.h>

#include<math.h>

#include<conio.h>

#include<string.h>

#include<process.h>

//...Formulae declaration

#define EPS 0.00005

#define f(x) 3*x+sin(x)-exp(x)
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//...Function Declaration Prototype

void FAL_POS();

//...Main Execution Thread

void main()

{

clrscr();

printf("\n Solution by FALSE POSITION method\n");

printf("\n Equation is ");

printf("\n\t\t\t 3*x + sin(x)-exp(x)=0\n\n");

FAL_POS();

}

//...Function Definition

void FAL_POS()

{

float f0,f1,f2;

float x0,x1,x2;

int itr;

int i;

printf("Enter the number of iteration:");

scanf("%d",&itr);

for(x1=0.0;;)

{

f1=f(x1);

if(f1>0)

{

break;

{

else

{

x1=x1+0.1;

}

}

x0=x1-0.1;

f0=f(x0);
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printf("\n\t\t-----------------------------------------");

printf("\n\t\t ITERATION\t x2\t\t F(x)\n");

printf("\t\t--------------------------------------------");

for(i=0;i<itr;i++)

{

x2=x0-((x1-x0)/(f1-f0))*f0;

f2=f(x2);

if(f0*f2>0)

{

x1=x2;

f1=f2;

}

else

{

x0=x2;

f0=f2;

}

if(fabs(f(2))>EPS)

{

printf("\n\t\t%d\t%f\t%f\n",i+1,x2,f2);

}

}

printf("\t\t--------------------------------------------");

printf("\n\t\t\t\tRoot=%f\n",x2);

printf("\t\t-------------------------------------------");

getch();

}

OUTPUT

Solution by FALSE POSITION method

Equation is

3*x+sin(x)-exp(x)=0

Enter the number of iteration: 11
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----------------------------------------------------

ITERATION X2 F(x)

----------------------------------------------------

1 0.361262 0.002101

2 0.360409 -0.000031

3 0.360422 0.000000

4 0.360422 -0.000000

5 0.360422 0.000000

6 0.360422 0.000000

7 0.360422 0.000000

8 0.360422 0.000000

9 0.360422 0.000000

10 0.360422 0.000000

11 0.360422 0.000000

----------------------------------------------------

Root=0.360422

----------------------------------------------------

Example 2. Find the root of the equation xex = cos x in the interval (0, 1) using
Regula-Falsi method correct to four decimal places. Write its computer
programme in ‘C’ language.

Sol. Let f(x) = cos x – xex = 0 so that

f(0) = 1, f(1) = cos 1 – e = – 2.17798

i.e., the root lies between 0 and 1.

By Regula-Falsi method,

 x2 = x0 – ( )
( ) ( )

( )
x x

f x f x
f x1 0

1 0
0

−
−

  = − −
−

=0
1 0

3
1 0 31467

.17798
( ) .

Now f(x2) = f(0.31467) = 0.51987

i.e., the root lies between 0.31487 and 1.

Again  x3 = 0.31487 – 
( )

( . )
1 0

2 0 51987
−

− −
.31487

.17798
 (0.51987)

= 0.44673
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Now f(x3) = 0.20356

∴ The root lies between 0.44673 and 1. Repeating this process,
x10 = 0.51775, corrected as 0.5177 up to 4 decimal places.

COMPUTER PROGRAMME

\\METHOD OF FALSE POSITION

#include<stdio.h>

#include<conio.h>

#include<math.h>

float f(float x)

{

return cos(x)-x*exp(x);

}

void regula (float *x, float x0,float x1, float fx0, float

fx1,int*itr)

{

*x=x0-((x1-x0)/(fx1-fx0))*fx0;

++(*itr);

printf("Iteration no.%3d x=%7.5f\n",*itr,*x);

}

main()

{

int itr=0,maxitr;

float x0,x1,x2,x3,aerr;

printf("Enter the values for x0,x1, allowed error,
max.iteration\n");

scanf("%f%f%f%d",&x0,&x1,&aerr,&maxitr);

regula(&x2,x0,x1,f(x0),f(x1),&itr);

do

{ if(f(x0)*f(x2)<0)

x1=x2;

else

x0=x2;

regula(&x3,x0,x1,f(x0),f(x1),&itr);

if(fabs(x3-x2)<aerr)
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{

printf("After %d iterations,

root=%6.4f\n",itr,x3);

getch();

return (0);

}

x2=x3;

}while (itr<maxitr);

printf("Solution does not converge, iterations not

sufficient\n");

getch();

return(1);

OUTPUT

Enter the values for x0,x1, allowed error, max.iteration

0

1

.00005

20

Iteration number 1 x = 0.31467

Iteration number 2 x = 0.44673

Iteration number 3 x = 0.49402

Iteration number 4 x = 0.50995

Iteration number 5 x = 0.51520

Iteration number 6 x = 0.51692

Iteration number 7 x = 0.51748

Iteration number 8 x = 0.51767

Iteration number 9 x = 0.51773

Iteration number 10 x = 0.51775

After 10 iterations, root = 0.5177

Example 3. Find a real root of the equation x3 – 2x – 5 = 0 by the method of
false position correct to three decimal places.
Sol. Let  f(x) = x3 – 2x – 5 so that f(2) = – 1 and f(3) = 16
i.e.,  A root lies between 2 and 3. Using Regula-Falsi method,

x2 = x0 – 
( )

( ) ( )
( )

x x
f x f x

f x1 0

1 0
0

−
−



124 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

= 2 – 
( )
( )
3 2
16 1

−
+  (– 1) = 2.0588

Now f(x2) = f(2.0588) = – 0.3908

i.e., The root lies between 2.0588 and 3.

Now again,   x3 = 2.0588 – 
3 0588

16 0
−
+

F
HG

I
KJ

2.
.3908  (– 0.3908) = 2.0813

Repeating this process, the successive approximations are

x4 = 2.0862 ...... x8 = 2.0943 etc.

Hence, the root is 2.094, correct to three decimal places.

Example 4. Find the root of the equation tan x + tanh x = 0 which lies in the
interval (1.6, 3.0) correct to four significant digits using the method of false
position.
Sol. Let   f(x) ≡ tan x + tanh x = 0

Since f(2.35) = – 0.03

and f(2.37) = 0.009

Hence, the root lies between 2.35 and 2.37.

Using Regula-Falsi method,

x2 = x
x x

f x f x
f x0

1 0

1 0
0−

−
−

R
S
T

U
V
W( ) ( )

( )

= −
−
+

F
HG

I
KJ

−2 35
2 37 2 35

0 009 0 03
0 03.

. .
. .

( . ) Let  
and

x
x
0

1

2 35
2 37

=
=

.
.

= + F
HG

I
KJ

=2 35
0 02
0 039

0 03 2 365.
.

.
( . ) .

Now   f(x2) = – 0.00004 (–)ve

Hence, the root lies between 2.365 and 2.37.

Using Regula-Falsi method,

x3 = x2 – 
x x

f x f x
f x1 2

1 2
2

−
−

R
S
T

U
V
W( ) ( )

( ) Replacing
byx x0 2

= −
−

+
F
HG

I
KJ

−2 365
2 37 2 365

0 009 0 00004
0 00004.

. .
. .

( . )



ALGEBRAIC AND TRANSCENDENTAL EQUATIONS    125

= + F
HG

I
KJ

=2 365
0 005

0 00904
0 00004 2 365.

.
.

( . ) .

Hence, the required root is 2.365, correct to four significant digits.

Example 5. Using the method of false position, find the root of the equation
x6 – x4 – x3 – 1 = 0 up to four decimal places.

Sol. Let f(x) = x6 – x4 – x3 – 1

f(1.4) = – 0.056

 f(1.41) = 0.102

Hence, the root lies between 1.4 and 1.41.
Using the method of false position,

x2 = x0 – 
x x

f x f x
f x1 0

1 0
0

−
−

R
S
T

U
V
W( ) ( )

( )

= −
−
+

F
HG

I
KJ

−1.
1. 1.

.102
4

41 4
0 0 056

0 056
.

( . )
Let, 1.

and 1.

x

x
0

1

4

41

=
=

= + F
HG

I
KJ

=1.
.158

1.4
0 01

0
0 056 4035

.
( . )

Now  f(x2) = – 0.0016 (–)ve
Hence, the root lies between 1.4035 and 1.41.
Using the method of false position,

x3 = x
x x

f x f x
f x2

1 2

1 2
2−

−
−

R
S
T

U
V
W( ) ( )

( ) Replacing byx x0 2

= −
−
+

F
HG

I
KJ

−1.
1. 1.

4035
41 4035

0 102 0 0016
0 0016

. .
( . )

 = + F
HG

I
KJ

=1.
.1036

1.4035
0 0065
0

0 0016 4036
.

( . )

Now f(x3) = – 0.00003 (–)ve
Hence, the root lies between 1.4036 and 1.41.
Using the method of false position,

x4 = x3 – 
x x

f x f x
f x1 3

1 3
3

−
−

R
S
T

U
V
W( ) ( )

( )
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= +
−
+

F
HG

I
KJ

1.
1. 1.
.102

4036
41 4036

0 0 00003
0 00003

.
( . )

= + F
HG

I
KJ

=1.
.10203

1.4036
0 0064

0
0 00003 4036

.
( . )

Since x3 and x4 are approximately the same up to four decimal places, the
required root of the given equation is 1.4036.

Example 6. Find a real root of the equation x log10 x = 1.2 by Regula-Falsi
method correct to four decimal places.

Sol. Let f(x) = x log10 x – 1.2

Since  f(2.74) = – .0005634

and f(2.741) = .0003087

Hence, the root lies between 2.74 and 2.741.
Using the method of False position,

x2 = x
x x

f x f x
f x0

1 0

1 0
0−

−
−

R
S
T

U
V
W( ) ( )

( )
Let

and 

x

x
0

1

2 74

2 741

=
=

.

.

= 2 74
2 741 2 74

0003087 0005634
0005634.

. .
. ( . )

( . )−
−

− −
R
S
T

U
V
W

−

= 2.74 + 
.

.
(. )

001
0008721

0005634F
HG

I
KJ

= 2.740646027

Now    f(x2) = – .00000006016 i.e., (–)ve

Hence, the root lies between 2.740646027 and 2.741.

Using the method of false position,

 x3 = x
x x

f x f x
f x2

1 2

1 2
2−

−
−

R
S
T

U
V
W( ) ( )

( ) | Replacing x0 by x2

= 2.740646027 – 2 741 2 740646027
0003087 00000006016

00000006016
. .

. .
( . )

−
+

F
HG

I
KJ

−

= 2.740646096

Since x2 and x3 agree up to seven decimal places, the required root, correct
to four decimal places, is 2.7406.
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Example 7. (i) Apply False-position method to find the smallest positive root of
the equation

x – e–x = 0
correct to three decimal places.
(ii) Find a positive root of xex = 2 by the method of false position.

Sol. (i) Let f(x) = x – e–x

Since  f(.56) = – .01121
and f(.58) = .0201

Hence, the root lies between .56 and .58.
Let  x0 = .56 and x1 = .58
Using the method of false position,

 x2 = x
x x

f x f x
f x0

1 0

1 0
0−

−
−

R
S
T

U
V
W( ) ( )

( )

= .
. .

. .
( . )56

58 56
0201 01121

01121−
−

+
F
HG

I
KJ

−

= .56716
Now f(x2) = .00002619 i.e., (+)ve
Hence, the root lies between .56 and .56716.
Using the method of false position,

x3 = x
x x

f x f x
f x0

2 0

2 0
0−

−
−

R
S
T

U
V
W( ) ( )

( ) | Replacing x1 by x2

= .
. .

. .
( . )56

56716 56
00002619 01121

01121−
−
+

F
HG

I
KJ

−

= .567143
Since x2 and x3 agree up to four decimal places, the required root correct to

three decimal places is 0.567.

(ii) Let f(x) = xex – 2

Since f(.852) = – .00263

and f(.853) = .001715

The root lies between .852 and .853.
Let x0 = .852 and x1 = .853

Using the method of false position,

x2 = x
x x

f x f x
f x0

1 0

1 0
0−

−
−

R
S
T

U
V
W( ) ( )

( )
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= .
. .

. ( . )
( . )852

853 852
001715 00263

00263−
−

− −
R
S
T

U
V
W

−

= .852605293

Now f(x2) = – .00000090833

Hence, the root lies between .852605293 and .853

Using the method of false position,

x3 = x
x x

f x f x
f x2

1 2

1 2
2−

−
−

R
S
T

U
V
W( ) ( )

( ) | Replacing x0 by x2

=  (.852605293) – 
.

. ( . )
( . )

853 852605293
001715 00000090833

00000090833
−

− −
R
S
T

U
V
W

−

= 0.852605501
Since x2 and x3 agree up to 6 decimal places, the required root correct to 6

decimal places is 0.852605.

Example 8. (i) Solve x3 – 5x + 3 = 0 by using Regula-Falsi method.

(ii) Use the method of false position to solve x3 – x – 4 = 0.

Sol. (i) Let   f(x) = x3 – 5x + 3

Since f(.65) = .024625

and f(.66) = – .012504

The root lies between .65 and .66.
Let   x0 = .65 and x1 = .66

Using the method of false position,

x2 = x0 – 
x x

f x f x
f x1 0

1 0
0

−
−

R
S
T

U
V
W( ) ( )

( )

 = .65 – 
. .

. .
(. )

66 65
012504 024625

024625
−

− −
F
HG

I
KJ

 = .656632282

Now f(x2) = – .00004392

Hence, the root lies between .65 and .656632282.

Using the method of false position,

    x3 = x0 – 
x x

f x f x
f x2 0

2 0
0

−
−

R
S
T

U
V
W( ) ( )

( )
Replacing

byx x1 2
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    = .
. .

. .
(. )65

656632282 65
00004392 024625

024625−
−

− −
F
HG

I
KJ

 = .656620474.

Since x2 and x3 agree up to 4 decimal places, the required root is .6566,
correct up to four decimal places. Similarly, the other roots of this equation are
1.8342 and – 2.4909.
(ii) Let f(x) = x3 – x – 4

Since   f(1.79) = – .054661
and   f(1.80) = .032

The root lies between 1.79 and 1.80
Let       x0 = 1.79 and x1 = 1.80
Using the method of false position,

   x2 = x
x x

f x f x
f x0

1 0

1 0
0−

−
−

R
S
T

U
V
W( ) ( )

( )

= 1.79
1.80 1.79

−
−

− −
R
S
T

U
V
W

−
. ( . )

( . )
032 054661

054661

= 1.796307

Now,  f(x2) = – .00012936

Hence, the root lies between 1.796307 and 1.80.

Using the method of false position,

 x3 = x
x x

f x f x
f x2

1 2

1 2
2−

−
−

R
S
T

U
V
W( ) ( )

( )

= 1.796307 – 
1.8 1.796307

.032 ( .00012936)
( .00012936)

−
− −

R
S
T

U
V
W

−

= 1.796321.

Since x2 and x3 are the same up to four decimal places, the required root is
1.7963, correct up to four decimal places.
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3.21 CONVERGENCE OF REGULA-FALSI METHOD

If < xn > is the sequence of approximations obtained from

  xn + 1 = xn – 
( )

( ) ( )
( )

x x

f x f x
f xn n

n n
n

−
−

−

−

1

1
(8)

and α is the exact value of the root of the equation f(x) = 0, then

Let xn = α + en

 xn + 1 = α + en + 1

where en, en + 1 are the errors involved in nth and (n + 1)th approximations,
respectively.

Clearly, f(α) = 0. Hence, (8) gives

α + en + 1 = α + en – 
( )

( ) ( )
. ( )

e e

f e f e
f en n

n n
n

−
+ − +

−

−

1

1α α
α +

or en + 1 = 
e f e e f e

f e f e
n n n n

n n

− −

−

+ − +
+ − +

1 1

1

( ) ( )

( ) ( )

α α
α α

=

+ ′ + ″ +
L

N
M
M

O

Q
P
P

− + ′ + ″ +
L

N
M
M

O

Q
P
P

+ ′ + ″ +
L

N
M
M

O

Q
P
P

− + ′ + ″ +
L

N
M
M

O

Q
P
P

−

−
−

−
−

e f e f
e

f

e f e f
e

f

f e f
e

f

f e f
e

f

n n
n

n n
n

n
n

n
n

1

2

1
1

2

2

1
1

2

2
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or  en + 1 ≈ 
e e f

f
n n − ″

′
1

2 !
( )
( )
α
α

(9)

(neglecting high powers of en, en – 1)

Let en + 1 = c en
k , where c is a constant and k > 0.

∴   en = c ek
n – 1

or      en – 1 = c–1/k  en
1/k

∴ From (9),     c en
k ≈ e c

e
f
f

n
k

n
k

− ″
′

1/
1/

2 !
.

( )
( )
α
α

 = ″
′

−
+c

e
f
f

k

n
k

1/
1 1/

2 !
.

( )
( )
α
α

Comparing the two sides, we get

    k = 1 + 
1
k

and c = 
c f

f

k− ″
′

1/

2 !
( )
( )
α
α

Now,   k = 1 + 
1
k

⇒ k2 – k – 1 = 0 ⇒ k = 1.618

Also,     c = c–1/k . 
1
2 !

( )
( )

f
f
″
′

α
α

  c c
f
f

k
1

1
1
2

+
= =

″
′

1.618 ( )
( )
α
α

or   c = 
f
f
″
′

L

N
M

O

Q
P

( )
( )
α
α2

0.618

This gives the rate of convergence and k = 1.618 gives the order of
convergence.

ASSIGNMENT 3.3

1. Solve x3 – 9x + 1 = 0 for the root lying between 2 and 4 by the method of false position.

2. Find real cube root of 18 by Regula-Falsi method.

3. Find the smallest positive root correct to three decimal places of the equation cosh x cos x
= – 1.

4. Determine the real roots of f(x) = x3 – 98 using False position method within Es = 0.1%.

5. Write a short note on Regula-Falsi method.

6. Using the False-position method, find x when x2 – 9 = 0. Give computer program using ‘C’.
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7. Find the real root of the equations

(i) x3 – 4x + 1 = 0 (ii) x3 – x2 – 2 = 0

(iii) x3 + x – 3 = 0 (iv) x3 – 5x – 7 = 0

by using the method of false-position.

8. Find the real root of the equations

(i) x4 – x3 – 2x2 – 6x – 4 = 0 (ii) x6 – x4 – x3 – 3 = 0

(iii) xex = 3 (iv) x2 – loge x – 12 = 0

(v) x = tan x (vi) 3x = cos x + 1

by using the method of false position.

9.  (i) Explain Regula-Falsi method by stating at least one advantage over the bisection
method.

(ii) Discuss the method of false position.

10. Solve the following equations by Regula-Falsi method.

(i) (5 – x) ex = 5 near x = 5 (ii) x3 + x – 1 = 0 near x = 1

(iii) 2x – log10 x = 7 lying b/w 3.5 and 4 (iv) x3 + x2 – 3x – 3 = 0 lying b/w 1 and 2

(v) x3 – 3x + 4 = 0 b/w – 2 and – 3 (vi) x4 + x3 – 7x2 – x + 5 = 0 lying b/w 2 and 3.

11. Find the rate of convergence for Regula-Falsi method.

12. Illustrate the false position method by plotting the function on a graph and discuss the
speed of convergence to the root. Develop the algorithm for computing the roots using
the false-position technique.

13. Find all the roots of cos x – x2 – x = 0 to 5 decimal places.

14. A root of the equation f(x) = x – φ(x) = 0 can often be determined by combining the
iteration method with Regula-Falsi.

(i) With a given approximate value x0, we compute

x1 = φ(x0), x2 = φ(x1)

(ii) Observing that f(x0) = x0 – x1 and f(x1) = x1 – x2, we find a better approximation x′
using Regula-Falsi on the points (x0, x0 – x1) and (x1, x1 – x2).

(iii) This last x′ is taken as a new x0 and we start from (i) all over again.

Compute the smallest root of the equation x – 5 loge x = 0 with an error less than
0.5 × 10–4 starting with x0 = 1.3.

3.22 SECANT METHOD

This method is quite similar to that of the Regula-Falsi method except for the
condition f(x1) . f(x2) < 0. Here the graph of the function y = f(x) in the
neighborhood of the root is approximated by a secant line or chords. Further,
the interval at each iteration may not contain the root.

Let the limits of interval initially be x0 and x1.



ALGEBRAIC AND TRANSCENDENTAL EQUATIONS    133

Then the first approximation is given by:

x2 = x1 – 
x x

f x f x
1 0

1 0

−
−

L

N
M

O

Q
P( ) ( )
 f(x1)

Again, the formula for successive approximation in general form is

xn+1 = xn – 
x x

f x f x
n n

n n

−
−

L

N
M

O

Q
P

−

−

1

1( ) ( )
 f(xn)

If at any stage f(xn) = f(xn–1), this method will fail.
Hence this method does not always converge while the Regula-Falsi method

will always converge. The only advantage in this method lies in the fact that if
it converges, it will converge more rapidly than the Regula-Falsi method.

x2x1x0 x3 X

Y

o

Secant Method

EXAMPLES

Example 1. A real root of the equation f(x) = x3 – 5x + 1 = 0 lies in the interval
(0, 1). Perform four iterations of the secant method.

Sol. We have, x0 = 0, x1 = 1, f(x0) = 1, f(x1) = – 3

By Secant Method,

The first approximation is

 x2 = x1 – 
x x

f x f x
1 0

1 0

−
−

L

N
M

O

Q
P( ) ( )

 f(x1) = 0.25

f(x2) = – 0.234375.
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The second approximation is

 x3 = x2 – 
x x

f x f x
2 1

2 1

−
−

L

N
M

O

Q
P( ) ( )

 f(x2) = 0.186441

 f(x3) = 0.074276

The third approximation is

 x4 = x3 – 
x x

f x f x
3 2

3 2

−
−

L

N
M

O

Q
P( ) ( )
 f(x3) = 0.201736

f(x4) = – 0.000470

The fourth approximation is

x5 = x4 – 
x x

f x f x
4 3

4 3

−
−

L

N
M

O

Q
P( ) ( )
 f(x4) = 0.201640.

Example 2. Compute the root of the equation x2e–x/2 = 1 in the interval [0, 2]
using the secant method. The root should be correct to three decimal places.
Sol. We have,

 x0 = 1.42, x1 = 1.43, f(x0) = – .0086, f(x1) = .00034.

By secant method,

The first approximation is

 x2 = x1 – 
x x

f x f x
1 0

1 0

−
−

L

N
M

O

Q
P( ) ( )
 f(x1)

= 1.43 – 
1.43 1.42

.00034 .0086
−
+

F
HG

I
KJ

 (.00034) = 1.4296

f(x2) = – .000011

The second approximation is

  x3 = x2 – 
x x

f x f x
2 1

2 1

−
−

L

N
M

O

Q
P( ) ( )
 f(x2)

= 1.4296 – 
1.4296 1.42

.000011 .00034
−

− −
F
HG

I
KJ

 (– .000011) = 1.4292

Since x2 and x3 agree up to three decimal places, the required root is 1.429.
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ASSIGNMENT 3.4

1. Write the procedure of the secant method to find a root of a polynomial equation to
implement it in ‘C’.

2. The equation x2 – 2x – 3 cos x = 0 is given
(i) Locate the smallest root in magnitude in an interval of length one unit.

(ii) Hence, find this root correct to 3 decimal points using the secant method.
3. Use the secant method to determine the root of the equation cos x – xex = 0.

Now we proceed to discuss some methods useful for obtaining the complex
roots of polynomial equations f(x) = 0.

3.23 LIN-BAIRSTOW’S METHOD OR METHOD FOR COMPLEX

ROOT

This method is applied to obtain complex roots of an algebraic equation with
real coefficients. The complex roots of such an equation occur in pairs a ± ib.
Each such pair corresponds to a quadratic factor

{x – (a + ib)}{x – (a – ib)} = x2 – 2ax + a2 + b2 = x2 + px + q

where coefficients p and q are real.

Let  f(x) = xn + a1 x
n – 1 + ...... + an – 1 x + an

If we divide f(x) by x2 + px + q, we obtain a quotient

Qn – 2 = xn – 2 + b1 x
n – 3 + ...... + bn – 2

and a remainder Rn = Rx + S

Thus, f(x) = (x2 + px + q) (xn – 2 + b1 x
n – 3 + ...... + bn – 2) + Rx + S

(10)

If x2 + px + q divides f(x) completely, the remainder Rx + S = 0 i.e., R = 0,
S = 0. Therefore, R and S depend upon p and q.

Our problem is to find p and q such that

 R(p, q) = 0, S(p, q) = 0 (11)

Let p + Δp, q + Δq be the actual values of p and q which satisfy (11), then,

R(p + Δp, q + Δq) = 0; S(p + Δp, q + Δq) = 0

To find the corrections Δp, Δq, we have the following equations:

 cn – 2 Δp + cn – 3 Δq = bn – 1

(cn – 1 – bn – 1) Δp + cn – 2 Δq = bn
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After finding the values of bi’ s and ci’ s by synthetic division scheme, we
obtain approximate values of Δp and Δq, say Δp0 and Δq0.

If p0, q0 are the initial approximations, then their improved values are
p1 = p0 + Δp0, q1 = q0 + Δq0.

Now, taking p1 and q1 as  the  initial  values and repeating the process, we
can get better values of p and q.

1. Synthetic division scheme is as follows

a0 (= 1) a1 a2 a3 ...... an – 2 an – 1 an

– pb0 – pb1 – pb2 ...... – pbn – 3 – pbn – 2 – pbn – 1 – p

– qb0 – qb1 ...... – qbn – 4 – qbn – 3 – qbn – 2 – q

b0 (= 1) b1 b2 b3 ...... bn – 2 bn – 1 bn

– pc0 – pc1 – pc2 ...... – pcn – 3 – pcn – 2 – p

– qc0 – qc1 ...... – qcn – 4 – qcn – 3 – q

c0 (= 1) c1 c2 c3 ...... cn – 2 cn – 1

2. Values of p0 and q0 should be given, otherwise we pick values of p and q
which make R and S both zero.

3. Bairstow’s method works well only if the starting trial values of p and q
are close to the correct values. In this case the convergence is quite rapid.
If the starting values are arbitrarily chosen, then the method does not
converge but very often diverges.

4. Δp, Δq provide new guesses. The process is repeated until the approximate
error falls below the prespecified tolerance.

| ∈p | = 
Δp
p

i

i 1+
 × 100%

and | ∈q | = 
Δq
q

i

i 1+
 × 100%.

EXAMPLES

Example 1. Solve x4 – 5x3 + 20x2 – 40x + 60 = 0 given that all the roots of f(x) = 0
are complex, by using Lin-Bairstow method. Take the values as p0 = – 4, q0 = 8.

NOTE
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Sol. Starting with the values p0 = – 4, q0 = 8, we have

1 – 5 20 – 40 60

– 4 – 4  32  0 4
– 8 8 – 64 – 8

1 – 1 8 0(= bn – 1) – 4(= bn)

4 12 48 4

– 8 – 24 – 8

1 3(= cn – 3) 12(= cn – 2) 24(= cn – 1)

∴ cn – 1 – bn – 1 = 24 – 0 = 24 (12)

Corrections Δp0 and Δq0 are given by

  cn – 2 Δp0 + cn – 3 Δq0 = bn – 1 ⇒ 12 Δp0 + 3 Δq0 = 0 (13)

and  (cn – 1 – bn – 1) Δp0 + cn – 2 Δq0 = bn

⇒ 24 Δp0 + 12 Δq0 = – 4 (14)

Solving (13) and (14), we get

Δp0 = 0.1667, Δq0 = – 0.6667

∴ p1 = p0 + Δp0 = – 3.8333

q1 = q0 + Δq0 = 7.3333

Also,   | ∈p | = 
Δp
p

0

1
 × 100%

= 
0.1667
3.8333−

 × 100% = 4.3487%

and | ∈q | = 
Δq
q

0

1
 × 100%

= 
− .6667
7.3333  × 100% = 9.0914%
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Now, repeating the same process, i.e., dividing f(x) by x2 – 3.8333x + 7.3333,
we get

1 – 5 20 – 40 60

3.8333 – 4.4723 31.4116 – 0.125 3.8333

– 7.3333 8.5558 – 60.092 – 7.3333

1 – 1.1667 8.1944 – 0.0326 – 0.217

||
bn −

F

HG
I

KJ1

||
bn

F
HG
I
KJ

3.8333 10.2219 42.4845 3.8333

– 7.3333 – 19.555 – 7.3333

1 2.6666 11.083 22.8969

(= cn – 3) (= cn – 2) (= cn – 1)

∴  cn – 1 – bn – 1 = 22.8969 – (– 0.0326) = 22.9295

Corrections Δp1 and Δq1 are given by

11.083 Δp1 + 2.6666 Δq1 = – 0.0326

 22.9295 Δp1 + 11.083 Δq1 = – 0.217

Solving, we get Δp1 = 0.0033

Δq1 = – 0.0269

∴  p2 = p1 + Δp1 = – 3.83

 q2 = q1 + Δq1 = 7.3064

Also,   | ∈p | = 
Δp
p

1

2
 × 100%

= 0.0033
3.83−

 × 100% = .08616%

and   | ∈q | = 
Δq
q

1

2
 × 100%

= 
− 0.0269
7.3064

 × 100% = .3682%

So, one of the quadratic factors of f(x) is

x2 – 3.83x + 7.3064 (15)
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If α ± iβ are its roots, then,

 2α = 3.83, α2 + β2 = 7.3064

giving,  α = 1.9149, β = 1.9077

Hence, the pair of roots is 1.9149 ± 1.9077i

To find the remaining two roots of f(x) = 0, we divide f(x) by (15) as follows

1 – 5 20 – 40 60
3.83 – 4.4811 31.4539 3.83

– 7.3064 8.5485 – 60.0038 – 7.3064

1 – 1.17 8.2125 0.0024 – .0038
≈ 0 ≈ 0

The other quadratic factor is x2 – 1.17x + 8.2125

If γ ± iδ are its roots, then  2δ = 1.17, γ2 + δ2 = 8.2125

giving,    γ = 0.585, δ = 2.8054

Hence, the pair of roots is 0.585 ± 2.8054 i.

Example 2. Find a quadratic factor of the polynomial

x4 + 5x3 + 3x2 – 5x – 9 = 0

starting with p0 = 3, q0 = – 5 by using Bairstow’s method.

Sol. We have

1 5 3 – 5 – 9
– 3 – 6 – 6 3 – 3

5 10 10 5

1 2 2 – 1(= bn – 1) 4(= bn)
– 3 3 – 30 – 3

5 – 5 5

1 – 1 10 – 36
↓ ↓ ↓

cn – 3 cn – 2 cn – 1

∴ cn – 1 – bn – 1 = – 36 + 1 = – 35

Corrections Δp0 and Δq0 are given by

cn – 2 Δp0 + cn – 3 Δq0 = bn – 1 ⇒ 10 Δp0 – Δq0 = – 1 (16)

and (cn – 1 – bn – 1) Δp0 + cn – 2 Δq0 = bn ⇒ – 35 Δp0 + 10 Δq0 = 4 (17)
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Solving (16) and (17), we get

 Δp0 = – 0.09, Δq0 = 0.08

Thus p1, q1, the first approximations of p and q are given by
 p1 = p0 + Δp0 = 2.91

  q1 = q0 + Δq0 = – 4.92

   | ∈p | = 
Δp
p

0

1
 × 100%

 = 
− 0.09
2.91

 × 100% = 3.0927%

  | ∈q | = 
Δq
q

0

1
 × 100%

= 
0.08
4.92−

 × 100% = 1.6260%.

Repeating the same process, i.e., dividing f(x) by x2 + 2.91x – 4.92, we get

1 5 3 – 5 – 9
– 2.91 – 6.08 – 5.35 0.20 – 2.91

4.92 10.28 9.05 4.92

1 2.09 1.84 – 0.07 0.25
– 2.91 2.37 – 26.57 – 2.91

4.92 – 4.03 4.92

1 – 0.82 9.13 – 30.67

At this step, the corrections Δp1 and Δq1 are given by

 9.13 Δp1 – 0.82 Δq1 = – 0.07

 – 30.60 Δp1 + 9.13 Δq1 = 0.25

⇒  Δp1 = – 0.00745

   Δq1 = 0.00241

Hence, the second approximations of p and q are given by

 p2 = p1 + Δp1 = 2.91 – 0.00745 = 2.90255

 q2 = q1 + Δq1 = – 4.92 + 0.00241 = – 4.91759
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| ∈p | = 
Δp
p

1

2
 × 100%

= 
− 0.00745
2.90255

 × 100% = .2566%

  | ∈q | = 
Δq
q

1

2
 × 100%

= 
0.00241
4.91759−

 × 100% = .04901%.

Thus, a quadratic factor is

x2 + 2.90255 x – 4.91759

Dividing the given equation by this factor, we can obtain the other quadratic
factor.

ASSIGNMENT 3.5

1. Find the quadratic factor of x3 – 3.7x2 + 6.25x – 4.069 after two iterations. Use p0 = – 2.5,
q0 = 0.

2. Solve the equation x4 – 8x3 + 39x2 – 62x + 50 = 0 starting with p = q = 0.
3. Find the quadratic factor of x4  – 3x3 + 20x2 + 44x + 54 = 0 close to x2 + 2x + 2.

[Hint: Take p0 = 2, q0 = 2]

3.24 MULLER’S METHOD

In this method, f(x) is approximated by a second degree curve in the vicinity of
a root. The roots of the quadratic are then assumed to be the approximations to
the roots of the equation f(x) = 0.

The method is iterative, converges almost quadratically, and can be used
to obtain complex roots.

Let  xi – 2, xi – 1, xi  be  the  three distinct approximations to a root of f(x) = 0
and let yi – 2, yi – 1, yi be the corresponding values of y = f(x).

Assuming  that  P(x) = A(x – xi)
2 + B(x – xi) + yi  is  the  parabola  passing

through the points (xi – 2, yi – 2), (xi –1, yi – 1) and (xi, yi), we have

  yi – 1 = A(xi  – 1 – xi)
2 + B(xi – 1 – xi) + yi (18)

and   yi – 2 = A(xi – 2 – xi)
2 + B(xi – 2 – xi) + yi (19)
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From equations (18) and (19), we get

 yi – 1 – yi = A(xi – 1 – xi)
2 + B(xi – 1 – xi) (20)

and  yi – 2 – yi = A(xi – 2 – xi)
2 + B(xi – 2 – xi) (21)

Solution of equations (20) and (21) gives,

A = 
( ) ( ) ( ) ( )

( ) ( ) ( )

x x y y x x y y

x x x x x x
i i i i i i i i

i i i i i i

− − − −

− − − −

− − − − −
− − −

2 1 1 2

1 2 1 2
(22)

and B = 
( ) ( ) ( ) ( )

( ) ( ) ( )

x x y y x x y y

x x x x x x
i i i i i i i i

i i i i i i

− − − −

− − − −

− − − − −
− − −

2
2

1 1
2

2

2 1 1 2
(23)

with the values of A and B given in (22) and (23), the quadratic equation now
gives next approximation xi + 1.

∴ xi + 1 – xi = 
− ± −B B A

A

2 4

2

yi
(24)

A direct solution from (24) leads to inaccurate results and therefore it is
usually written in the form,

xi + 1 – xi = −
± −

2

4

y

y

i

iB B A2
(25)

In (25), sign in denominator should be chosen so that the denominator will
be largest in magnitude. With this choice, equation (25) gives the next
approximation to the root.

3.25 ALGORITHM OF MULLER’S METHOD

Step 01. Start of the program.
Step 02. Input the variables xi, xi1, xi2
Step 03. Input absolute error-aerr
Step 04. Repeat Steps 5-12 until |Xn-Xi| < aerr
Step 05. Yi = y(Xi)
Step 06. Yil = y(Xi1)

Step 07. Yi2 = y(Xi2)

Step 08. a = A(Xi, Xi1, Xi2, Yi, Yi1, Yi2)

Step 09. b = B(Xi, Xi1, Xi2, Yi, Yi1, Yi2);
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Step 10. Xn = approx (Xi, Yi, a, b);

Step 11. Check loop condition

Step 12. if no

Step 13. exit loop

Step 14. if yes

Step 15. Xi = Xn

Step 16. increment i

Step 17. End loop

Step 18. Print output

Step 19. End of program

Step 20. Start of section A

Step 21. take Xa, Xb, Xc, Ya, Yb, Yc

Step 22. x = ((Yb-Ya)*(Xc-Xa)-(Yc-Ya)*(Xb-Xa))/((Xb-Xa)*(Xc-Xa)
*(Xb-Xc))

Step 23. Return x

Step 24. End of section A

Step 25. Start of section B

Step 26. Take Xa, Xb, Xc, Ya, Yb, Yc

Step 27. c = (((Yc-Ya)*pow((Xb-Xa),2))-((Yb-Ya)
*pow((Xc-Xa),2)))/((Xb-Xa)*(Xc-Xa)*(Xb-Xc))

Step 28. Return c

Step 29. End of section B

Step 30. Start of section approx

Step 31. Take x, y, a, b

Step 32. c = sqrt(b*b-4*a*y)

Step 33. If (b + c) > (b-c): t = x-((2*y)/(b + c))

Step 34. Else: t = (x-((2*y)/(b-c)))

Step 35. Return t

Step 36. End of section approx
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3.26 FLOW-CHART FOR MULLER’S METHOD

Start

Define fn. y(x)

Get initial approximation in array x

Get values of aerr, maxitr

Loop for itr = 1 to maxitr

Calculate li, di, mu, s

Is mu < 0
Yes

No
li = (2*y(x[0])*di)/(– mu + s)

li = (2*yx[I]*di)/(– mu + s)

x[I + 1] = x[I] + 1 * (x[I] – x[I – 1])

A
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A

Print itr, x(1)

Is fabs
(x[1] – x[0])

< aerr

Yes

No

Loop for i = 0 to 2

x[i] = x[i + 1]

End loop (i)

End loop (itr)

Print 'solution does
not converge

Print ‘‘solution’’

Stop

EXAMPLE

Example. Using Muller’s method, find the root of the equation
y(x) = x3 – 2x – 5 = 0

which lies between 2 and 3. Write its program in ‘C’ language.

Sol. Let    xi – 2 = 1.9, xi – 1 = 2, xi = 2.1

then yi – 2 = – 1.941, yi – 1 = – 1,  yi = .061
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   A = 
( ) ( ) ( ) ( )

( ) ( ) ( )

x x y y x x y y

x x x x x x
i i i i i i i i

i i i i i i

− − − −

− − − −

− − − − −
− − −

2 1 1 2

1 2 1 2

= 
( .2) ( 1.061) ( .1) ( 2.002)

(.1) ( .1) ( .2)
− − − − −

− −  = 
. .

.
2122 2002

002
−

 = 6

  B = 
( ) ( ) ( ) ( )

( ) ( ) ( )

x x y y x x y y

x x x x x x
i i i i i i i i

i i i i i i

− − − −

− − − −

− − − − −
− − −

2
2

1 1
2

2

2 1 1 2

= 
( .2) ( 1.061) ( .1) ( 2.002)

( .1) ( .1) ( .2)

2 2− − − − −
− − −

= 
− +

−
. .

.
04244 0 02002

002
 = 11.21

The next approximation to the desired root is

  xi + 1 = xi – 
2

42

y

y

i

iB B A± −

   = 2 1
2 061

1121 1121 24 0612
.

(. )

. ( . ) ( . )
−

± − ×

= 2.1 – 
0.122

11.21 11.1445+
| Taking (+)ve sign

= 2.094542
The procedure can now be repeated with the three approximations as 2,

2.1, and 2.094542.

Let xi–2 = 2, xi–1 = 2.1 and xi = 2.094542

then yi–2 = – 1, yi–1 = .061 and yi = – .0001058

 A = 
( )( ) ( )( )

( )( )( )
x x y y x x y y

x x x x x x
i i i i i i i i

i i i i i i

− − − −

− − − −

− − − − −
− − −

2 1 1 2

1 2 1 2

= 
( )(. ) ( )( )

( )( )( )
2 061 1

2 2
− + − − − +

− − −
2.094542 .0001058 2.1 2.094542 .0001058

2.1 2.1 2.094542 2.094542

= 
( .094542)(.0611058) (.005458)( .9998942)

(.1)(.005458)( .094542)
− − −

−
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= 
− +

−
.005777064 .005457422

.000051601

= 
−
−

.000319642

.000051601  = 6.194492

 B = 
( ) ( ) ( ) ( )

( )( )( )
x x y y x x y y

x x x x x x
i i i i i i i i

i i i i i i

− − − −

− − − −

− − − − −
− − −

2
2

1 1
2

2

2 1 1 2

= 
( .094542) (.0611058) (.005458) ( .9998942)

( .1)(.005458)( .094542)

2 2− − −
− −

= 
(. )(. ) (. )(. )

.
008938189 0611058 000029789 9998942

000051601
+

= 
.000546175 + .000029785

.000051601
 = 11.161799

The next approximation to the desired root is

 xi+1 = xi – 2

B B A2

y

y

i

i± − 4

= 2.094542 – 
2( .0001058)

11.161799 (11.161799) 4(6.194492)( .0001058)2

−

± − −

= 2.094542 + 
.0002116

11.161799 11.161916+
 = 2.094551

Hence, the required root is 2.0945 correct up to 4 decimal places.

The procedure can be repeated with the three approximations as 2.1,
2.094542, and 2.094551.

/* *****************************************************

PROGRAM TO IMPLEMENT MULLER’S METHOD OF FINDING ROOTS

******************************************************** */

//...HEADER FILES DECLARATION

#include <stdio.h>

#include <string.h>

#include <conio.h>
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#include <math.h>

#include <process.h>

#include <dos.h>

//... Function Prototype Declaration

float y(float);

float A(float,float,float,float,float,float);

float B(float,float,float,float,float,float);

float approx(float,float,float,float);

void main()

{

//... Variable Declaration Field

//... Floating Type

float a,b;

float Xi,Xi1,Xi2;

float Yi,Yi1, Yi2;

float Xn;

float aerr;

//... Integer Type

int i=1;

int loop=0;

//... Invoke Function Clear Screen

clrscr();

//...Input Section

printf("\n\n ");

printf("Enter the values of X(i),X(i-1),X(i-2), absolute
error\n");

printf("\n\n Enter the value of X(i) - ");

scanf("%f",&Xi);

printf("\n\n Enter the value of X(i-1) - ");

scanf("%f",&Xi1);

printf("\n\n Enter the value of X(i-2) - ");

scanf("%f",&Xi2);
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printf("\n\n Enter the value of Absolute Error – ");

scanf("%f",&aerr);

printf("\n\n Processing ");

for(loop=0; loop<10;loop++)

{

delay(200);

printf("...");

}

printf("\n\n\n");

//...Calculation And Processing Section

while(1)

{

Yi=y(Xi);

Yi1=y(Xi1);

Yi2=y(Xi2);

a=A(Xi,Xi1,Xi2,Yi,Yi1,Yi2);

b=B(Xi,Xi1,Xi2,Yi,Yi1,Yi2);

Xn=approx(Xi,Yi,a,b);

printf("\n\n After Iteration %d value of x-%f",i,Xn);

if(fabs(Xn-Xi)<aerr)

{

goto jmp;

}

Xi=Xn;

i++;

}

jmp:

//...Output Section

printf("\n\n After %d iterations root is-%6.6f\n",i+1,Xn);

//...Invoke User Watch Halt Function

printf("\n\n\n Press Enter to Exit");

getch();

}

//...Termination Of Main Execution Thread



150 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

//...Function y body

float y(float x)

{

float t;

t=(x*x*x)-(2*x)-5;

return(t);

}

//...Termination of Function y

//...Function A body

float A(float Xa;float Xb,float Xc,float Ya,float Yb,

float Yc)

{

float x;

x=((Yb-Ya)*(Xc-Xa)-(Yc–Ya)*(Xb-Xa))/((Xb-Xa)*(Xc-Xa)

*(Xb-Xc));

return(x);

}

//...Termination of function A

//...Function B body

float B(float Xa,float Xb,float Xc,float Ya,float Yb,

float Yc)

{

float c;

c=(((Yc-Ya)*pow((Xb-Xa),2))-((Yb-Ya)*pow((Xc-Xa),2)))

/((Xb-Xa)*(Xc-Xa)*(Xb-Xc));

return(c);

}

//...Termination of Function B

//...Function approx body

float approx(float x,float y,float a,float b)

{

int c;

float t;
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c=sqrt(b*b-4*a*y);

if((b+c)>(b-c))

{

t=x-((2*y)/(b+c));

}

else

{

t=(x-((2*y)/(b-c)));

}

return (t);

}

//...Termination of Function approx

OUTPUT

Enter the values of X(i),X(i-1),X(i-2), absolute error

Enter the value of X(i) - 3

Enter the value of X(i-1) - 2

Enter the value of X(i-2) - 1

Enter the value of Absolute Error - 0.000001

Processing ..................................

After Iteration 1 value of x - 2.085714

After Iteration 2 value of x - 2.094654

After Iteration 3 value of x - 2.094550

After Iteration 4 value of x - 2.094552

After Iteration 5 value of x - 2.094552

After 6 iteration root is - 2.094552

Press Enter to Exit

ASSIGNMENT 3.6

1. Use Muller’s method to find a root of the equations:
(i) x3 – x – 1 = 0 (ii) x3 – x2 – x – 1 = 0

which lie between 1 and 2.
2. Apply Muller’s method to find the root of the equation cos x = xex which lies between

0 and 1.

3. Using Muller’s method, find a root of the equations:

(i) x3 – 3x – 5 = 0 which lie between 2 and 3  (ii) log x = x – 3 taking x0 = 0.25, x1 = 0.5
and x2 = 1
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(iii) x3 – 
1
2

 = 0 take x0 = 0, x1 = 1 and x2 = 
1
2

.

4. Solve by Muller’s method: x3 + 2x2 + 10x – 20 = 0 by taking x = 0, x = 1, x = 2 as initial
approximations.

3.27 THE QUOTIENT-DIFFERENCE METHOD

This is a general method to obtain the approximate roots of polynomial
equations. Let the given cubic equation be

f(x) ≡ a0x
3 + a1x

2 + a2x + a3 = 0 (26)

and let x1, x2, and x3 be its roots such that 0 < | x1 | < | x2 | < | x3 |.

The roots can be obtained, directly by considering the transformed equation

a3x3 + a2x
2 + a1x + a0 = 0 (27)

whose roots are the reciprocals of those of (26).

We then have 1

3
3

2
2

1 0 0a x a x a x a
xi i

i+ + +
=

=

∞

∑ α

so that, (a3 x
3 + a2 x2 + a1x + a0) (α0 + α1x + α2x

2 + ......) = 1 (28)

Comparing the coefficients of like powers of x on both sides of (28), we get

  α0 = 
1

0a
 , α1 = −

a

a
1

0
2

 , α2 = 
−

+
a

a

a

a
2

0
2

1
2

0
3

Hence, q1
(1) = 

α
α

1

0

1

0
= − a

a

q1
(2) = 

α
α

2

1

2 0 1
2

0 1
=

−a a a
a a

and so,  Δ1
(1) = q1

(2) – q1
(1) = 

a
a

2

1
, Δ2

(0) = 
a
a

3

2

In general, Δm
(m) = 

a

a
m

m

+ 1
, m = 1, 2, 3, ......, (n – 1)
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qm
(1 – m) = 0, m = 2, 3, ......, n

(i.e., q1
(0), q2

(– 1), q3
(– 2), ......, top q’s are 0)

We also set Δ0
(k) = Δn

(k) = 0, for all k

[i.e., First and last columns of Q-d table are zero].

Following is the Quotient-difference table for a cubic equation

q1
(0) q2

(– 1) q3
(– 2)

Δ0
(1) Δ1

(0) Δ2
(– 1) Δ3

(– 2)

q1
(1) q2

(0) q3
(– 1)

Δ0
(2) Δ1

(1)  Δ2
(0)   Δ3

(– 1)

q1
(2)  q2

(1) q3
(0)

Δ0
(3) Δ1

(2)  Δ2
(1) Δ3

(0)

(i) If a Δ-element is at the top of a rhombus, then the product of one pair is
equal to that of the other pair.

For example, in rhombus

Δ1
(1)

q1
(2) q2

(1)

Δ1
(2)

we have Δ1
(1) . q2

(1) = Δ1
(2) . q1

(2)

from which Δ1
(2) can be computed, since other quantities are known.

(ii) If a q-element is at the top, then the sum of one pair is equal to that of
the other pair.

In the rhombus,

q2
(0)

Δ1
(1) Δ2

(0)

q2
(1)

we have q2
(0) + Δ2

(0) = q2
(1) + Δ1

(1)

from which q2
(1) can be computed when q2

(0), Δ1
(1), Δ2

(0) are known.
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As the building up of the table proceeds, the quantities q1
(i), q2

(i), q3
(i) tend

to roots of cubic equations.
The disadvantage of this method is that additional computation is also

necessary. This method can be applied to find the complex roots and multiple
roots of polynomials and also for determining the eigen values of a matrix.

An important feature of this method is that it gives approximate values of
all the roots simultaneously, enabling one to use this method to obtain the first
approximation of all the roots and then apply a rapidly convergent method
such as the generalized Newton method.

EXAMPLE

Example. Find the real roots of the equation x3 – 6x2 + 11x – 6 = 0 using the
Quotient-difference method.

Sol. Here,    a0 = 1, a1 = – 6, a2 = 11, a3 = – 6

Now,  q1
(1) = – 

a
a

1

0
 = 6

 q1
(2) = 

a a a
a a

2 0 1
2

0 1

11 36
6

−
= −

−
 = 4.167

 Δ1
(1) = q1

(2) – q1
(1) = 

a
a

2

1
 = – 1.833

Also,  q2
(0) = 0, q3

(– 1) = 0

 Δ2
(0) = 

a
a

3

2

6
11

= −  = – 0.5454.

The first two rows containing starting values of

q1
(1) q2

(0) q3
(– 1)

Δ0
(2) Δ1

(1) Δ2
(0) Δ3

(– 1)

i.e., 6 0 0

0 – 1.833 – 0.5454 0
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The succeeding rows can be constructed as below:

Δ0 q1 Δ1 q2 Δ2 q3 Δ3

6 0 0

0 – 1.833 – 0.5454 0

4.167 1.288 0.5454

0 – 0.5666 – 0.2310 0

3.600 1.624 0.7764

0 – 0.2556 – 0.1105 0

3.344 1.770 0.8869

0 – 0.1353 – 0.0553 0

3.209 1.8550 0.9422

0 – 0.0782 – 0.0281 0

3.131 1.9051 0.9703

0 – .0476 – .0143 0

3.083 1.9384 0.9846

0 – .0299 – .0073 0

3.053 1.961 .9919

0 – .0192 – .0037 0

3.0338 1.976 .9956

0 – .0125 – .0019 0

3.0213 1.987 .9975

It is evident that q1, q2, q3 are gradually converging to the roots 3, 2, and 1,
respectively.

 ASSIGNMENT 3.7

1. Apply the quotient-difference method to obtain the approximate roots of the equation

f(x) ≡ x3 – 7x2 + 10x – 2 = 0.
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3.28 HORNER’S METHOD

This is the best method of finding the real root of a numerical polynomial
equation. The method works as follows.

Let a positive root of f(x) = 0 lie in between α and α + 1, where α is an
integer. Then the value of the root is α . d1d2d3 ...... where α is the integral part
and d1, d2, d3, ...... are the digits in the decimal part.

Finding d1. First diminish the roots of f(x) = 0 by α so that the roots of the
transformed equation lie between 0 and 1. i.e., the root of the transformed
equation is 0 . d1d2d3 ......

Now multiply the roots of the transformed equation by 10 so that the root
of the new equation is d1 . d2d3 ...... . Thus the first figure after the decimal
place is d1.

Again, diminish the root by d1 and multiply the roots of the resulting
equation by 10 so that the root is d2 . d3 ...... i.e., the second figure after the
decimal place is d2.

Continue the process to obtain the root to any desired degree of accuracy
digit by digit.

EXAMPLE

Example. Using Horner’s method, find the root of x3 + 9x2 – 18 = 0, correct to
two decimal places.
Sol. Let f(x) = x3 + 9x2 – 18

Then f(1) = 1 + 9 – 18 = – ve
and f(2) = 8 + 36 – 18 = + ve
i.e., f(1) and f(2) are of opposite signs. Hence f(x) = 0 has a root between 1 and
2.

∴ The integral part of the root of f(x) = 0 is 1.
Now diminish the roots of the equation by 1.

1 1 9 0 – 18
0 1 10 10

1 1 10 10 – 8
0 1 11

1 1 11 21
0 1

1 12
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∴ The transformed equation is x3 + 12x2 + 21x – 8 = 0.
This equation has a root between 0 and 1.
Multiply the roots of this equation by 10.
∴ The new equation is f1(x) = x3 + 120x2 + 2100x – 8000 = 0
We can see that f1(3) < 0 and f1(4) > 0
∴ The root of f1(x) = 0 lies in between 3 and 4.
Hence the first figure after the decimal place is 3.
Now, diminish the roots of f1(x) = 0 by 3.

3 1 120 2100 – 8000
0 3 369 7407

3 1 123 2469 – 593
0 3 378

3 1 126 2847
0 3

3 129

The  transformed  equation  is  3x3 + 129x2 + 2847x – 593 = 0, whose root
lies between 0 and 1.

Multiplying the roots of this equation by 10, we get the new equation:
f2(x) = 3x3 + 1290x2 + 284700x – 593000 = 0

We can easily see that root of f2(x) lies between 2 and 3, since f2(2) < 0 and
f3(3) > 0.

∴ The second figure after the decimal place is 2.
Diminish the roots of f2(x) = 0 by 2

2 3 1290 284700 – 593000
0 6 2592 574584

2 3 1296 287292 – 18416
0 6 2604

2 3 1302 289896
0 6

3 1308

The transformed equation is 3x3 + 1308x2 + 289896x – 18416 = 0
whose root lies between 0 and 1.
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Multiplying the roots of this equation by 10, we get the new equation as

f3(x) = 3x3 + 13080x2 + 28989600x – 18416000 = 0

We  can  easily  see that  f3(0) < 0 and  f3(1) > 0,  i.e., the root of f3(x) = 0 lies
between 0 and 1.

∴ The third figure after the decimal is zero. We can stop here as the case
requires that the root be correct to 2 decimals. Hence the root is 1.32.

ASSIGNMENT 3.8

1. Find a root of the following equations correct to three decimal places using Horner’s
method.
(i) x3 + 3x2 – 12 x – 11 = 0 (ii) x4 + x3 – 4x2 – 16 = 0

(iii) x3 – 30 = 0.
2. Find the positive root of the equation x3 + x2 + x – 100 = 0, correct to four decimal places

using Horner’s method.

3.29 NEWTON-RAPHSON METHOD

This method is generally used to improve the result obtained by one of the
previous methods. Let x0 be an approximate root of f(x) = 0 and let x1 = x0 + h be
the correct root so that f(x1) = 0.

Expanding f(x0  + h) by Taylor’s series, we get

f(x0) + hf ′(x0) + 
h2

2 !
 f″(x0) + ...... = 0

Since h is small, neglecting h2 and higher powers of h, we get

f(x0) + hf ′(x0) = 0 or h = – 
f x
f x

( )
( )

0

0′
(29)

A better approximation than x0 is therefore given by x1, where

x1 = x0  – 
f x
f x

( )
( )

0

0′

Successive approximations are given by x2, x3, ....... , xn + 1, where

 xn + 1 = xn – 
f x
f x

n

n

( )
( )′

(30) (n = 0, 1, .......)

which is the Newton-Raphson formula.
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1. This method is useful in cases of large  values of f ′(x), i.e., when the
graph of f(x) while crossing the x-axis is nearly vertical.

2. If f ′(x) is zero or nearly 0, the method fails.

3. Newton’s formula converges provided the initial approximation x0 is
chosen sufficiently close to the root.

In the beginning, we guess two numbers b and c such that f(b) and f(c)
are of opposite signs. Then the first approximate root a lies between b
and c.

4. This method is also used to obtain complex roots.

3.30 CONVERGENCE

Comparing (30) with xn + 1 = φ (xn) of the iteration method, we get

φ(xn) = xn + 1 = xn – 
f x
f x

n

n

( )
( )′

In general,  φ(x) = x – 
f x

f xn

( )
( )′

which gives φ′(x) = 
f x f x

f x

( ) ( )

[ ( )]

″
′ 2

Since the iteration method converges if  | φ′ (x) | < 1
∴ Newton’s method converges if

| f (x) f ″ (x) | < [ f ′ (x)]2

in the interval considered.
Assuming f(x),  f ′(x), and f ″(x) to be continuous, we can select a small interval

in the vicinity of the root α in which the above condition is satisfied.
The rate at which the iteration method converges if the initial approximation

to the root is sufficiently close to the desired root is called the rate of
convergence.

3.31 ORDER OF CONVERGENCE

Suppose xn differs from the root α by a small quantity en so that
xn = α + en and xn + 1 = α + en + 1

NOTE
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Then (30) becomes, en + 1 = en –  
f e
f e

n

n

( )
( )
α
α

+
′ +

= en – 
f e f

e
f

f e f

n
n

n

( ) ( )
!

( ) ......

( ) ( ) ......

α α α

α α

+ ′ + ″ +

′ + ″ +

2

2 (By Taylor’s expansion)

= en – 
e f

e
f

f e f

n
n

n

′ + ″ +

′ + ″ +

( ) ( ) .......

( ) ( ) ......

α α

α α

2

2 | ∵ f(α) = 0

= 
e f

f e f
n

n

2

2
″

′ + ″
( )

[ ( ) ( )]
α

α α | Neglect high powers of en

= 
en

2

2
 

f

f e
f
fn

″

′ + ″
′

R
S
T

U
V
W

( )

( )
( )
( )

α

α α
α

1

= 
e f

f
e

f
f

n
n

2 1

2
1.

( )
( )

( )
( )

″
′

+ ″
′

R
S
T

U
V
W

−
α
α

α
α

= 
e f

f
e

f
f

n
n

2

2
1

″
′

− ″
′

+
R
S
T

U
V
W

( )
( )

( )
( )

.......
α
α

α
α

= 
e f

f
e f

f
n n

2 3 2

2 2
″
′

− ″
′

R
S
T

U
V
W

( )
( )

( )
( )

α
α

α
α

 + .......

or
e

e
n

n

+1
2  = 

1
2 2

2
f
f

e f
f

n″
′

− ″
′

R
S
T

U
V
W

( )
( )

( )
( )

α
α

α
α

 + .......

≈ f
f
″
′
( )
( )
α
α2

(Neglecting terms containing powers of en)

Hence by definition, the order of convergence of Newton-Raphson method
is 2, i.e., Newton-Raphson method is quadratic convergent.

This also shows that subsequent error at each step is proportional to the
square of  the previous error and  as such the convergence is quadratic.

Hence, if at the first iteration we have an answer correct to one decimal
place, then it should be correct  to two places at the second iteration, and to
four places at the third iteration.

This means that the number of correct decimal places at each iteration is
almost doubled.
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∴ Method converges very rapidly.
Due to its quadratic convergence, the formula (30) is also termed as a second

order formula.

3.32 GEOMETRICAL INTERPRETATION

Let x0 be a point near the root α of equation f(x)  = 0, then tangent at A{x0, f(x0)}
is

y – f (x0) = f ′(x0) (x – x0)

Y

O Xx2

A

x1 x0

{x , f(x )}0 0

A2

A1

y
=

f(x
)

�

It cuts the x-axis at x1 = x0 – 
f x
f x

( )
( )

0

0′

which is one approximation to root α. If A1 corresponds to x1 on the curve, then
the tangent at A1 will cut the x-axis at x2, nearer to α and is therefore another
approximation to root α.

Repeating this process, we approach the root α quite rapidly. Hence the
method consists of replacing the part of the curve between A and the x-axis by
the means of the tangent to the curve at A0.

3.33 ALGORITHM OF NEWTON-RAPHSON METHOD

Step 01. Start of the program
Step 02. Input the variables x0, n for the task
Step 03. Input Epsilon & delta
Step 04. for i = 1 and repeat if i <= n
Step 05. f0 = f(x0)
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Step 06. df0 = df(x1)
Step 07. if |df0| <= delta

a. Print Slope too small
b. Print x0, f0, df0, i
c. End of Program

Step 08. x1 = x0-(f0/df0)
Step 09. if |(x1-x0)/x1| <epsilon

a. Print convergent
b. Print x1, f(x1), i
c. End of Program

Step 10. x0 = x1
Step 11. End Loop

3.34 FLOW-CHART OF NEWTON–RAPHSON METHOD

START

Define function f(x)

Define function d f(x)

Get the values of x , aerr, maxitr0

Loop for itr = 1 to maxitr

h = f (x )/ d f(x )
x = x – h

0 0

1 0

Print itr, x1

Is fabs (h)
< aerr

No x = x0 1

Yes

Print solution

End loop (itr)

STOP

Print ‘‘solution does
not converge”

STOP
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3.35 NEWTON’S ITERATIVE FORMULAE FOR FINDING INVERSE,

SQUARE ROOT

1. Inverse. The reciprocal or inverse of a number ‘a’ can be considered as a

root of the equation 
1
x

 – a = 0, which can be solved by Newton’s method.

Since f(x) = 
1
x

 – a, f ′(x) = – 
1
2x

∴ Newton’s formula gives

 xn + 1 = xn + 

1

1
2

x
a

x

n

n

−
F

HG
I

KJ

F

HG
I

KJ

 xn + 1 = xn (2 – axn)

2. Square root. The square root of ‘a’ can be considered a root of the equation
x2 – a = 0, solvable by Newton’s method.

Since   f(x) = x2 – a, f ′(x) = 2x

xn + 1 = xn  – 
x a

x
n

n

2

2
−

xn + 1 = 
1
2

x
a
xn

n
+

F

HG
I

KJ

3. Inverse square root. Equation is 1
2x

 – a = 0

Iterative formula is

xn + 1 = 
1
2  xn (3 – a xn

2)

4. General   formula  for  pth root.  The  pth root of a can be considered a
root of  the equation xp – a = 0. To solve this by Newton’s method, we have

  f(x) = xp – a and hence, f ′(x) = pxp – 1
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∴ The iterative formula is   xn + 1 = xn – 
( )x a

px
n

p

n
p

−
− 1

xn + 1 = 
( )p x a

px
n

p

n
p

− +
−

1
1

Also, the general formula for the reciprocal of pth root of a is

x n + 1 = xn 
p ax

p
n

p+ −F

HG
I

KJ
1

.

3.36 RATE OF CONVERGENCE OF NEWTON’S SQUARE ROOT FOR-

MULA

Let a  = α so that a = α2 . If we write

xn = α 
1
1

+
−

F

HG
I

KJ
e
e

n

n

then, xn + 1 = α 
1

1
1

1

+
−

F

H
G

I

K
J

+

+

e

e
n

n
(31)

Also, by formula, xn + 1 = 
1
2

x
a
xn

n
+

F

HG
I

KJ
, we get

xn + 1 = 
1
2

1
1

1
1

α
α

+
−

F

HG
I

KJ
+ −

+
F

HG
I

KJ
L

N
M
M

O

Q
P
P

e
e

a e
e

n

n

n

n

= α
1
1

2

2

+
−

F

HG
I

KJ
e

e
n

n
(32) (∵ a = α2)

Comparing (31) and (32), we get  en + 1 = en
2

confirming quadratic convergence of Newton’s method.

3.37 RATE OF CONVERGENCE OF NEWTON’S INVERSE FORMULA

Let α = 1
a

i.e., a = 
1
α . If we write xn = α(1– en)

then,  xn + 1 = α (1 – en + 1)
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By formula, xn + 1 = xn (2 – axn), we get

xn + 1 = α(1– en) [2 – aα (1– en)] = α(1– en
2) | ∵ aα = 1

Comparing, we get en+1 = en
2, hence, convergence is quadratic.

EXAMPLES

Example 1. Using   Newton-Raphson   method,   find   the   real   root   of  the
equation  3x = cos x + 1 correct to four decimal places. Give computer program
using ‘C’.

Sol. Let f(x) = 3x – cos x – 1

Since f(0) = – 2 = (–)ve;

f(1) = 1.4597 = (+)ve

∴ A root of f(x) = 0 lies between 0 and 1. It is nearer to 1. Let us take
x0 = 0.6.

Also, f ′(x) = 3 + sin x

Newton’s iteration formula gives,

 xn + 1 = xn –  
f x
f x

n

n

( )
( )′

 = xn – 
3 1

3
x x

x
n n

n

− −
+

cos
sin

 = 
x x x

x
n n n

n

sin cos
sin
+ +

+
1

3

If n = 0, the first approximation x1 is given by,

x1 = 
x x x

x
0 0 0

0

1
3

sin cos
sin
+ +

+

= 
0 6 6 0 6 1

3 0 6
. sin cos .

sin .
+ +

+  = .6071

If n = 1,
the second approximation is

x2 = 
x x x

x
1 1 1

1

1
3

sin cos
sin
+ +

+

 = 
. sin (. ) cos(. )

sin (. )
6071 6071 6071 1

3 6071
+ +

+  = 0.6071

Clearly x1 = x2. Hence the desired root is 0.6071, correct to 4 decimal places.
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/* ********************************************************

Program made for NEWTON RAPHSON to solve the equation

******************************************************* *\

//....including source header files

# include <stdio.h>

# include <conio.h>

# include <math.h>

# include <process.h>

# include <string.h>

//....defining formulae

# define f(x) 3*x -cos(x)-1

# define df(x) 3+sin(x)

//...Function Declaration prototype

void NEW_RAP();

//... Main Execution Thread

void main()

{

clrscr();

printf ("\n Solution by NEWTON RAPHSON method \n");

printf ("\n Equation is: ");

printf ("\n\t\t\t 3*X - COS X - 1=0 \n\n ");

NEW_RAP();

getch();

}

//...Function Declaration

void NEW_RAP()

{

//...Internal Declaration Field

long float x1,x0;

long float f0,f1;

long float df0;

int i=1;

int itr;
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float EPS;

float error;

/*Finding an Approximate ROOT of Given Equation, Having
+ve Value*/

for(x1=0;;x1 +=0.01)

{

f1=f(x1);

if (f1 > 0)

{

break;

}

}

/*Finding an Approximate ROOT of Given Equation, Having
-ve value*/

x0=x1-0.01;

f0=f(x0);

printf(" Enter the number of iterations: ");

scanf(" %d",&itr);

printf(" Enter the maximum possible error: ");

scanf("%f",&EPS);

if (fabs(f0) > f1)

{

printf("\n\t\t The root is near to %.4f\n",x1);

}

If (f1 > fabs(f(x0)))

{

printf("\n\t\t The root is near to %.4f\n",x0);

}

x0=(x0+x1)/2;

for(;i<=itr;i++)

{

f0=f(x0);

df0=df(x0);

x1=x0 - (f0/df0);

printf("\n\t\t The %d approximation to the root is:
%f",i,x1);
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error=fabs(x1-x0);

if(error<EPS)

{

break;

}

x0 = x1;

}

if(error>EPS)

{

prinf("\n\n\t NOTE:- ");

printf("The number of iterations are not sufficient.");

}

printf("\n\n\n\t\t\t ------------------------------");

printf("\n\t\t\t The root is %.4f ",x1);

printf("\n\t\t\t ------------------------------");

}

OUTPUT

Solution by NEWTON RAPHSON method

Equation is:

3*X - cos X - 1=0

Enter the number of iterations: 10

Enter the maximum possible error: .0000001

The root is near to 0.6100

The 1 approximation to the root is:0.607102

The 2 approximation to the root is:0.607102

The 3 approximation to the root is:0.607102

--------------------------------

The root is 0.6071

--------------------------------

Example 2. Using Newton’s iterative method, find the real root of  x log10 x = 1.2,
correct to five decimal places.

Sol. f(x) = x log10 x – 1.2

∵ f(1) = – 1.2 = (–)ve

f(3) = 3 log10 3 – 1.2 = (+)ve
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So a root of f(x) = 0 lies between 1 and 3.

Let us take x0 = 2.

and f ′(x) = log10 x + log10 e = log10 x + 0.43429

Newton’s iteration formula gives,

xn + 1 = xn  – 
f x
f x

n

n

( )
( )′

= xn  – 
x x

x
n n

n

log .
log .

10

10

12
43429

−
+

 = 
.43429 1.

.43429
x

x
n

n

+
+

2

10log
(33)

Given n = 0, the first approximation is

x1 = 
.43429 1.

.43429
x0

10

2
2

+
+log

 = 2.81 (∵ x0 = 2)

Similarly, given n = 1, 2, 3, 4 in (33), we get

x2 = 2.741, x3 = 2.74064, x4 = 2.74065, x5 = 2.74065

Clearly, x4 = x5

Hence the required root is 2.74065, correct to five decimal places.

Example 3. Evaluate 12  to four decimal places by Newton’s iterative method.

Sol. Let  x = 12 so that x2 – 12 = 0 (34)

Take f(x) = x2 – 12, Newton’s iteration formula gives,

xn + 1 = xn – 
f x
f x

n

n

( )
( )′  = xn – 

x
x

n

n

2 12
2

−
 = 

1
2

12
x

xn
n

+
F

HG
I

KJ
(35)

Now, since  f(3) = – 3 (–)ve

 f(4) = 4 (+)ve

∴ The root of (34) lies between 3 and 4.

Given x0 = 3.5, (35) gives,

x1 = 
1
2

12
0

0
x

x
+

F

HG
I

KJ
 = 

1
2

3
12
3

.5
.5

+F
HG

I
KJ  = 3.4643

x2 = 
1
2

12
1

1
x

x
+

F

HG
I

KJ
 = 3.4641

x3 = 3.4641
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Since x2 = x3 up to 4 decimal places,

we have 12  = 3.4641.

Example 4. Using Newton’s iterative method, find the real root of
x sin x + cos x = 0 which is near x = π, correct  to 3 decimal places.

Sol. We have
f(x) = x sin x + cos x and f ′(x) = x cos x

The iteration formula is

xn + 1 = xn – 
x x x

x x
n n n

n n

sin cos
cos

+

with x0 = π, x1 = x0 – 
x x x

x x
0 0 0

0 0

sin cos
cos

+
 = π – 

π π π
π π

sin cos
cos

+
 = 2.8233

Successive iteratives are

x2 = 2.7986, x3 = 2.7984, x4 = 2.7984

Since x3 = x4, the required root is 2.798, correct to three decimal places.

Example 5. Find a real root of the equation x = e–x using the Newton-Raphson
method.

Sol. We have f(x) = xex – 1

then, f ′(x) = (1+ x) ex

Let x0 = 1

then, x1 = 1– 
e

e
−F

HG
I
KJ

1
2

 = 
1
2

1
1+F

HG
I
KJe

 = 0.6839397

Now, f(x1) = 0.3553424 and f ′(x1) = 3.337012

so that, x2 = 0.6839397 – 
0 3553424
3 337012
.
.

 = 0.5774545

Proceeding in this way, we obtain

x3 = 0.5672297, x4 = 0.5671433

Hence the required root is 0.5671, correct to 4 decimal places.

Example 6. Find to four decimal places, the smallest root of the equation
e–x = sin x.
Sol. The given equation is

f(x) ≡ e–x – sin x = 0
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so that,  xn + 1 = xn  + 
e x

e x

x
n

x
n

n

n

−

−
−
+

sin

cos

Take x0 = .6 then,
x1 = .58848, x2 = .588559

Hence, the desired value of the root is 0.5885.

Example 7. (i) Find a positive value of (17)1/3, correct to four decimal places,
by the Newton-Raphson method.
(ii) Find the cube root of 10.
Sol. (i) The iterative formula is

xn + 1
 = 

1
3

2 2x
a

xn
n

+
F

HG
I

KJ
(36)

Here a = 17

Take x0 = 2.5 ∵ 8 2 27 33 3= =and

Putting n = 0 in (36), we get

x1 = 
1
3

2
17

0
0

2x
x

+
F

HG
I

KJ
 = 

1
3

5
17

6 25
+F

HG
I
KJ.

 = 2.5733

Putting n = 1 in (36), we get

x2 = 
1
3

2
17

1
1
2x

x
+

F

HG
I

KJ
 = 

1
3

5 1466
17

6 6220
.

.
+F

HG
I
KJ  = 2.5713

Again putting n = 2 in (36), we get

x3 = 
1
3

2
17 1

3
5 1426

17
6 611582

2
2x

x
+

F

HG
I

KJ
= +F
HG

I
KJ

.
.

 = 2.57128

Putting n = 3 in (36), we get

x4 = 
1
3

2
17 1

3
5 14256

17
6 611483

3
2x

x
+

F

HG
I

KJ
= +F
HG

I
KJ

.
.

 = 2.57128

Since x3 and x4 agree to four decimal places, the required root is 2.5713,
correct to four decimal places.

(ii)    xn + 1 = 
2

3

3

2

x a

x
n

n

+
 = 

1
3

2 2x
a

xn
n

+
F

HG
I

KJ
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Take  x0 = 2.5 (∵ 83  = 2 and 273  = 3)

∴  x1 = 2.2 (n = 0)

 x2 = 2.155 (n = 1)

 x3 = 2.15466 (n = 2)

∴  103  ≈ 2.15466.

Example 8. Show that the following two sequences both have convergence of

the second order with the same limit a .

 xn + 1 = 
1
2

xn 1
a

xn
2+

F

HG
I

KJ
 and, xn + 1 = 

1
2

xn 3
x
a
n

2

−
F

HG
I

KJ
.

Sol. Since,   xn + 1 = 
1
2

 xn
 1 2+
F

HG
I

KJ
a

xn
, we  have

  xn + 1 –  a  = 
1
2

 xn 1 2+
F

HG
I

KJ
a

xn
 – a  = 

1
2

 x
a
x

an
n

+ −
F

HG
I

KJ
2

  = 
1
2

x
a

x
n

n

−
F

H
G

I

K
J

2

= 
1

2xn
 (xn – a )2

Thus,  en + 1 = 
1

2xn
 en

2 (37)

which shows the quadratic convergence. Similarly for the second,

xn + 1 – a  = 
1
2

xn 3
2

−
F

HG
I

KJ
x
a
n  – a

= 
1
2

 xn 1
2

−
F

HG
I

KJ
x
a
n + (xn  – a )

= 
x
a
n

2
 (a – xn

2) + (xn – a ) = (xn – a ) 1 − +L
NM

O
QP

x
a

x an
n2 e j

 en + 1 = 
x a

a
n −

2
[2a – xn

2 – xn a ]

= 
x a

a
n −

2
 [(a – xn

2) + (a – xn
a )]
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= – 
x a

a
n −F

HG
I

KJ2
 (xn – a ) (xn + 2 a )

en + 1 = – 
( )x a

a
n − 2

2
 (xn + 2 a ) = – 

( )x a
a

n + 2
2

. en
2 (38)

which shows the quadratic convergence.

Example 9. If xn is a suitably close approximation to a , show that the error
in the formula

xn + 1 = 
1
2

 xn
1

a
xn

2+
F

HG
I

KJ
 is about 

1
3 rd  that in the formula,

xn + 1 = 
1
2

 xn 3
x
a
n

2

−
F

HG
I

KJ
, and deduce that the formula

xn + 1 = 
x
8
n  6

3a
x

x
an

2
n

2

+ −
F

HG
I

KJ  gives a sequence with third order convergence.

Sol. Since xn is very close to a

en + 1 ~−  – 
x x

x
n n

n
2

+F

HG
I

KJ
2

2
 en

2 | From (38)

= 3 . 
1

2xn
 en

2 (39)

A  simple  observation  shows that from (37) (see Ex. 8) and (39), the error

in the first formula for en + 1 is about 
1
3

rd of that in the second formula.

To find the rate of convergence of the given formula, we have

xn + 1 – a = 
xn

8
 6

3
2

2

+ −
F

HG
I

KJ
a

x
x
an

n  – a  = 
x x a a x

ax
n n n

n

( )6 3

8

2 2 4

2

+ −
 – a

= 
6 3 8

8

2 2 4x a a x x a a
x a

n n n

n

+ − −
 = 

− + −( ) ( )x a x a
x a

n n

n

3
8

3

∴ en + 1 = – 
x a

x a
n

n

+F

HG
I

KJ
3

8
 en

3

It shows that above formula has a convergence of third order.
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Exmaple 10. Apply Newton’s formula to find the values of (30)1/5.

Sol. To find the pth root of a, we have

xn + 1 = 
( )p x a

p x
n

p

n
p

− +
−

1
1

Here, a = 30, p = 5, the first approximation is

x1 = 
4 30

5
0

5

0
4

x

x

+

Take x0 = 1.9, we get x1 = 1.98

Again, x2 = 1.973

∴ Value = 1.973 (correct to 3 decimal places).

Example 11. Using the starting value 2(1 + i), solve x4 – 5x3 + 20x2 – 40x + 60
= 0 by Newton-Raphson method, given that all the roots of the given equation
are complex.
Sol. Let  f(x) = x4 – 5x3 + 20x2 – 40x + 60

so that, f ′(x) = 4x3 – 15x2 + 40x – 40

∴ Newton-Raphson method gives,

  xn + 1  = xn – 
f x
f x

n

n

( )
( )′

= xn – 
x x x x

x x x
n n n n

n n n

4 3 2

3 2

5 20 40 60

4 15 40 40

− + − +
− + −

= 
3 10 20 60

4 15 40 40

4 3 2

3 2

x x x

x x x
n n n

n n n

− + −
− + −

Put n = 0, take x0 = 2(1 + i) by trial, we get

x1 = 1.92 (1 + i)

Again, x2 = 1.915 + 1.908 i

Since imaginary roots occur in conjugate pairs roots are 1.915 ± 1.908 i up
to 3 decimal places. Assuming the other pairs of roots to be α ± iβ, then

Sum = 

α β α β+ + −
+ +
+ −

F

H

G
G

I

K

J
J

i i
i
i

1915 1908
1915 1908
. .
. .

 = 2α + 3.83 = 5

⇒ α = 0.585
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Also, the product of the roots = (α2 + β2)  [(1.915)2 + (1.908)2] = 60
⇒  β = 2.805
Hence, the other two roots are 0.585 ± 2.805 i.

Example 12. Obtain Newton-Raphson’s extended formula

x1 = x0 – 
f(x )

f (x )
0

0′
 – 1

2
.
{f(x )} . f (x )

{f (x )}
0

2
0

0
3

″
′

for the root of the equation f(x) = 0, also known as Chebyshev formula of third
order.
Sol. Expanding f(x) by Taylor’s series in the neighborhood of x0, we get

f(x)  = 0 ⇒ f(x0) + (x – x0) f ′(x0) = 0

⇒  x = x0 – 
f x
f x

( )
( )

0

0′

This is I approximation to the root.

∴ x1 = x0 – 
f x
f x

( )
( )

0

0′

Again By Taylor’s series, we have

 f(x) = f(x0) + (x – x0) f ′(x0) + 
( )x x− 0

2

2
 f ″(x0)

∴ f(x1) = f(x0) + (x1 – x0) f ′(x0) + 
( )x x1 0

2

2
−

f ″(x0)

But f(x1) = 0 as x1 is an approximation to the root.

∴ f(x0) + (x1– x0) f ′(x0) + 
1
2

 (x1 – x0)
2 f ″(x0) = 0

or f(x0) + (x1 – x0) f ′(x0) + 
1
2

 
{ ( )} ( )

( )

f x f x

f x
0

2
0

0

″
′ 2

 = 0

⇒ x1 = x0 – 
f x
f x

( )
( )

0

0′
 – 

1
2

 
{ ( )} ( )

{ ( )}

f x f x

f x
0

2
0

0
3

″
′

This formula can be used iteratively.

Example 13. The graph of y = 2 sin x and y = log x + c touch each other in the
neighborhood of  point x = 8. Find c and the coordinates of  point of contact.
Sol. The graphs will touch each other if the values of dy/dx at their point of
contact is same.
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For y = 2 sin x,
dy
dx

  = 2 cos x

For y = log x + c
dy
dx

 = 
1
x

∴ 2 cos x = 
1
x

⇒ x cos x – .5  = 0

Let f(x) = x cos x – .5

∴   f ′(x) = cos x – x sin x

∴ Newton’s iterative formula is

xn + 1 = xn – 
x x

x x x
n n

n n n

cos .
cos sin

−
−

0 5

For n = 0,  x0 = 8,  first app. x1 = 7.793

Second approximation, x2 = 7.789 ≈ 7.79

Now,  y = 2 sin 7.79 = 1.9960

∴ Point of contact → (7.79, 1.996)

Now,  y = log x + c

⇒ 1.996 = log 7.79 + c ⇒ c = – 0.054.

Example 14. Using the starting value x0 = i, find a zero of

x4  + x3 + 5x2 + 4x + 4 = 0.

Sol. By Newton’s method

x1 = i – 
f i
f i

( )
( )′

 = i – 
3

1 6
i

i+
 = .486 + .919 i

Now, x2 = .486 + .919 i – 
f i
f i

(. . )
(. . )
486 919
486 919

+
′ +

 = .486 + .919 i – 
− +

+
F
HG

I
KJ

. .
. .
292 174

178 6 005
i
i

 = – .499 + 0.866i

The actual root is  x = 
− +1 3

2
i

.

Example 15. Show that the square root of  N = AB is given by

   N  ~−  
S
4

N
S

+ , where  S = A + B.
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Sol. Let  x = N

⇒ x2 – N = 0

Let f(x) = x2 – N

∴  f ′(x) = 2x

By Newton-Raphson formula,

 xn + 1 = xn – 
f x
f x

n

n

( )
( )′

 = x
x

x
x

xn
n

n

n

n
−

−
= +

2

2
N

2
N

2

Let xn = 
A + B

2

then,  xn + 1 = 
A + B

4
N

A B
+

+  ~− +S
4

N
S

| Since S = A + B

Example 16. Determine the value of p and q so that the rate of convergence of
the iterative method

  xn + 1 = pxn + q
N

xn
2

for computing N1/3 becomes as high as possible.

Sol. We have x3 = N
∴ f(x) = x3 – N
Letting α be the exact root, we have

α3 = N

Substituting xn = α + en, xn + 1 = α + en + 1, N = α3 in xn + 1 = pxn + q
N

xn
2

, we get

  α + en + 1 = p(α + en) + q 
α

α

3

2( )+ en

= p e q
e

n
n

( )α α

α
α

+ +
+F

HG
I
KJ

3

2
2

1

= p(α + en) + qα 1
2

+F
HG

I
KJ

−en

α

= p e q
e e

n
n n( ) .........α α

α α
+ + − + F

HG
I
KJ

−
R
S
|

T|

U
V
|

W|
1 2 3

2
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= p e q qe q
e

n n
n( )α α

α
+ + − +2 3

2

 – ........

⇒ en + 1 = (p + q – 1)α + (p – 2q)en + 0(en
2) + .......

Now for the method to become of the highest order as possible, i.e., of order
2, we must have

 p + q = 1 and p – 2q = 0

so that, p = 
2
3

and q = 
1
3

.

Example 17. How should the constant α be chosen to ensure the fastest possible
convergence with the iteration formula?

 xn+1 = α
α

x x 1
1

n n
2+ +

+

−
.

Sol. Since lim lim
n

n
n

nx x
→ ∞ → ∞

+= 1 = ξ, we have

ξ = 

αξ
ξ

α

+ +

+

F

H

G
G

I

K

J
J

1
1

1

2

⇒ (α + 1)ξ3 = αξ3 + ξ2 + 1

⇒    ξ3 – ξ2 – 1 = 0

ξ can be obtained by finding a root of the equation x3 – x2 – 1 = 0.

We have  f(x) = x3 – x2 – 1

f ′(x) = 3x2 – 2x

Since f(1.45) = (–)ve and f(1.47) = (+)ve

∴ Root lies between 1.45 and 1.47.

Let x0 = 1.46

By Newton-Raphson method,

First approximation is

x1 = x0 – 
f x
f x

( )
( )

0

0′
 = x0 – 

x x
x x

0
3

0
2

0
2

0

1
3 2

− −
−

F

HG
I

KJ
 = 1.465601.

Second approximation is

 x2 = x1 – 
f x
f x

( )
( )

1

1′
 = x1 – 

x x
x x

1
3

1
2

1
2

1

1
3 2

− −
−

F

HG
I

KJ
 = 1.46557
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Hence ξ = 1.465 correct to three decimal places.
Now, we have

xn+1 = 
α

α
x xn n+ +

+

−2 1
1

(40)

Putting xn = ξ + en and xn+1 = ξ + en+1 in (40), we get

(α + 1)(ξ + en + 1) = α(ξ + en) + 
1

2( )ξ + en
 + 1

= α(ξ + en) + 1
12

2

ξ ξ
+

F
HG

I
KJ

−
en  + 1

which gives,

 (1 + α)en+1 = α
ξ

−
F

HG
I

KJ
2
3  en + O(en

2)

For fastest convergence, we must have α = 
2
3ξ

∴     α = 
2

(1.465)3  = 0.636.

Example 18. Newton-Raphson’s method for solving the equation f(x) = c, where
c is a real valued constant, is applied to the function

f(x) = 
cos x, when|x| 1

cos x (x 1) , when|x| 12 2
≤

+ − ≥
R
S
T

U
V
W

For which c is xn = (– 1)n, when x0 = 1 and the calculations are carried out
with no errors? Even in high precision arithmetic, the convergence is troublesome.
Explain.
Sol.     f(x) – c = 0 (41)

Applying the Newton-Raphson method to eqn. (41), we get

 xn+1 = xn – 
f x c
f x

n

n

( )
( )

−
′

L

N
M

O

Q
P

For n = 0, we have

x1 = x0 – 
f x c
f x
( )

( )
0

0

−
′

L

N
M

O

Q
P
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= 1 – 
cos

sin
1

1
−

−
L

N
M

O

Q
P

c
| ∵ x0 = 1

 – 1 = 1 + 
cos

sin
1

1
−L

N
M

O

Q
P

c
| ∵ x1 = (– 1)1 = – 1

Hence   – 2 sin 1 = cos 1 – c

⇒  c = cos 1 + 2 sin 1

with this value of c, we get

x2 = 1, x3 = – 1, ..., xn = (– 1)n

Since f ′(x) = 0 between x0 and the roots and also at x = 0, the convergence
is troublesome inspite of high precision arithmetic.

ASSIGNMENT 3.9

1. By using Newton-Raphson’s method, find the root of x4 – x – 10 = 0 which is near to x = 2,
correct to three decimal places.

2. Compute one positive root of 2x – log10 x = 7 by the Newton-Raphson method correct to
four decimal places.

3.  (i) Use the Newton-Raphson method to find a root of the equation x3 – 2x – 5 = 0.

(ii) Use Newton-Raphson method to find a root of the equation x3 – 3x – 5 = 0.
4. Find the real root of the equations

(i) log x = cos x (ii) x2 + 4 sin x = 0

by Newton-Raphson method, correct to three decimal places.
5. Use Newton-Raphson method to obtain a root correct to three decimal places of the

following equations:

(i) sin x = 1 – x (ii) x3 – 5x + 3 = 0 (iii) x4 + x2 – 80 = 0
(iv) x3 + 3x2 – 3 = 0 (v) 4(x – sin x) = 1 (vi) x – cos x = 0

(vii) sin x = 
x
2

(viii) x + log x = 2 (ix) tan x = x.

6. Explain the method of Newton-Raphson for computing roots. Apply it for finding x from
x2 – 25 = 0. Write a program using ‘C’.

7. Write a computer program in ‘C’ for finding out a real root of eqn. f(x) = 0 by the Newton-
Raphson method.

8. Using the Newton-Raphson method, obtain the formula for N  and find 20  correct to
2 decimal places.

9. Obtain the cube root of 120 using the Newton-Raphson method, starting with x0 = 4.5.
10. Develop an algorithm using the Newton-Raphson method to find the fourth root of a

positive number N, and find 324 .



ALGEBRAIC AND TRANSCENDENTAL EQUATIONS 181

11. Find the cube root of 3 correct to three decimal places by Newton’s iterative method.
12. Prove the recurrence formula

xi + 1 =  
1
3

2 2x
x

i
i

+
F

H
G

I

K
J

N

for finding the cube root of N. Find the cube root of 63.
13. Use Newton’s formula to prove that the square root of N can be obtained by the recursion

formula,

xi + 1 = xi 1
2

−
F

H
G

I

K
J

xi – N
2N

Find the square root of

(a) 26 (b) 29 (c) 35.
14. Show that the iterative formula for finding the reciprocal of n is xi + 1 = xi (2 – nxi), and

find the value of 
1
31

.

15. Determine p, q, and r so that the order of the iterative method

xn + 1 = px
qa

x

ra

x
n

n n
+ +2

2

5

for a1/3 becomes as high as possible.
[Hint: p + q + r = 1, p – 2q – 5r = 0, 3q + 15r = 0.]

16. Derive the expression for the Newton-Raphson method to find a root of an equation.
Find the order of the convergence of this method.

17. Find all positive roots of the equation

10 
0

2x
xe dtz −  – 1 = 0 with six correct decimals.

18. The equation

2e–x = 
1

2
1

1x x+
+

+
has two roots greater than – 1.
Calculate these roots correct to five decimal places.

19. The equation x = 0.2 + 0.4 sin 
x
b
F
HG
I
KJ

 where b is a parameter, has one solution near x = 0.3.

The parameter is known only with some uncertainty: b = 1.2 ± 0.05.
Calculate the root with an accuracy reasonable with respect to the uncertainty of b.

20. Find the positive root of the equation

 ex = 1 + x + 
x x2 3

2 6
+  e0.3x

correct to 6 decimal places.
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21. Show that the equation

 f(x) = cos 
π( )x +R
S
T

U
V
W

1
8

 + 0.148x – 0.9062 = 0

has  one  root  in  the  interval  (– 1, 0)  and  one  in  (0, 1).  Calculate  the negative root
correct to 4 decimals.

3.38 DEFINITIONS

1. A number  α  is  a solution of f(x) = 0 if f(α) = 0. Such a solution α is a root or
a zero of f(x) = 0. Geometrically, a root of the eqn. f(x) = 0 is the value of x at
which the graph of y = f(x) intersects x-axis.

2. If we can write f(x) = 0 as

f(x) = (x – α)m g(x) = 0

where g(x) is bounded and g(α) ≠ 0 then α is called a multiple root of
multiplicity m. In this case,

 f(α) = f ′(α) = .......... = f(m – 1) (α) = 0, f(m) (α) ≠ 0

For m = 1, the number α is said to be a simple root.

3.39 METHODS FOR MULTIPLE ROOTS

If α is a multiple root of multiplicity m of the eqn. f(x) = 0, then we have

 f(α) = f ′(α) = ........ = f(m – 1)(α) = 0 and f(m)(α) ≠ 0

It can easily be verified that all the iteration methods discussed so far have
only a linear rate of convergence when m > 1.

For example, in the Newton-Raphson method, we have

f(xk) = f(α + ek) = 
e
m

f
e
m

fk
m

m k
m

m

!
( )

( ) !
( )( ) ( )α α+

+

+
+

1
1

1

+
+

+
+

+e
m

fk
m

m
2

2

2( ) !
( ) .......( ) α

 f ′(xk) = f e
e

m
f

e
m

fk
k
m

m k
m

m′ + =
−

+ +
−

+( )
( ) !

( )
!

( ) .......( ) ( )α α α
1

1

1
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The error equation for the Newton-Raphson method becomes,

ek + 1 = 1
1 1

12

1
2 3−F

HG
I
KJ

+
+

+
+

m
e

m m

f

f
e ek

m

m k k
( )

( )

( )
( )

( )

( )

α

α
O

If m ≠ 1, we obtain,

ek + 1 = 1
1 2−F

HG
I
KJ

+
m

e ek kO ( ) (42)

which shows that the method has only linear rate of convergence.
However, if the multiplicity of the root is known in advance, we can modify

the methods by introducing parameters dependent on the multiplicity of the
root to increase their order of convergence.

For example, consider the Newton-Raphson method in the form

  xk + 1 = x
f
fk

k

k
−

′
β (43)

where β is an arbitrary parameter to be determined.
If α is a multiple root of multiplicity m, we obtain from (43), the error

equation

ek + 1 = 1
1

02

1
2 3−F

HG
I
KJ

+
+

+
+

β β α

αm
e

m m

f

f
e ek

m

m k k( )

( )

( )
( )

( )

( )

If the method (43) is to have the quadratic rate of convergence, then the
coefficient of ek must vanish, which gives

1 − β
m

 = 0 or β = m

Thus the method

xk + 1 = x m
f

fk
k

k

− ′

has a quadratic rate of convergence for determining a multiple root of
multiplicity m.

If the multiplicity of the root is not known in advance, then we use the
following procedure.

It is known that if f(x) = 0 has a root α of multiplicity m, then f ′(x) = 0 has
the same root α of multiplicity m – 1.
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Hence, g(x) = 
f x
f x

( )
( )′

 has a simple root α and we can now use the Newton-

Raphson method

 xk + 1 = x
g x
g xk

k

k
−

′
( )
( )

to find the approximate value of the multiple root α.
Simplifying, we have

 xk + 1 = xk – f f

f f f
k k

k k k

′
−′ ″2

which has a quadratic rate of convergence for multiple roots.

If initial approximation x0 is sufficiently close to the root, then the expressions

x m
f x
f x

x m
f x
f x

x m
f x
f x0

0

0
0

0

0
0

0

0
1 2−

′
− − ′

″
− − ″

″′
( )
( )

, ( )
( )
( )

, ( )
( )
( )

 will have same value.

EXAMPLES

Example 1. Show that the modified Newton-Raphson’s method

xn + 1 = xn – 
2f(x )
f (x )

n

n′
gives a quadratic convergence when f(x) = 0 has a pair of double roots in the
neighborhood of  x = xn.

Sol. en + 1 = en – 2f a e
f a e

n

n

( )
( )

+
′ +

, where a, en, and en + 1 have their usual meanings.

Expanding in powers of en and using  f(a) = 0, f ′(a) = 0 since x = a is a double
root near x = xn, we get

 e n + 1 = en – 

2
2

2

2

2

e
f a

e f a
e

f a

n

n
n

!
( ) .......

( )
!

( ) .......

″ +
L

N
M
M

O

Q
P
P

″ + ″′ +
L

N
M
M

O

Q
P
P

= en – 

2
1
2

1
3

2

2e f a f a

e f a
e

f a

n

n
n

!
( )

!
( ) .......

( )
!

( ) ......

″ + ″′ +L

N
M

O

Q
P

″ + ″′ +
L

N
M

O

Q
P

NOTE
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~−  en – 
2

1
2

1
3

2

e f a f a

f a
e

f a

n

n

!
( )

!
( )

( )
!

( )

″ + ″′
L

N
M

O

Q
P

″ + ″′

 en + 1 ~−  
1
6

 en
2. f a

f a
e

f an

″ ′

″ + ″ ′L

N
M

O

Q
P

( )

( )
!

( )
2

∴ en + 1 ≈ 
1
6

 en
2
 
f a
f a
″ ′
″

( )
( )

⇒ en
 
+ 1  ∝ en

2

and hence the convergence is quadratic.

Example 2. Find the double root of the equation

x3 – x2 – x + 1 = 0.

Sol. Let f(x) = x3 – x2 – x + 1

so that f ′(x) = 3x2 – 2x – 1

 f ″(x) = 6x – 2

Starting with x0 = 0.9, we have

  x0 – 2 
f x
f x

( )
( )

0

0′  = .9 – 
2 019

37
×
−

.
( . )

 = 1.003

and x0 –  (2 – 1) 
f x
f x

′
″
( )
( )

0

0
 = .9 – 

( . )
.

− 37
3 4

= 1.009

The closeness of these values implies that there is a double root near x = 1.

Choosing x1 = 1.01 for the next approximation, we get

x1 – 2 
f x
f x

( )
( )

1

1′
 = 1.01 – 2 × 

0 0002
0 0403
.
.

 = 1.0001

and x1 –  (2 – 1) 
f x
f x

′
″
( )
( )

1

1
 = 1.01 – 

.
.

0403
4 06  = 1.0001

This shows  that there is a double root at x = 1.0001 which is quite near the
actual root x = 1.
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Example 3. The equation
f(x) = x3 – 7x2 + 16x – 12 = 0

has a double root at x = 2. Starting with the initial approximation x0 = 1, find
the root correct to 3 decimal places using the modified Newton-Raphson method
with m = 2.
Sol. The modified Newton-Raphson method with m = 2 becomes,

 xn + 1 = xn  – 2 
x x x

x x
n n n

n n

3 2

2

7 16 12
3 14 16
− + −

− +

L

N
M
M

O

Q
P
P
, n = 0, 1, .......

Starting with x0 = 1, we get

x1 = 1.8

x2 = 1.984615385

x3 = 1.999884332

x4 = 2.000000161

x5 = 2.000000161

∴ The root correct to 3 decimal places is 2.000.

Example 4. Show that the equation

f(x) = 1 – xe1 – x = 0

has a double root at x = 1. The root is obtained by using the modified Newton-
Raphson method with m = 2 starting with x0 = 0.
Sol. Since f(1) = f ′(1) =  0 and f ″(1) ≠ 0, the root x = 1 is a double root.

 xn + 1 = xn – 2
1

1

1

1

−
−

L

N
M
M

O

Q
P
P

−

−
x e

x e
n

x

n
x

n

n( )
; n = 0, 1, .......

Starting with x0 = 0, we get

x1 = .735758882

x2 = .978185253

x3 = .999842233

x4 = 1.000000061

x5 = 1.000000061

Hence the root correct to six decimal places is 1.000000.
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3.40 NEARLY EQUAL ROOTS

So far, Newton’s method is applicable when  f ′(x) ≠ 0 in the neighborhood of
actual root x = a, i.e., in the interval (a – h, a + h).

If the quantity h is very very small, it will not satisfy the above restriction.
The application of Newton’s  method will not be practical in that case. This
condition occurs when the roots are very close to one another.

We know that in case of the double root x = a, f(x) and f ′(x) both vanish at
x = a. Thus, while applying  Newton’s  method,  if  xi  is  simultaneously  near
zeros of f(x) and f ′(x), i.e., f(xi) and f ′(xi) are both very small, then  it is usually
practical to depart from the standard sequence and proceed to obtain two new
starting values for  the two nearly equal roots.

To obtain these values, we first apply Newton’s method to the equation
f ′(x) = 0, i.e., we use the iteration formula

xi + 1
 = xi  – f x

f x
i

i

′
″
( )
( )

(44)

with the last available iterate as the initial value x0  for (44).

Suppose x = c is the solution obtained by (44).

Now, by Taylor’s series, we have

f(x) = f(c) + (x – c) f ′(c) + 
1
2

 (x – c)2 f ″(c) + .......

But f ′(c) = 0

f(x) = f(c) + 
1
2

 (x – c)2 f ″(c) + R

Assuming R to be small, we conclude that the zero’s of f(x) near x = c are
approximately given by

 f(c) + 
1
2

 (x – c)2 f ″(c) = 0

⇒ x = c ± 
−

″  
2f c

f c
( )

( ) (45)

Using these values as starting values, we can use the original iteration
formula to get two close roots of f(x) = 0.
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EXAMPLE

Example. Use synthetic division to solve f(x) ≡ x3 – x2 – 1.0001 x + 0.9999 = 0 in
the neighborhood of x = 1.

Sol. To find f(1) and f ′(1),

1 –1 –1.0001 0.9999 1
1 0 – 1.0001

1 0 – 1.0001 – 0.0002 = f (1)
1 1

1 1 – .0001 = f ′(1)
1

1 2 = 
1
2

 f ″(1)

From the above synthetic division, we observe that f(1) and f ′(1) are
small. Hence there exists two nearly  equal  roots. Taking x0 = 1, we will use

xi + 1 = xi – 
f x
f x

i

i

′
″
( )
( )

 to modify the root. For this, we require f ″(1).

From the above synthetic division, we have

1
2

 f ″ (1) = 2 ⇒ f ″ (1) = 4

∴ First approximation  x1 = 1 – 
f
f

′
″
( )
( )
1
1

 = 1 – 
( . )− 0001

4
 = 1.000025

Now we again calculate f(x1) and f ″(x1) by synthetic division.

1 –1 – 1.000100 0.999900 1.000025
1.000025   0.000025 – 1.000095

1 . 000025 – 1.00075 – 0.000 195 = f (x1)
1.000025 1.000075

1 1.000050 0 = f ′(x1)
1.000025

1 2.000075 = 
1
2

 f ″(x1)

∴ f(1.000025) =  – 0.000195 and  f ″(1.000025) = 4.000150
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Now,  For nearly equal roots,

 x = c ± 
−

″
2 f c
f c

( )
( ) , where c = 1.000025

= 1.000025 ± 
− −2 000195

4 000150
( . )
.

 = 1.009899, 0.990151.

3.41 COMPARISON OF NEWTON’S METHOD WITH REGULA-FALSI

METHOD

Regula-Falsi is surely convergent while Newton’s method is conditionally
convergent. But once Newton’s method converges, it converges faster.

In the Falsi method, we calculate only one more value of the function at
each step i.e., f(x(n)) while in Newton’s method, we require two calculations
f(xn) and f ′(xn) at each step.

∴ Newton’s method generally requires fewer iterations but also requires
more time for computation at each iteration.

When  f ′(x) is large near the root the correction to be applied is smaller in
the case of Newton’s method which is then preferred. If f ′(x) is small near the
root, the correction to be applied is large and the curve becomes parallel to the
x-axis.

In this case the Regula-Falsi method should be applied.

3.42 COMPARISON OF ITERATIVE METHODS

1. Convergence in the case of the Bisection method is slow but steady. It
is the simplest method and never fails.

2. The method of false position is slow and it is I order convergent.
Convergence is guaranteed.

3. Newton’s method has the fastest rate of convergence. This method is
quite sensitive to starting value. It may diverge if f ′(x) ≈ 0 during
iterative cycle.

4. For locating complex roots, the bisection method cannot be applied.
Newton’s and Muller’s methods are effective.

5. If all the roots of a given equation are required, Lin-Bairstow’s  method
is recommended. After a quadratic factor has been found, this method
must be applied on the reduced polynomial.
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If the location of some roots is known, first find these roots to a desired
accuracy and then apply this method on the reduced polynomial.

ASSIGNMENT 3.10

1. The equation f(x) = (x – 1)2 (x – 3)2 has roots at x = 1 and x = 3. Which of the following
methods can be applied to find all the roots?
(i) Bisection method

(ii) False-position method
(iii) Newton-Raphson method
Justify your answer.

2. A sphere of wood, 2 m in diameter, floating in water sinks to a depth d  given by
d3 – 3d2 + 2.5 = 0

find d correct to 2 decimal places.
3. Discuss the working of modified Newton-Raphson method.
4. Find the root of the equation

f(x) ≡ sin x – 
x
x

+
−

1
1

 = 0 near x = – .4

5. Give a comparative study of iterative methods.
6. Under what conditions does the Newton-Raphson method become linearly convergent?

Explain.

3.43 GRAEFFE’S ROOT-SQUARING METHOD

This method has a great advantage over the other methods in that it does not
require prior information about the approximate values, etc., of the roots. It is
applicable to polynomial equations only and is capable of giving all the roots.
Here below we discuss the case of the polynomial equation having real and
distinct roots.

Consider the polynomial equation

 f(x) = xn + a1x
n–1 + a2x

n–2 + ...... + an–1x + an = 0 (46)

Separating the even and odd powers of x and squaring, we get

(xn + a2x
n–2 + a4x

n–4 + ......)2 = (a1xn–1 + a3x
n–3 + a5x

n–5 + ......)2

Putting x2 = y and simplifying, the new equation becomes

yn + b1y
n–1 + b2y

n–2 + ...... + bn–1y + bn = 0 (47)

where b1 = a1
2 + 2a2; b2 = a2

2 – 2a1a3 + 2a4 ...... bn = (– 1)n an2 (48)
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If p1, p2, ......... , pn are the roots of (46), then the roots of (47) are
p1

2, p2
2, ......... , pn

2.

Let us suppose that after m squarings, the new transformed equation is

zn + λ1z
n–1 + ...... + λn–1z + λn = 0 (49)

whose roots are q1, q2, ......., qn such that qi = pi
2m , i = 1, 2, ......, n.

Assuming the order of magnitude of the roots as

| p1 | > | p2 | > ...... > | pn |, we have

| q1 | >> | q2 | >> ...... >> | qn | where >> stands for ‘much greater than’.

Thus   
| |
| |

, ......,
| |

| |
q
q

q
q

q
q

q
q

n

n

n

n

2

1

2

1 1 1
= =

− −
(50)

Also qi being an even power of pi, is always positive.
Now, from (49), we have

Σq1 = – λ1 ⇒ λ1 = – q1 1 2

1

3

1
+ + +

F

HG
I

KJ
q
q

q
q

......

Σq1q2 = λ2 ⇒ λ2 = q1q2 1 3

1
+ +

F

HG
I

KJ
q
q

......

Σq1q2q3 = – λ3 ⇒ λ3 = q1q2q3 1 4

1
+ +

F

HG
I

KJ
q
q

......

............................................................................
q1q2q3 ...... qn = (– 1)n λn ⇒ λn = (– 1)n q1q2q3 ...... qn.

Hence by (50), we find q1 ≈ – λ1; q2 ≈ – 
λ
λ

λ
λ

λ
λ

2

1
3

3

2 1
, , ......,q qn

n

n
≈ − ≈ −

−

But  qi
 = pi

2m

∴      pi = (qi)
1/2m = −

F

HG
I

KJ−

λ
λ

i

i

m

1

1/2

(51)

We can thus determine p1, p2, ......, pn the roots of the equation (46).

Case 1. Double root. If the magnitude of λi is half the square of the
magnitude of the corresponding coefficient in the previous equation after a few
squarings, then it implies that pi is a double root of (46). We determine it as
follows:

 qi = – 
λ

λ
i

i−1
and  qi+1 = – 

λ
λ
i

i

+1



192 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

∴   qiqi+1
 ≈ qi

2 ≈ 
λ
λ

i

i

+

−

1

1
i.e., pi

2m = qi
2 = 

λ
λ

i

i

+

−

1

1
(52)

which gives the magnitude of the double root and substituting in (46), we can
find the sign.

Case 2. Complex roots. If pr and pr+1 form the complex pair Pr
ie r± φ , then

the co-efficient of xn–r in successive squarings would vary both in magnitude and
sign by an amount 2Pr

m cos mφr. For sufficiently large Pr and φr can be determined
by

Pr
r

r

m2 2 1

1

( ) ≈ +

−

λ
λ ; 2 22

1
Pr

m
r

r

r

m

cos φ
λ

λ
= −

−
(53)

If there is only one pair of complex roots, say

Pr
i

r re ir± = +φ ξ η  then ξr is given by

p1 + p2 + ...... + pr–1 + 2ξr + pr+2
 + ...... + pn = – a1 (54)

and ηr
 = Pr r

2 2– ξ (55)

If there are two pairs of complex roots, say

Pr
i

r re ir± = ±φ ξ η and Ps
i

s se is± = ±φ ξ η

where p1 + p2 + ...... + pr–1 + 2ξr + Pr+2 + ...... + ps–1 + 2ξs + ps+2 + ...... + pn = – a1

(56)

2
1 1

2 2
1

1

ξ ξr

r

s

s

n

n

a
n a aP P

+
F

HG
I

KJ
= − + + +
L

N
M

O

Q
P

− ...... (57)

and  ηr = P Pr r s s s
2 2 2 2− = −ξ η ξ; (58)

EXAMPLES

Example 1. Apply Graeffe’s root squaring method to solve the equation

x3 – 8x2 + 17x – 10 = 0.

Sol. Here f(x) = x3 – 8x2 + 17x – 10 = 0 (59)

Clearly f(x) has three changes i.e., from + to –, – to + and + to –. Hence from
Descartes rule of signs f(x) may have three positive roots.

Rewriting (59) as  x(x2 + 17) = (8x2 + 10) (60)
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Squaring on both sides and putting x2 = y, we get

 y(y + 17)2 = (8y + 10)2

or y3 + 34y2 + 289y = 64y2 + 160y + 100

or   y(y2 + 129) = (30y2 + 100) (61)

Squaring again and putting y2 = z, we get

   z(z + 129)2 = (30z + 100)2

or  z3 + 258z2 + 16641z = 900z2 + 6000z + 10000

or   z(z2 + 10641) = (642z2 + 10000) (62)

Squaring again and putting z2 = u, we get

 u(u + 10641)2 = (642u + 10000)2

or  u3 + 21282u2 + 113230881u = 412164u2 + 12840000u + 108

or u3 – 390882u2 + 100390881u – 108 = 0 (63)

If the roots of (59) are p1, p2, p3 and those of (63) are q1, q2, q3, then

p1 = (q1)1/8 = ( – λ1)1/8 = (390882)1/8 = 5.000411082 ≅ 5

p2 = (q2)
1/8 = (– λ2/λ1)

1/8 = 
100390881

378882

1/8
L

NM
O

QP
= 2.000811036 ≅ 2

p3 = (q3)1/8 = (– λ3/λ2)
1/8 = 

10
100390881

8L

N
M

O

Q
P  = 0.99951247 ≅ 1

Now f(5) = f(1) = f(2) = 0.

Hence the roots are 5, 2, and 1.

Example 2. Find all the roots of the equation x4 – 3x + 1 = 0 by Graeffe’s method.

Sol. Here f(x) = x4 – 3x + 1 = 0 (64)
Now f(x) has two changes in sign i.e., + to – and – to +. Therefore it may

have two positive real roots.
Again f(– x) = x4 + 3x + 1. Since no change in sign of f(– x) there is no

negative root. But f(x), being of degree four, will have four roots of which two
are real positive and the remaining two are complex.

Rewriting (64) as x4 + 1 = 3x.
Squaring and putting x2 = y, we have

(y2 + 1)2 = 9y

Squaring again and putting, y2 = z
(z + 1)4 = 81z
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i.e., z4 + 4z3 + 6z2 – 77z + 1 = 0 (65)

or  z4 + 6z2 + 1 = – z(4z2 – 77)

Squaring once again and putting z2 = u, we get

      (u2 + 6u + 1)2 = u(4u – 77)2

or u4 – 4u3 + 654u2 – 5917u + 1 = 0 (66)

If p1, p2, p3, p4 are the roots of (64) and q1, q2, q3, q4 are the roots of (66),
then

p1 = (q1)
1/8 = (– λ1)

1/8 = (4)1/8 = 1.1892071

p2 = (q2)1/8 = −
L

N
M

O

Q
P = L

NM
O

QP
λ
λ

2

1

1/8 1/8654
4

 = 1.8909921

p3 = (q3)1/8 = −
L

N
M

O

Q
P = L

NM
O

QP
λ
λ

3

1

1/8 1/85917
654

 = 1.3169384

p4 = (q4)1/8 = −
L

N
M

O

Q
P = L

NM
O

QP
λ
λ

4

3

1/8 1/81
5917

 = 0.3376659

From (65) and (66), we observe that the magnitudes of the co-efficients λ1
and λ4 have become constant.

⇒ p, p4 are the real roots and p2, p3 are complex roots. Let these complex
roots be

 ρ ξ ηφ
2 2 2

2e ii± = ± . From (66), its magnitude is given by

  ρ
λ
λ2

2 2 3

1

3 5917
4

( ) ≈ = ∴ ρ2 = 1.5780749

also from (64) the sum of the roots = 0, i.e., p1 + 2ξ2 + p4 = 0

∴     ξ2 = – 
1
2

 (p1 + p4) = – 0.7634365

and    η2 = ρ ξ2
2

2
2 9074851− = 1.  = 1.3811173

Hence, the four roots are 1.1892071, 0.3376659, – 0.7634365 ± 1.3811173i.

ASSIGNMENT 3.11

1. Find all the roots of the following equations by Graeffe’s method squaring thrice:
(i) x3 – 4x2 + 5x – 2 = 0 (ii) x3 – 2x2 + 5x + 6 = 0

(iii) x3 – x – 1 = 0.
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3.44 RAMANUJAN’S METHOD

S. Ramanujan (1887 – 1920) proposed an iterative method which can be used
to determine the smallest root of the equation f(x) = 0
where f(x) is of the form

 f(x) = 1 – (a1x + a2x
2 + a3x

3 + ....)

For smaller values of x, we can write,

[1 – (a1x + a2x
2 + a3x

3 + ....)]–1 = b1 + b2x + b3x
2 + ....

⇒ 1 + (a1x + a2x2 + a3x
3 + ...) + (a1x + a2x

2 + a3x
3 + ....)2 + ....

= b1 + b2x + b3x
2 + ....

Expanding L.H.S. by
Binomial theorem

Comparing the coefficient of like powers of x on both sides, we get

b1 = 1

b2 = a1 = a1b1

b3 = a1
2 + a2 = a1b2 + a2b1

�  � � �

bn = a1bn – 1 + a2bn – 2 + ....... + an – 1b1

n = 2, 3, .....

Ramanujan stated that the successive convergents viz. b
b

n

n + 1

 approach a

root of the equation f(x) = 0.

EXAMPLE

Example. Find the smallest root of the equation

x3 – 6x2 + 11x – 6 = 0 using Ramanujan’s method.

Sol. We have

1
11 6

6

2 3
1

− − +F

HG
I

KJ
L

N
M
M

O

Q
P
P

−
x x x

 = b1 + b2x + b3x
2 + .....

Here, a1 = 
11
6

, a2 = – 1, a3 = 
1
6

, a4 = a5 = a6 = ..... = 0

U

V

|
|
|

W

|
|
|
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Hence
b1 = 1

b2 = a1 = 
11
6

∴
b
b

1

2

6
11

=  = .54545

b3 = a1b2 + a2b1

 = 
121
36

1
85
36

− = ; 
b
b

2

3

66
85

=  = .7764705

b4 = a1b3 + a2b2 + a3b1

 = 
575
216

; 
b
b

3

4

102
115

=  = .8869565

b5 = a1b4 + a2b3 + a3b2 + a4b1

 = 
3661
1296

; 
b
b

4

5

3450
3661

=  = .9423654

b6 = a1b5 + a2b4 + a3b3 + a4b2 + a5b1

 = 
22631
7776

; 
b
b

5

6

3138
3233

=  = .9706155

The smallest root of the given equation is 1 and the successive convergents
approach this root.

ASSIGNMENT 3.12

1. Find a root of the equation xex = 1
using Ramanujan’s method.

2. Find a root of the equation sin x = 1 – x
using Ramanujan’s method.

3. Using Ramanujan’s method, obtain the first eight convergents of the equation x + x3 = 1.
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Formula, Lagrange’s Interpolation, Newton’s Divided Difference

Formula, Hermite’s Interpolation.





4.1 INTRODUCTION

A ccording to Theile, ‘Interpolation is the art of reading between the lines
of the table’.

It also means insertion or filling up intermediate terms of the series.
Suppose we are given the following values of y = f(x) for a set of values of x:

x: x0 x1 x2 ...... xn

y: y0 y1 y2 ...... yn

Thus the process of finding the value of y corresponding to any value of
x = xi between x0 and xn is called interpolation.

Hence interpolation is the technique of estimating the value of a function
for any intermediate value of the independent variable, while the process of
computing the value of the function outside the given range is called
extrapolation.

C h a p t e r4 INTERPOLATION

199
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4.2 ASSUMPTIONS FOR INTERPOLATION

1. There are no sudden jumps or falls in the values during the period under
consideration.

2. The rise and fall in the values should be uniform.
For example, if we are given data regarding deaths in various years in a
particular town and some of the observations are for the years in which
epidemic or war overtook the town, then interpolation methods are not
applicable.

3. When we apply calculus of finite differences, we assume that the given set
of observations is capable of being expressed in a polynomial form.
If the function f(x) is known explicitly, the value of y corresponding to any
value of x can be found easily.
If the function f(x) is not known, it is necessary to find a simpler function,
say φ(x), such that f(x) and φ(x) agree at the set of tabulated points. This
process is called interpolation. If φ(x) is a polynomial, then the process is
called polynomial interpolation and φ(x) is called the interpolating
polynomial.

4.3 ERRORS IN POLYNOMIAL INTERPOLATION

Let the function y(x) defined by (n + 1) points (xi, yi) i = 0, 1, 2, ......, n be
continuous and differentiable (n + 1) times and let y(x) be approximated by a
polynomial φn(x) of degree not exceeding n such that

φn(xi) = yi; i = 0, 1, 2, ....., n (1)

The problem lies in finding the accuracy of this approximation if we use
φn(x) to obtain approximate values of y(x) at some points other than those defined
above.

Since the expression y(x) – φn(x) vanishes for x = x0, x1, ......, xn, we put
y(x) – φn(x) = L Πn+1 (x) (2)

where  Πn+1(x) = (x – x0) (x – x1) ...... (x – xn) (3)

and  L  is  to  be  determined  such  that  equation  (2)  holds  for  any  intermediate
value  of  x  say  x′  where x0 < x′ < xn.

Clearly, L = 
y x x

x
n

n

( ) ( )
( )

′ − ′
′+

φ
Π 1

(4)

Construct a function,  F(x) = y(x) – φn(x) – L Πn+1(x) (5)

where L is given by (4).
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It is clear that, F(x0) = F(x1) = ...... = F(xn) = F(x′) = 0
i.e., F(x) vanishes (n + 2) times in interval [x0, xn] consequently, by repeated
application of Rolle’s  theorem,  F′(x)  must  vanish  (n + 1) times, F″(x) must
vanish n times in the interval [x0, xn]

Particularly, F(n+1) (x) must vanish once in [x0, xn].

Let this point be x = ξ; x0 < ξ < xn.

Differentiating (5) (n + 1) times with respect to x and put x = ξ, we get

0 = (y)(n+1) (ξ) – L ( ) !n + 1
d
dx

x n
n

n
n

+

+
+ = +

1

1
1 1( ) ( ) !

so that, L = 
y
n

n( ) ( )
( ) !

+

+

1

1
ξ

(6)

Comparison of (4) and (6) give

   y(x′) – φn(x′) = 
y
n

n( ) ( )
( ) !

+

+

1

1
ξ

 Πn+1(x′)

Hence, the required expression of error is

  y(x) – φn(x) = 
Πn x
n

+

+
1

1
( )

( ) !
 yn+1(ξ), x0 < ξ < xn (7)

Since  y(x)  is generally unknown, and we do not have any information
concerning y(n+1)(x), equation (7) is useless in practical computations.

We will use it to determine errors in Newton’s interpolating formulae.
The various methods of interpolation are as follows:
(1) The method of graph
(2) The method of curve fitting
(3) Use of calculus of finite difference formulae.
The merits of the last method over the others are
(i) It does not assume the form of function to be known.

(ii) It is less approximate than the method of graphs.
(iii) The calculations remain simple even if some additional observations

are included in the given data.
The demerit is there is no definite way to verify whether the assumptions

for the application of finite difference calculus are valid for the given set of
observations.
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4.4 FINITE DIFFERENCES

The calculus of finite differences deals with the changes that take place in the
value of the function (dependent variable) due to finite changes in the
independent variable.

Suppose we are given a set of values (xi, yi); i = 1, 2, 3, ......, n of any function
y = f(x). A value of the independent variable x is called argument and the
corresponding value of the dependent variable y is called entry.

Suppose  that  the  function  y = f(x)  is  tabulated  for  the equally spaced
values x = x0, x0 + h, x0 + 2h, ....., x0 + nh, giving y = y0, y1, y2, ......, yn. To
determine the values of f(x) or f ′(x) for some intermediate values of x, the
following three types of differences are useful:

1. Forward  differences.  The  differences  y1 – y0,  y2 – y1,  y3 – y2, ......,
yn – yn–1 when denoted by Δy0, Δy1, Δy2, ......, Δyn–1 are respectively,
called the first forward differences where D is the forward difference
operator.
Thus the first forward differences are

Δyr = yr+1 – yr

Similarly, the second forward differences are defined by

Δ2yr = Δyr+1 – Δyr

Particularly,  Δ2y0 = Δy1 – Δy0 = y2 – y1 – (y1 – y0) = y2 – 2y1 + y0

Similarly, Δ3y0 = y3 – 3y2 + 3y1 – y0

Δ4y0 = y4 – 4y3 + 6y2 – 4y1 + y0.

Clearly, any higher order difference can easily be expressed in terms of
ordinates since the  coefficients  occurring on R.H.S. are the binomial
coefficients*. In general, Δpyr = Δp–1yr+1

 – Δp–1yr defines the pth forward
differences.

∗ Δn(y0) = yn – nC1 yn–1 + nC2yn–2 + ...... + (– 1)n y0
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The following table shows how the forward differences of all orders can
be formed.

Forward difference table

x y Δy Δ2y Δ3y Δ4y Δ5y

x0 y0

Δy0

x1 y1 Δ2y0

(= x0 + h) Δy1 Δ3y0

x2 y2 Δ2y1 Δ4y0

(= x0 + 2h) Δy2 Δ3y1 Δ5y0

x3 y3 Δ2y2 Δ4y1

= (x0 + 3h) Δy3 Δ3y2

x4 y4 Δ2y3

= (x0 + 4h) Δy4

x5 y5

= (x0 + 5h)

Here the first entry, y0, is called the leading term and Δy0, Δ2y0, ...... are
called leading differences.

Δ obeys distributive, commutative and index laws:

1. Δ [f(x) ± φ(x)] = Δf(x) ± Δφ (x)

2. Δ [c f(x)] = c Δ f(x); c is constant

3. Δm Δn f(x) = Δm+n f(x), m, n being (+)ve integers.

But, Δ[f(x) . φ(x)] ≠ f(x) . Δ φ(x).

2. Backward differences. The differences y1 – y0, y2 – y1, ......, yn – yn–1
when denoted by ∇y1, ∇y2, ......, ∇yn, respectively, are called first
backward differences where ∇ is the backward difference operator.

Similarly, we define higher order backward differences as,

∇yr = yr – yr–1

∇2yr = ∇yr – ∇yr–1

∇3yr = ∇2yr – ∇2yr–1
 etc.

Particularly,   ∇2y2 = ∇y2 – ∇y1

 = y2 – y1 – (y1 – y0) = y2 – 2y1 + y0

  ∇3y3 = ∇2y3 – ∇2y2 = y3 – 3y2 + 3y1 – y0 etc.

NOTE
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Backward difference table

x y ∇y ∇2y ∇3y ∇4y ∇5y

x0 y0

∇y1

x1 y1 ∇2y2

(= x0 + h) ∇y2 ∇3y3

x2 y2 ∇2y3 ∇4y4

(= x0 + 2h) ∇y3 ∇3y4 ∇5y5

x3 y3 ∇2y4 ∇4y5

(= x0 + 3h) ∇y4 ∇3y5

x4 y4 ∇2y5

(= x0 + 4h) ∇y5

x5 y5

(= x0 + 5h)

3. Central differences. The central difference operator d is defined by
the relations

y1 – y0 = δy1/2, y2 – y1 = δy3/2, ......, yn – yn–1 = δy
n –

1
2

.

Similarly, high order central differences are defined as

δy3/2 – δy1/2 = δ2y1, δy5/2 – δy3/2 = δ2y2

and so on.
These differences are shown as follows:

Central difference table

x y δy δ 2y δ3y δ4y δ 5y

x0 y0
δy1/2

x1 y1 δ2y1
δy3/2 δ3y3/2

x2 y2 δ2y2 δ4y2
δy5/2 δ3y5/2 δ5y5/2

x3 y3 δ2y3 δ4y3
δy7/2 δ3y7/2

x4 y4 δ2y4

δy9/2

x5 y5
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1. The central differences on the same horizontal line have the same suffix.
2. It is only the notation that changes, not the differences.

e.g., y1 – y0 = Δy0 = ∇y1= δy1/2.

4.5 OTHER DIFFERENCE OPERATORS

1. Shift operator E.
Shift operator E is the operation of increasing the argument x by h so that

 Ef(x) = f(x + h)
E2f(x) = f(x + 2h) and so on.

The inverse operator, E–1, is defined by
E–1f(x) = f(x – h).

Also Enyx = yx+nh.
2. Averaging operator μ.

The averaging operator is defined by

μyx = 
1
2

 L
NM
y y

x h x h+ −
+1

2
1
2

O

QP

In difference calculus, E is the fundamental operator and ∇, Δ, δ, μ can be
expressed in terms of E.

4.6 RELATION BETWEEN OPERATORS

1. Δ = E – 1 or E = 1 + Δ.

Proof. We know that,

Δyx = yx+h – yx = Eyx – yx = (E – 1)yx

⇒ Δ = E – 1

or E = 1 + Δ

2. ∇ = 1 – E–1

Proof. ∇yx = yx – yx–h = yx – E–1yx

∴ ∇ = 1 – E–1

3.  δ = E1/2 – E–1/2

NOTE
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Proof.  δyx = y
x

h+
2

 – y
x

h−
2

   = E1/2 yx – E–1/2 yx

   = (E1/2 – E–1/2) yx

∴  δ = E1/2 – E–1/2

4. μ = 
1
2

 (E1/2 + E–1/2)

Proof.  μyx = 
1
2

 ( y
x

h+
2

 + y
x

h−
2

) = 
1
2

 (E1/2 + E–1/2) yx

⇒ μ = 
1
2

 (E1/2 + E–1/2)

5. Δ = E∇ = ∇E = δE1/2

Proof. E(∇yx) = E(yx – yx–h) = yx+h – yx = Δyx

⇒  E∇ = Δ

∇(E yx) = ∇ yx+h = yx+h – yx = Δyx

⇒ ∇E = Δ

 δE1/2 yx = δ y
x

h+
2

 = yx+h – yx = Δyx

⇒ δE1/2 = Δ

6. E = ehD

Proof.  Ef(x) = f(x + h)

= f(x) + h f ′(x) + 
h2

2 !
 f ″(x) + ..... (By Taylor series)

= f(x) + hDf(x) + 
h2

2 !
 D2f(x) + ......

= 1
2

2

+ + +
L

N
M

O

Q
Ph

h
D

D( )
!

......  f(x) = ehD f(x)

∴ E = ehD or Δ = ehD – 1.
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4.7 DIFFERENCES OF A POLYNOMIAL

The nth differences of a polynomial of nth degree are constant and all higher
order differences are zero when the values of the independent variable are at
equal intervals.

Let f(x) = axn + bxn–1 + cxn–2 + ...... + kx + l

∴ Δf(x) = f(x + h) – f(x)

= a[(x + h)n – xn] + b [(x + h)n–1 – xn–1] +  ...... + kh

= anhxn–1 + b′xn–2 + c′xn–3 + ...... + k′x + l′ (8)

where b′, c′, ...... l′ are new constant coefficients.
∴ First differences of a polynomial of nth degree is a polynomial of degree

(n – 1).
Similarly,

Δ2f(x) = Δf(x + h) – Δf(x)

= anh [(x + h)n–1 – xn–1] + b′[(x + h)n–2 – xn–2] + ...... + k′h

= an(n – 1) h2xn–2 + b″xn–3 + ...... + k″ (9)

∴ Second differences represent a polynomial of degree (n – 2).
Continuing this process, for nth differences, we get a polynomial of degree

zero, i.e.,

Δn f(x) = an(n – 1) (n – 2) ...... 1 hn = a n ! hn

which is a constant. Hence the (n + 1)th and higher differences of a polynomial
of nth degree will be zero. The converse of this theorem is also true.

EXAMPLES

Example 1. Construct the forward difference table, given that

x: 5 10 15 20 25 30

y: 9962 9848 9659 9397 9063 8660

and point out the values of Δ2y10 , Δ4y5.
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Sol. Forward difference table is as follows:

x y Δy Δ2y Δ3y Δ4y

5 9962
– 114

10 9848 – 75
– 189 2

15 9659 – 73 – 1
– 262 1

20 9397 – 72 2
– 334 3

25 9063 – 69
– 403

30 8660

From the table, Δ2y10 = – 73 and Δ4y5 = – 1.
Example 2. If y = x3 + x2 – 2x + 1, calculate values of y for x = 0, 1, 2, 3, 4, 5 and
form the difference table. Find the value of y at x = 6 by  extending the table and
verify that the same value is obtained by substitution.

Sol. For x = 0, y = 1;

x = 1, y = 1;

x = 2, y = 9;

x = 3, y = 31;

x = 4, y = 73;

x = 5, y = 141

Difference table is as follows:

x y Δy Δ2y Δ3y

0 1
0

1 1 8
8 6

2 9 14
22 6

3 31 20
42 6

4 73 26
68 6

5 141 32
100

6 241
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∵ Third differences are constant.

∴  Δ3y3 = 6 ⇒ Δ2y4 – Δ2y3 = 6

⇒ Δ2y4 – 26 = 6 ⇒   Δ2y4 = 32

Now,  Δ2y4 = 42 ⇒    Δy5 – Δy4 = 32

⇒ Δy5 – 68 = 32 ⇒ Δy5 = 100

Further, Δy5 = 100

 y6 – y5 = 100

⇒   y6 – 141 = 100

y6 = 241

Verification. y(6) = (6)3 + (6)2 – 2(6) + 1 = 241. Hence verified.
Example 3. Construct a backward difference table for y = log x given that

x: 10 20 30 40 50

y: 1 1.3010 1.4771 1.6021 1.6990

and find values of ∇3 log 40 and ∇4 log 50.
Sol. Backward difference table is:

x y ∇y ∇2y ∇3y ∇4y

10 1
0.3010

20 1.3010 – 0.1249
0.1761 0.0738

30 1.4771 – 0.0511 – 0.0508
0.1250 0.0230

40 1.6021 – 0.0281
0.0969

50 1.6990

From the table, ∇3 log 40 = 0.0738 and ∇4 log 50 = – 0.0508.

Example 4. Construct a backward difference table from the data:

sin 30°  = 0.5, sin 35° = 0.5736, sin 40° = 0.6428 sin 45° = 0.7071

Assuming third differences to be constant, find the value of sin 25°.
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Sol. Backward difference table is:

x y ∇y ∇2y ∇3y

25 .4225
.0775

30 0.5000 – .0039
0.0736 – .0005

35 0.5736 – .0044
0.0692 – .0005

40 0.6428 – .0049
0.0643

45 0.7071

Since third differences are constant

∴  ∇3y40 = – .0005

⇒ ∇2y40 – ∇2y35 = – .0005

⇒ – .0044 – ∇2y35 = – .0005

⇒  ∇2y35 = – .0039

Again ∇y35 – ∇y30 = – .0039

⇒ .0736 – ∇y30 = – .0039

⇒ ∇y30 = .0775

Again y30 – y25 = .0775

⇒ 0.5 – y25 = .0775

⇒ y25 = 0.4225

∴ sin 25° = .4225.

Example 5. Evaluate:

(i) Δ tan–1 x (ii) Δ2 cos 2x
where h is the  interval of differencing.

Sol. (i) Δ tan–1 x = tan–1 (x + h) – tan–1 x

 = tan–1 
x h x

x x h
+ −

+ +
R
S
T

U
V
W1 ( )

 = tan–1 
h

hx x1 2+ +
F

HG
I

KJ

(ii) Δ2 cos 2x = Δ[cos 2(x + h) – cos 2x]

 = [cos 2(x + 2h) – cos 2(x + h)] – [cos 2(x + h) – cos 2x]
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 = – 2 sin (2x + 3h) sin h +  2 sin (2x + h) sin h

 = – 2 sin h [2 cos (2x + 2h) sin h] = – 4 sin2 h cos 2(x + h).

Example 6. Evaluate:

Δ2 5x 12
x 5x 62

+
+ +

F

HG
I

KJ
; the interval of differencing being unity.

Sol.  Δ2 5 12
2 3
x

x x
+

+ +
R
S
T

U
V
W( )( )

= Δ2 
2

2
3

3x x+
+

+
F
HG

I
KJ

 = Δ Δ Δ2
2

3
3x x+

F
HG

I
KJ

+
+

F
HG

I
KJ

L

N
M

O

Q
P

= Δ 2
1

3
1

2
3

1
4

1
3x x x x+

−
+

F
HG

I
KJ

+
+

−
+

F
HG

I
KJ

L

N
M

O

Q
P

= – 2Δ 
1

2 3
3

1
3 4( )( ) ( )( )x x x x+ +

R
S
T

U
V
W

−
+ +

R
S
T

U
V
W

Δ

= – 2 
1

3 4
1

2 3( )( ) ( )( )x x x x+ +
−

+ +
L

N
M

O

Q
P

– 3 
1

4 5
1

3 4( )( ) ( )( )x x x x+ +
−

+ +
L

N
M

O

Q
P

= 
4

2 3 4
6

3 4 5( )( )( ) ( )( )( )x x x x x x+ + +
+

+ + +

= 
2 5 16

2 3 4 5
( )

( )( )( )( )
x

x x x x
+

+ + + +
.

Example 7. If f(x) = exp(ax), evaluate Δnf(x).

Sol.   Δeax = ea(x+h) – eax = (eah – 1)eax

 Δ2eax = Δ(Δeax) = Δ[(eah – 1)eax]

= (eah – 1)(eah – 1)eax = (eah – 1)2 eax

Similarly  Δ3 eax = (eah – 1)3 eax

� � �

 Δn eax = (eah – 1)n eax.
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Example 8. With usual notations, prove that

 Δn 
1
x
F
HG
I
KJ  = (– 1)n . 

n ! h
x (x h) ...... (x nh)

n

+ +
.

Sol. Δn 
1
x
F
HG
I
KJ  = Δn–1 Δ 

1
x
F
HG
I
KJ  = Δn–1 

1 1
x h x+

−
L

N
M

O

Q
P

= Δn–1 
−

+
R
S
T

U
V
W

h
x x h( )

= (– h) Δn–2 Δ 
1

x x h( )+
R
S
T

U
V
W

= (– 1) Δn–2 Δ 1 1
x x h

−
+

F
HG

I
KJ

L

N
M

O

Q
P

= (– 1) Δn–2 
1 1 1

2
1

x h x x h x h+
−

F
HG

I
KJ

−
+

−
+

F
HG

I
KJ

L

N
M

O

Q
P

= (– 1) Δn–2 
2 1 1

2x h x x h+
− −

+
L

N
M

O

Q
P

= (– 1) Δn–2 
−

+ +
L

N
M

O

Q
P

2
2

2h
x x h x h( )( )

= (– 1)2 Δn–2 
2

2

2!
( )( )

h
x x h x h+ +
L

N
M

O

Q
P

= (– 1)3 Δn–3 
3

2 3

3!
( )( )( )

h
x x h x h x h+ + +
L

N
M

O

Q
P

�

= (– 1)n 
n h

x x h x nh

n!
( ) ...... ( )+ +

.

Example 9. Assuming that the following values of y belong to a polynomial of
degree 4, compute the next three values:

x: 0 1 2 3 4 5 6 7

y: 1 – 1 1 – 1 1 – – –
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Sol. Difference table is:

x y Δy Δ2y Δ3y Δ4y

0 1
– 2

1 – 1 4
2 – 8

2 1 – 4 16
– 2 8

3 – 1 4 16
2 Δ3y2

4 1 Δ2y3 16
Δy4 Δ3y3

5 y5 Δ2y4 16
Δy5 Δ3y4

6 y6 Δ2y5

Δy6

7 y7

Since values of y belong to a polynomial of degree 4, the fourth differences
must be constant.

But  Δ4y0 = 16

∴ Other fourth order differences will be 16.

Thus,  Δ4y1 = 16

∴  Δ3y2 – Δ3y1 = 16

⇒  Δ3y2 = 24

∴  Δ2y3 – Δ2y2 = 24

⇒    Δ2y3 = 28

 Δy4 – Δy3 = 28

⇒ Δ y4 = 30

 y5 – y4 = 30

⇒ y5 = 31

Again, Δ4y2 = 16 and solving, we get y6 = 129

and Δ4y3 = 16 gives y7 = 351.
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Example 10. Prove that

 Δ log f(x) = log 1
f(x)
f(x)

+
L

N
M

O

Q
P

Δ
.

Sol.  L.H.S. = log f(x + h) – log f(x)

= log [f(x) + Δf(x)] – log f(x) | ∵ Δf(x) = f(x + h) – f(x)

= log 
f x f x

f x
( ) ( )

( )
+L

N
M

O

Q
P

Δ
 = log 1 +

L

N
M

O

Q
P

Δf x
f x

( )
( )

 = R.H.S.

Example 11. Prove that

   ex = 
Δ2

E

F

HG
I

KJ
 ex . 

Ee
e

x

2 xΔ
.

Sol.       
Δ2

E

F

HG
I

KJ
 ex = Δ2 E–1 ex = Δ2 ex–h = e–h Δ2 ex

 R.H.S. = e–h  . Δ2 ex . 
E e

e

x

xΔ2  = e–h . E ex = e–h ex+h = ex.

Example 12. Prove that hD = – log (1 – ∇) = sin h–1 (μδ).

Sol. hD = log E = – log (E–1) = – log (1 – ∇) | ∵ E–1 = 1 – ∇

Also, μ = 
1
2

 (E1/2 + E–1/2)

δ = E1/2 – E–1/2

∴  μδ = 
1
2

 (E – E–1) = 
1
2

 (ehD – e–hD) = sin h (hD)

or hD = sin h–1 (μδ).

Example 13. Prove that

(i) (E1/2 + E–1/2) (1 + Δ)1/2 = 2 + Δ (ii) Δ = 
1
2

 δ2 + δ 1 /42+ δ

(iii) Δ3y2 = ∇3y5.

Sol. (i)  (E1/2 + E–1/2) E1/2 = E + 1 = 1 + Δ + 1 = Δ + 2

(ii)
1
2

 δ2 + δ 1
4

2

+ δ
 = 

1
2

 (E1/2 – E–1/2)2 + (E1/2 – E–1/2) 1
1
4

1/2 1/2 2+ − −( )E E

       = 
1
2

 (E + E–1 – 2) + (E1/2 – E–1/2) E E1/2 1/2

2
+F

HG
I

KJ
−

 = 
1
2

 (2E – 2) = E – 1 = Δ
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(iii)   Δ3y2 = (E – 1)3 y2

= (E3 – 3E2 + 3E – 1) y2 = y5 – 3y4 + 3y3 – y2

∇3y5 = (1 – E–1) y5

= (1 – 3 E–1 + 3E–2 – E–3) y5 = y5 – 3y4 + 3y3 – y2.

Example 14. Prove that

(i) Δ + ∇ = 
Δ

Δ∇
− ∇

where Δ and ∇ are forward difference and backward difference operators
respectively.

(ii) Δ2 yr
r 0

n 1

=

−

∑  = Δyn – Δy0 (iii) Δryk = ∇ryk+r.

Sol. (i)   
Δ

Δ∇
− ∇F

HG
I
KJ

yx = 
E 1

1 E
1 E
E 11

1−
−

− −
−

F

HG
I

KJ−

−
 yx

= 
E 1
E 1

E

E 1
E

E 1
−
−F

HG
I
KJ

−

−F
HG

I
KJ

−

R

S
||

T
|
|

U

V
||

W
|
|

yx = E
1
E

−F
HG

I
KJ

 yx = (E – E–1)yx

= {(1 + Δ) – (1 – ∇)}yx = (Δ + ∇)yx

Hence,  
Δ

Δ∇
− ∇

 = Δ + ∇

(ii) Δ Δ Δ2
1

0

1

0

1

y y yr r r
r

n

r

n

= −+
=

−

=

−

∑∑ ( )

= Δy1 – Δy0 + Δy2 – Δy1 + ...... + Δyn – Δyn–1

= Δyn – Δy0.

(iii) ∇ryk+r = (1 – E–1)ryk+r = 
E 1

E
−F

HG
I
KJ

r

yk+r

= (E – 1)r E–ryk+r = Δryk.

Example 15. Denoting 
x
n

x x 1 x n 1
n

F
HG
I
KJ

=
− − +( ) ...... ( )

!
, prove that for any polyno-

mial φ(x) of degree k

φ(x) = 
i 0

k x
i

=
∑

F
HG
I
KJ
 Δi φ(0).
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Sol. We have

 En f(a) = f(a + nh) = f(a) + nC1 Δf(a) + nC2 Δ2f(a) + ...... + nCn Δ
n f(a)

Put   a = 0, n = x, we get for h = 1

   f(x) = f(0) + xC1 Δf(0) + xC2 Δ
2f(0) + ...... + xCx Δ

x f(0)

Again, f(x) = φ(x) is the given polynomial of degree k

∴   Δk φ(x) = constant and higher order differences will be zero.

∴   φ(x) = φ(0) + xC1 Δ φ(0) + ...... + xCk Δ
k φ(0) = 

i

k x
i

=
∑

F
HG
I
KJ

1
 Δi φ(0).

Example 16. Obtain the first term of the series whose second and subsequent
terms are 8, 3, 0, – 1, 0.

Sol.   f(1) = E–1 f(2) = (1 + Δ)–1 f(2)

= (1 – Δ + Δ2 – Δ3 + ......) f(2)

Since five observations are given

∴ Δ4 f(x) = constant and Δ5f(x) = 0

We construct the table as:

x f(x) Δf(x) Δ2f(x)

2 8
– 5

3 3 2
– 3

4 0 2
– 1

5 – 1 2
1

6 0

Hence, f(1) = f(2) – Δf(2) + Δ2 f(2) = 8 – (– 5) + 2 = 15.

Example 17. Given u0, u1, u2, u3, u4 , and u5, and assuming the fifth order
differences to be constant, prove that

u
1
2

c
25 (c b) 3(a c)

2562
1
2

= + − + −

where a = u0 + u5, b = u1 + u4, c = u2 + u3.

Sol. u
2

1
2

 = E5/2 u0 = (1 + Δ)5/2 u0
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= 1
5
2

5
2

5
2

1

2

5
2

5
2

1
5
2

2
5
2

3
5
2

4

5
2 5+ +

−F
HG

I
KJ

+ +
−F

HG
I
KJ

−F
HG

I
KJ

−F
HG

I
KJ

−F
HG

I
KJ

L

N

M
M
M
M

O

Q

P
P
P
P

Δ Δ Δ
!

......
!

 u0

= u0 + 
5
2

 Δu0 + 
15
8

 Δ2u0 + 
5

16
 Δ3u0 – 

5
128

 Δ4u0 + 
3

256
 Δ5u0

= u0 + 
5
2

(u1 – u0) + 
15
8

 (u2 – 2u1 + u0) + 
5

16
 (u3 – 3u2 + 3u1 – u0) + ......

+ 
3

256
 (u5 – 5u4 + 10u3 – 10u2 + 5u1 – u0)

= 
3

256
 (u0 + u5) – 

25
256

 (u1 + u4) + 
75

128
 (u2 + u3) = 

3
256

25
256

a −  b + 
75

128
 c

= 
3
256

25
256

a b−  + 
1
2

11
128

+F
HG

I
KJ  c = 

c a c c b
2

3 25
256

+ − + −( ) ( )
.

Example 18. (i) Prove the relation: (1 + Δ)(1 – ∇) ≡ 1

(ii) Find the function whose first difference is ex.

(iii) If Δ3ux = 0 prove that:

     u
1
2x

1
2

+
=  (ux + ux+1) – 

1
16

 (Δ2ux + Δ2ux+1).

Sol. (i) (1 + Δ)(1 – ∇) f(x) = (1 + Δ) [f(x) – ∇ f(x)]

   = (1 + Δ) [f(x) – {f(x) – f(x – h)}] = (1 + Δ) [f (x – h)]

   = E f(x – h) = 1 . f(x)

   (1 + Δ) (1 – ∇) ≡ 1.

(ii)     Δ ex = ex+h – ex = (eh – 1) ex

⇒      ex = 
Δe

e

x

h − 1

Hence,   Δ 
e

e

x

h −

F

HG
I

KJ1
 = ex or f(x) = 

e

e

x

h − 1
.

(iii)     u
x + 1

2

 = E1/2 ux = (1 + Δ)1/2 ux

    = 1
1
2

1
8

2+ −F
HG

I
KJ

Δ Δ  ux (10) | ∵ Δ3 ux = 0
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Now,      Δ3 ux = 0

⇒  Δ2ux+1 – Δ2 ux = 0

⇒ Δ2ux+1 = Δ2ux and Δux = ux+1 – ux

∴ From (10),

  u
x + 1

2

 = ux + 
1
2

 (ux+1 – ux) – 1
8

 Δ Δ2 2
1

2 2
u ux x+

F

HG
I

KJ
+

 = 
1
2

 (ux + ux+1) – 
1

16
 (Δ2ux + Δ2ux+1).

Example 19. (i) Find f(6) given f(0) = – 3, f(1) = 6, f(2) = 8, f(3) = 12; third
difference being constant.

(ii) Find Δ10(1 – ax)(1 – bx2)(1 – cx3)(1 – dx4).

(iii) Evaluate Δn(axn + bxn–1).

Sol. (i) The difference table is:

x f(x) Δf(x) Δ2f(x) Δ3f(x)

0 – 3
9

1 6 – 7
2 9

2 8 2
4

3 12

f(0 + 6) = E6f(0) = (1 + Δ)6f(0) = (1 + 6Δ + 15Δ2 + 20Δ3) f(0)

 = – 3 + 6 (9) + 15 (– 7) + 20 (9) = – 3 + 54 – 105 + 180 = 126.

(ii) Maximum power of x in the polynomial will be 10 and the coefficient of
x10 will be abcd.

Here  k = abcd, h = 1, n = 10

∴ Expression = k hn n ! = abcd 10 !.

(iii) Δn(axn + bxn–1) = a Δn(xn) + b Δn(xn–1) = a(n) ! + b(0) = a(n) !.

Example 20. (i) Prove that if m is a (+)ve integer, then

(x 1)
m !

(m)+
 = 

x
m !

(m)

 + 
x

(m 1) !

(m 1)−

−
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(ii) Given u0 + u8 = 1.9243, u1 + u7 = 1.9590

    u2 + u6 = 1.9823, u3 + u5 = 1.9956. Find u4.

Sol. (i) R.H.S. = 
x x x m

m
x x x m

m
( ) ...... ( )

!
( ) ...... ( )

( ) !
− − + + − − +

−
1 1 1 2

1

= 
x x x x m

m
( ) ( ) ...... ( )

!
− − − +1 2 2

 [(x – m + 1) + m]

= 
( ) ( )( ) ...... ( )

!
( )

!

( )x x x x x m
m

x
m

m+ − − − + = +1 1 2 2 1
 = L.H.S.

(ii) Taking   Δ8 u0 = 0
⇒ (E – 1)8 u0 = 0

⇒ u8 – 8c1u7 + 8c2u6 – 8c3u5 + 8c4u4 – 8c5u3 + 8c6u2 – 8c7u1 + 8c8u0 = 0

⇒ (u0 + u8) – 8(u1 + u7) + 28(u2 + u6) – 56(u3 + u5) + 70 u4 = 0

⇒  u4 = 0.99996. (After giving the values)

Example 21. Prove that

(i) δ[f(x) g(x)] = μf(x) δg(x) + μg(x) δf(x)

(ii) δ 
f(x)
g(x)

g(x) f(x) f(x) g(x)
g(x ) g(x )1

2
1
2

L

N
M

O

Q
P = −

− +
μ δ μ δ

(iii) μ 
f(x)
g(x)

f(x) g(x) f(x) g(x)

g(x ) g(x )

1
4

1
2

1
2

L

N
M

O

Q
P =

−
− +

μ μ δ δ

The interval of difference is said to be unity.

Sol. (i) R.H.S. = μf(x) δg(x) + μg(x) δf(x)

= 
E E1/2 1/2

2
+ −

 f(x) . (E1/2 – E–1/2) g(x) + 
E E1/2 1/2

2
+ −

 g(x) (E1/2 – E–1/2) f(x)

= 1
2 [{f(x + 1

2 ) + f(x – 1
2 )}{g(x + 1

2 ) – g(x – 1
2 )}

+ {g(x + 1
2 ) + g(x – 1

2 )} {f(x + 1
2 ) – f(x – 1

2 )}]

= 1
2 [{f(x + 1

2 )g (x + 1
2 ) – f(x + 1

2 ) g(x – 1
2 ) +  f(x – 1

2 ) g(x + 1
2 )

– f(x – 1
2 ) g(x – 1

2 )} + {f(x + 1
2 ) g(x + 1

2 )

+ f(x + 1
2 ) g(x – 1

2 ) – f(x – 1
2 ) g(x + 1

2 ) – f(x – 1
2 ) g(x – 1

2 )}]
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= 1
4 f(x + 1

2 ) g(x + 1
2 ) – f(x – 1

2 ) g(x – 1
2 )

= E1/2 f(x) g(x) – E–1/2 f(x) g(x) = (E1/2 – E–1/2)f(x) g(x) = δf(x) g(x).

(ii) R.H.S. = 
μ δ μ δg x f x f x g x

g x g x
( ) ( ) ( ) ( )

( ) ( )
−

− +1
2

1
2

Numerator of R.H.S.

= 
E E1/2 1/2

2
+ −

 g(x) (E1/2 – E–1/2) f(x)

– 
E E1/2 1/2

2
+ −

 f(x) (E1/2 – E–1/2) g(x)

= 1
2 [{g(x + 1

2 ) + g(x – 1
2 )}{f(x + 1

2 ) – f(x – 1
2 )}

– {f(x + 1
2 ) + f(x – 1

2 )}{g(x + 1
2 ) – g(x – 1

2 )}]

= 1
2 [f(x + 1

2 )  g(x + 1
2 ) + f(x + 1

2 ) g(x – 1
2 )  – f(x – 1

2 )  g(x + 1
2 )

– f(x – 1
2 ) g(x – 1

2 )] –  1
2 [f(x + 1

2 ) g(x + 1
2 ) – f(x + 1

2 )g(x – 1
2 )

+ f(x – 1
2 ) g(x + 1

2 ) – f(x – 1
2 ) g(x – 1

2 )]

= f(x + 1
2 ) g(x – 1

2 ) – f(x – 1
2 ) g(x + 1

2 )

∴  R.H.S. = 
f x g x f x g x

g x g x

( ) ( ) ( ) ( )

( ) ( )

+ − − − +
− +

1
2

1
2

1
2

1
2

1
2

1
2

      = 
f x

g x

f x

g x
f x
g x

f x
g x

( )

( )

( )

( )
( )
( )

( )
( )

+
+

−
−
−

=
L

N
M

O

Q
P −

L

N
M

O

Q
P

1
2
1
2

1
2
1
2

1/2 1/2E E

      = (E1/2 – E–1/2) 
f x
g x

f x
g x

( )
( )

( )
( )

F
HG

I
KJ

=
L

N
M

O

Q
Pδ  .

(iii) R.H.S. = 
μ μ δ δf x g x f x g x

g x g x

( ) ( ) ( ) ( )

( ) ( )

−
− +

1
4

1
2

1
2

Numerator of R.H.S.

= 1
2 [E1/2 + E–1/2] f(x) . 1

2 (E1/2 + E–1/2) g(x)

– 1
4 (E1/2 – E–1/2) f(x) (E1/2 – E–1/2) g(x)

= 1
4 [f(x + 1

2 ) + f(x – 1
2 )][g(x + 1

2 ) + g(x – 1
2 )]

– 1
4 [f(x + 1

2 ) – f(x – 1
2 )][g(x + 1

2 ) – g(x – 1
2 )]
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= 1
4 [f(x + 1

2 ) g(x + 1
2 ) + f(x + 1

2 ) g(x – 1
2 ) + f(x – 1

2 ) g(x + 1
2 )

+ f(x – 1
2 ) g(x – 1

2 ) – 1
4 [f(x + 1

2 ) g(x + 1
2 ) – f(x + 1

2 ) g(x – 1
2 )

– f(x – 1
2 ) g(x + 1

2 ) + f(x – 1
2 ) g(x – 1

2 )

= 1
2 [f(x + 1

2 ) g(x – 1
2 ) + f(x – 1

2 ) g(x + 1
2 )]

∴    R.H.S. = 
1
2

1
2

1
2

1
2

1
2

1
2

1
2

[ ( ) ( ) ( ) ( )]

( ) ( )

f x g x f x g x

g x g x

+ − + − +
− +

= 
1
2 2

1
2
1
2

1
2
1
2

1/2 1/2f x

g x

f x

g x

( )

( )

( )

( )

+
+

+
−
−

L

N
M
M

O

Q
P
P

= + −E E
 

f x
g x

f x
g x

( )
( )

( )
( )

L

N
M

O

Q
P =

L

N
M

O

Q
Pμ .

Example 22. Evaluate:

(i) Δ(eax log bx) (ii) Δ
2

(x 1) !

x

+
F

HG
I

KJ
; h = 1.

Sol. (i) Let f(x) = eax, g(x) = log bx

Δ f(x) = ea(x+h) – eax = eax (eah – 1)

Also, Δg(x) = log b(x + h) – log bx = log 1 +F
HG

I
KJ

h
x

We know that,

Δ f(x) g(x) = f(x + h) Δ g(x) + g(x) Δf(x)

∴   Δ (eax log bx) = ea(x+h) log 1 +F
HG

I
KJ

h
x

 + (log bx) eax(eah – 1)

= eax e
h
x

e bxah ahlog ( ) log1 1+F
HG

I
KJ

+ −
L

N
M

O

Q
P .

(ii) Let    f(x) = 2x, g(x) = (x + 1) !

∴ Δf(x) = 2x+1 – 2x = 2x

and  Δ g(x) = (x + 1 + 1) ! – (x + 1) ! = (x + 1) (x + 1) !

We know that,

Δ 
f x
g x
( )
( )

L

N
M

O

Q
P  = 

g x f x f x g x
g x h g x

( ) ( ) ( ) ( )
( ) ( )

Δ Δ−
+

= 
( ) ! . . ( ) ( ) !

( ) ! ( )!
x x x

x x

x x+ − + +
+ + +

1 2 2 1 1
1 1 1

(∵ h = 1)

= 
2 1 1 1

2 1 2

x x x
x x

x
x

( ) ! ( )
( ) ! ( ) ! ( ) !

+ − −
+ +

= −
+

 2x.
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Example 23. Evaluate:

(i) Δn [sin (ax + b)] (ii) Δn [cos (ax + b)].

Sol. (i) Δ sin (ax + b)

= sin [a (x + h) + b] – sin (ax + b)

= 2 sin 
ah
2

 cos a x
h

b+F
HG

I
KJ

+L

N
M

O

Q
P2

= 2 sin 
ah
2

 sin ax b
ah+ + +F

HG
I
KJ

π
2

∴ Δ2 sin (ax + b)

= Δ 2
2 2

sin sin
ah

ax b
ah

+ +
+F

HG
I
KJ

L

N
M

O

Q
P

π

= 2
2

2
2 2 2

sin sin sin
ah ah

ax b
ah ahF

HG
I
KJ
F
HG

I
KJ

+ + + + +L
NM

O
QP

π π

= 2
2

2

sin
ahF

HG
I
KJ

 sin ax b
ah

+ +
+F

HG
I
KJ

L

N
M

O

Q
P2

2
π

Proceeding in the same manner, we get

Δ3 sin (ax + b) = 2
2

3
2

3

sin sin
( )ah

ax b
ahF

HG
I
KJ

+ + +L
NM

O
QP

π

� �

Δn sin (ax + b) = 2
2 2

sin sin
( )ah

ax b
n ahn

F
HG

I
KJ

+ + +L
NM

O
QP

π

Similarly,

(ii) Δn cos (ax + b) = 2
2 2

sin cos
ah

ax b n
ah

n
F
HG

I
KJ

+ + +F
HG

I
KJ

L

N
M

O

Q
P

π
.

Example 24. Prove that

(i) μδ = 
1
2

 (Δ + ∇) (ii) 1 + 
δ δ μ

2
2 2

2
1

F

HG
I

KJ
= +

(iii) ∇2 = h2D2 – h3D3 + 
7
12

 h4D4. ...... (iv) ∇ – Δ = – ∇Δ

Sol. (i) μδyx = μ(E1/2 – E–1/2)yx

= μ( y y
x

h
x

h+ −
−

2 2

) = μ( ) ( )y y
x

h
x

h+ −
−

2 2

μ
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= 
1
2

 (E1/2 + E–1/2)( )y
x

h+
−

2

1
2

 (E1/2 + E–1/2)( )y
x

h−
2

= 
1
2

 (yx+h + yx) – 
1
2

 (yx + yx–h) = 
1
2

 (yx+h – yx) + 
1
2

 (yx – yx–h)

= 
1
2

 (Δyx) + 
1
2

 (∇yx) = 
1
2

 (Δ + ∇)yx

Hence,   μδ = 
1
2

 (Δ + ∇)

(ii)     L.H.S. = 1
2

2

+
F

HG
I

KJ
R
S
|

T|

U
V
|

W|

δ
 yx = 1

(E E )
2

1/2 1/2 2

+ −R
S
T|

U
V
W|

−
 yx

= 1
E E

2

–1

+ + −F

HG
I

KJ
R
S
|

T|

U
V
|

W|

2
yx  = 

1
2

 (E + E–1)yx

 R.H.S. = ( )1 2 2+ δ μ yx

= 1
1
4

1/2 1/2 2 1/2 1/2 2
1/2

+ − +R
S
T

U
V
W

L

N
M

O

Q
P

− −( ) . ( )E E E E yx

= 1

1/2

+ −F

HG
I

KJ
R
S
|

T|

U
V
|

W|

−(E E )
4

1 2

yx

= 
E E 2

4

2 2 1/2
+ +F

HG
I

KJ
−

 yx = 
E E

2

1+F

HG
I

KJ
−

 yx

Hence L.H.S. = R.H.S.

(iii)       E = ehD and ∇ = 1 – E–1

∴      ∇2 = (1 – E–hD)2

= 1 1
2 3 4

2 3 4
2

− − + − + −
R
S
T

U
V
W

L

N
M
M

O

Q
P
P

h
h h h

D
D D D( )

!
( )

!
( )

!
...

= h
h h h

D
D D D− + − +

R
S
T

U
V
W

( )
!

( )
!

( )
!

...
2 3 4 2

2 3 4

= h2D2 1
2 6

2

− − +
R
S
T

U
V
W

L

N
M
M

O

Q
P
P

h hD D)2(
...
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= h2D2 1
2 6

2
2 6

2

+ − +
R
S
T

U
V
W

− − +
R
S
T

U
V
W

L

N

M
M

O

Q

P
P

h h h hD D) D D)2 2(
...

(
...

= h2D2 1
1
4

1
3

2− + +F
HG

I
KJ

−
L

N
M

O

Q
Ph hD D( ) ...

= h2D2 1
7
12

2 2− + −F
HG

I
KJ

h hD D ...  = h2D2 – h3D3 + 
7
12

 h4D4 – ...

(iv)  ∇ – Δ = (1 – E–1) – (E – 1) = 
E 1

E
−F

HG
I
KJ  – (E – 1) = (E – 1)(E–1 – 1)

= – (E – 1) (1 – E–1) = – ∇Δ

ASSIGNMENT 4.1

1. Form a table of differences for the function:

f(x) = x3 + 5x – 7 for x = – 1, 0, 1, 2, 3, 4, 5

Continue the table to obtain f(6)  and f(7).
2. Given the set of values

x: 10 15 20 25 30 35

y: 19.97 21.51 22.47 23.52 24.65 25.89.

Form the difference table and find the values of Δ2 y10 , Δy20 , Δ
3 y15 , and Δ5y10.

3. Write the forward difference table for

x: 10 20 30 40

y: 1.1 2.0 4.4 7.9.

4. Construct the table of differences for the data below:

x: 0 1 2 3 4

f(x): 1.0 1.5 2.2 3.1 4.6

Evaluate Δ3 f(2).

5. Prove that:

(i) ∇ = ΔE–1 = E–1Δ = 1 – E–1 (ii) E1/2 = μ + 
1
2

 δ

(iii) δ = ΔE–1/2 = ∇E1/2 (iv) δ(E1/2 + E–1/2) = ΔE–1 + Δ

(v) Δ∇ = ∇Δ = δ2 (vi) δ = Δ(1 + Δ)–1/2 = ∇(1 – ∇)–1/2

(vii) E = (1 – Δ)–1.



INTERPOLATION    225

6. ux  is a function of x for which fifth differences are constant and

u1 + u7 = –786, u2 + u6 = 686, u3 + u5 = 1088. Find u4.

7. Prove that:

(i) u4 = u3 + Δu2 + Δ2u1 + Δ3u1 (ii) u4 = u0 + 4Δu0 + 6 Δ2u–1 + 10 Δ3u–1.

8. Prove that:

Δ sin–1 x = sin–1 [(x + 1) 1 2− x  – x 1 1 2− +( )x ].

9. Evaluate:

(i) (E–1 Δ) x3 (ii)
Δ2

3

E

F

H
G
I

K
J x ; h = 1.

10. Evaluate:

(i) Δ 
e

e e

x

x x+

F

H
G

I

K
J− (ii) Δ cos ax

the interval of difference being h.

4.8 FACTORIAL NOTATION

A product of the form x(x – 1)(x – 2) ...... (x – r + 1) is denoted by [x]r and is called
a factorial.

Particularly, [x] = x; [x]2 = x(x – 1); [x]3 = x (x – 1)(x – 2), etc.

In case the interval of difference is h, then

[x]n = x(x – h) (x – 2h) ...... (x – n − 1 h)

Factorial notation helps in finding the successive differences of a polynomial
directly by the simple rule of differentiation.

4.9 TO SHOW THAT (i) Δn

[x]
n

 = n !  (ii) Δn+1

 [x]
n

 = 0

 Δ[x]n = [(x + h)]n – [x]n

 = (x + h)(x + h – h) (x + h – 2h) ...... (x + h – n − 1 h)

– x(x – h) (x – 2h) ...... (x – n − 1 h)

 = x(x – h) ...... (x – n − 2 h) [x + h – (x – nh + h)] = nh [x]n–1
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Similarly, Δ2[x]n = Δ[nh [x]n–1] = nh Δ[x]n–1 = n(n – 1) h2 [x]n–2

�

   Δn[x]n = n(n – 1) ..... 2 . 1 . hn–1 (x + h – x) = n ! hn

Also,     Δn + 1[x]n = n ! hn – n ! hn = 0

when h = 1, Δ[x]n = n[x]n–1 and Δn[x]n = n !

Hence the result of difference [x]r is analogous to that of difference xr when
h = 1.

4.10 RECIPROCAL FACTORIAL

x(–n) = 
1

( )( )x n n+
, the interval of  difference being unity.

By definition of x(n), we have

x(n) = (x – n − 1 h) x(n–1) (11)

when the interval of difference is h.

∴ When n = 0, we have  x(0) = (x + h) x(– 1) (12)

Since,  Δx(n) = nhx(n–1) (13)

when n = 1, Δx(1) = hx(0).

⇒      Δx = h x(0) ⇒ h = hx(0) ⇒ x(0) = 1

From (12),    x(–1) = 
1

( )x h+
(14)

when n = – 1, from (11),

x(–1) = (x + 2h) x(–2)

⇒
1

x h+
 = (x + 2h) x(–2) ⇒ x(–2) = 

1
2( )( )x h x h+ +

In general, x(–n) = 
1

2( )( ) ...... ( )x h x h x nh+ + +
(15)

x(–n) = 
1

( )( )x nh n+

Here x(–n) is called the reciprocal factorial where n is a (+)ve integer.

Particular case. When h = 1, x(–n) = 
1

( )( )x n n+
.
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4.11 MISSING TERM TECHNIQUE

Suppose n values out of (n + 1) values of y = f(x) are given, the values of x
being equidistant.

Let the unknown value be N. We construct the difference table.
Since only n values of y are known, we can assume y = f(x) to be a polynomial

of degree (n – 1) in x.
Equating to zero the nth difference, we can get the value of N.

EXAMPLES

Example 1. Express y = 2x3 – 3x2 + 3x – 10 in factorial notation and hence show
that Δ3y = 12.

Sol. Let        y = A[x]3 + B[x]2 + c[x] + D

Using the method of synthetic division, we divide by x, x – 1, x – 2 etc.
successively, then

1 2 – 3 3 – 10 = D
2 – 1

2 2 – 1 2 = C
4

3 2 3 = B

2 = A

Hence,  y = 2[x]3 + 3[x]2 + 2[x] – 10

∴ Δy = 6[x]2 + 6[x] + 2

 Δ2y = 12[x] + 6

Δ3y = 12

which shows that the third differences of y are constant.

Example 2. Express f(x) = x4 – 12x3 + 24x2 – 30x + 9 and its successive differences
in factorial notation. Hence show that Δ5f(x) = 0.
Sol. Let

f(x) = A[x]4 + B[x]3 + C[x]2 + D[x] + E

Using the method of synthetic division, we divide by x, x – 1, x – 2, x – 3, etc.
successively, then
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1 1 – 12 24 – 30 9 = E
1 – 11 13

2 1 – 11 13 – 17 = D
2 – 18

3 1 – 9 – 5 = C

3

4 1 – 6 = B

1 = A

Hence, f(x) = [x]4 – 6[x]3 – 5[x]2 – 17[x] + 9

∴ Δf(x) = 4[x]3 – 18[x]2 – 10[x] – 17

Δ2f(x) = 12[x]2 – 36[x] – 10

 Δ3f(x) = 24[x] – 36

 Δ4f(x) = 24

and  Δ5f(x) = 0.

Example 3. Obtain the function whose first difference is 9x2 + 11x + 5.

Sol. Let f(x) be the required function so that

 Δf(x) = 9x2 + 11x + 5

Let 9x2 + 11x + 5 = 9[x]2 + A[x] + B = 9x(x – 1) + Ax + B

Putting  x = 0, B = 5

 x = 1, A = 20

∴   Δf(x) = 9[x]2 + 20[x] + 5

Integrating, we get

f(x) = 9 
[ ]x 3

3
 + 20 

[ ]x 2

2
 + 5[x] + c

 = 3x(x – 1) (x – 2) + 10x(x – 1) + 5x + c = 3x3 + x2 + x + c

where c is the constant of integration.
Example 4. Find the missing values in the table:

x: 45 50 55 60 65

y: 3 – 2 – – 2.4.
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Sol. The difference table is as follows:

x y Δy Δ2y Δ3y

45 3
y1 – 3

50 y1 5 – 2y1

2 – y1 3 y1 + y3 – 9
55 2 y1 + y3 – 4

y3 – 2 3.6 – y1 – 3y3

60 y3 – 0.4 – 2y3

– 2.4 – y3

65 – 2.4

As only three entries y0, y2, y4 are given, the function y can be represented
by a second degree polynomial.

∴  Δ3y0 = 0 and Δ3y1 = 0

⇒ 3y1 + y3 = 9 and y1 + 3y3 = 3.6

Solving these, we get

 y1 = 2.925, y2 = 0.225.

Example 5. Express f(x) = 
x 1

(x 1)(x 3)
−

+ +
 in terms of negative factorial

polynomials.

Sol.  f(x) = 
x

x x
x x

x x x
−

+ +
= − +

+ + +
1

1 3
1 2

1 2 3( )( )
( )( )

( )( )( )

= 
1

1
4

1 2
4

1 2 3x x x x x x+
−

+ +
+

+ + +( )( ) ( )( )( )

= x(–1) – 4x(–2) + 4x(–3).

Example 6. Find the relation between α, β, and γ in order that α + βx + γx2 may
be expressible in one term in the factorial notation.

Sol. Let          f(x) = α + βx + γx2 = (a + bx)(2)

where a and b are certain unknown constants.

Now,  (a + bx)(2) = (a + bx) [a + b(x – 1)]

= (a + bx) (a – b + bx) = (a + bx)2 – ab – b2x

= (a2 – ab) + (2ab – b2)x + b2x2 = α + βx + γx2
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Comparing the coefficients of various powers of x, we get

α = a2 – ab, β = 2ab – b2, γ = b2

Eliminating a and b from the above equations,

we get  γ2 + 4αγ = β2

which is the required relation.

Example 7. Given, log 100 = 2, log 101 = 2.0043,  log 103 = 2.0128, log 104 =
2.0170. Find log 102.

Sol. Since four values are given, Δ4f(x) = 0.

Let the missing value be y2.

x y Δy Δ2y Δ3y Δ4y

100 2
.0043

101 2.0043 y2 – 2.0086
y2 – 2.0043 6.0257 – 3y2

102 y2 4.0171 – 2y2 6y2 – 12.0514
2.0128 – y2 3y2 – 6.0257

103 2.0128 y2 – 2.0086
.0042

104 2.0170

Since  Δ4y = 0

∴ 6y2 – 12.0514 = 0 ⇒ y2 = 2.0086.

Example 8. Estimate the missing term in the following table:

x: 0 1 2 3 4

y = f(x): 1 3 9 ? 81.

Sol. We are given 4 values

∴ Δ4f(x) = 0 ∀ x ⇒ (E – 1)4 f(x) = 0 ∀ x

⇒       (E4 – 4E3 + 6E2 – 4E + 1) f(x) = 0 ∀ x

⇒ f(x + 4) – 4f(x + 3) + 6f(x + 2) – 4f(x + 1) + f(x) = 0 ∀ x

where the interval of difference is 1.
Now given x = 0, we obtain

f(4) – 4f(3) + 6f(2) – 4f(1) + f(0) = 0
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⇒     81 – 4f(3) + 54 – 12 + 1 = 0 (From table)

⇒ 4f(3) = 124 ⇒ f(3) = 31.

Example 9. A second degree polynomial passes through (0, 1), (1, 3), (2, 7),
(3, 13). Find the polynomial.

Sol. Let f(x) = Ax2 + Bx + C

The difference table is:

x f(x) Δf(x) Δ2f(x)

0 1
2

1 3 2
4

2 7 2
6

3 13

 Δf(x) = A Δx2 + BΔx + ΔC

 = A {(x + 1)2 – x2} + B(x + 1 – x) + 0 = A(2x + 1) + B

Put x = 0,

  Δf(0) = A + B ⇒ A + B = 2

Also, Δ2f(x) = 2A ⇒ Δ2f(0) = 2 = 2A ⇒ A = 1

Also, B = 1

∴ Polynomial is f(x) = x2 + x + 1.

Example 10. Estimate the production for 1964 and 1966 from the following
data:

Year: 1961 1962 1963 1964 1965 1966 1967

Production: 200 220 260 — 350 — 430

Sol. Since five figures are known, assume all the fifth order differences as
zero. Since two figures are unknown, we need two equations to determine them.

Hence  Δ5y0 = 0 and Δ5y1 = 0

⇒ (E – 1)5y0 = 0 and (E – 1)5y1 = 0

⇒ y5 – 5y4 + 10y3 – 10y2 + 5y1 – y0 = 0

and y6 – 5y5 + 10y4 – 10y3 + 5y2 – y1 = 0
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Substituting the known values, we get
y5 – 1750 + 10y3 – 2600 + 1100 – 200 = 0

and 430 – 5y5 + 3500 – 10y3 + 1300 – 220 = 0

⇒ y5 + 10y3 = 3450 (16)

and   – 5y5 – 10y3 = – 5010 (17)

Adding (16) and (17), we get

 – 4y5 = – 1560

⇒  y5 = 390

From (16),    390 + 10y3 = 3450

⇒  10y3 = 3060

⇒  y3 = 306

Hence, production for year 1964 = 306
and production for year 1966 = 390.
Example 11. Find the missing figures in the following table:

x: 2 2.1 2.2 2.3 2.4 2.5 2.6

y: 0.135 — 0.111 0.100 — 0.082 0.074.

Sol. Here five values are given.

∴ It is assumed that fifth differences are zero and hence both Δ5 y2.0 and
Δ5 y2.1 are zero.

Δ5 y2.0 = (E – 1)5 y2.0

= (E5 – 5E4 + 10E3 – 10E2 + 5E – 1)y2.0

= y2.5 – 5y2.4 + 10y2.3 – 10y2.2 + 5y2.1 – y2.0 |∵ h = 0.1

= .082 – 5y2.4 + 1 – 1.11 + 5y2.1 – .135

= – 5y2.4 + 5y2.1 – .163

Since Δ5 y2.0 = 0

∴ – 5y2.4 + 5y2.1 – .163 = 0 (18)

Further,

 Δ5 y2.1 = (E – 1)5 y2.1

= (E5 – 5E4 + 10E3 – 10E2 + 5E – 1)y2.1

= y2.6 – 5y2.5 + 10y2.4 – 10y2.3 + 5y2.2. – y2.1

= .074 – (5 × .082) + 10y2.4 – 1 + .555 – y2.1
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= .074 – .41 + 10y2.4 – 1 + .555 – y2.1

= 10y2.4 – y2.1 – .781

Since Δ5 y2.1 = 0

∴ 10y2.4 – y2.1 – .781 = 0 (19)

Solving (18) and (19), we get

y2.1 = .123 and y2.4 = .0904.

Example 12. Find the missing value of the following data:

x: 1 2 3 4 5

f(x): 7 × 13 21 37.

Sol. Since four values are known, assume all the fourth order differences are
zero.

Since one value is unknown

we assume Δ4y1 = 0

⇒ (E – 1)4 y1 = 0

⇒ (E4 – 4E3 + 6E2 – 4E + 1)y1 = 0

⇒   y5 – 4y4 + 6y3 – 4y2 + y1 = 0 | ∵ h = 1

⇒ 37 – 4(21) + 6(13) – 4y2 + 7 = 0

⇒ 38 – 4y2 = 0

⇒   y2 = 9.5

Hence the required missing value is 9.5.

ASSIGNMENT 4.2

1. Estimate the missing term in the following:

x: 1 2 3 4 5 6 7

y: 2 4 8 — 32 64 128

Explain why the result differs from 16?
2. Estimate the production of cotton in the year 1935 from the data given below:

Year x: 1931 1932 1933 1934 1935 1936 1937

Production f(x): 17.1 13 14 9.6 — 12.4 18.2
(in millions)
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3. From the following data, find the value of U47:

U46 = 0.2884, U48 = 0.5356, U49 = 0.6513, U50 = 0.7620.

[Hint: Δ4 Ux = 0 ⇒ (E – 1)4 Ux = 0.]

4. Find by constructing the difference table, the tenth term of  the series

3, 14, 39, 84, 155, 258, ......

[Hint: f(10) = E9 f(1) = (1 + Δ)9 f(1)]

5. Find the missing terms in the following table:

x: 1 2 3 4 5 6 7 8

f(x): 1 8 ? 64 ? 216 343 512

6. Represent the following polynomials:

(i) 11x4 + 5x3 + x – 15 (ii) 2x3 – 3x2 + 3x + 10

and its successive differences in factorial notation.

4.12 METHOD OF SEPARATION OF SYMBOLS

The relationship E = 1 + Δ can be used to prove a number of useful identities.
The method is known as separation of symbols.

4.13 DETECTION OF ERRORS BY USE OF DIFFERENCE TABLES

Difference tables can be used to check errors in tabular values. Let f(x1), f(x2),
......, f(xn) be the true values of f(x) at x = x1, x2, ......, xn. If f(x) at x = xi is
incorrect, we have to determine  the error in such cases and correct the functional
value.

In particular, let the functional value at x = x5 be f(x5) + e and let other true
functional values f(x1), f(x2), ......, f(x4), f(x6) , ......, f(x9) be known.
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x f(x) Δf(x) Δ2f(x) Δ3f(x) Δ4f(x)

x1 f(x1)
Δf(x1)

x2 f(x2) Δ2f(x1)
Δf(x2) Δ3f(x1)

x3 f(x3) Δ2f(x2) Δ4f(x1) + e
Δf(x3) Δ3f(x2) + e

x4 f(x4) Δ2f(x3) + e Δ4f(x2) – 4e
Δ f(x4) + e Δ3 f(x3) – 3e

x5 f x( )5 Δ2 f(x4) – 2e Δ4f(x3) + 6e
Δ f(x5) – e Δ3 f(x4) + 3e

x6 f(x6) Δ2f(x5) + e Δ4f(x4) – 4e
Δ f(x6) Δ3f(x5) – e

x7 f(x7) Δ2f(x6) Δ4 f(x5) + e
Δ f(x7) Δ3f(x6)

x8 f(x8) Δ2f(x7)
Δ f(x8)

x9 f(x9)

From the table, we observe that,

(i) Error spreads in triangular form.
(ii) Coefficient of e’s are binomial coefficient with alternate signs + , –, .......

(iii) Algebraic sum of errors in each column is 0.
(iv) In even differences columns, the maximum error occurs in a horizontal

line in which incorrect y lies.
(v) In odd differences columns, the incorrect value of y lies between two middle

terms.
(vi) If  nth  differences  are constant, (n + 1)th differences vanish. The sum of all

the values in (n + 1)th differences column is zero or the sum is very small as
compared to the functional values
These observations help us in finding out the error, and hence the required

correct value of y can be found.

EXAMPLES

Example 1. Find the error and correct the wrong figure in the following
functional values:

2,  5,  10,  18,  26,  37,  50.

⎯⎯⎯⎯→
R

S
|

T
|

R

S

|
||

T

|
|
|

R

S

|
|
|
|

T

|
|
|
|

R

S

|
|
|
|
|
|

T

|
|
|
|
|
|

⎯⎯⎯⎯→
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Sol.

x y Δy Δ2y Δ3y

1 2
3

2 5 2
5 1

3 10 3
8 – 3

4 18 ←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 0 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
8 3

5 26 3
11 – 1

6 37 2
13

7 50

Sum of all the third differences is zero.
Adjacent values – 3, 3 are equal in magnitude. The horizontal line between

– 3 and 3 points out the incorrect functional value 18.
The coefficient of the first middle term on expansion of (1– p)3 = – 3

⇒ – 3e = – 3 ⇒ e = 1

∴ The correct functional value = 18 – 1 = 17.

Example 2. Locate the error in the following entries and correct it:

1.203, 1.424, 1.681, 1.992, 2.379, 2.848, 3.429, and 4.136.

Sol. Difference table is as follows:

103y 103Δy 103Δ2y 103Δ3y 103Δ4y

1203
221

1424 36
257 18

1681 54 4
311 22

1992 76 – 16
387 6

2379 ←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 82 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 24
469 30

2848 112 – 16
581 14

3429 126
707

4136
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The sum of all values in the column of fourth difference is – .004,

which is very small as compared to the sum of values in other columns.

∴  Δ4y = 0

The errors in this column are e, – 4e, 6e, – 4e, and e.

The term of maximum value = 24 ⇒ 6e = 24 ⇒ e = 4

The error lies in 2379.

Hence, the required correct entry = 2379 – 4 = 2375

Hence, the correct value = 2.375.

Example 3. Using the method of separation of symbols, show that

u0 – u1 + u2 – u3 + ... = 
1
2

u
1
4

u
1
80 0− +Δ  Δ2u0 – ...... .

Sol. R.H.S. = 
1
2

1
1
2

1
2

1
2

2 3

− + F
HG

I
KJ

− F
HG

I
KJ

+
L

N
M
M

O

Q
P
P

Δ Δ Δ ......  u0

  = 
1
2

1

1
1
2

1
2

1
1
20

1

.
+F

HG
I
KJ

= +F
HG

I
KJ

−

Δ
Δu  u0 = (2 + Δ)–1 u0 = (1 + E)–1 u0

  = (1 – E + E2 – E3 + ...) u0 = u0 – u1 + u2 – u3 + ...... = L.H.S.

Example 4. Using the method of separation of symbols, show that:

Δn ux–n = ux – nux–1 + 
n(n 1)

2
−

 ux–2 + ...... + (– 1)n ux–n.

Sol.    R.H.S. = ux – nE–1 ux + 
n n( )− 1

2
 E–2 ux + ......  + (– 1)n E–n ux

  = 1
1

2
11 2− + − + + −L

NM
O

QP
− − −n

n n n nE E E
( )

...... ( )  ux

  = (1 – E–1)n ux

  = 1
1−F

HG
I
KJE

n

 ux

  = E 1
E
−F

HG
I
KJ

n

 ux = Δn

nE
 ux

  = Δn E–n ux

  = Δn ux–n

   = L.H.S.
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Example 5. Show that:

       ex u x u
x
2 !

u .......0 0

2
2

0+ + +
F

HG
I

KJ
Δ Δ  = u0 + u1x + u2 

x
2 !

2

 + ...... .

Sol. L.H.S. = ex 1
2

2 2

+ + +
F

HG
I

KJ
x

xΔ Δ
!

......  u0 = ex . exΔ u0 = ex(1+Δ) u0  = exE u0

     = 1
2

2 2

+ + +
F

HG
I

KJ
x

x
E

E
!

......  u0 = u xu
x

u .......0 1

2

22
+ + +

F

HG
I

KJ!
 = R.H.S.

Example 6. Prove the following identity:

u1x + u2x
2 + u3x3 + ...... = 

x
1 x−

 u1 + 
x

(1 x)

2

2−
 Δu1 + .....

Sol.  L.H.S. = xu1 + x2 E u1 + x3 E2u1 + ...... = x (1 + xE + x2E2 + ......) u1

= x . 
1

1( )− xE
 u1 = x . 

1
1 1[ ( )]− +x Δ

 u1

= x 
1

1 − −
L

N
M

O

Q
Px x Δ
 u1 = 

x
x1−

 1

1
1

−
−

L

N

M
M

O

Q

P
P

x
x

Δ  u1

= x
x

x
x1

1
1

1

−
−

−
L

N
M

O

Q
P

−
Δ  (u1) = 

x
x

x
x

x
x1

1
1 1

2 2

2−
+

−
+

−
+

L

N
M

O

Q
P

Δ Δ
( )

......  u1

= 
x

x1 −  u1 + 
x

x

2

21( )−
 Δu1 + 

x

x

3

31( )−
 Δ2u1 + ...... = R.H.S.

Example 7. Prove that: ux = ux–1 + Δux–2 + Δ2ux–3 + ...... + Δn–1 ux–n + Δnux–n

Hence, or otherwise, prove that:

 u3 = u2 + Δu1 + Δ2u0 + Δ3u0 .

Sol.  ux – Δn ux–n = (1 – Δn E–n)ux

= 1 − F
HG
I
KJ

L

N
M
M

O

Q
P
P

Δ
E

n

 ux = 
1

En  (En – Δn) ux = 
1

E
E
En

n n−
−

F

HG
I

KJ
Δ
Δ

 ux

| ∵ 1 + Δ = E

= 
1

En  [En–1 + ΔEn–2 + Δ2En–3 + ...... + Δn–1] ux

= (E–1 + ΔE–2 + Δ2E–3 + ...... + Δn–1 E–n) ux
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= ux–1 + Δux–2 + Δ2ux–3 + ...... + Δn–1 ux–n

To prove the second result, put x = 3 and n = 3.
Example 8. Prove that:

Δxn – 
1
2

 Δ2xn + 
1.3
2.4

 Δ3xn – 
1 . 3 . 5
2 . 4 .6

 Δ4xn + ...... n terms

= x
1
2

n

+F
HG

I
KJ  – x

1
2

n

−F
HG

I
KJ

Sol.  L.H.S. = Δ 1
1
2

1
2

3
2

1 2
2− +

−F
HG

I
KJ

−F
HG

I
KJ

+ ∞

L

N

M
M
M
M

O

Q

P
P
P
P

Δ Δ
.

. ......  xn

= Δ (1 + Δ)–1/2 xn = Δ E–1/2 xn = Δ x
n

−F
HG

I
KJ

1
2

= x
n

+ −F
HG

I
KJ

1
1
2

 – x
n

−F
HG

I
KJ

1
2

 = x
n

+F
HG

I
KJ

1
2

 – x
n

−F
HG

I
KJ

1
2

 = R.H.S.

Example 9. Prove that:

ux – 
1
8

 Δ2ux–1 + 
1.3

8.16
 Δ4ux–2 – 

1 . 3 . 5
8 .16 . 24

 Δ6 ux–3 + ......

= u
x

1
2

+
 – 

1
2

 Δu
x

1
2

+
 + 

1
4

 Δ2u
x

1
2

+
 – 

1
8

 Δ3u
x

1
2

+
 + ....

Sol.  L.H.S. = ux – 
1
8

 Δ2 E–1 ux + 
1.3

8.16
 Δ4 E–2ux –  

1 3 5
8 16 24

. .
. .

 Δ6 E–3 ux + ......

= ux – 
1
2 4

2Δ
E

F

HG
I

KJ
 ux + 

−F
HG

I
KJ

− −F
HG

I
KJ F

HG
I

KJ

1
2

1
2

1

1 2 4

2 2

.
Δ
E

 ux

+ 
−F
HG

I
KJ

− −F
HG

I
KJ

− −F
HG

I
KJ F

HG
I

KJ

1
2

1
2

1
1
2

2

1 2 3 4

2 3

. .
Δ
E

 ux + ......

= 1
1
2 4

1
2

1
2

1

2 4

2 2 2

+ −F
HG

I
KJ
F

HG
I

KJ
+

−F
HG

I
KJ

− −F
HG

I
KJ F

HG
I

KJ
+

L

N

M
M
M
M

O

Q

P
P
P
P

Δ Δ
E E!

......  ux
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 = 1
4

2 1/2

+
F

HG
I

KJ

−
Δ
E

 ux = 
4

4

2 1/2
E

E
+F

HG
I

KJ

−
Δ

 ux

 = 
4 1

4

2 1/2
( )+ +L

N
M

O

Q
P

−
Δ Δ
E

 ux = 
( )2

4

2 1/2
+L

N
M

O

Q
P

−
Δ
E

 ux

 = 
4

1/2
E

(2 + )2Δ
L

N
M

O

Q
P  ux = 2 E1/2 

1
2 + Δ
F
HG

I
KJ

 ux = E1/2 1
1

+F
HG

I
KJ

−Δ
2

 ux

 = E1/2 1
2

2

2− + −
F

HG
I

KJ
Δ Δ
2

......  ux

 = u
x + 1

2

 – 
1
2

 Δu
x + 1

2

 + 
1
4

 Δ2u
x + 1

2

 – ...... = R.H.S.

Example 10. Use the method of separation of symbols to prove the
following identities:

(i) ux + xC1 Δ
2ux–1 + xC2Δ4ux–2 + ...... = u0 + xC1 Δu1 + xC2Δ2u2 + ......

(ii) ux+n = un + xC1 Δun–1 + x+1C2 Δ
2un–2 + x+2C3 Δ

3un–3 + ......

(iii) u0 + u1 + u2 + ....... + un = n+1C1 u0 + n+1C2 Δu0 + n+1C3 Δ2u0 + ...... + Δnu0.

Sol. (i)  L.H.S. = (1 + xC1 Δ
2E–1 + xC2  Δ

4 E–2 + ......) ux

= (1 + Δ2E–1)x ux = 
E

E
+F

HG
I

KJ
Δ2 x

 ux = 
E E

E

2 − +F

HG
I

KJ
1

x

 ux

= 1
Ex

 [1 + E (E – 1)]x ux = E–x (1 + ΔE)x ux
 = (1 + ΔE)x u0

= (1 + xC1 ΔE + xC2 Δ2E2 + .....) u0

= u0 +
 xC1 Δu1 + xC2 Δ2u2 + ...... = R.H.S.

(ii)   R.H.S. = un + xC1 ΔE–1 un + x+1C2 Δ
2E–2 un + x+2C3 Δ3E–3un

 +  ......

= (1 + xC1 ΔE–1 + x+1C2 Δ
2E–2 + ......) un = (1 – ΔE–1)–x un

= 1 −F
HG

I
KJ

−Δ
E

x

 un = 
E

E
−F

HG
I
KJ

−Δ x

 un

= 
1
E
F
HG
I
KJ

− x

 un = Exun = un+x = L.H.S.
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(iii) L.H.S. = u0 + Eu0 + E2 u0 + ..... + Enu0 = (1 + E + E2 + ....... + En) u0

 = 
E

E 1

n+ −
−

F

HG
I

KJ
1 1

 u0 = 
( )1 11+ −L

N
M

O

Q
P

+Δ
Δ

n

 u0

 = 
1
Δ

 [(1 + n+1C1 Δ + n+1C2 Δ
2 + n+1C3 Δ

3 + ...... + Δn+1) – 1] u0

 = n+1C1 u0 + n+1C2 Δ u0 + n+1C3 Δ
2 u0 + ...... + Δn u0 = R.H.S.

Example 11. Sum the following series

13 + 23 + 33 + ...... + n3

using the calculus of finite differences.

Sol. Let us denote 13, 23, 33, ...... by u0, u1, u2, ......, respectively, we get

S = u0 + u1 + u2 + ...... + un–1 = (1 + E + E2 + ...... + En–1) u0

 = 
E
E

n n

u
−

−
F

HG
I

KJ
= + −L

N
M

O

Q
P

1
1

1 1
0

( )Δ
Δ

 u0

 = 
1

1
1

2
1 2
3

12 3
0Δ

Δ Δ Δ Δ+ +
−

+
− −

+ + −
L

N
M

O

Q
Pn

n n n n n
un( )

!
( )( )

!
......

 = n + 
n n( )

!
− 1

2
 Δ u0  + 

n n n( ) ( )
!

− −1 2
3

 Δ2 u0 + ......

Now,   Δ u0 = u1 – u0 = 23 – 13 = 7

and Δ2 u0 = u2 – 2u1 + u0 = 33 – 2(2)3 + (1)3 = 12

Similarly, Δ3 u0 = u3 – 3u2 + 3u1 – u0 = (4)3 – 3(3)3 + 3(2)3 – (1)3 = 6

and Δ4u0 , Δ5u0 , ......are all zero as ur = r3 is a polynomial of the third degree.

∴ S = n + 
n n( )

!
− 1

2
 (7) + 

n n n( ) ( )− −1 2
6

 (12) + 
n n n n( ) ( ) ( )− − −1 2 3

24
 (6)

  = 
n2

4
 (n2 + 2n + 1) = 

n n( )+L

NM
O

QP
1

2

2

.

Example 12. Sum to n terms, the series

1.2Δxn – 2.3Δ2xn + 3.4Δ3xn – 4.5Δ4xn + ...

Sol. Since Δn+m xn = 0 for m ≥ 1, the sum of the above series to n terms is the
same up to infinity.

Let, S = 1.2Δxn – 2.3Δ2xn + 3.4Δ3xn – ...

 ΔS = 1.2Δ2xn – 2.3Δ3xn + 3.4Δ4xn – ...
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Hence,    (Δ + 1)S = 1.2Δxn – 2.2Δ2xn + 2.3Δ3xn – 2.4Δ4xn + ...

= 2Δ(1 – 2Δ + 3Δ2 – ...)xn = 2Δ(1 + Δ)–2 xn

or S = 2Δ(1 + Δ)–3 xn = 2ΔE–3 xn = 2Δ(x – 3)n

= 2(E – 1)(x – 3)n = 2[E(x – 3)n – (x – 3)n]

= 2[(x – 2)n – (x – 3)n].

ASSIGNMENT 4.3

1. The values of a polynomial of degree 5 are tabulated below:
If f(3) is known to be in error, find its correct value.

x: 0 1 2 3 4 5 6

f(x): 1 2 33 254 1025 3126 7777.

2. If y = f(x) is a polynomial of degree 3 and the following table gives the values of x and y,
locate and correct the wrong values of y

x: 0 1 2 3 4 5 6

y: 4 10 30 75 160 294 490.

3. Prove the identities:

(i) ux  – Δ2ux
 + Δ3ux – Δ5ux + Δ6ux – Δ8ux + ......

= ux – Δ2ux – 1 + Δ4 ux – 2 – Δ6 ux – 3 + Δ8 ux – 4 – ......

(ii) u ux
x

x
x

2
0 0

21
2

1
4

1
2 4

=

∞

=

∞

∑ ∑= + − + −
F

H
G

I

K
J

Δ Δ
......  u0.

4. Prove that:

x2 + 
1
2

 (1 + x)2 + 
1

22  (2 + x)2 + 
1

23  (3 + x)2 + ...... = 2 (x2 + 2x + 3)

using the calculus of finite differences and taking the interval of difference unity.

[Hint: (1+ x)2 = Ex2, (2 + x)2 = E2x2 , (3 + x)2 = E3x3, ......]

5. If f(E) is a polynomial in E such that f(E) = a0E
n + a1 En – 1 + a2 En – 2 + ...... + an

Prove that f(E) ex = ex f(e), taking the interval of differencing unity.

We now proceed to study the use of finite difference calculus for the purpose of interpo-
lation. This we shall do in three cases as follows:
(i) The value of the argument in the given data varies by an equal interval. The tech-

nique is called an interpolation with equal intervals.
(ii) The values of argument are not at equal intervals. This is known as interpolation

with unequal intervals.
(iii) The technique of central differences.
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4.14 NEWTON’S FORMULAE FOR INTERPOLATION

Newton’s formula is used for constructing the interpolation polynomial. It makes
use of divided differences. This result was first discovered by the Scottish
mathematician James Gregory (1638–1675) a contemporary of Newton.
Gregory and Newton did extensive work on methods of interpolation but now
the formula is referred to as Newton’s interpolation formula. Newton has
derived general forward and backward difference interpolation formulae.

4.15 NEWTON’S GREGORY FORWARD INTERPOLATION FORMULA

Let  y = f(x) be a function of x which assumes the values f(a),  f(a + h), f(a + 2h),
......., f(a + nh) for (n + 1) equidistant values a, a + h, a + 2h, ......, a + nh of the
independent variable x. Let f(x) be a polynomial of nth degree.

Let f(x) = A0 + A1 (x – a) + A2 (x – a) (x – a – h)

+ A3 (x – a) (x – a – h) (x – a – 2h ) + .......

+ An (x – a) ...... (x – a – n − 1h) (20)

where A0, A1, A2 , ......., An  are to be determined.

Put x = a, a + h, a + 2h, ......., a + nh in (20) successively.

For x = a,   f(a) = A0 (21)

For x = a + h, f(a + h) = A0 + A1h

⇒ f(a + h) = f(a) + A1h | By (21)

⇒  A1 = 
Δf a

h
( )

(22)

For x = a + 2h,

 f(a + 2h) = A0 + A1 (2h) + A2 (2h) h

  = f(a) + 2h 
Δf a

h
( )R

S
T

U
V
W

 + 2h2 A2

⇒ 2h2A2 = f(a + 2h) – 2f(a + h) + f(a) = Δ2f(a)

⇒   A2 = 
Δ2

22
f a

h

( )
!

Similarly,  A3 = 
Δ3

33
f a

h

( )
!

and so on.

Thus,   An = 
Δn

n
f a

n h

( )
!

.
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From (20),    f(x) = f(a)  + (x – a) 
Δ f a

h
( )

 + (x – a) (x – a – h) 
Δ2

22
f a

h

( )
!

 + .......

+ (x – a) ...... (x – a – n − 1 h) 
Δn

n
f a

n h

( )
!

Put   x = a + hu ⇒ u = 
x a

h
−

, we have

f(a + hu) = f(a) + hu 
Δ f a

h
( )

 + 
( ) ( )

!

hu hu h

h

−
2 2  Δ2 f (a) +......

+ 
( ) ( ) ( ) ....... ( )

!
hu hu h hu h hu n h

n hn
− − − −2 1

 Δn f(a)

⇒ f(a + hu) = f(a) + uΔ f(a) + 
u u( )

!
− 1

2
 Δ2 f(a) + ...

+ 
u u u u n

n
( )( ) ... ( )

!
− − − +1 2 1

 Δn f(a)

which is the required formula.
This formula is particularly useful for interpolating the values of f(x) near

the beginning of the set of values given. h is called the interval of difference,
while Δ is forward difference operator.

4.15.1 Algorithm for Newton’s Forward Difference Formula

Step 01. Start of the program
Step 02. Input number of terms n
Step 03. Input the array ax
Step 04. Input the array ay
Step 05. h=ax[1] – ax[0]
Step 06. for i=0; i<n-1; i++
Step 07. diff[i] [1]=ay[i + 1] – ay[i]
Step 08. End Loop i
Step 09. for j=2; j<=4; j++
Step 10. for i = 0; i <n – j;  i++
Step 11. diff[i][j]=diff [i + 1] [j – 1]-diff [i][j – 1]
Step 12. End Loop i
Step 13. End Loop j
Step 14. i=0
Step 15. Repeat  Step 16 until ax[i]<x
Step 16. i=i + 1
Step 17. i=i – 1;
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Step 18. p=(x – ax [i])/h
Step 19. y1=p∗diff[i – 1][1]
Step 20. y2=p∗(p+1)∗diff [i – 1][2]/2
Step 21. y3=(p+1)∗p∗(p-1)∗diff[i –2 ][3]/6
Step 22. y4=(p+2)∗(p+1)∗p∗(p – 1)∗diff[i – 3][4]/24
Step 23. y=ay[i]+y1+y2+y3+y4
Step 24. Print output x, y
Step 25. End of program.

4.15.2 Flow-chart
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A

BB

i = 0

i = i + 1
Is

ax[i] > x
No

Yes

i = i – 1

p = (x – ax[i])/h

y = p * diff[i – 1][1]1

y = p * (p + 1) * diff[i – 1][2]/22

y = (p + 1) * p * (p – 1) * diff[i – 2][3]/63

y = (p + 2) * (p + 1) * p * (p – 1) * diff[i – 3][4]/244

y = ay[i] + y + y + y + y1 2 3 4

Print output x, y

STOP

ax  is an array containing values of x,
ay is an array containing values of y,
Diff. is a two dimensional array containing difference table,
h is spacing between values of x

NOTE
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\*  ***********************************************************************************

4.15.3 Program to Implement Newton’s Forward Method of Interpolation

***********************************************************************************  */

//... HEADER FILES DECLARATION

# include <stdio.h>

# include <conio.h>

# include <math.h>

# include <process.h>

# include <string.h>

//... MAIN EXECUTION THREAD

void main()

{

//... Variable declaration Field

//... Integer Type

int n; //... Number of terms

int i,j; //... Loop Variables

//...Floating Type

float ax[10]; //... array limit 9

float ay[10]; //... array limit 9

float x; //... User Querry

float y = 0; //... Initial value 0

float h; //... Calc. section

float p; //... Calc. section

float diff[20][20]; //... array limit 19,19

float y1,y2,y3,y4; //... Formulae variables

//... Invoke Function Clear Screen

clrscr();

//... Input Section

printf("\n Enter the number of terms – ");

scanf("%d",&n);

//... Input Sequel for array X
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Printf ("\n\n Enter the value in the form of x - ");

//... Input Loop for X

for (i=0;i<n;i++)

{

printf("\n\n Enter the value of x%d - ",i+1);

scanf("%f",&ax[i]);

}

//... Input Sequel for array Y

printf("\n\n Enter the value in the form of y – ");

//... Input Loop for Y

for (i=0;i<n;i++)

{

printf ("\n\n Enter the value of y%d – ", i+1);

scanf ("%f",&ay [i]);

}

//... Inputting the required value quarry

printf("\nEnter the value of x for");

printf("\nwhich you want the value of y - ");

scanf("%f",&x);

//... Calculation and Processing Section

h=ax[1]-ax[0];

for(i=0;i<n-1;i++)

{

diff[i][1]=ay[i+1]-ay[i];

}

for(j=2;j<=4;j++)

{

for(i=0;i<n-j;i++)

{

diff[i][j]=diff[i+1][j-1]-diff[i][j-1];

}

}
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i=0;

do {

i++;

}while(ax[i]<x);

i--;

p=(x–ax[i])/h;

y1=p*diff[i-1][1];

y2=p*(p+1)*diff[i-1][2]/2;

y3=(p+1)*p*(p–1)*diff[i–2][3]/6;

y4=(p+2)*(p+1)*p*(p-1)*diff[i-3][4]/24;

//... Taking Sum

y=ay[i]+y1+y2+y3+y4;

//... Output Section

printf("\nwhen x=%6.4f, y=%6.8f ",x,y);

//... Invoke User Watch Halt Function

Printf("\n\n\n Press Enter to Exit");

getch();

}

//... Termination of Main Execution Thread

4.15.4 Output

Enter the number of terms – 7

Enter the value in the form of x -

Enter the value of x1 - 100

Enter the value of x2 - 150

Enter the value of x3 - 200

Enter the value of x4 - 250

Enter the value of x5 - 300

Enter the value of x6 - 350

Enter the value of x7 - 400

Enter the value in the form of y -

Enter the value of y1 - 10.63

Enter the value of y2 - 13.03

Enter the value of y3 - 15.04
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Enter the value of y4 - 16.81

Enter the value of y5 - 18.42

Enter the value of y6 - 19.9

Enter the value of y7 - 21.27

Enter the value of x for which you want the value of y-218

When X=218.0000, Y=15.69701481

Press Enter to Exit

EXAMPLES

Example 1. Find the value of sin 52° from the given table:

θ° 45° 50° 55° 60°

sin θ 0.7071 0.7660 0.8192 0.8660

Sol. a = 45°, h = 5, x = 52

∴ u = 
x a

h
− = 7

5
 = 1.4

Difference table is:

Differences

x° 104y 104Δy  104 Δ2y 104 Δ3y

45° 7071
589

50° 7660 – 57
532 – 7

55° 8192 – 64
468

60° 8660

By forward difference formula,

f(a + hu) = f(a) + u Δ f(a) + 
u u

f a
u u u( )

!
( )

( )( )
!

− + − −1
2

1 2
3

2Δ  Δ3 f(a)

⇒   104 f(x) = 104 f(a) + 104 u Δ f(a) + 104 
u u( )

!
− 1

2  Δ2 f(a)

+ 104 
u u u( )( )

!
− −1 2

3
 Δ3 f(a)
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⇒ 104 f(52) = 104 f(45) + (1.4) 104 Δ f(45) + 
(1.4)(1.4 1)

2 !
−

 104 Δ2 f(45)

+ 
(1.4)(1.4 1)(1.4 2)

3 !
− −

 104 Δ3 f(45)

    = 7071 + (1.4)(589) + 
(1.4)(.4)

2
(1.4)(.4)( .6)

6
( )− + −

57  (– 7)

    = 7880

∴  f(52) = .7880. Hence, sin 52° = 0.7880.

Example 2. The population of a town in the decimal census was as given below.
Estimate the population for the year 1895.

Year x: 1891 1901 1911 1921 1931

Population y: 46 66 81 93 101
(in thousands)

Sol. Here a = 1891, h = 10, a + hu = 1895
⇒ 1891 + 10 u = 1895 ⇒ u = 0.4
The difference table is as under:

x y Δy Δ2y Δ3y Δ4y

1891 46
20

1901 66 – 5
15 2

1911 81 – 3 – 3
12 – 1

1921 93 – 4
8

1931 101

Applying Newton’s forward difference formula,

y(1895) = y(1891) + u Δy(1891) + 
u u( )

!
− 1

2
 Δ2y(1891)

+ 
u u u( )( )

!
− −1 2

3
 Δ3y(1891)

+ 
u u u u( )( )( )

!
− − −1 2 3

4
 Δ4y(1891)
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⇒ y(1895) = 46 + (.4)(20) + 
(.4)(.4 1)

2
−

 (– 5)

+ 
(.4)(.4 1)(.4 2)

6
.4 .4 .4− − + − −

( )
( )( )(. – )( )

2
1 4 2 3

24
 (– 3)

⇒ y(1895) = 54.8528 thousands

Hence the population for the year 1895 is 54.8528 thousands
approximately.

Example 3. The values of f(x) for x = 0, 1, 2, ......, 6 are given by

x: 0 1 2 3 4 5 6

f(x): 2 4 10 16 20 24 38

Estimate the value of f(3.2) using only four of  the given values. Choose the
four values that you think will give the best approximation.

Sol. Last four values of f(x) for x = 3, 4, 5, 6 are taken into consideration so that
3.2 occurs in the beginning of the table.

Here  a = 3,        h = 1, x = 3.2 ∴ a + h u = 3.2

i.e., 3 + 1 × u = 3.2 or u = 0.2

The difference table is:

x f(x) Δf(x) Δ2f(x) Δ3f(x)

3 16
4

4 20 0
4 10

5 24 10
14

6 38

Applying Newton’s forward difference formula,

f(3.2) = f(3) + u Δ f(3) + 
u u

f
u u u

f
( )

!
( )

( )( )
!

( )
− + − −1

2
3

1 2
3

32 3Δ Δ

= 16 + (.2)(4) + 
(.2)(.2 1)

2
(0)

(.2)(.2 1)(.2 2)
6

− + − −
 (10) = 17.28.

Example 4. From the following table, find the value of  e0.24

x: 0.1
0.2

0.3
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Sol. The difference table is:

x 105y 105Δy 105Δ2y 105 Δ3y 104Δ4y

0.1 110517
11623

0.2 122140 1223
12846 127

0.3 134986 1350 17
14196 144

0.4 149182 1494
15690

0.5 164872

Here  h = 0.1. ∴  0.24 = 0.1 + 0.1 × u or u = 1.4

Newton-Gregory forward formula is

 y(.24) = y(.1) + u Δ y(.1) + 
u u

y
u u u( )

!
( )

( )( )
!

− + − −1
2

1 2
3

2Δ .1  Δ3y(.1)

+ 
u u u u( )( )( )

4 !
− − −1 2 3

 Δ4 y(.1)

⇒  105 y(.24) = 105 y(.1) + u 105 Δy(.1) + 
u u( )

2 !
− 1

 105 Δ2y(.1)

+ 
u u u( )( )

3 !
− −1 2

 105 Δ3y(.1) + 
u u u u( )( )( )

4 !
− − −1 2 3

 105 Δ4y(.1)

⇒  105 y(.24) = 110517 + (1.4)(11623) + 
(1.4)(1.4 1)

2
−

 (1223)

+ 
(1.4)(1.4 1)(1.4 2)

3 !
1.4)(1.4 1.4 1.4− − + − − −

( )
( )( )( )

!
127

1 2 3
4

 (17)

 = 127124.9088

∴  y(.24) = 1.271249088

Hence,     e.24 = 1.271249088.

Example 5. From the following table of half-yearly premiums for policies
maturing at different ages, estimate the premium for policies maturing at age
of 46.

Age 45 50 55 60 65

Premium 114.84 96.16 83.32 74.48 68.48
(in dollars)
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Sol. The difference table is:

Age Premium Δy Δ2y Δ3y Δ4y
(x) (in dollars)

(y)

45 114.84
– 18.68

50 96.16 5.84
– 12.84 – 1.84

55 83.32 4 .68
– 8.84 – 1.16

60 74.48 2.84
– 6

65 68.48

Here h = 5, a = 45, a + hu = 46

∴ 45 + 5u = 46 ⇒ u = .2

By Newton’s forward difference formula,

 y46 = y45 + u Δy45 + 
u u

y
u u u( )

!
( )( )

!
− + − −1

2
1 2
3

2
45Δ  Δ3y45

+ 
u u u u( )( )( )

!
− − −1 2 3

4
 Δ4 y45

= 114.84 + (.2)(– 18.68) + 
(.2)(.2 1)

2 !
−

 (5.84)

+ 
(.2)(.2 1)(.2 2)− −

3 !
 (– 1.84) + 

(.2)(.2 1)(.2 2)(.2 3)− − −
4 !

 (.68)

= 110.525632

Hence the premium for policies maturing at the age of 46 is $ 110.52.
Example 6. From the table, estimate the number of students who obtained scores
between 40 and 45.

Scores: 30—40 40—50 50—60 60—70 70—80

Number of students: 31 42 51 35 31.
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Sol. The difference table is:

Scores less than
(x) y Δy Δ2y Δ3y Δ4y

40 31
42

50 73 9
51 – 25

60 124 – 16 37
35 12

70 159 – 4
31

80 190

We shall find y45,  number of students with scores less than 45.

  a = 40, h  = 10, a + hu = 45.

∴ 40 + 10u = 45 ⇒ u = .5

By Newton’s forward difference formula,

 y(45) = y(40) + u Δ y(40) + 
u u( )

!
− 1

2
 Δ2 y(40)

+ 
u u u( )( )

!
− −1 2

3
 Δ3 y(40) + 

u u u u( )( )( )
!

− − −1 2 3
4

 Δ4 y(40)

= 31 + (.5)(42) + 
(.5)(.5 1)

2
(.5)(.5 1)(.5 2)

6
− + − −

( )9  (– 25)

+ 
(.5)(.5 1)(.5 2)(.5 3)

24
− − −

 (37)

= 47.8672 ≈ 48

Hence, the number of students getting scores less than 45 = 48

By the number of students getting scores less than 40 = 31

Hence, the number of students getting scores between 40 and 45 = 48 – 31
= 17.

Example 7. Find the cubic polynomial which takes the following values:

x: 0 1 2 3

f(x): 1 2 1 10.
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Sol. Let us form the difference table:

x y Δy Δ2 y Δ3 y

0 1
1

1 2 – 2
– 1 12

2 1 10
9

3 10

Here,  h = 1. Hence, using the formula,

x = a + hu

and choosing a = 0, we get x = u
∴ By Newton’s forward difference formula,

y = y0 + x Δy0 + 
x x

y
x x x

y
( )

!
( ) ( )

!
− + − −1

2
1 2
3

2
0

3
0Δ Δ

= 1 + x(1) + 
x x( )

!
− 1

2
 (– 2) + 

x x x( ) ( )
!

− −1 2
3

 (12)

= 2x3 – 7x2 + 6x + 1

Hence, the required cubic polynomial is

y = f(x) = 2x3 – 7x2 + 6x + 1.

Example 8. The following table gives the scores secured by100 students in
the Numerical Analysis subject:

Range of scores: 30—40 40—50 50—60 60—70 70—80

Number of students: 25 35 22 11 7

Use Newton’s forward difference interpolation formula to find.

(i) the number of students who got scores more than 55.
(ii) the number of students who secured scores in the range between 36 and 45.
Sol. The given table is re-arranged as follows:

Scores obtained Number of students
Less than 40 25
Less than 50 60
Less than 60 82
Less than 70 93
Less than 80 100
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(i) Here, a = 40, h = 10, a + hu = 55
∴ 40 + 10u = 55 ⇒ u = 1.5
First, we find the number of students who got scores less than 55.
The difference table follows:

Scores obtained Number of Δy Δ2y Δ3y Δ4y
less than students = y

40 25
35

50 60 – 13
22 2

60 82 – 11 5
11 7

70 93 – 4
7

80 100

Applying Newton’s forward difference formula,

y55 = y40 + u Δ y40 + u u
y

u u u( )
!

( )( )
!

− + − −1
2

1 2
3

2
40Δ  Δ3 y40

+ 
u u u u( )( )( )

!
− − −1 2 3

4
 Δ4 y40

  = 25 + (1.5)(35) + 
(1.5)(.5)

2 !
( 13)

(1.5)(.5)( .5)
3 !

− + −
 (2)

+ (1.5)(.5)( .5)( 1.5)
4 !
− −  (5)

  = 71.6171875 ≈ 72

There are 72 students who got scores less than 55.
∴ Number of students who got scores more than 55 = 100 – 72 = 28

(ii) To calculate the number of students securing scores between 36 and 45,
take the difference of y45 and y36.

u = 
x a

h
− = −36 40

10
 = – .4

Also, u = 
45 40

10
−

 = .5
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Newton’s forward difference formula:

       y36 = y40 + u Δ y40 + u u
y

u u u( )
!

( )( )
!

− + − −1
2

1 2
3

2
40Δ  Δ3 y40

+ 
u u u u( )( )( )

!
− − −1 2 3

4
 Δ4 y40

        = 25 + (– .4)(35) + 
( )( )

!
( )

( )( )( )
!

− − − + − − −.4 1.4 .4 1.4 2.4
2

13
3

 (2)

+ 
( )( )( )( )

!
− − − −.4 1.4 2.4 3.4

4
 (5) = 7.864 ≈ 8

Also,  y45 = y40 + u Δ y40 + 
u u

y
u u u( )

!
( )( )

!
− + − −1

2
1 2
3

2
40Δ  Δ3 y40

+ 
u u u u

y
( ) ( ) ( )

!
− − −1 2 3

4
4

40Δ

     = 25 + (.5)(35) + (.5)( .5)
2

( 13)
(.5)( .5)( 1.5)

6
− − + − −  (2)

+ (.5)( .5)( 1.5)( 2.5)
24

− − −  (5)

     = 44.0546 ≈ 44.

Hence,  the  number  of  students  who  secured  scores between 36 and 45
is  y45 – y36 = 44 – 8 = 36.
Example 9. The following are the numbers of deaths in four successive ten year
age groups. Find the number of deaths at 45—50 and 50—55.

Age group: 25—35 35—45 45—55 55—65

Deaths: 13229 18139 24225 31496.

Sol. Difference table of cumulative frequencies:

Age upto Number of deaths Δf(x) Δ2f(x) Δ3f(x)
x f(x)

35 13229
18139

45 31368 6086
24225 1185

55 55593 7271
31496

65 87089
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Here, h = 10, a = 35, a + hu = 50

∴   35 + 10u = 50 ⇒ u = 1.5

By Newton’s forward difference formula,

y50 = y35 + u Δ y35 + u u
y

u u u( )
!

( )( )
!

− + − −1
2

1 2
3

2
35Δ  Δ3 y35

= 13229 + (1.5)(18139) + 
(1.5)(.5)

2
(1.5)(.5)(– .5)

6
( )6086 +  (1185)

= 42645.6875 ≈ 42646
∴ Deaths at ages beween 45 – 50 are 42646 – 31368 = 11278

and Deaths at ages between 50 – 55 are 55593 – 42646 = 12947.
Example 10. If p, q, r, s are the successive entries corresponding to equidistant
arguments in a table, show that when the third differences are taken into account,
the entry corresponding to the argument half way between the arguments at q

and r is A + 
B
24
F
HG
I
KJ

, where A is the arithmetic mean of q and r and B is arithmetic

mean of 3q – 2p – s and 3r – 2s – p.

Sol. A = 
q r+

2
⇒ q + r = 2A

B = 
( ) ( )3 2 3 2

2
q p s r s p− − + − −

 = 
3 3 3 3

2
q r p s+ − −

   = 
3

2
3

2
( ) ( )q r p s+ − +

Let the entries p, q, r, and s correspond to x = a, a + h, a + 2h, and a + 3h,
respectively. Then the value of the argument lying half way between a + h and

a + 2h will be a h
h+ + F
HG
I
KJ2

  i.e., a
h+ 3
2

.

Hence a + mh  = a h+ 3
2

⇒ m = 
3
2

Let us now construct the difference table:

x f(x) Δf(x) Δ2f(x) Δ3f(x)

a p
q – p

a + h q r – 2q + p
r – q s – 3r + 3q – p

a + 2h r s – 2r + q
s – r

a + 3h s
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Using  Newton’s  Gregory  Interpolation  formula up to third difference
only and taking m = 3/2, we get

f a h+F
HG

I
KJ

3
2

 = f(a) + 
3
2

3
2

3
2

1

2

3
2

3
2

1
3
2

2

6
2 3Δ Δ Δf a f a f a( ) ( ) ( )+

−F
HG

I
KJ

+
−F

HG
I
KJ

−F
HG

I
KJ

= p + 
3
2

(q – p) + 
3
8

(r – 2q + p) – 
1

16
(s – 3r + 3q – p)

= 
( )16 24 24 6 12 6 3 3

16
p q p r q p s r q p− − + − + − + − +

= 
1

16
 (– p + 9q + 9r – s) = 

9
16

 (q + r) – 
p s+F
HG

I
KJ16

= 
9
16

 (2A) – 
2
3

3A B
16

−F
HG

I
KJ

= 
9
8

 A – 
1
8

 A + 
B
24

 = A + 
B
24

.

ASSIGNMENT 4.4

1. The following table gives the distance in nautical miles of the visible horizon for the
given heights in feet above the earth’s surface.

x: 100 150 200 250 300 350 400

y: 10.63 13.03 15.04 16.81 18.42 19.9 21.27

Use Newton’s forward formula to find y when x = 218 ft.
2. If lx represents the number of persons living at age x in a life table, find, as accurately as

the data will permit, lx for values of x = 35, 42 and 47. Given

l20 = 512, l30 = 390, l40 = 360, l50 = 243.

3. The values of f(x) for x = 0, 1, 2, ......, 6 are given by

x: 0 1 2 3 4 5 6

f(x): 1 3 11 31 69 131 223

Estimate the value of f(3.4), using only four of the given values.
4. Given that:

x: 1 2 3 4 5 6

y(x): 0 1 8 27 64 125

Find the value of f(2.5).



INTERPOLATION    261

5. Ordinates f(x) of a normal curve in terms of standard deviation x are given as

x: 1.00 1.02 1.04 1.06 1.08

f(x): 0.2420 0.2371 0.2323 0.2275 0.2227

Find the ordinate for standard deviation x = 1.025.
6. Using Newton’s formula for interpolation, estimate the population for the year 1905

from the table:
Year Population

1891 98,752

1901 132,285

1911 168,076

1921 195,690

1931 246,050

7. Find the number of students from the following data who secured scores not more than 45

Scores range: 30—40 40—50 50—60 60—70 70—80

Number of students: 35 48 70 40 22

8. Find the number of men getting wages between $ 10 and $ 15 from the following table:

Wages (in $): 0—10 10—20 20—30 30—40

Frequency: 9 30 35 42

9. Following are the scores obtained by 492 candidates in a certain examination

Scores Number of candidates

0—40 210

40—45 43

45—50 54

50—55 74

55—60 32

60—65 79

Find out the number of candidates
(a) who secured scores more than 48 but not more than 50;
(b) who secured scores less than 48 but not less than 45.

10. Use Newton’s forward difference formula to obtain the interpolating polynomial f(x),
satisfying the following data:

x: 1 2 3 4

f(x): 26 18 4 1

If another point x = 5, f(x) = 26 is added to the above data, will the interpolating polyno-
mial be the same as before or different. Explain why.
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11. The table below gives value of tan x for .10 ≤ x ≤ .30.

x: .10 .15 .20 .25 .30

tan x: .1003 .1511 .2027 .2553 .3093

Evaluate tan 0.12 using Newton’s forward difference formula
12. (i) Estimate the value of f(22) from the following available data:

x: 20 25 30 35 40 45

f(x): 354 332 291 260 231 204

(ii) Find the cubic polynomial which takes the following values:

y(0) = 1, y(1) = 0, y(2) = 1 and y(3) = 10

Hence or otherwise obtain y(4).
(iii) Use Newton’s method to find a polynomial p(x) of lowest possible degree such that

p(n) = 2n for n = 0, 1, 2, 3, 4.

4.16 NEW TON’S GREGORY BACKWARD INTERPOLATION

FORMULA

Let  y = f(x)  be  a  function  of  x  which  assumes the values f(a), f(a + h),
f (a + 2h), ......, f(a + nh) for (n + 1) equidistant values a, a + h, a + 2h, ......, a + nh
of the independent variable x.

Let f(x) be a polynomial of the nth degree.

Let, f(x) = A0 + A1(x – a – nh) + A2 (x – a – nh) (x – a – n − 1 h) + ......

+  An (x – a – nh) (x – a – n − 1 h) ...... (x – a – h)

where A0, A1, A2, A3, ......, An are to be determined. (23)

Put x = a + nh, a + n − 1 h, ......, a in (23) respectively.

Put x = a + nh, then  f (a + nh) = A0 (24)

Put x = a + (n – 1) h, then

 f(a + n − 1 h) = A0 – h A1 = f(a + nh) – h A1 | By (24)

⇒  A1 = 
∇ +f a nh

h
( )

(25)

Put x = a + (n – 2)h, then

 f (a + n − 2 h) = A0 – 2hA1 + (– 2h) (– h) A2
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⇒ 2 ! h2 A2 = f(a + n − 2 h) – f(a + nh) + 2∇f(a + nh)

    = ∇ 2 f(a + nh)

A2 = 
∇ +2

22
f a nh

h

( )
!

(26)

Proceeding, we get

An = 
∇ +n

n
f a nh

n h

( )
!

(27)

Substituting the values in (24), we get

  f(x) = f(a + nh) + (x – a – nh) 
∇ +f a nh

h
( )

 + ......

+ (x – a – nh) (x – a – n − 1 h)

..... (x – a – h) 
∇ +n

n
f a nh

n h

( )
!

(28)

Put x = a + nh + uh, then
x – a – nh = uh

and  x – a – (n – 1)h = (u + 1)h
�

 x – a – h = (u + n − 1) h

∴ (28) becomes,

 f(x) = f(a + nh) + u ∇f(a + nh) + 
u u( )

!
+ 1

2
 ∇2 f(a + nh)

+ ...... + uh . (u + 1)h ..... (u + n − 1)(h) 
∇ +n

n
f a nh

n h

( )
!

or f(a + nh + uh) = f(a + nh) + u ∇f(a + nh) + 
u u( )

!
+ 1

2
 ∇2f(a + nh)

+ ...... + 
u u u n

n
( ) ...... ( )

!
+ + −1 1

 ∇n f(a + nh)

which is the required formula.
This formula is useful when the value of f(x) is required near the end of the

table.
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4.16.1 Algorithm for Newton’s Backward Difference formula

Step 01. Start of the program.

Step 02. Input number of terms n

Step 03. Input the array ax

Step 04. Input the array ay

Step 05. h=ax[1]-ax[0]

Step 06. for i=0; i<n–1; i++

Step 07. diff[i][1]=ay[i+1]–ay[i]

Step 08. End Loop i

Step 09. for j = 2; j < = 4; j + +

Step 10. for i=0; i<n–j; i++

Step 11. diff[i][j]=diff[i+1][j–1]–diff [i][j–1]

Step 12. End Loop i

Step 13. End Loop j

Step 14. i=0

Step 15. Repeat Step 16 until (!ax[i]<x)

Step 16. i=i+1

Step 17. x0=mx[i]

Step 18. sum=0

Step 19. y0=my[i]

Step 20. fun=1

Step 21. p=(x–x0)/h

Step 22. sum=y0

Step 23. for k=1; k<=4; k++

Step 24. fun=(fun*(p–(k–1)))/k

Step 25. sum=sum+fun*diff[i][k]

Step 26. End loop k

Step 27. Print Output x,sum

Step 28. End of Program
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4.16.2 Flow-chart

START

Input number of terms n

Input array ax & ay

h = ax[1] – ax[0]

Start loop i = 0 to n – 1

Diff[i][1] = ay[i + 1] – ay[i]

End loop i

Start loop j = 2 to 4

Start loop i = 0 to n – j

Diff[i][j] = diff[i + 1][j – 1] – diff[i][j – 1]

End loop i

End loop j

i = 0

i = i + 1

A
Is

! ax[i] < x

Yes
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A

x0 = mx[i]

Sum = 0

y0 = my[i]

Fun = 1

p = (x – x0)/n

Sum = y0

End loop k

Print Output , x, sum‘‘ ’’

Start loop k = 1 to 4

fun = (fun * (p – (k – 1)))/k

Sum = sum + fun * diff[i][k]

STOP

*    ***********************************************************************************
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4.16.3 Program to Implement Newton’s Backward Method of Interpolation

*  **********************************************************************************  */

//...HEADER FILES DECLARATION

# include <stdio.h>

# include <conio.h>

# include <math.h>

# include <process.h>

# include <string.h>

//... MAIN EXECUTION THREAD

void main()

{

//...Variable declaration Field

//...Integer Type

int n; //...Number of terms

int i,j,k; //...Loop Variables

//...Floating Type

float my[10]; //... array limit 9

float my[10]; //... array limit 9

float x; //... User Querry

float x0 = 0; //... Initial value 0

float y0; //... Calc. Section

float sum; //... Calc. Section

float h; //... Calc. Section

float fun; //... Calc. Section

float p; //... Calc. Section

float diff[20][20]; //... array limit 19,19

float y1, y2, y3, y4; //... Formulae variables

//...Invoke Function Clear Screen

clrscr();

//...Input Section
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printf("\n Enter the number of terms - ");

scanf("%d",&n);

//...Input Sequel for array X

printf("\n\n Enter the value in the form of x - ");

//...Input Loop for X

for (i=0;i<n;i++)

{

printf("\n\n Enter the value of x%d - ",i+1);

scanf (“%f”,&mx[i]);

}

//...Input Sequel for array Y

printf ("\n\n Enter the value in the form of y -");

//...Input Loop for Y

for (i=0;i<n;i++)

{

printf ("\n\n Enter the value of y%d - ",i+1);

scanf ("%f",&my[i]);

}

//...Inputting the required value query

printf ("\nEnter the value of x for");

printf("\nwhich you want the value of y - ");

scanf("%f",&x);

//...Calculation and Processing Section

h=mx[1]-mx[0];

for(i=0;i<n-1;i++)

{

diff[i][1]=my[i+1]-my[i];

}

for (j=2;j<=4;j++)

{

for (i=0;i<n-j;i++)

{

diff[i][j]=diff[i+1][j-1]-diff[i][j-1];

}

}
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i=0;

while(!mx[i]>x)

{

i++;

}

x0=mx[i];

sum=0;

y0=my[i];

fun=1;

p=(x-x0)/h;

sum=y0;

for (k=1;k<=4;k++)

{

fun=(fun*(p-(k-1)))/k;

sum=sum+fun*diff[i][k];

}

//...Output Section

printf ("\nwhen x=%6.4f,y=%6.8f",x,sum);

//...Invoke User Watch Halt Function

printf("\n\n\n Press Enter to Exit");

getch( );

}

//...Termination of Main Execution Thread

4.16.4 Output

Enter the number of terms-7

Enter the value in the form of x-

Enter the value of x1 - 100

Enter the value of x2 - 150

Enter the value of x3 - 200

Enter the value of x4 - 250

Enter the value of x5 - 300

Enter the value of x6 - 350

Enter the value of x7 - 400
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Enter the value in the form of y -

Enter the value of y1 - 10.63

Enter the value of y2 - 13.03

Enter the value of y3 - 15.04

Enter the value of y4 - 16.81

Enter the value of y5 - 18.42

Enter the value of y6 - 19.90

Enter the value of y7 - 21.27

Enter the value of x for which you want the value of y - 410

When x = 410.0000, y = 21.34462738

Press Enter to Exit

EXAMPLES

Example 1. The population of a town was as given. Estimate the population
for the year 1925.

Year (x): 1891 1901 1911 1921 1931

Population (y): 46 66 81 93 101
(in thousands)

Sol. Here, a + nh = 1931, h = 10, a + nh + uh = 1925

∴      u = 
1925 1931

10
−

 = – 0.6

The difference table is:

x y ∇y ∇2y ∇3y ∇4y

1891 46
20

1901 66 – 5
15 2

1911 81 – 3 – 3
12 – 1

1921 93 – 4
8

1931 101
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Applying Newton’s Backward difference formula, we get

y1925 = y1931 + u∇y1931 + 
u u( )

!
+ 1

2
 ∇2y1931

+ 
u u u( )( )

!
+ +1 2

3
 ∇3y1931 + 

u u u u( )( )( )
!

+ + +1 2 3
4

 ∇4y1931

= 101 + (– .6)(8) + 
( )(. )

!
( )

( )( )( )
!

− − + −.6 .6 .4 1.44
2

4
3

 (– 1)

+ ( .6)(.4)(1.4)(2.4)
4 !

−  (– 3)

= 96.8368 thousands.
Hence the population for the year 1925 = 96836.8 ≈ 96837.

Example 2. The population of a town is as follows:

Year: 1921 1931 1941 1951 1961 1971

Population: 20 24 29 36 46 51
(in Lakhs)

Estimate the increase in population during the period 1955 to 1961.

Sol. Here,     a + nh = 1971, h = 10, a + nh + uh = 1955

∴ 1971 + 10u = 1955 ⇒ u = – 1.6

The difference table is:

x y ∇y ∇2y ∇3y ∇4y ∇5y

1921 20
4

1931 24 1
5 1

1941 29 2 0
7  1 – 9

1951 36 3 – 9
10 – 8

1961 46 – 5
5

1971 51
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Applying Newton’s backward difference formula, we get

y1955 = y1971 + u∇y1971 + 
u u( )

!
+ 1

2
 ∇2y1971 + 

u u u( )( )
!

+ +1 2
3

 ∇3y1971

+ 
u u u u( )( )( )

!
+ + +1 2 3

4
 ∇4 y1971 + 

u u u u u( )( )( )( )
!

+ + + +1 2 3 4
5

 ∇5 y1971

= 51 + (– 1.6)(5) + 
( )( . )

!
− −1.6 0 6

2
 (– 5) + 

( )( . )( . )− −1.6 0 6 0 4
6

 (– 8)

  + 
( )( . )(. )( )− −1. 1.6 0 6 4 4

24
 (– 9) + 

( )( . )( . )( )( )− −1. 1. 2.6 0 6 0 4 4 4
120

 (– 9)

= 39.789632

∴ Increase in population during period 1955 to 1961 is

= 46 – 39.789632 = 6.210368 Lakhs

= 621036.8 Lakhs.

Example 3. In the following table, values of y are consecutive terms of a series
of which 23.6 is the 6th term. Find the first and tenth terms of the series.

x: 3 4 5 6 7 8 9

y: 4.8 8.4 14.5 23.6 36.2 52.8 73.9.

Sol. The difference table is:

x y Δy Δ2y Δ3y Δ4y

3 4.8
3.6

4 8.4 2.5
6.1 0.5

5 14.5 3 0
9.1 0.5

6 23.6 3.5 0
12.6 0.5

7 36.2 4 0
16.6 0.5

8 52.8 4.5
21.1

9 73.9

To find the first term, we use Newton’s forward interpolation formula.
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Here,    a = 3, h = 1, x = 1 ∴ u = 
x a

h
−

 = – 2

We have y1 = y3 + uΔy3 + 
u u( )

!
− 1

2
 Δ2y3 + 

u u u( )( )
!

− −1 2
3

 Δ3y3

= 4.8 + (– 2) × 3.6 + 
( )( )− −2 3

2
 (2.5) + ( )( )( )− − −2 3 4

6
 (0.5)

= 3.1

To obtain the tenth term, we use Newton’s Backward interpolation
formula

a + nh = 9, h = 1, a + nh + uh = 10

∴ 10 = 9 + u ⇒ u = 1

∴  y10 = y9 + u∇y9 + 
u u( )

!
+ 1

2
 ∇2y9 + 

u u u( )( )
!

+ +1 2
3

 ∇3y9

= 73.9 + 21.1 + 4.5 + .5 = 100.

Example 4. Given log x for x = 40, 45, 50, 55, 60 and 65 according to the
following table:

x: 40 45 50 55 60 65

log x: 1.60206 1.65321 1.69897 1.74036 1.77815 1.81291

Find the value of log 5875.

Sol. The difference table is:

x 105 log x = 105 yx 105 ∇yx 105 ∇2 yx 105 ∇3yx 105∇4 yx 105∇5yx

40 160206
5115

45 165321 – 539
4576 102

50 169897 – 437 – 25
4139 77 5

55 174036 – 360 – 20
3779 57

60 177815 – 303
3476

65 181291
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Newton’s Backward difference formula is

f(a + nh + uh) = f(a + nh) + u∇f(a + nh) + 
u u( )

!
+ 1

2
 ∇2f(a + nh)

+ 
u u u( )( )

!
+ +1 2

3
 ∇3f(a + nh) + 

u u u u( )( )( )
!

+ + +1 2 3
4

 ∇4 f(a + nh)

  + 
u u u u u( )( )( )( )

!
+ + + +1 2 3 4

5
 ∇5 f(a + nh) (29)

First we shall find the value of log(58.75).

Here,  a + nh = 65, h = 5, a + nh + uh = 58.75

∴  65 + 5u = 58.75 ⇒ u = – 1.25

From (29),

 105 f(58.75) = 181291 + (– 1.25)(3476) + 
( )( )

!
− −1.25 .25

2
 (– 303)

+ 
( )( )( )

!
( )

( )( )( )( )
!

− − + − −1.25 .25 .75 1.25 .25 .75 1.75
3

57
4

 (– 20)

+ 
( )( )( )( )( )

!
− −1.25 .25 .75 1.75 2.75

5
 (5)

⇒  105 f(58.75) = 176900.588

∴ f(58.75) = log 58.75 = 176900.588 × 10–5 = 1.76900588

Hence,

log 5875 = 3.76900588 | ∵ Mantissa remain the same

Example 5. Calculate the value of tan 48° 15′ from the following table:

x°: 45 46 47 48 49 50

tan x°: 1.00000 1.03053 1.07237 1.11061 1.15037 1.19175

Sol. Here a + nh = 50, h = 1, a + nh + uh = 48° 15′ = 48.25°

∴    50 + u(1) = 48.25 ⇒ u = – 1.75
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The difference table is:

x° 105y 105∇y 105∇2y 105∇3y 105∇4y 105∇5y

45 100000

3553

46 103553 131

3648 9

47 107237 140 3

3824 12 – 5

48 111061 152 – 2

3976 10

49 115037 162
4138

50 119175

     ya+nh+uh = ya+nh + u∇ya+nh + 
u u( )+ 1

2
 ∇2ya+nh + 

u u u( )( )
!

+ +1 2
3

 ∇3ya+nh

+ 
u u u u( )( )( )

!
+ + +1 2 3

4
 ∇4ya+nh + 

u u u u u( )( )( )( )
!

+ + + +1 2 3 4
5

 ∇5 ya+nh

∴  105y48.25 = 119175 + (– 1.75) × 4138 + 
( ) ( . )− × −1.75 0 75

2
 × 162

+ 
( 1.75)( 0.75)(0.25)

3 !
− −

  × 10 + 
( 1.75)( .75)(.25)(1.25)

4 !
− −

 (– 2)

+ 
( )( )( )( )( )

!
− −1.75 .75 .25 .25 2.251

5
 (– 5)

⇒   105 y48.25 = 112040.2867

∴ y48.25 = tan 48°15′ = 1.120402867.

Example 6. From the following table of half-yearly premium for policies
maturing at different ages, estimate the premium for a policy maturing at the
age of 63:

Age: 45 50 55 60 65

Premium: 114.84 96.16 83.32 74.48 68.48
(in dollars)
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Sol. The difference table is:

Age Premium ∇y ∇2y ∇3y ∇4y
(x) (in dollars)

(y)

45 114.84
– 18.68

50 96.16 5.84
– 12.84 – 1.84

55 83.32 4 .68
– 8.84 – 1.16

60 74.48 2.84
– 6

65 68.48

Here a + nh = 65, h = 5, a + nh + uh = 63

∴   65 + 5u = 63 ⇒ u = – .4

By Newton’s backward difference formula,

  y(63) = y(65) + u∇y(65) + 
u u

y
u u u

y
( )

!
( )

( )( )
!

( )
+ ∇ + + + ∇1

2
65

1 2
3

652 3

+ + + + ∇u u u u
y

( )( )( )
!

( )
1 2 3

4
654

= 68.48 + (– .4)(– 6)

+ 
( . )(. )

( . )
( . )(. )( . )

( . )
( . )(. )( . )( . )

(. )
− + − − + −4 6

2
2 84

4 6 16
6

116
4 6 16 2 6

24
68

= 70.585152

ASSIGNMENT 4.5

1. From the following table find the value of tan 17°

θ°: 0 4 8 12 16 20 24

tan θ°: 0 0.0699 0.1405 0.2126 0.2867 0.3640 0.4402

2. Find the value of an annuity at 5
3
8

%, given the following table:

Rate: 4 4
1
2

5 5
1
2

6

Annuity value: 172.2903 162.8889 153.7245 145.3375 137.6483
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3. The values of annuities are given for the following ages. Find the value of annuity at the

age of 27
1
2

.

Age: 25 26 27 28 29

Annuity: 16.195 15.919 15.630 15.326 15.006

4. The table below gives the value of tan x for 0.10 ≤ x ≤ 0.30.

x: 0.10 0.15 0.20 0.25 0.30

y = tan x: 0.1003 0.1511 0.2027 0.2553 0.3093

Find: (i) tan 0.50 (ii) tan 0.26 (iii) tan 0.40.

5. Given:

x: 1 2 3 4 5 6 7 8

f(x): 1 8 27 64 125 216 343 512

Find f(7.5) using Newton’s Backward difference formula.

6. From the following table of values of x and f(x), determine

(i) f(0.23) (ii) f(0.29)

x: 0.20 0.22 0.24 0.26 0.28 0.30

f(x): 1.6596 1.6698 1.6804 1.6912 1.7024 1.7139

7. The probability integral

P = 
2

0

1
2

2

π

x t
e dtz

−
 has following values:

x: 1.00 1.05 1.10 1.15 1.20 1.25

P: 0.682689 0.706282 0.728668 0.749856 0.769861 0.788700

Calculate P for x = 1.235.

8. In an examination, the number of candidates who obtained scores between certain lim-
its are as follows:

Scores Number of candidates

0—19 41

20—39 62

40—59 65

60—79 50

80—99 17

Estimate the number of candidates who obtained fewer than 70 scores.



278 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

9. Estimate the value of f(42) from the following available data:

x: 20 25 30 35 40 45

f(x): 354 332 291 260 231 204

10. The area A of a circle of diameter d is given for the following values:

d: 80 85 90 95 100

A: 5026 5674 6362 7088 7854

Calculate the area of a cricle of diameter 105.

11. From the following table, find y, when x = 1.84 and 2.4 by Newton’s interpolation for-
mula:

x: 1.7 1.8 1.9 2.0 2.1 2.2 2.3

y = ex: 5.474 6.050 6.686 7.389 8.166 9.025 9.974

12. Using Newton’s backward difference formula, find the value of e–1.9 from the following
table of values of e–x:

x: 1 1.25 1.50 1.75 2.00

e–x: 0.3679 0.2865 0.2231 0.1738 0.1353

4.17 CENTRAL DIFFERENCE INTERPOLATION FORMULAE

We shall study now the central difference formulae most suited for interpolation
near the middle of a tabulated set.

4.18 GAUSS’ FORWARD DIFFERENCE FORMULA

Newton’s Gregory forward difference formula is

 f(a + hu) = f(a) + uΔf(a) + 
u u

f a
u u u

f a
( )

!
( )

( )( )
!

( )
− + − −1

2
1 2
3

2 3Δ Δ

+ − − − +u u u u
f a

( )( )( )
!

( ) ......
1 2 3

4
4Δ (30)

Given a = 0, h = 1, we get

f(u) = f(0) + uΔf(0) + 
u u

f
u u u

f
( )

!
( )

( )( )
!

( )
− + − −1

2
0

1 2
3

02 3Δ Δ

+ − − − +u u u u
f

( )( )( )
!

( ) ......
1 2 3

4
04Δ (31)
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Now,  Δ3f(– 1) = Δ2f(0) – Δ2f(– 1) ⇒ Δ2f(0) = Δ3f(– 1) + Δ2f(– 1)

Also,  Δ4f(– 1) = Δ3f(0) – Δ3f(– 1) ⇒ Δ3f(0) = Δ4f(– 1) + Δ3f(– 1)

and   Δ5f(– 1) = Δ4f(0) – Δ4f(– 1) ⇒ Δ4f(0) = Δ5f(– 1) + Δ4f(– 1) and so on.

∴ From (31),

 f(u) = f(0) + uΔf(0) + − − + −u u
f f

( )
!

{ ( ) ( )}
1

2
1 12 3Δ Δ

+ − − − + −u u u
f f

( )( )
!

{ ( ) ( )}
1 2
3

1 13 4Δ Δ

+ − − − − + − +u u u u
f f

( )( )( )
!

{ ( ) ( )} ......
1 2 3

4
1 14 5Δ Δ

= f(0) + uΔf(0) + 
u u

f
u u u

f
( )

!
( )

( )
( )

− − + − + −R
S
T

U
V
W

−1
2

1
1

2
1

2
3

12 3Δ Δ

+ − − + −R
S
T

U
V
W

−u u u u
f

( )( )
( )

1 2
6

1
3

4
14Δ  +

− − − − +u u u u
f

( )( )( )
!

( ) ......
1 2 3

4
15Δ

= f(0) + uΔf(0) + 
u u

f
u u u

f
( )

!
( )

( ) ( )
!

( )
− − + + − −1

2
1

1 1
3

12 3Δ Δ

+ + − − − + − − − − +( ) ( )( )
!

( )
( )( )( )

!
( ) ......

u u u u
f

u u u u
f

1 1 2
4

1
1 2 3

4
14 5Δ Δ

(32)
But,   Δ5f(– 2) = Δ4f(– 1) – Δ4f(– 2)

∴ Δ4f(– 1) = Δ4f(– 2) + Δ5f(– 2)

then (32) becomes,

 f(u) = f(0) + uΔf(0) + − − + + − −u u
f

u u u
f

( )
!

( )
( ) ( )

!
( )

1
2

1
1 1

3
12 3Δ Δ

+ + − − − + −( ) ( )( )
!

{ ( ) ( )}
u u u u

f f
1 1 2

4
2 24 5Δ Δ

+ − − − − +u u u u
f

( )( )( )
!

( ) ......
1 2 3

4
15Δ
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f(u) = f(0) + uΔf(0) + − − + + − −u u
f

u u u
f

( )
!

( )
( ) ( )

!
( )

1
2

1
1 1

3
12 3Δ Δ

+ + − − − +( ) ( )( )
!

( ) ......
u u u u

f
1 1 2

4
24Δ

This is called Gauss’ forward difference formula.

This formula is applicable when u lies between 0 and 1
2

.

4.18.1 Algorithm

Step 01. Start of the program.

Step 02. Input number of terms n

Step 03. Input the array ax

Step 04. Input the array ay

Step 05. h=ax[1]-ax[0]

Step 06. for i=0;i<n–1;i++

Step 07. diff[i][1]=ay[i+1]-ay[i]

Step 08. End Loop i

Step 09. for j=2;j<=4;j++

Step 10. for i=0;i<n–j;i++

Step 11. diff[i][j]=diff[i+1][j–1]–diff[i][j–1]

Step 12. End Loop i

Step 13. End Loop j

Step 14. i=0

Step 15. Repeat Step 16 until ax[i]<x

Step 16. i=i+1

Step 17. i=i–1;

Step 18. p=(x–ax[i])/h

Step 19. y1=p*diff[i][1]

Step 20. y2=p*(p–1)*diff[i–1][2]/2

Step 21. y3=(p+1)*p*(p-1)*diff[i–2][3]/6

Step 22. y4=(p+1)*p*(p–1)*(p–2)*diff[i–3][4]/24

Step 23. y=ay[i]+y1+y2+y3+y4

Step 24. Print Output x,y

Step 25. End of Program

NOTE
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4.18.2 Flow-chart

START

Input n, ax, ay

h = ax[i] – ax[0]

Loop i to (n – 1)

Diff[i][1] = ay[i + 1] – ay[i]

End loop i

Loop j = 2 to 4

Loop i = 0 to (n – j)

Diff[i][j] = diff[i + 1][j – 1] – diff[i][j – i]

End loop i

End loop j

i = 0

Y

X

If
ax[i] < x
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X

y

i = i + 1

i = i – 1

p = (x – ax[i])/n

y = p * diff[i][1]
y = p * (p – 1) * diff[i – 1][2]/2
y = (p + 1) * p * (p – 1) * diff[i – 2][3]/6

1

2

3

y = ay[i] + y + y + y1 2 3

Print Output , x, y‘‘ ’’

STOP

/* ***********************************************************************

4.18.3 Program to Implement Gauss’s Forward Method of Interpolation

*********************************************************************** */

//...HEADER FILES DECLARATION

# include <stdio.h>

# include <conio.h>

# include <math.h>

# include <process.h>

# include <string.h>

//...MAIN EXECUTION THREAD

void main()

{

//...Variable declaration Field
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//...Integer Type

int n;

int i,j;

//...Floating Type

float ax[10]; //...array limit 9

float ax[10]; //...array limit 9

float x;

float nr,dr;

float y=0; //...Initial value 0

float h;

float p;

float diff[20][20]; //...array limit 19,19

float y1,y2,y3,y4;

//...Invoke Function Clear Screen

clrscr();

//...Input Section

printf("\n Enter the number of terms – ");

scanf("%d",&n);

//...Input Sequel for array X

printf("\n\n Enter the value in the form of x – ");

//...Input loop for Array X

for (i=0;i<n;i++)

{

printf("\n\n Enter the value of x%d – ",i+i);

scanf("%f”,&ax[i]);

}

printf("\n\n Enter the value in the form of y – ");

//...Input Loop for Array Y

for(i=0;i<n;i++)

{

printf("\n\n Enter the value of y%d–",i+1);

scanf("%f",&ay[i]);

}
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//...Inputting the required value query

printf("\nEnter the value of x for");

printf("\nwhich you want the value of y–");

scanf ("%f",&x);

//... Calculation and Processing Section

h=ax[1]–ax[0];

for(i=0;i<n–1;i++)

{

diff[i][1]=ay[i+1]–ay[i];

}

for(j=2;j<=4;j++)

{

for(i=0;i<n–j;i++)

{

diff[i][j]=diff[i+1][j–1]–diff[i][j–1];

}

}

i=0;

do {

i++;

}while(ax[i]<x);

i--;

p=(x–ax[i])/h;

y1=p*diff[i][1];

y2=p*(p–1)*diff[i-1][2]/2;

y3=(p+1)*p*(p–1)*diff[i–2][3]/6;

y4=(p+1)*p*(p–1)*(p–2)*diff[i–3][4]/24;

//...Taking Sum

y=ay[i]+y1+y2+y3+y4;

//...Output Section

printf("\nwhen x=%6.4f,y=%6.8f ",x,y);

//... Invoke User Watch Halt Function

printf("\n\n\n Press Enter to Exit");

getch();

}

//...Termination of Main Execution Thread
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4.18.4 Output

Enter the number of terms – 7

Enter the value in the form of x –

Enter the value of x1 – 1.00

Enter the value of x2 – 1.05

Enter the value of x3 – 1.10

Enter the value of x4 – 1.15

Enter the value of x5 – 1.20

Enter the value of x6 – 1.25

Enter the value of x7 – 1.30

Enter the value in the form of y –

Enter the value of y1 – 2.7183

Enter the value of y2 – 2.8577

Enter the value of y3 – 3.0042

Enter the value of y4 – 3.1582

Enter the value of y5 – 3.3201

Enter the value of y6 – 3.4903

Enter the value of y7 – 3.6693

Enter the value of x for

which you want the value of y – 1.17

When x = 1.17, y = 3.2221

Press Enter to Exit

EXAMPLES

Example 1. Apply a central difference formula to obtain f(32) given that:

f(25) = 0.2707 f(35) = 0.3386

f(30) = 0.3027 f(40) = 0.3794.

Sol. Here a + hu = 32 and h = 5

Take origin at 30 ∴ a = 30 then u = 0.4
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The forward difference table is:

u x f(x) Δf(x) Δ2f(x) Δ3f(x)

– 1 25 .2707
.032

0 30 .3027 .0039
.0359 .0010

1 35 .3386 .0049
.0408

2 40 .3794

Applying Gauss’ forward difference formula, we have

       f(u) = f(0) + uΔf(0) + 
u u

f
u u u

f
( )

!
( )

( ) ( )
!

( )
− − + + − −1

2
1

1 1
3

12 3Δ Δ

∴     f(.4) = .3027 + (.4)(.0359) + 
(. )(. )

!
(. )

( . )(. )(. )
!

(. )
4 4 1

2
0039

14 4 4 1
3

0010
− + −

 = 0.316536.

Example 2. Use Gauss’ forward formula to find a polynomial of degree four
which takes the following values of the function f(x):

x: 1 2 3 4 5

f(x): 1 – 1 1 – 1 1

Sol. Taking origin at 3 and h = 1

 a + hu = x

⇒   3 + u = x ⇒ u = x – 3

The difference table is:

u x f(x) Δf(x) Δ2f(x) Δ3f(x) Δ4f(x)

– 2 1 1
– 2

– 1 2 – 1 4
2 – 8

0 3 1 – 4 16
– 2 8

1 4 – 1 4
2

2 5 1
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Gauss’ forward difference formula is

f(u) = f(0) + uΔf(0) + 
u u

f
u u u

f
( )

!
( )

( ) ( )
!

( )
− − + + − −1

2
1

1 1
3

12 3Δ Δ

+ + − − −( ) ( )( )
!

( )
u u u u

f
1 1 2

4
24Δ

= 1 + (x – 3)(– 2) + 
( )( )

( )
( )( )( )

( )
x x x x x− − − + − − −3 4

2
4

2 3 4
6

8

+ − − − −( )( )( )( )
( )

x x x x2 3 4 5
24

16

= 1 – 2x + 6 – 2x2 + 14x – 24 + 
4
3

(x3 – 9x2 + 26x – 24)

 + 2
3

 (x4 – 14x3 + 71x2 – 154x + 120)

∴ F(x) = 
2
3

x4 – 8x3 + 100
3

2x  – 56x + 31

Example 3. The values of e–x at x = 1.72 to x = 1.76 are given in the following
table:

x: 1.72 1.73 1.74 1.75 1.76

e–x: 0.17907 0.17728 0.17552 0.17377 0.17204

Find the value of e–1.7425 using Gauss’ forward difference formula.
Sol. Here taking the origin at 1.74 and h = 0.01.

∴ x = a + uh

⇒ u = 
x a

h
− = −1.7425 1.7400

0.01
 = 0.25

The difference table is as follows:

u x 105f(x) 105Δf(x) 105Δ2f(x) 105Δ3f(x) 105Δ4f(x)

– 2 1.72 17907
– 179

– 1 1.73 17728 3
– 176 – 2

0 1.74 17552 1 3
– 175

1 1.75 17377 2 1
– 173

2 1.76 17204
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Gauss’s forward formula is

  f(u) = f(0) + uΔf(0) + 
u u

f
u u u

f
( )

!
( )

( ) ( )
!

( )
− − + + − −1

2
1

1 1
3

12 3Δ Δ

+ + − − −( ) ( )( )
!

( )
u u u u

f
1 1 2

4
24Δ

∴  105f(.25) = 17552 + (.25)(– 175) + 
(. )( . )

( )
( . )(. )( . )

( )
25 75

2
1

125 25 75
6

1
− + −

+ − −( . )(. )( . )( . )
( )

125 25 75 175
24

3

 = 17508.16846

∴ f(0.25) = e–1.7425 = 0.1750816846.

Example 4. Apply  Gauss’s  forward  formula to find the value of u9, if u0 = 14,
u4 = 24, u8 = 32, u12 = 35, u16 = 40.

Sol. The difference table is (taking origin at 8):

u x f(x) Δf(x) Δ2f(x) Δ3f(u) Δ4f(x)

– 2 0 14
10

– 1 4 24 – 2
8 – 3

0 8 32 – 5 10
3 7

1 12 35 2
5

2 16 40

Here a = 8, h = 4, a + hu = 9
∴ 8 + 4u = 9 ⇒ u = .25
Gauss’ forward difference formula is

f(.25) = f(0) + uΔf(0) + 
u u

f
u u u

f
( )

!
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( ) ( )
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= 32 + (.25)(3) + 
(. )( . )
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( )
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2
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7
− − + −

+ − −( . )(. )( . )( . )
( )

125 25 75 175
24

10
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= 33.11621094
Hence  u9 = 33.11621094.

ASSIGNMENT 4.6

1. Apply Gauss’s forward formula to find the value of f(x) at x = 3.75 from the table:

x: 2.5 3.0 3.5 4.0 4.5 5.0

f(x): 24.145 22.043 20.225 18.644 17.262 16.047.

2. Given that

x: 25 30 35 40 45

log x: 1.39794 1.47712 1.54407 1.60206 1.65321

Find the value of log 3.7, using Gauss’s forward formula.

3. Find the value of f(41) by applying Gauss’s forward formula from the following data:

x: 30 35 40 45 50

f(x): 3678.2 2995.1 2400.1 1876.2 1416.3

4. From the following table, find the value of e1.17 using Gauss forward formula:

x: 1 1.05 1.10 1.15 1.20 1.25 1.30

ex: 2.7183 2.8577 3.0042 3.1582 3.3201 3.4903 3.6693

5. From the following table find y when x = 1.45

x: 1.0 1.2 1.4 1.6 1.8 2.0

y: 0.0 – .112 – .016 .336 .992 2.0

4.19 GAUSS’S BACKWARD DIFFERENCE FORMULA

Newton’s Gregory forward difference formula is

 f(a + hu) = f(a) + uΔf(a) + 
u u

f a
u u u

f a
( )

!
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( )( )
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( ) ......
− + − − +1

2
1 2
3
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(33)
Put    a = 0, h = 1, we get

 f(u) = f(0) + uΔf(0) + 
u u

f
u u u

f
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!
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( )
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f

( )( )( )
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( ) ......
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4
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Now, Δf(0) = Δf(– 1) + Δ2f(– 1)

 Δ2f(0) = Δ2f(– 1) + Δ3f(– 1)

 Δ3f(0) = Δ3f(– 1) + Δ4f(– 1)

 Δ4f(0) = Δ4f(– 1) + Δ5f(– 1) and so on.

∴ From (34),

f(u) = f(0) + u [Δf(– 1) + Δ2f(– 1)] + 
u u( )
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2
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u

1
1

2
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4
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Again, Δ3f(– 1) = Δ3f(– 2) + Δ4f(– 2)

and Δ4f(– 1) = Δ4f(– 2) + Δ5f(– 2) and so on

∴ (36) gives

f(u) = f(0) + uΔf(– 1) + 
( )

!
( )

( ) ( )
!

u u
f

u u u+ − + + −1
2

1
1 1

3
2Δ  {Δ3f(– 2)

+ Δ4f(– 2)}

+ 
( ) ( )( )

!
u u u u+ − −1 1 2

4
 {Δ4f(– 2) + Δ5f(– 2)} + ......
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  f(u) = f(0) + uΔf(– 1) + 
( )

!
( )

( ) ( )
!

( )
u u

f
u u u

f
+ − + + − −1
2
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3
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( ) ......
u u u u

f
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4
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(37)
This is known as Gauss’ backward difference formula.

This formula is useful when u lies between − 1
2

 and 0.

4.19.1 Algorithm of Gauss’s Backward Formula

Step 01. Start of the program.

Step 02. Input number of terms n

Step 03. Input the array ax

Step 04. Input the array ay

Step 05. h=ax[1]-ax[0]

Step 06. for i=0;i<n-l;i++

Step 07. diff[i][1]=ay[i+1]-ay[i]

Step 08. End Loop i

Step 09. for j=2;j<=4;j++

Step 10. for i=0;i<n–j;i++

Step 11. diff[i][j]=diff[i+1][j–1]–diff[i][j–1]

Step 12. End Loop i

Step 13. End Loop j

Step 14. i=0

Step 15. Repeat Step 16 until ax[i]<x

Step 16. i=i+1

Step 17. i=i–1;

Step 18. p=(x–ax[i])/h

Step 19. y1=p*diff[i-1][1]

Step 20. y2=p*(p+1)*diff[i–1][2]/2

Step 21. y3=(p+1)*p*(p-1)*diff[i–2][3]/6

Step 22. y4=(p+2)*(p+1)*p*(p–1)*diff[i–3][4]/24

Step 23. y=ay[i]+y1+y2+y3+y4

Step 24. Print Output x,y

Step 25. End of Program



292 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

4.19.2 Flow-chart

START

Input n, ax, ay

h = ax[1] – ax[0]

Loop i = 0 to n – 1

diff[i][1] = ay[i + 1] – ay[i]

End loop i

Loop for j = 2 to 4

Loop for i = 0 to (n – j)

Diff[i][j] = diff[i + 1][j – 1] – diff[i][j – i]

End loop i

End loop j

i = 0

Y

X

No

Yes

Is
ax[i] < x
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X

Y

i = i + 1

i = i – 1

p = (x – ax[i])/h

y = p * diff[i – 1][1]
y = p * (p + 1) * diff[i – 1][2]/2
y = (p + 1) * p * (p – 1) * diff[i – 2][3]/6
y = (p + 2) * (p + 1) * p * (p – 1) * diff[i – 3][4]/24

1

2

3

4

y = ay[i] + y + y + y + y1 2 3 4

Print x, y

STOP

/* ********************************************************************

4.19.3 Program to Implement Gauss’s Backward Method of Interpolation

**********************************************************************/*

//...HEADER FILES DECLARATION

# include <stdio.h>

# include <conio.h>

# include <math.h>

# include <process.h>

# include <string.h>

//...MAIN EXECUTION THREAD

void main()
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{

//...Variable declaration Field

//...Integer Type

int n; //... No. of terms

int i,j; //... Loop Variables

//...Floating Type

float ax[10]; //... array limit 9

float ay[10]; //... array limit 9

float x; //... User Querry

float y=0; //... Initial value 0

float h; //... Calc. section

float p; //... Calc. section

float diff[20][20]; //... array limit 19, 19

float y1,y2,y3,y4; //... Formulae variables

//... Invoke Function Clear Screen

clrscr();

//... Input Section

printf("\n Enter the number of terms – ");

scanf("%d",&n);

//... Input Sequel for array X

printf("\n\n Enter the value in the form of x – ");

//... Input loop for X

for (i=0;i<n;i++)

{

printf("\n\n Enter the value of x%d–",i+1);

scanf("%f”,&ax[i]);

}

//...Input Sequel for array Y

printf("\n\n Enter the value in the form of y–");

//...Input Loop for Y

for(i=0;i<n;i++)

{

printf("\n\n Enter the value of y%d–",i+1);
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scanf("%f",&ay[i]);

}

//... Inputting the required value query

printf("\nEnter the value of x for");

printf("\nwhich you want the value of y – ");

scanf("%f",&x);

//... Calculation and Processing Section

h=ax[1]–ax[0];

for(i=0;i<n–1;i++)

{

diff[i][1]=ay[i+1]–ay[i];

}

for(j=2;j<=4;j++)

{

for(i=0;i<n–j;i++)

{

diff[i][j]=diff[i+1][j–1]–diff[i][j–1];

}

}

i=0;

do {

i++;

}while (ax[i]<x);

i—–;

p=(x-ax[i])/h;

y1=p*diff[i–1][1];

y2=p*(p+1)*diff[i-1][2]/2;

y3=(p+1)*p*(p–1)*diff[i–2][3]/6;

y4=(p+2)*(p+1)*p*(p–1)*diff[i–3][4]/24;

//... Taking Sum

y=ay[i]+y1+y2+y3+y4;

//... Output Section

printf("\nwhen x=%6.1f,y=%6.4f ",x,y);

//... Invoke User Watch Halt Function

printf("\n\n\n Press Enter to Exit");
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getch();

}

//... Termination of Main Execution Thread

4.19.4 Output

Enter the number of terms – 7

Enter the value in the form of x –

Enter the value of x1 – 1.00

Enter the value of x2 – 1.05

Enter the value of x3 – 1.10

Enter the value of x4 – 1.15

Enter the value of x5 – 1.20

Enter the value of x6 – 1.25

Enter the value of x7 – 1.30

Enter the value in the form of y –

Enter the value of y1 – 2.1783

Enter the value of y2 – 2.8577

Enter the value of y3 – 3.0042

Enter the value of y4 – 3.1582

Enter the value of y5 – 3.3201

Enter the value of y6 – 3.4903

Enter the value of y7 – 3.6693

Enter the value of x for

which you want the value of y – 1.35

When x = 1.35, y=3.8483

Press Enter to Exit

EXAMPLES

Example 1. Given that

  12500  = 111.803399, 12510  = 111.848111

  12520  = 111.892806, 12530  = 111.937483

Show by Gauss’s backward formula that 12516  = 111.8749301.

Sol. Taking the origin at 12520

∴ u = 
x a

h
−

 = 
12516 12520

10
−

 = – 
4
10

 = – 0.4
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Gauss’s backward formula is

f(u) = f(0) + uΔf(– 1) + 
( )

!
u u+ 1

2
 Δ2 f(– 1)

+ 
( ) ( )

!
u u u+ −1 1

3
 Δ3f(– 2) + ...... (38)

The difference table is:

u x 106 f(x) 106Δ f(x) 106 Δ2 f(x) 106 Δ3 f(x)

– 2 12500 111803399
44712

– 1 12510 111848111 – 17
44695 – 1

0 12520 111892806 – 18
44677

1 12530 111937483

From (38),

 106f(– .4) = 111892806 + (– .4)(44695)

+ 
(. )( . )

!
( )

(. )( . )( . )
!

( )
6 4

2
18

6 4 14
3

1
− − + − − −

= 111874930.1

∴   f(– .4) = 111.8749301

Hence,   12516  = 111.8749301.

Example 2. Find the value of cos 51° 42′ by Gauss’s backward formula.
Given that

x: 50° 51° 52° 53° 54°

cos x: 0.6428 0.6293 0.6157 0.6018 0.5878.

Sol. Taking the origin at 52° and h = 1

∴  u = (x – a) = 51° 42′ – 52° = – 18′ = – 0.3°

Gauss’s backward formula is

f(u) = f(0) + uΔf(– 1) + 
( )

!
( )

( ) ( )
!

( )
u u

f
u u u

f
+ − + + − −1
2

1
1 1

3
22 3Δ Δ

+ + + − −( )( ) ( )
!

( )
u u u u

f
2 1 1

4
24Δ (39)
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The difference table is as below:

u x 104 f(x) 104 Δ f(x) 104 Δ2 f(x) 104 Δ3 f(x) 104 Δ4 f(x)

– 2 50° 6428
– 135

– 1 51° 6293 – 1
– 136 – 2

0 52° 6157 – 3 4
– 139 2

1 53° 6018 – 1
– 140

2 54° 5878

From (39),

104f(– .3) = 6157 + (– .3)(– 136) + 
(. )( . )

!
( )

(. )( . )( . )
!

( )
7 3

2
3

7 3 13
3

2
− − + − − −

+ − −( . )(. )( . )( . )
!

( )
17 7 3 13

4
4

= 6198.10135

∴ f(– .3) = .619810135

Hence     cos 51°42′ = 0.619810135.

Example 3. Using Gauss’s backward interpolation formula, find the population
for the year 1936 given that

Year: 1901 1911 1921 1931 1941 1951

Population: 12 15 20 27 39 52
(in thousands)

Sol. Taking the origin at 1941 and h = 10,

  x = a + uh ∴ u = 
x a

h
−

 = 
1936 1941

10
−

 = – 0.5

Gauss’s backward formula is

f(u) = f(0) + uΔf(– 1) + 
( )

!
( )

( ) ( )
!

( )
u u

f
u u u

f
+ − + + − −1
2

1
1 1

3
22 3Δ Δ

+ + + − − + + + − − −( )( ) ( )
!

( )
( )( ) ( )( )

!
( )

u u u u
f

u u u u u
f

2 1 1
4

2
2 1 1 2

5
34 5Δ Δ (40)
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The difference table is:

u f(u) Δf(u) Δ2f(u) Δ3f(u) Δ4f(u) Δ5f(u)

– 4 12
3

– 3 15 2
5 0

– 2 20 2 3
7 3 – 10

– 1 27 5 – 7
12 – 4

0 39 1
13

1 52

From (40),

 f(– .5) = 39 + (– .5)(12) + 
(. )( . )

( )
(. )( . )( . )

( )
5 5

2
1

5 5 15
6

4
− + − − −

= 32.625 thousands
Hence, the population for the year 1936 = 32625

Example 4. f(x) is a polynomial of degree four and given that

f(4) = 270, f(5) = 648, Δf(5) = 682, Δ3 f(4) = 132.

Find the value of f(5.8) using Gauss’s backward formula.

Sol. Δf(5) = f(6) – f(5)

∴ f(6) = f(5) + Δf(5) = 648 + 682 = 1330

  Δ3f(4) = (E – 1)3 f(4) = f(7) – 3 f(6) + 3 f(5) – f(4) = 132

∴ f(7) = 3f(6) – 3f(5) + f(4) + 132

= 3 × 1330 – 3 × 648 + 270 + 132 = 2448.

The difference table is (Taking origin at 6):

u x f(x) Δ f(x) Δ2 f(x) Δ3 f(x)

 – 2 4 270
378

– 1 5 648 304
682 132

0 6 1330 436
1118

1 7 2448
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Here, a = 6, h = 1, a + hu = 5.8

∴  6 + u = 5.8 ⇒ u = – .2

Gauss’s backward formula is

f(– .2) = f(0) + uΔf(– 1)

+ + − + + − −( )
!

( )
( ) ( )

!
( )

u u
f

u u u
f

1
2

1
1 1

3
22 3Δ Δ

= 1330 + (– .2)(682)

+ 
(. )( . )

( )
(. )( . )( . )

( )
8 2

2
436

8 2 12
6

132
− + − −

= 1162.944

∴ f(5.8) = 1162.944.

ASSIGNMENT 4.7

1. The population of a town in the years 1931, ......, 1971 are as follows:

Year: 1931 1941 1951 1961 1971

Population: 15 20 27 39 52
(in thousands)

Find the population of the town in 1946 by applying Gauss’s backward formula.

2. Apply  Gauss’s  backward  formula  to  find  the  value  of  (1.06)19  if  (1.06)10 = 1.79085,
(1.06)15 = 2.39656, (1.06)20 = 3.20714, (1.06)25 = 4.29187 and (1.06)30 = 5.74349.

3. Given that

x: 50 51 52 53 54

tan x: 1.1918 1.2349 1.2799 1.3270 1.3764

Using Gauss’s backward formula, find the value of tan 51° 42′.
4. Interpolate by means of Gauss’s backward formula, the population of a town for the

year 1974 given that:

Year: 1939 1949 1959 1969 1979 1989

Population: 12 15 20 27 39 52
(in thousands)

5. Apply Gauss’s backward formula to find sin 45° from the following table:

θ°: 20 30 40 50 60 70 80

sin θ: 0.34202 0.502 0.64279 0.76604 0.86603 0.93969 0.98481
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6. Using Gauss’s backward formula, estimate the number of persons earning wages be-
tween $ 60 and $ 70 from the following data:

Wages ($): Below 40 40—60 60—80 80—100 100—120

Number of people: 250 120 100 70 50
(in thousands)

4.20 STIRLING’S FORMULA

Gauss’s forward formula is

f(u) = f(0) + uΔf(0) + 
u u

f
u u u

f
( )

!
( )

( ) ( )
!

( )
− − + + − −1

2
1

1 1
3

12 3Δ Δ

+ + − − − +( ) ( )( )
!

( ) ......
u u u u

f
1 1 2

4
24Δ (41)

Gauss’s backward formula is

f(u) = f(0) + uΔf(– 1) + 
( )

!
( )

( ) ( )
!

( )
u u

f
u u u

f
+ − + + − −1
2

1
1 1

3
22 3Δ Δ

+ + + − − +( )( ) ( )
!

( ) ......
u u u u

f
2 1 1

4
24Δ (42)

Take the mean of (41) and (42),

   f(u) = f(0) +
+ −R

S
T

U
V
W

+ −u
f f u

f
Δ Δ

Δ
( ) ( )

!
( )

0 1
2 2

1
2

2

+ + −( ) ( )
!

u u u1 1
3  Δ Δ3 31 2

2
f f( ) ( )− + −R

S
T

U
V
W

    + 
u u

f
2 2

41
4

2
( )

!
( ) ......

− − +Δ (43)

This is called Stirling’s formula. It is useful when | u | < 
1
2

 or − < <1
2

1
2

u . It

gives the best estimate when − < <1
4

1
4

u .
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4.20.1 Algorithm of Stirling’s Formula

Step 01. Start of the program.

Step 02. Input number of terms n

Step 03. Input the array ax

Step 04. Input the array ay

Step 05. h = ax[1]-ax[0]

Step 06. for i = 1;i < n-1; i++

Step 07. diff [i][1] = ay[i + 1]-ay[i]

Step 08. End loop i

Step 09. for j = 2; j < = 4; j++

Step 10. for i = 0; i < n-j; i++

Step 11. diff[i][j] = diff[i + 1][j-1]-diff[i][j-1]

Step 12. End loop i

Step 13. End loop j

Step 14. i = 0

Step 15. Repeat step 16 until ax[i] < x

Step 16. i = i + 1

Step 17. i = i-1;

Step 18. p = (x-ax[i])/h

Step 19. y1= p*(diff[i][1] + diff[i-1][1])/2

Step 20. y2 = p*p*diff[i-1][2]/2

Step 21. y3 = p*(p*p-1)*(diff[i-1][3]+diff[i-2][3])/6

Step 22. y4 = p*p*(p*p-1)*diff[i-2][4]/24

Step 23. y = ay[i]+y1 + y2 + y3 + y4

Step 24. Print output

Step 25. End of program
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4.20.2 Flow-chart

START

Enter n, ax, ay

h = ax[1] – ax[0]

loop i = 1 to (n – 1)

diff[i][1] = ay[i + 1] – ay[i]

End loop i

loop j = 2 to 4

loop i = 0 to (n – j)

diff[i][j] = diff[i + 1][j – 1] – diff[i][j – 1]

End loop i

End loop j

i = 0

Y

X

No

Yes

If
ax[i] < x
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X

i = i + 1

i = i – 1

p = (x – ax[i])/h

y = p * (diff[i][1] + diff[i – 1][1])/2
y = p * p * diff[i – 1][2]/2
y = p * (p * p – 1) * (diff[i – 1][3] + diff[i – 2][3])/6
y = (p * (p * (p * (p – 1))) * diff[i – 2][4]/24

1

2

3

4

y = ay[i] + y + y + y + y1 2 3 4

Print ‘‘output’’, y

STOP

Y

*/ ********************************************************************

4.20.3 Program to Implement Stirling Method of Interpolation

******************************************************************** /*

//... HEADER FILES DECLARATION

#include<stdio.h>

#include<conio.h>

#include<math.h>

#include<process.h>

//...MAIN EXECUTION THREAD

void main()
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{

//...Variable declaration Field

//...Integer Type

int n;

int i,j;

//...Floating Type

float ax[10]; //... array-limit 9

float ax[10]; //... array-limit 9

float h;

float p;

float diff[20][20]; //...array 2d-limit 19,19

float x,y;

float y1,y2,y3,y4;

clrscr(); //... Clear Screen

//... Input Section

printf("\n Enter the value of terms");

scanf("%d",%n);

//... Input Section Array X

printf(”\n Enter the values for x \n”);

//...Input Section Loop for X

for(i=0;i<n;i++)

{

printf("\n Enter the value for x%d-",i+1);

scanf("%f”,&ax[i]);

}

//... Input Section for Y

printf("\n Enter the values for y \n");

//... Input Section Loop for Y

for(i=0;i<n;i++)

{

printf("\n Enter the value for y%d-",i+1);

scanf("%f",&ay[i]);

}

//... Input Section Loop for Value of X for Y

printf("\n Enter the value of x for");
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printf("\n which you want the value of y");

scanf("%f",&x);

//...Calculation and Processing Section

h=ax[1]-ax[0];

for(i=0;i<n-1;i++)

{

diff[i][1]=ay[i+1]-ay[i];

}

for(j=2;j<=4;j++)

{

for(i=0;i<n-j;i++)

{

diff[i][j]=diff[i+1][j-1]-diff[i][j-1];

}

}

i=0;

do {

i++;

}while(ax[i]<x);

i--;

p=(x-ax[i])/h;

y1=p*(diff[i][1]+diff[i-1][1])/2;

y2=p*p*diff[i-1][2]/2;

y3=p*(p*p-1)*(diff[i-1][3]+diff[i-2][3])/6;

y4=p*p*(p*p-1)*diff[i-2][4]/24;

y=ay[i]+y1+y2+y3+y4;

//...Output Section

printf("\n\n When x=%6.2f, y=%6.8f",x,y);

//... Producing User Watch Halt Function

getch();

}

4.20.4 Output

Enter the value of terms-7

Enter the values for x
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Enter the value for x1 - .61

Enter the value for x2 - .62

Enter the value for x3 - .63

Enter the value for x4 - .64

Enter the value for x5 - .65

Enter the value for x6 - .66

Enter the value for x7 - .67

Enter the values for y

Enter the value for y1 - 1.840431

Enter the value for y2 - 1.858928

Enter the value for y3 - 1.877610

Enter the value for y4 - 1.896481

Enter the value for y5 - 1.915541

Enter the value for y6 - 1.934792

Enter the value for y7 - 1.954237

Enter the value of x for

which you want the value of y - 0.6440

When x=0.6440,y=1.90408230

Press Enter to Continue

EXAMPLES

Example 1. Given:

θ: 0° 5° 10° 15° 20° 25° 30°

tan θ: 0 0.0875 0.1763 0.2679 0.364 0.4663 0.5774

Find the value of tan 16° using Stirling formula.
Sol. Take origin at 15°

∴   a = 15°, h = 5

  a + hu = 16

⇒ 15 + 5u = 16 ⇒ u = .2
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The difference table is:

u θ 104f(θ) 104Δf(θ) 104Δ2f(θ) 104Δ3f(θ) 104Δ4f(θ) 104Δ5f(θ) 104Δ6f(θ)

– 3 0 0

875

– 2 5 875 13

888 15

– 1 10 1763 28 2

916 17 – 2

0 15 2679 45 0 11

961 17 9

1 20 3640 62 9

1023 26

2 25 4663 88

1111

3 30 5774

Using Stirling’s formula,

104f(.2) = 2679 + (.2) 961 916
2

2
2

45
12 2 8

3
17 17

2

2+F
HG

I
KJ

+ + − +F
HG

I
KJ

(. )
!

( )
( . )(. )( . )

!

+
−

+ − − + −RST
UVW

(. ) (. )

!
( )

( . )( . )(. )( . )( . )
!

( )2 2 1

4
0

2 2 12 2 8 18
5

9 2
2

2 2o t

+
− −(. ) {(. ) }{(. ) }

!
( )

2 2 1 2 4
6

11
2 2 2

= 2866.980499

∴ f(.2) = .2866980499

Hence tan 16° = 0.2866980499.

Example 2. Apply Stirling’s formula to find the value of f(1.22) from the

following table which gives the values of f(x) = 1

2
e

x
2

0

x
2

π

−

z  dx, at intervals of

x = 0.5 from x = 0 to 2.

x: 0 0.5 1.0 1.5 2.0

f(x): 0 0.191 0.341 0.433 0.477.
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Sol. Let the origin be at 1 and h = 0.5

∴ x = a + hu, u = 
x a

h
− = − =1. 1.22 00

0 5
0 44

.
.

Applying Stirling’s formula

f(u) = f(0) + u . 
1
2

0 1
2

1
2

2Δ Δ Δf f
u

f( ) ( )
!

( )+ − + −

+ − − + − + − − +u u
f f

u u
f

( )
!

. [ ( ) ( )]
( )

!
. ( ) ......

2
3 3

2 2
41

3
1
2

1 2
1

4
2Δ Δ Δ

∴ f(0.44) = f(0) + (0.44) 1
2

0 1
0 44

2
1

2
2[ ( ) ( )]

( . )
( )Δ Δ Δf f f+ − + −

+ − − + − + − −( . )[( . ) ]
. [ ( ) ( )]

( . ) [( . ) ]
( )

0 44 0 44 1
6

1
2

1 2
0 44 0 44 1

24
2

2
3 3

2 2
4Δ Δ Δf f f

~−  f(0) + (0.22)[Δf(0) + Δf(– 1)] + 0.0968 Δ2 f(– 1)

– 0.029568 [Δ3f(– 1) + Δ3f(– 2)] – 0.06505 Δ4f(– 2) + ......

The difference table is as follows:

u x 103f(x) 103 Δf(x) 103Δ2f(x) 103Δ3f(x) 103Δ4f(x)

– 2 0 0
191

– 1 .5 191 – 41

150 – 17

0 1 341 … – 58 27

1 1.5 433 92  10

44 – 48
2 2 477

f(0) and the differences are being multiplied by 103

∴ 103f(0.44) ~−  341 + 0.22 × (150 + 92) + 0.0968 × (– 58)

– 0.029568 × [– 17 + 10] – 0.006505 × 27

~−  341 + 0.22 × 242 – 0.0968 × 58 + 0.029568 × 7 – 0.006505 × 27

~−  341 + 53.24 – 5.6144 + 0.206276 – 0.175635 ~−  388.66

∴   f(0.44) = 0.389

Hence the required value of f(x) at x = 1.22 is 0.389.
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Example 3. Use Stirling’s formula to find y28, given

y20 = 49225, y25 = 48316, y30 = 47236,

y35 = 45926, y40 = 44306.

Sol. Let the origin be at 30 and h = 5

a + hu = 28

⇒ 30 + 5u = 28 ⇒ u = – .4

The difference table is as follows:

u x y Δy Δ2y Δ3y Δ4y

– 2 20 49225

– 909

– 1 25 48316 – 171

– 1080 – 59

0 30 47236 – 230 – 21

– 1310 – 80

1 35 45926 – 310

– 1620

2 40 44306

By Stirling’s formula,

f(– .4) = 47236 + (– .4) − −F
HG

I
KJ

+ −1080 1310
2

4
2

2( . )
!

 (– 230)

+ − − − −F
HG

I
KJ

+ − − − −(. )( . )( . )
!

( . ) {( . ) }
!

( )
6 4 14

3
59 80

2
4 4 1

4
21

2 2

= 47691.8256

Hence y28 = 47691.8256.

Example 4. Use Stirling’s formula to find y35, given y20 = 512, y30 = 439, y40 = 346
and y50 = 243.

Sol. Let the origin be at 30 and h = 10

a + hu = 35

30 + 10u = 35 ⇒ u = .5
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The difference table is as follows:

u x y Δy Δ2y Δ3y

– 1 20 512

– 73

0 30 439 – 20

– 93 10

1 40 346 – 10

– 103

2 50 243

By Stirling’s formula,

f(.5) = 439 + (.5) 
− −F
HG

I
KJ

+ − + − F
HG
I
KJ

93 73
2

5
2

20
15 5 5

3
10
2

2(. )
!

( )
( . )(. )( . )

!

= 394.6875
Hence,  y35 = 394.6875.

ASSIGNMENT 4.8

1. Use Stirling’s formula to find the value of f(1.22) from the table.

x f(x)

1.0 0.84147

1.1 0.89121

1.2 0.93204

1.3 0.96356

1.4 0.98545

1.5 0.99749

1.6 0.99957

1.7 0.99385

1.8 0.97385

2. Find f(0.41) using Stirling’s formula, if

f(0.30) = 0.1179, f(0.35) = 0.1368, f(0.40) = 0.1554

f(0.45) = 0.1736, f(0.50) = 0.1915.
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3. Evaluate sin (0.197) from the data given below:

x: 0.15 0.17 0.19 0.21 0.23

sin x: 0.14944 0.16918 0.18886 0.20846 0.22798

4. Use Stirling’s formula to find u32 from the following table:

u20 = 14.035 u30 = 13.257

u40 = 12.089 u25 = 13.674

u35 = 12.734 u45 = 11.309.

5. Employ Stirling’s formula to evaluate y12.2 from the following table (yx = 1 + log10 sin x):

x°: 10 11 12 13 14

105 yx: 23967 28060 31788 35209 38368.

6. The following table gives the values of ex for certain equidistant values of x. Find the
value of ex when x = 0.644 using Stirling’s method.

x: 0.61 0.62 0.63 0.64 0.65 0.66 0.67

y = ex: 1.840431 1.858928 1.877610 1.896481 1.915541 1.934792 1.954237

4.21 BESSEL’S INTERPOLATION FORMULA

Gauss’s forward formula is

f(u) = f(0) + uΔf(0) + 
u u

f
( )

!
( )

− −1
2

12Δ

+ + − −( ) ( )
!

( )
u u u

f
1 1

3
13Δ

+ ( ) ( ) ( )
!

( ) .....
u u u u

f
+ − − −1 1 2

4
24Δ (44)

Gauss’s backward formula is

       f(u) = f(0) + uΔf(– 1) + 
( )

!
( )

u u
f

+ −1
2

12Δ

+ + − −( ) ( )
!

( )
u u u

f
1 1

3
23Δ

+ 
( ) ( ) ( )

!
( )

u u u u
f

+ + − −2 1 1
4

24Δ  + ..... (45)
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In eqn. (45), shift the origin to 1 by replacing u by u – 1 and adding 1 to
each argument 0, – 1, – 2, ....., we get

f(u) = f(1) + (u – 1) Δf(0) + 
u u

f
( )

!
( )

− 1
2

02Δ

+ 
u u u

f
( ) ( )

!
( )

− − −1 2
3

13Δ

+ 
( ) ( ) ( )

!
( )

u u u u
f

+ − − −1 1 2
4

14Δ  + ..... (46)

Taking mean of (44) and (46), we get

f(u) = 
f f u u

f
( ) ( ) ( )

( )
0 1

2
1

2
0

+R
S
T

U
V
W

+ + −R
S
T

U
V
W

Δ

+ 
u u f f( )

!
( ) ( )− − +R

S
T

U
V
W

1
2

1 0
2

2 2Δ Δ

+ 
u u

u u
f( )

!
( )

( )− + + − −1
3

1 2
1

2

3Δ

+ 
( ) ( ) ( )

!
( ) ( )u u u u f f+ − − − + −R

S
T

U
V
W

1 1 2
4

2 1
2

4 4Δ Δ
 + .....

Finally, we get

f(u) = 
f f

u f
( ) ( )

( )
0 1

2
1
2

0
+R

S
T

U
V
W

+ −F
HG

I
KJ

Δ

+
− − +R
S
T|

U
V
W|

u u f f( )
!

( ) ( )1
2

1 0
2

2 2Δ Δ

+ 
( )

!
( )

u u u
f

− −F
HG

I
KJ

−
1

1
2

3
13Δ

+ ( ) ( ) ( )
!

( ) ( )u u u u f f+ − − − + −R
S
T

U
V
W

1 1 2
4

2 1
2

4 4Δ Δ  + ......

(47)
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This is called Bessel’s formula.

It is very useful when u = 
1
2

. It gives a better estimate when 1
4

u
3
4

< < .

It is used mainly to compute entry against any argument between 0 and 1.

4.21.1 Algorithm of Bessel’s Formula

Step 01. Start of the program.

Step 02. Input number of terms n

Step 03. Input the array ax

Step 04. Input the array ay

Step 05. h=ax[1]-ax[0]

Step 06. for i=1;i<n-l;i++

Step 07. diff[i][1]=ay[i+1]-ay[i]

Step 08. End Loop i

Step 09. for j=2;j<=4;j++

Step 10. for i=0;i<n–j;i++

Step 11. diff[i][j]=diff[i+1][j–1]–diff[i][j–1]

Step 12. End Loop i

Step 13. End Loop j

Step 14. i=0

Step 15. Repeat Step 16 until ax[i]<x

Step 16. i=i+1

Step 17. i=i–1;

Step 18. p=(x–ax[i])/h

Step 19. y1=p*(diff[i][1])

Step 20. y2=p*(p-1)*(diff[i][2]+diff[i–1][2])/4

Step 21. y3=p*(p-1)*(p-0.5)*(diff[i–1][3])/6

Step 22. y4=(p+1)*p*(p–1)*(p–2)*(diff[i–2][4]+diff[i–1][4])/48

Step 23. y=ay[i]+y1+y2+y3+y4

Step 24. Print Output

Step 25. End of Program
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4.21.2 Flow-chart

START

Enter n, ax, ay

h = ax[i] – ax[0]

Loop i = 1 to n – 1

Diff[i][1] = ay[i + 1] – ay[i]

End loop i

Loop j = 2 to 4

Loop i = 0 to (n – j)

Diff[i][j] = diff[i + 1][j – 1] – diff[i][j – 1]

End loop i

End loop j

i = 0

Y

X

No

Yes

Is
ax[i] < x
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X

i = i + 1

i = i – 1

p = (x – ax[i])/h

y = p * (diff[i][1])
y = p * (p – 1) * (diff[i][2] + diff[i – 1][2])/4
y = p * (p – 1) * (p – 0.5) * (diff[i – 1][3])/6
y = (p + 1) * p*(p – 1) * (p – 2) * (diff[i – 2][4] + diff[i – 1][4])/48

1

2

3

4

y = ay[i] + y + y + y + y1 2 3 4

Print ‘‘output’’x, y

STOP

Y

/* ***********************************************************************

4.21.3 Program to Implement  Bessel’s Method of Interpolation

*********************************************************************** */

//...HEADER FILES DECLARATION

#include<stdio.h>

#include<conio.h>

#include<math.h>

#include<process.h>

//... MAIN EXECUTION THREAD

void main()

{

//...Variable declaration Field
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//...Integer Type

int n;

int i,j;

//...Floating Type

float ax[10]; //...array – limit 9

float ay[10]; //...array – limit 9

float h;

float p;

float diff[20][20]; //... array 2d – limit
19, 19

float x,y;

float y1,y2,y3,y4,

//...Invoke Clear Screen Function

clrscr(); //... Clear Screen

//... Input Section

printf("\n Enter the number of terms");

scanf("%d",&n);

//... Input Section Array X

printf("\n Enter the values for x \n");

//... Input Section Loop for X

for(i=0;i<n;i++)

{

printf("\n Enter the value for x%d–",i+1);

scanf("%f,&ax[i]);

}

//... Input Section for Array Y

printf("\n Enter the values for y\n");

//...Input Section Loop for Y

for(i=0;i<n;i++)

{

printf("\n Enter the value for y%d–",i+1);

scanf("%f",&ay[i]);

}

//...Input Section Loop for Value Of X for Y

printf("\n Enter the value of x for   ");

printf("\n which you want the value of y ");



318 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

scanf ("%f",&x); //...Input X

//...Calculation and Processing Section

h=ax[1]–ax[0];

for(i=0;i<n–1;i++)

{

diff[i][1]=ay[i+1]–ay[i];

}

for(j=2;j<=4;j++)

{

for(i=0;i<n–j;i++)

{

diff[i][j]=diff[i+1][j–1]–diff[i][j–1];

}

}

i=0;

do {

i++;

}while (ax[i]<x);

i––;

//... Bessel formulae Calculation

p=(x-ax[i])/h;

y1=p*(diff[i][1]);

y2=p*(p-1)*diff[i][2]+diff[i-1][2])/4;

y3=p*(p–1)*(p–0.5)*(diff[i–1][3])/6;

y4=(p+1)*p*(p–1)*(p–2)*(diff[i–2][4]+diff[i–1][4])/48;

//...Taking Sum

y=ay[i]+y1+y2+y3+y4;

//...Output Section

printf("\nwhen x=%6.2f,y=%6.8f ",x,y);

//...Invoke User Watch Halt Function

printf("\n\n Press Enter to Exit \t");

getch();

}

*End of Main Execution Thread */
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4.21.4 Output

Enter the number of terms - 7

Enter the values of x

Enter the value of x1 - .61

Enter the value of x2 - .62

Enter the value of x3 - .63

Enter the value of x4 - .64

Enter the value of x5 - .65

Enter the value of x6 - .66

Enter the value of x7 - .67

Enter the values of y

Enter the value of y1 - 1.840431

Enter the value of y2 - 1.858928

Enter the value of y3 - 1.877610

Enter the value of y4 - 1.896481

Enter the value of y5 - 1.915541

Enter the value of y6 - 1.934792

Enter the value of y7 - 1.954237

Enter the value of x for

which you want the value of y - .644

When x = 0.644, y=1.90408230

Press Enter to Exit

EXAMPLES

Example 1. Given y20 = 24, y24 = 32, y28 = 35 and y32 = 40 find y25 by Bessel’s
interpolation formula.

Sol. Take origin at 24.

Here, a = 24, h = 4, a + hu = 25

∴ 24 + 4u = 25 ⇒ u = .25
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The difference table is:

u x y Δy Δ2y Δ3y

– 1 20 24
8

0 24 32 – 5
3 7

1 28 35 2
5

2 32 40

Using Bessel’s formula,

f(u) = 
f f

u f
( ) ( )

( )
0 1

2
1
2

0
+R

S
T

U
V
W

+ −F
HG

I
KJ

Δ

+
− − +R
S
T|

U
V
W|

u u f f( ) ( ) ( )1
2

1 0
2

2 2Δ Δ

+ 
( )

!
( )

u u u
f

− −F
HG

I
KJ

−
1

1
2

3
13Δ

⇒     f(.25) = 
32 35

2
+F

HG
I
KJ  + (.25 – .5) (3) + 

(. ) (. )25 25 1
2

5 2
2

− − +R
S
T

U
V
W

 + 
(. ) (. . ) (. )

!
( )

25 1 25 5 25
3

7
− −

= 32.9453125

Hence  y25 = 32.9453125.

Example 2. Apply Bessel’s formula to find the value of f(27.4) from the table:

x: 25 26 27 28 29 30

f(x): 4.000 3.846 3.704 3.571 3.448 3.333.

Sol. Taking origin at 27 and h = 1

x = a + uh ⇒ 27.4 = 27 + u × 1

∴    u = 0.4
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The difference table is as follows:

u 103f(u) 103 Δf(u) 103 Δ2f(u) 103 Δ3f(u) 103 Δ4f(u) 103 Δ5f(u)

– 2 4000
– 154

– 1 3847  12
– 142 – 3

0 3704 9 4
– 133 1 – 7

1 3571 10 – 3
– 123 – 2

2 3448  8
– 115

3 3333

Bessel’s formula is

f(u) = 
f f

u f
( ) ( )

( )
0 1

2
1
2

0
+R

S
T

U
V
W

+ −F
HG

I
KJ

Δ  + 
u u f f( )

!
( ) ( )− + −R

S
T

U
V
W

1
2

0 1
2

2 2Δ Δ

+ 
( )

!
( )

u u u
f

− −F
HG

I
KJ

−
1

1
2

3
13Δ

+ 
( ) ( ) ( )

!
( ) ( )u u u u f f+ − − − + −R

S
T

U
V
W

1 1 2
4

1 2
2

4 4Δ Δ

+ 
( ) ( ) ( )

!
( )

u u u u u
f

− − −F
HG

I
KJ

+
−

2 1
1
2

1

5
25Δ

∴  103f(0.4) = 
3704 3571

2
+R

S
T

U
V
W

 + (.4 – .5) (– 133) + 
(. ) (. )

!
4 4 1

2
10 9

2
− +F
HG

I
KJ

+ 
(. ) (. . ) (. )

!
( )

4 1 4 5 4
3

1
− −

 + 
(. ) (. ) (. ) (. )

!
4 1 4 4 1 4 2

4
3 4
2

+ − − − +F
HG

I
KJ

+ 
(. ) (. ) (. . ) (. ) (. )

!
( )

4 2 4 1 4 5 4 4 1
5

7
− − − + −

= 3649.678336

⇒ f(.4) = 3.649678336

Hence f(27.4) = 3.649678336.
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Example 3. Probability distribution function values of a normal distribution
are given as follows:

x: 0.2 0.6 1.0 1.4 1.8

p(x): 0.39104 0.33322 0.24197 0.14973 0.07895

Find the value of p(x) for x = 1.2.
Sol.  Taking the origin at 1.0 and h = 0.4

x = a + uh ⇒ 1.2 = 1.0 + u × 0.4

∴ u = 
1. 1.

0.4
2 0 1

2
− =

The difference table is:

u 105f(u) 105 Δf(u) 105 Δ2f(u) 105 Δ3f(u) 105 Δ4f(u)

– 2 39104

– 5782

– 1 33332 – 3343

– 9125  3244

0 24197 – 99 – 999

– 9224  2245

1 14973  2146

– 7078

2 7895

Bessel’s formula is

f(u) = 
f f

u f
( ) ( )

( )
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2
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0
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  105 f (.5) = 24197 14973
2

0

1
2

1
2

1

2
2146 99

2
0
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+ +

F
HG
I
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HG

I
KJ −F
HG

I
KJ

+
!

      = 19457.0625
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∴  f(.5) = 0.194570625

Hence p(1.2) = 0.194570625.

Example 4. Given that

x: 4 6 8 10 12 14

f(x): 3.5460 5.0753 6.4632 7.7217 8.8633 9.8986

Apply Bessel’s formula to find the value of f(9).

Sol. Taking the origin at 8, h = 2,

9 = 8 + 2u or u = 
1
2

The difference table is:

u 104 yu 104 Δ2yu 104 Δ2yu 104 Δ3yu 104 Δ4yu 105 Δ5yu

– 2 35460
15293

– 1 50753 – 1414
13879 120

0 64632 – 1294 5
1258 125 – 24

1 77217 – 1169 – 19
11416 106

2 88633 – 1063
10353

3 98986

Bessel’s formula is

yu = 
1
2

1
2

1
2

1
21 0 0

2
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( )y y u y
u u
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  104y1/2 = 
1
2

77217 64632 0

1
2

1
2

2
1
2

1169 1294( ) . ( )+ + +
−F
HG

I
KJ

− −

+ +
−F
HG

I
KJ

−F
HG

I
KJ

− +0

3
2

1
2

1
2

3
2

24
1
2

19 5
. .

. ( )  + 0

⇒  104y1/2 = 71078.27344

∴  y1/2 = 7.107827344

Hence,   f(9) = 7.107827344.

Example 5. Given y0, y1, y2, y3, y4, y5 (fifth differences constant), prove that

y
1
2

c
25(c b) 3(a c)

2562
1
2

= + − + −

where a = y0 + y5, b = y1 + y4, c = y2 + y3 .

Sol. Put u = 
1
2

 in Bessel’s formula, we get

 y1/2 = 
1
2

1
16

3
2560 1

2
0

2
1

4
1

4
2( ) ( ) ( )y y y y y y+ − + + +− − −Δ Δ Δ Δ

Shifting the origin to 2, we have

y y y y y y y
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Example 6. If third differences are constant, prove that

y
1
2

(y y )
1

16
( y y )

x
1
2

x x 1
2

x 1
2

x+ + −= + − +Δ Δ .

Sol. Putting u = 
1
2

 in Bessel’s formula, we get

y y y y y1/2 0 1
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0
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1
1
2

1
16

= + − + −( ) ( )Δ Δ

Shifting the origin to x,

 y y y y y
x

x x x x+ + −= + − +1
2

1
2 2

1
1
2

1
16

( ) ( )Δ Δ .

Example 7. Find the value of y15 ,using Bessel’s formula, if

y10 = 2854, y14 = 3162, y18 = 3544, y22 = 3992.

Sol. Taking the origin at 14, h = 4

∴  15 = 14 + 4 . u ∴ u = 
1
4

The difference table is:

u x f(x) Δ f(x) Δ2 f(x) Δ3 f(x)

– 1 10 2854

308

0 14 3162 74

382 – 8

1 18 3544 66

448

2 22 3992

Bessel’s formula is

 f(u) = 
f f

u f
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∴  f (.25) = 
3162 3544

2
+F

HG
I
KJ  + (.25 – .5) (382) + 

(. ) (. )25 25 1
2

74 66
2

− +F
HG

I
KJ

+ 
(. ) (. . ) (. )25 1 25 5 25

6
− −

 (– 8)

= 3250.875

Hence  y15 = 3250.875.

ASSIGNMENT 4.9

1. Apply Bessel’s formula to find the value of y2.73 given that

y2.5 = 0.4938, y2.6 = 0.4953, y2.7 = 0.4965

y2.8 = 0.4974, y2.9 = 0.4981, y3.0 = 0.4987.

2. Find the value of y if x = 3.75, given that

x: 2.5 3.0 3.5 4.0 4.5 5.0

y: 24.145 22.043 20.225 18.644 17.262 16.047.

Using Bessel’s formula.

3. Apply Bessel’s formula to find u62.5 from the following data:

x: 60 61 62 63 64 65

ux: 7782 7853 7924 7993 8062 8129.

4. Apply Bessel’s formula to find the value of f(12.2) from the following table:

x: 0 5 10 15 20 25 30

f(x): 0 0.19146 0.34634 0.43319 0.47725 0.49379 0.49865

5. The following table gives the values of ex for certain equidistant values of x. Find the
value of ex when x = 0.644 using Bessel’s formula:

x: .61 .62 .63 .64 .65 .66 .67

ex: 1.840431 1.858928 1.877610 1.896481 1.915541 1.934792 1.954237

6. Find y(0.543) from the following values of x and y:

x: 0.1 0.2 0.3 0.4 0.5 0.6 0.7

y(x): 2.631 3.328 4.097 4.944 5.875 6.896 8.013

7. Apply Bessel’s formula to obtain y25 given y20 = 2854, y24 = 3162, y28 = 3544, y32 = 3992.

8. The  pressure p of wind corresponding to velocity v is given by following data.

Estimate p when v = 25.
v: 10 20 30 40
p: 1.1 2 4.4 7.9
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4.22 LAPLACE-EVERETT’S FORMULA

Gauss’ forward formula is

f(u) = f(0) + uΔf(0) + 
u u

f
( )

!
( )

− −1
2

12Δ  + 
( ) ( )

!
( )

u u u
f

+ − −1 1
3

13Δ

+ 
( ) ( ) ( )

!
( )

u u u u
f

+ − − −1 1 2
4

24Δ

+ 
( ) ( ) ( ) ( )

!
( )

u u u u u
f

+ + − − −2 1 1 2
5

25Δ  + .... (48)

We have,

 Δf(0) = f(1) – f(0)

Δ3f(– 1) = Δ2f(0) – Δ2f(– 1)

Δ5f(– 2) = Δ4f(– 1) – Δ4f(– 2)

∴ From (48),

   f(u) = f(0) + u{f(1) – f(0)} + 
u u( )

!
− 1

2  Δ2f(– 1)

+ 
( ) ( )

!
u u u+ −1 1

3  {Δ2f(0) – Δ2f(– 1)}

+ 
( ) ( ) ( )

!
( )

u u u u
f

+ − − −1 1 2
4

24Δ

+ 
( ) ( ) ( ) ( )

!
u u u u u+ + − −2 1 1 2

5  {Δ4f(– 1) – Δ4f(– 2)} + ......

   = (1 – u) f(0) + uf(1) + 
( ) ( )

!
( )

u u u
f

+ −1 1
3

02Δ

– 
u u u

f
( ) ( )

!
( )

− − −1 2
3

12Δ

+ 
( ) ( ) ( ) ( )

!
( )

u u u u u
f

+ + − − −2 1 1 2
5

14Δ

– 
( ) ( ) ( ) ( )

!
( )

u u u u u
f

+ − − − −1 1 2 3
5

24Δ  + .....
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   = u f
u u u

f( )
( ) ( )
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( )1

1 1
3

02+
+ −R

S
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Δ

+
+ + − −

− +
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u u u u u

f
2 1 1 2

5
14Δ

+ ( ) ( )
( ) ( ) ( )

!
( )1 0

1 1 1 1 1
3

12− +
− + − − −

−
R
S
T

u f
u u u

fΔ

+ 
( ) ( ) ( ) ( ) ( )

!
( ) .....

1 2 1 1 1 1 1 1 2
5

24− + − + − − − − −
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!
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Δ

+
+ + − −

− +
U
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W
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w w w w w

f
2 1 1 2

5
24Δ

(49)

where  w = 1 – u

This is called Laplace–Everett’s formula.

It gives the best estimate when u > 
1
2

. It is used to compute any entry

against any argument between 0 and 1. It is useful when intervening values in
successive intervals are required.

4.22.1 Algorithm of Laplace’ Everett Formula

Step 01. Start of the program.

Step 02. Input number of terms n

Step 03. Input the array ax
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Step 04. Input the array ay

Step 05. h=ax[1]-ax[0]

Step 06. for i=0; i<n-l; i++

Step 07. diff[i][1]=ay[i+1]-ay[i]

Step 08. End Loop i

Step 09. for j=2; j<=4; j++

Step 10. for i=0; i<n–j; i++

Step 11. diff[i][j]=diff[i+1][j–1]–diff[i][j–1]

Step 12. End Loop i

Step 13. End Loop j

Step 14. i=0

Step 15. Repeat Step 16 until ax[i]<x

Step 16. i=i+1

Step 17. i=i–1;

Step 18. p=(x–ax[i])/h

Step 19. q=1–p

Step 20. y1=q*(ay[i])

Step 21. y2=q*(q*q–1)*diff[i–1][2]/6

Step 22. y3=q*(q*q–1)*(q*q–4)*(diff[i–2][4])/120

Step 23. py1=p*ay[i+1]

Step 24. py2=p*(p*p–1)*diff[i][2]/6

Step 25. py3=p*(p*p–1)*(p*p–4)*(diff[i–1][4])/120

Step 26. y=y1+y2+y3+y4+py1+py2+py3

Step 27. Print Output x, y

Step 28. End of Program
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4.22.2 Flow-chart

Input n, ax, ay

h = ax[1] – ax[0]

Start loop for i = 0 to n – 1

Diff[i][1] = ay[i + 1] – ay[i]

End loop i

For loop i = 2 to 4

For loop j = 0 to (n – j)

Diff[i][j] = diff[i + 1][j – 1] – diff[i][j – 1]

End loop j

End loop i

i = 0

i = i – 1

A

Yes

No

Is
ax[i] < x i = i + 1

Start
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A

p = (x – ax[i])/h

q = 1 – p

y = q * (ay[i])
y = q * (q * q – 1) * diff[i – 1]
y = q * (q * q – 1) * (q * (q – 4)) * diff[i – 2][4])/120

1

2

3

py = p * ay[i + 1]
py = p * (p * p – 1) * diff[i][2]/6
py = p * (p * p – 1) * (p * p – 4) * (diff[i – 1][4])/120

1

2

3

y = y + y + y + py + py + py1 2 3 1 2 3

Print ‘‘output’’, x, y

STOP

/* ************************************************************************

4.22.3 Program to Implement Laplace Everett’s Method of Interpolation

********************************************************************** */

//... HEADER FILES DECLARATION

# include <stdio.h>

# include <conio.h>

# include <math.h>

# include <process.h>

# include <string.h>

//... MAIN EXECUTION THREAD
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void main()

{

//... Variable declaration Field

//... Integer Type

int n;

int i,j;

//... Floating Type

float ax[10]; //... array limit 9

float ay[10]; //... array limit 9

float x;

float nr,dr;

float y=0; //... Initial value 0

float h;

float p,q;

float diff[20][20]; //... array limit 19,19

float y1,y2,y3,y4;

float py1,py2,py3,py4;

//... Invoke Function Clear Screen

clrscr();

//... Input Section

printf ("\n Enter the number of terms - ");

scanf("%d",&n);

//... Input Sequel for array X

printf("\n\n Enter the value in the form of x - ");

//... Input Loop for Array X

for (i=0;i<n;i++)

{

Printf("\n\n Enter the value of x%d - ",i+1);

scanf("%f",&ax[i]);

}

//... Input Sequel for Array X

printf ("\n\n Enter the value in the form of y - ");
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//... Input Loop Array Y

for (i=0;i<n;i++)

{

printf ("\n\n Enter the value of y%d - ",i+1);

scanf("%f",&ay[i]);

}

//... Inputting the required value query

printf("\nEnter the value of x for ");

printf("\nwhich you want the value of y - ");

scanf("%f",&x);

//... Calculation and Processing Section

h=ax[1]-ax[0];

for(i=0;i<n-1;i++)

{

diff[i][1]=ay[i+1]-ay[i];

}

for(j=2;j<=4;j++)

{

for(i=0;i<n-j;i++)

{

diff[i][j]=diff[i+1][j-1]-diff[i][j-1];

}

}

i=0;

do {

i++;

}while(ax[i]<x);

i--;

p=(x-ax[i])/h;

q=1-p;

y1=q*(ay[i]);

y2=q*(q*q-1)*diff[i-1][2]/6;

y3=q*(q*q-1)*(q*q-4)*(diff[i-2][4])/120;

py1=p*ay[i+1];
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py2=p*(p*p-1)*diff[i][2]/6;

py3=p*(p*p-1)*(p*p-4)*(diff[i-1][4])/120;

//... Taking sum

y=y1+y2+y3+y4+py1+py2+py3;

//... Output Section

printf("\n when x=%6.2f,y=%6.8f  ",x,y);

//... Invoke User Watch Halt Function

printf("\n\n\n Press Enter to Exit ");

getch();

}

//... Termination of Main Execution Thread

4.22.4 Output

Enter the number of terms - 7

Enter the value in the form of x -

Enter the value of x1 - 1.72

Enter the value of x2 - 1.73

Enter the value of x3 - 1.74

Enter the value of x4 - 1.75

Enter the value of x5 - 1.76

Enter the value of x6 - 1.77

Enter the value of x7 - 1.78

Enter the value in the form of y -

Enter the value of y1 - .1790661479

Enter the value of y2 - .1772844100

Enter the value of y3 - .1755204006

Enter the value of y4 - .1737739435

Enter the value of y5 - .1720448638

Enter the value of y6 - .1703329888

Enter the value of y7 - .1686381473

Enter the value of x for

which you want the value of y - 1.7475

When x = 1.7475, y = 0.17420892

Press Enter to Exit
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EXAMPLES

Example 1. Using Everett’s formula, evaluate f(30) if

f(20) = 2854, f(28) = 3162

f(36) = 7088, f(44) = 7984.

Sol. Take origin at 28.

∴ a = 28, h = 8

 a + hu = 30

⇒ 28 + 8u = 30 ⇒ u = .25

Also,   w = 1 – u = 1 – .25 = .75

The difference table is:

u f(u) Δf(u) Δ2f(u) Δ3f(u)

– 1 2854
308

0 3162 3618
3926 – 6648

1 7088 – 3030
896

2 7984

By Everett’s formula,

∴  f(.25) = (. ) ( )
( . ) (. ) ( . )

!
( ) .....25 7088

125 25 75
3

3030+
−

− +
R
S
T

U
V
W

+ (. ) ( )
( . ) (. ) ( . )

!
( ) .....75 3162

175 75 25
3

3618+
−

+
R
S
T

U
V
W

= 4064

Hence  f(30) = 4064.

Example 2. Find the value of f(27.4) from the following table:

x: 25 26 27 28 29 30

f(x): 4.000 3.846 3.704 3.571 3.448 3.333.

Sol. Here u = 
27 4 27 0

1
. .−

 = 0.4 ∵ origin is at 27.0, h = 1

Also,  w = 1 – u = 0.6

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
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The difference table is:

u 103 f(u) 103 Δf(u) 103Δ2f(u) 103Δ3f(u) 103Δ4f(u)

– 2 4000

– 154

– 1 3846 12

– 142 – 3

0 3704 9 4

– 133 1

1 3571 10 – 3

– 123 – 2

2 3448 8

– 115

3 3333

By Laplace Everett’s formula,

 f(.4) = (. ) ( )
( . ) (. ) ( . )

!
( )4 3571

14 4 6
3

10+
−R

S
T

+
− −

− +
U
V
W

( . ) ( . ) (. ) ( . ) ( . )
!

( ) .....
2 4 14 4 6 16

5
3

+ (. ) ( )
( . ) (. ) ( . )

!
( )6 3704

16 6 4
3

9+
−R

S
T

  +
− − U

V
W

( . ) ( . ) (. ) ( . ) ( . )
!

( )
2 6 16 6 4 14

5
4

= 3649.678336.

Hence f(27.4) = 3649.678336.

ASSIGNMENT 4.10

1. Given the table

x: 21 22 23 24 25 26

log x: 1.3222 1.3424 1.3617 1.3802 1.3979 1.4150

Apply Laplace-Everett’s formula to find the value of log 2375.

⎯⎯⎯⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯⎯⎯⎯→
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2. From the following present value annuity an table:

x: 20 25 30 35 40

an: 11.4699 12.7834 13.7648 14.4982 15.0463

find the present value of the annuity a31, a32, a33, a34.
3. Find the value of f(31), f(32), f(33), f(34). Given that

f(20) = 3010, f(25) = 3979, f(30) = 4771

f(35) = 5441, f(40) = 6021 and f(45) = 6532.

4. Find y12 if y0 = 0,  y10 = 43214,  y20 = 86002 and  y30 = 128372.

5. Obtain the values of y25, given that

y20 = 2854,  y24 = 3162

y28 = 3544 and y32 = 3992

6. Find the value of e–x when x = 1.748 from the following:

x: 1.72 1.73 1.74 1.75 1.76 1.77

e–x: 0.1790 0.1773 0.1755 0.1738 0.1720 0.1703

7. Use Everett’s formula to find the present value of the annuity for n = 36 from the table:

x: 25 30 35 40 45 50

ax: 12.7834 13.7648 14.4982 15.0463 15.4558 15.7619.

8.  Apply Everett’s formula to find the value of f(26) and f(27) from the table:

x: 15 20 25 30 35 40

f(x): 12.849 16.351 19.524 22.396 24.999 27.356.

9. Find the compound interest on the sum of Rs. 10,000 at 7% for the period 16 and 17
years if:

x: 5 10 15 20 25 30

(1.07)n: 1.40255 1.96715 2.75903 3.86968 5.42743 7.61236.

10. Apply Everett’s formula to find the values of e–x for x = 3.2, 3.4, 3.6, 3.8, if

x: 1 2 3 4 5 6

e–x: 0.36788 0.13534 0.04979 0.01832 0.00674 0.00248.

11. Given that

x: 40 45 50 55 60 65

x1/3: 3.4200 3.3569 3.6840 3.8030 3.9149 4.0207

Find the values of  x1/3 when x = 51 to 54.
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12. Prove that if third differences are assumed to be constant,

yx = xy1 + 
x x( )

!

2 1
3

−
 Δ2y0 + uy0 + 

u u( )
!

2 1
3

−
 Δ2y–1

where u = 1 – x.

Apply  this  formula  to  find  the  value  of y11 and y16, given that

          y0 = 3010, y5 = 2710, y10 = 2285, y15 = 1860, y20 = 1560, y25 = 1510, y30 = 1835.

13. The following table gives the values of ex for certain equidistant values of x.

Find the value of ex when x = 0.644 using Everett’s formula

x: 0.61 0.62 0.63 0.64 0.65 0.66 0.67

y = ex: 1.840431 1.858928 1.877610 1.896481 1.915541 1.934792 1.954237.

14. The values of the elliptic integral,

k(m) = ( sin )
/

1 2
1
2

0

2
−

−

z m dθ θ
π

for certain equidistant values of m are given below. Use Everett’s or Bessel’s formula to
determine k(0.25).

m: 0.20 0.22 0.24 0.26 0.28 0.30

k(m): 1.659624 1.669850 1.680373 1.691208 1.702374 1.713889.

15. From the following table of values of x and y = ex, interpolate the value of y when x = 1.91

x: 1.7 1.8 1.9 2.0 2.1 2.2

y = ex: 5.4739 6.0496 6.6859 7.3891 8.1662 9.0250.

16. Given the table:

x: 310 320 330 340 350 360

log x: 2.49136 2.50515 2.51851 2.53148 2.54407 2.55630.

Find the value of log 337.5 by Laplace Everett’s formula.

4.23 INTERPOLATION BY UNEVENLY SPACED POINTS

The interpolation formulae derived sofar possess the disadvantage of being
applicable only to equally spaced values of the argument. It is then desirable to
develop interpolation formulae for unequally spaced values of x. We shall study
two such formulae:
(1) Lagrange’s interpolation formula
(2) Newton’s general interpolation formula with divided differences.
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4.24 LAGRANGE’S INTERPOLATION FORMULA

Let f(x0), f(x1) ,......, f(xn) be (n + 1) entries of  a function y = f(x), where f(x) is
assumed to be a polynomial corresponding to the arguments x0, x1, x2, ......, xn.

The polynomial f(x) may be written as

   f(x) = A0 (x – x1) (x – x2) ...... (x – x n)

+ A1(x – x0)(x – x2) ...... (x – xn)

+ ...... + An (x – x0) (x – x1) ...... (x – xn –1) (50)

where A0, A1, ......, An are constants to be determined.

Putting  x = x0, x1, ......, xn in  (50), we get

 f(x0) = A0 (x0 – x1) (x0 – x2) ....... (x0 – xn)

∴ A0 = 
f x

x x x x x xn

( )
( ) ( ) ...... ( )

0

0 1 0 2 0− − − (51)

     f(x1) = A1 (x1 – x0) (x1 – x2) ...... (x1 – xn)

∴   A1 = 
f x

x x x x x xn

( )
( ) ( ) ...... ( )

1

1 0 1 2 1− − −
(52)

 � � �

Similarly, An = f x
x x x x x x

n

n n n n

( )
( ) ( ) ...... ( )− − − −0 1 1

(53)

Substituting the values of A0, A1,  ......, An in equation (50), we get

     f(x) = ( ) ( ) ...... ( )
( ) ( ) ...... ( )

x x x x x x
x x x x x x

n

n

− − −
− − −

1 2

0 1 0 2 0
f(x0)

+ ( ) ( ) ...... ( )
( ) ( ) ...... ( )

x x x x x x
x x x x x x

n

n

− − −
− − −

0 2

1 0 1 2 1
  f(x1)

+ ......  + 
( ) ( ) ...... ( )

( ) ( ) ...... ( )

x x x x x x

x x x x x x
n

n n n n

− − −
− − −

−

−

0 1 1

0 1 1
 f(xn) (54)

This  is called Lagrange’s Interpolation Formula. In eqn. (54), dividing
both sides by (x – x0) (x – x1) ..... (x – xn), Lagrange’s formula may also be written
as
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f x
x x x x x xn

( )
( ) ( ) ...... ( )− − −0 1

 = 
f x

x x x x x x x xn

( )
( ) ( ) ...... ( )

.
( )

0

0 1 0 2 0 0

1
− − − −

+ f x
x x x x x x x xn

( )
( ) ( ) ...... ( )

.
( )

1

1 0 1 2 1 1

1
− − − −

 + ......

+ 
f x

x x x x x x x x
n

n n n n n

( )
( ) ( ) ...... ( )

.
( )− − − −−0 1 1

1
. (55)

4.24.1 Another form of Lagrange’s Formula

§ Prove that the Lagrange’s formula can be put in the form

Pn(x) = 
φ

φ
( ) ( )

( ) ( )
x f x

x x x
r

r rr

n

− ′
=
∑

0

where   φ(x) = ( )x xr
r

n

−
=

∏
0

and φ′(xr) = 
d
dx

x
x xr

{ ( )}φL

NM
O

QP =

We have the Lagrange’s formula,

Pn(x) = 
( ) ( ) ... ( ) ( ) ... ( )

( ) ( ) ... ( ) ( ) ... ( )
( )

x x x x x x x x x x

x x x x x x x x x x
f xr r n

r r r r r r r n
r

r

n − − − − −
− − − − −

− +

− +=
∑

0 1 1 1

0 1 1 10

  = 
φ ( ) ( )

( ) ( ) ... ( ) ( ) ... ( )
x

x x
f x

x x x x x x x x x xr

r

r r r r r r r nr

n

−
R
S
T

U
V
W − − − − −

R
S
|

T|

U
V
|

W|− +=
∑

0 1 1 10

(56)
Now,

 φ(x) = ( )x xr
r

n

−
=

∏
0

 = (x – x0)(x – x1) ..... (x – xr – 1) (x – xr) (x – xr + 1) ..... (x – xn)

∴ φ′(x) = (x – x1) (x – x2) ..... (x – xr) ..... (x – xn)

+ (x – x0) (x – x2) ..... (x – xr) ..... (x  – xn)  + .....

+ (x – x0) (x – x1) ..... (x – xr – 1) (x – xr + 1) ..... (x – xn) + .....

+ (x – x0) (x – x1) ..... (x – xr) ..... (x – xn – 1)
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⇒   φ′(xr) = [ ( )]φ′ =x x xr

         = (xr – x0) (xr – x1) ..... (xr – xr – 1) (xr – xr + 1) ..... (xr – xn) (57)

Hence from (56),

        Pn(x) = 
φ

φ
( ) ( )

( ) ( )
x f x

x x x
r

r rr

n

− ′=
∑

0

|using (57)

4.24.2 Algorithm

Step 01. Start of the program

Step 02. Input number of terms n

Step 03. Input the array ax

Step 04. Input the array ay

Step 05. for i=0; i<n; i++

Step 06. nr=1

Step 07. dr=1

Step 08. for j=0; j<n; j++

Step 09. if j !=i

a. nr=nr∗(x-ax[j])

b.dr∗(ax[i]-ax[j])

Step 10. End Loop j

Step 11. y+=(nr/dr)∗ay[i]

Step 12. End Loop i

Step 13. Print Output x, y

Step 14. End of Program
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4.24.3 Flow-chart

START

STOP

Get the value of n

Get the values of ax, ay

Get the values of x

y = 0

Loop for i = 0 to n

nr = dr = 1

Loop for j = 0 to n

nr = x – ax[j]∗

dr = ax[i] – ax[j]∗

End loop[j]

Print x, y as solution

B

B

No

Yes

Is
J ! = i
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/* ********************************************************************

4.24.4 Program to Implement Lagrange’s Method of Interpolation

********************************************************************** */

//... HEADER FILES DECLARATION

# include <stdio.h>

# include <conio.h>

# include <math.h>

# include <process.h>

# include <string.h>

//... MAIN EXECUTION THREAD

void main()

{

//... Variable declaration Field

//... Integer Type

int n; //... Number of terms

int i,j; //... Loop Variables

//... Floating Type

float ax[100]; //... array limit 99

float ay[100]; //... array limit 99

float x=0; //... User Querry

float y=0; //... Initial value 0

float nr; //... Calc. section

float dr; //... Calc. section

//... Invoke Function Clear Screen

clrscr();

//... Input Section

printf("\n Enter the number of terms - ");

scanf("%d",&n);

//... Input Sequel for array X
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printf("\n\n Enter the value in the form of  x - ");

//... Input Loop for X

for (i=0;i<n;i++)

{

printf ("\n\n Enter the value of  x%d - ", i+1);

scanf("%f",&ax[i]);

}

//... Input Sequel for array Y

printf("\n\n Enter the value in the form of y - ");

//... Input Loop for Y

for (i=0;i<n;i++)

{

printf("\n\n Enter the value of y%d - ", i+1);

scanf ("%f",&ay[i]);

}

//... Inputting the required value query

printf("\n Enter the value of x for ");

printf("\n which you want the value of y - ");

scanf("%f",&x);

//... Calculation & Processing Section

for(i=0;i<n;i++)

{

nr=1;

dr=1;

for(j=0;j<n;j++)

{

if(j!=i)

{

nr=nr*(x-ax[j]);

dr=dr*(ax[i]–ax[j]);

}

y+=(nr/dr)*ay[i];

}

}
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//... Output Section

printf("\n\n When x=%5.2f,y=%5.2f ",x,y);

//... Invoke User Watch Halt Function

printf("\n\n\n Press Enter to Exit");

getch();

}

//... Termination of Main Execution Thread

4.24.5 Output

Enter the number of terms - 5

Enter the value in the form of x -

Enter the value of x1- 5

Enter the value of x2 - 7

Enter the value of x3 - 11

Enter the value of x4 - 13

Enter the value of x5 - 17

Enter the value in the form of y -

Enter the value of y1 - 150

Enter the value of y2 - 392

Enter the value of y3 - 1452

Enter the value of y4 - 2366

Enter the value of y5 - 5202

Enter the value of x for

Which you want the value of y - 9.0

When x = 9.00, y = 810.00

Press Enter to Exit

EXAMPLES

Example 1. Using Lagrange’s interpolation formula, find y(10) from the
following table:

x 5 6 9 11

y 12 13 14 16

Sol. Here x0 = 5,   x1 = 6,   x2 = 9,    x3 = 11

  f(x0) = 12,  f(x1) = 13, f(x2) = 14,  f(x3) = 16
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Lagrange’s formula is

f(x) = 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
1 2 3

0 1 0 2 0 3
0

+
− − −
− − −

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x0 2 3

1 0 1 2 1 3
1

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
0 1 3

2 0 2 1 2 3
2

+
− − −

− − −
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x0 1 2

3 0 3 1 3 2
3

f(x) = 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x− − −

− − −
6 9 11

5 6 5 9 5 11
12

+ − − −
− − −

( ) ( ) ( )
( ) ( ) ( )

( )
x x x5 9 11
6 5 6 9 6 11

13

+ 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x− − −

− − −
5 6 11

9 5 9 6 9 11
14

+ − − −
− − −

( ) ( ) ( )
( ) ( ) ( )

( )
x x x5 6 9

11 5 11 6 11 9
16

  = – 
1
2

6 9 11
13
15

5 9 11( ) ( ) ( ) ( ) ( ) ( )x x x x x x− − − + − − −

– 
7
12

5 6 11( ) ( ) ( )x x x− − −

+ 
4
15

5 6 9( ) ( ) ( )x x x− − −

Putting x = 10, we get

f(10) = – 
1
2

10 6 10 9 10 11
13
15

10 5 10 9 10 11( ) ( ) ( ) ( ) ( ) ( )− − − + − − −

– 
7
12

10 5 10 6 10 11
4
15

10 5 10 6 10 9( ) ( ) ( ) ( ) ( ) ( )− − − + − − −

    = 14.66666667
Hence,

   y(10) = 14.66666667.
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Example 2. Compute the value of f(x) for x = 2.5 from the following table:

x: 1 2 3 4

f(x): 1 8 27 64

using Lagrange’s interpolation method.

Sol. Here x0 = 1, x1 = 2, x2 = 3, x3 = 4

 f(x0) = 1, f(x1) = 8, f(x2) = 27, f(x3) = 64

Lagrange’s formula is

f(x) = 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
1 2 3

0 1 0 2 0 3
0

+
− − −
− − −

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x0 2 3

1 0 1 2 1 3
1

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
0 1 3

2 0 2 1 2 3
2

+
− − −

− − −
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x0 1 2

3 0 3 1 3 2
3

     = 
( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x− − −

− − −
+ − − −

− − −
2 3 4

1 2 1 3 1 4
1

1 3 4
2 1 2 3 2 4

8

+ 
( ) ( ) ( )
( ) ( ) ( )
x x x− − −

− − −
1 2 4

3 1 3 2 3 4
 (27)

+ 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x− − −

− − −
1 2 3

4 1 4 2 4 3
64

     = − − − − + − − −1
6

2 3 4 4 1 3 4( ) ( ) ( ) ( ) ( ) ( )x x x x x x

– 
27
2

1 2 4( ) ( ) ( )x x x− − −

+ 
32
3

1 2 3( ) ( ) ( )x x x− − −

Given x = 2.5, we get

     f(2.5) = − 1
6

 (2.5 – 2) (2.5 – 3) (2.5 – 4)

+ 4(2.5 – 1) (2.5 – 3) (2.5 – 4)
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– 
27
2

 (2.5 – 1) (2.5 – 2) (2.5 – 4)

+ 
32
3

 (2.5 – 1) (2.5 – 2) (2.5 – 3)

   = 15.625

Hence, f(2.5) = 15.625.

Example 3. Find the cubic Lagrange’s interpolating polynomial from the
following data:

x: 0 1 2 5

f(x): 2 3 12 147.

Sol. Here x0 = 0, x1 = 1, x2 = 2, x3 = 5

f(x0) = 2, f(x1) = 3, f(x2) = 12, f(x3) = 147

Lagrange’s formula is

 f(x) = 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
1 2 3

0 1 0 2 0 3
0

+
− − −
− − −

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x0 2 3

1 0 1 2 1 3
1

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
0 1 3

2 0 2 1 2 3
2

+
− − −

− − −
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x0 1 2

3 0 3 1 3 2
3

= 
( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x− − −

− − −
+ − − −

− − −
1 2 5

0 1 0 2 0 5
2

0 2 5
1 0 1 2 1 5

3

+ 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x− − −

− − −
0 1 5

2 0 2 1 2 5
12

+ 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x− − −

− − −
0 1 2

5 0 5 1 5 2
147

  = − − − + − −1
5

1 2
3
4

2 5( ) ( ) ( ) ( )x x x x x  – 2x(x – 1) (x – 5)

+ 
49
20

1 2x x x( ) ( )− −
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= − − + − + − +1
5

8 17 10
3
4

7 103 2 3 2( ) ( )x x x x x x  – 2(x3 – 6x2 + 5x)

+ 
49
20

 (x3 – 3x2 + 2x)

⇒    f(x) = x3 + x2 – x + 2

which is the required Lagrange’s interpolating polynomial.
Example 4. Find the unique polynomial P(x) of degree 2 such that:

P(1) = 1, P(3) = 27, P(4) = 64

Use the Lagrange method of interpolation.
Sol. Here, x0 = 1, x1 = 3,  x2 = 4

 f(x0) = 1, f(x1) = 27, f(x2) = 64

Lagrange’s interpolation formula is

P(x) = 
( ) ( )

( ) ( )
( )

x x x x
x x x x

f x
− −
− −

1 2

0 1 0 2
0  +

− −
− −

( ) ( )
( ) ( )

( )
x x x x

x x x x
f x0 2

1 0 1 2
1

  +
− −
− −

( ) ( )
( ) ( )

( )
x x x x

x x x x
f x0 1

2 0 2 1
2

= 
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

( )
x x x x− −

− −
+ − −

− −
3 4

1 3 1 4
1

1 4
3 1 3 4

27  + − −
− −

( ) ( )
( ) ( )

( )
x x1 3
4 1 4 3

64

       = 
1
6

7 12
27
2

5 4
64
3

4 32 2 2( ) ( ) ( )x x x x x x− + − − + + − +

      = 8x2 – 19x + 12

Hence the required unique polynomial is

P(x) = 8x2 – 19x + 12.

Example 5. The function y = f(x) is given at the points (7, 3), (8, 1), (9, 1) and
(10, 9). Find the value of y for x = 9.5 using Lagrange’s interpolation formula.
Sol. We are given

x: 7 8 9 10

f(x): 3 1 1 9

Here,   x0 = 7, x1 = 8, x2 = 9, x3 = 10

f(x0) = 3,  f(x1) = 1, f(x2) = 1, f(x3) = 9
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Lagrange’s interpolation formula is

f(x) = 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
1 2 3

0 1 0 2 0 3
0

+
− − −
− − −

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x0 2 3

1 0 1 2 1 3
1

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
0 1 3

2 0 2 1 2 3
2

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
0 1 2

3 0 3 1 3 2
3

      = 
( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x− − −

− − −
+ − − −

− − −
8 9 10

7 8 7 9 7 10
3

7 9 10
8 7 8 9 8 10

1

+ 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x− − −

− − −
7 8 10

9 7 9 8 9 10
1

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x− − −
− − −

7 8 9
10 7 10 8 10 9

9

      = − − − − + − − −1
2

8 9 10
1
2

7 9 10( ) ( ) ( ) ( ) ( ) ( )x x x x x x

– 
1
2

7 8 10( ) ( ) ( )x x x− − −

+ 
3
2

7 8 9( ) ( ) ( )x x x− − − (58)

Given x = 9.5 in eqn. (58), we get

 f(9.5) = − − − − + − − −1
2

9 5 8 9 5 9 9 5 10
1
2

9 5 7 9 5 9 9 5 10( . ) ( . ) ( . ) ( . ) ( . ) ( . )

– 
1
2

9 5 7 9 5 8 9 5 10
3
2

9 5 7 9 5 8 9 5 9( . ) ( . ) ( . ) ( . ) ( . ) ( . )− − − + − − −

     = 3.625.

Example 6. Use Lagrange’s interpolation formula to fit a polynomial to the
data:

x: – 1 0 2 3

ux: – 8 3 1 12

Hence or otherwise find the value of u1.
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Sol. Here,

x0 = – 1, x1 = 0, x2 = 2, x3 = 3

f(x0) = – 8, f(x1) = 3, f(x2) = 1, f(x3) = 12

Lagrange’s interpolation formula is

    f(x) = 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
1 2 3

0 1 0 2 0 3
0

+
− − −
− − −

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x

x x x x x x
f x0 2 3

1 0 1 2 1 3
1

+ 
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x
− − −

− − −
0 1 3

2 0 2 1 2 3
2

+
− − −

− − −
( ) ( ) ( )

( ) ( ) ( )
( )

x x x x x x
x x x x x x

f x0 1 2

3 0 3 1 3 2
3

= 
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
x x x x x x− − −

− − − − − −
− + + − −

+ − −
0 2 3

1 0 1 2 1 3
8

1 2 3
0 1 0 2 0 3

3

+ 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x+ − −

+ − −
1 0 3

2 1 2 0 2 3
1

+ 
( ) ( ) ( )
( ) ( ) ( )

( )
x x x+ − −

+ − −
1 0 2

3 1 3 0 3 2
12

= 
2
3

2 3
1
2

1 2 3x x x x x x( ) ( ) ( ) ( ) ( )− − + + − −

– 
1
6

1 3 1 2( ) ( ) ( ) ( )x x x x x x+ − + + −

= 
2
3

5 6
1
2

4 63 2 3 2( ) ( )x x x x x x− + + − + +

– 
1
6

2 3 23 2 3 2( ) ( )x x x x x x− − + − −

⇒ f(x) = 2x3 – 6x2 + 3x + 3

Hence, ux = 2x3 – 6x2 + 3x + 3 (59)

Given    x = 1 in (59), we get

u1 = 2(1)3 – 6(1)2 + 3(1) + 3 = 2.
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Example 7. By means of Lagrange’s formula, prove that

(i) y0 = 
1
2

(y y )
1
8

1
2

(y y )
1
2

(y y )1 1 3 1 1 3+ − − − −L

NM
O

QP
− − −

(ii) y 0.05 (y y ) 0.3 (y y ) 0.75 (y y )3 0 6 1 5 2 4= + − + + +

(iii) y1 = y3 – 0.3 (y5 – y– 3 ) + 0.2 (y–3 – y– 5 ).

Sol. (i) For the arguments – 3, – 1, 1, 3, the Lagrange’s formula is

yx = 
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
x x x

y
x x x

y
+ − −

− + − − − −
+ + − −

− + − − − −− −
1 1 3

3 1 3 1 3 3
3 1 3

1 3 1 1 1 33 1

+ 
( ) ( ) ( )
( ) ( ) ( )
x x x+ + −

+ + −
3 1 3

1 3 1 1 1 3  y1

+ 
( ) ( ) ( )
( ) ( ) ( )
x x x

y
+ + −
+ + −

3 1 1
3 3 3 1 3 1 3

    = 
( ) ( ) ( )

( )
( ) ( ) ( )x x x

y
x x x

y
+ − −

−
+ + − −

− −
1 1 3

48
3 1 3

163 1

+ 
( ) ( ) ( )

( )
x x x

y
+ + −

−
3 1 3

16 1

+ 
( ) ( ) ( )x x x

y
+ + −3 1 1

48 3 (60)

Given x = 0 in (60), we get

 y0 = − + + −− −
1

16
9
16

9
16

1
163 1 1 3y y y y

  = 
1
2

1
8

1
2

1
21 1 3 1 1 3( ) ( ) ( )y y y y y y+ − − − −L

NM
O

QP
− − −

(ii) For the arguments 0, 1, 2, 4, 5, 6, the Lagrange’s formula is

        yx = 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
x x x x x

y
− − − − −
− − − − −

1 2 4 5 6
0 1 0 2 0 4 0 5 0 6 0

+ − − − − −
− − − − −

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
x x x x x

y
0 2 4 5 6

1 0 1 2 1 4 1 5 1 6 1

+ 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
x x x x x

y
− − − − −
− − − − −

0 1 4 5 6
2 0 2 1 2 4 2 5 2 6 2
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+ − − − − −
− − − − −

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
x x x x x

y
0 1 2 5 6

4 0 4 1 4 2 4 5 4 6 4

+ 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
x x x x x

y
− − − − −
− − − − −

0 1 2 4 6
5 0 5 1 5 2 5 4 5 6 5

+ − − − − −
− − − − −

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
x x x x x

y
0 1 2 4 5

6 0 6 1 6 2 6 4 6 5 6 (61)

Given  x = 3 in (61), we get

y3 = 0.05 y0 – 0.3 y1 + 0.75 y2 + 0.75 y4 – 0.3 y5 + 0.05 y6

    = 0.05 (y0 + y6) – 0.3(y1 + y5) + 0.75 (y2 + y4).

(iii) For the arguments – 5, – 3, 3, 5, the Lagrange’s formula is

yx = 
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
x x x

y
x x x

y
+ − −

− + − − − −
+ + − −

− + − − − −− −
3 3 5

5 3 5 3 5 5
5 3 5

3 5 3 3 3 55 3

 + 
( ) ( ) ( )
( ) ( ) ( )
x x x

y
+ + −
+ + −

5 3 5
3 5 3 3 3 5 3 + 

( ) ( ) ( )
( ) ( ) ( )
x x x

y
+ + −
+ + −

5 3 3
5 5 5 3 5 3 5 (62)

Given x = 1 in eqn. (62), we get

 y1 = – 0.2 y– 5 + 0.5y–3 + y3 – 0.3 y5

  = y3 – 0.3 (y5 – y–3) + 0.2 (y–3 – y–5).

Example 8. If four equidistant values u–1, u0, u1, and u2 are given, a value is
interpolated by Lagrange’s formula, show that it may be written in the form

      ux = yu0 + xu1 + 
y(y 1)

3 !

2 −
Δ2u–1 + 

x (x 1)
3 !

2 −
Δ2u0 where x + y = 1.

Sol. Δ2u1 = (E – 1)2u–1 = (E2 – 2E + 1) u–1 = u1 – 2u0 + u–1

    Δ2u0 = (E2 – 2E + 1) u0 = u2 – 2u1 + u0

R.H.S. = (1 – x) u0 + xu1 + 
( ) {( ) }

!
1 1 1

3

2− − −x x
 (u1 – 2u0 + u–1)

        + 
x x

u u u
( )

!
( )

2

2 1 0
1

3
2

− − + |where  y = 1 – x

= −
− − + − − + − + −

−
x x x

u
x x x

u
x x x

u
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

6
2 1 1

2
1 2

21 0 1

 + 
( ) ( )x x x

u
+ −1 1

6 2 (63)
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Applying Lagrange’s formula for the arguments – 1, 0 , 1 and 2.

ux = 
x x x

u
x x x

u
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
− −

− − −
+ + − −

− −−
1 2

1 2 3
1 1 2
1 1 21 0

 + 
( ) ( )

( ) ( ) ( )
x x x

u
+ −

−
1 2

2 1 1 1 + 
( ) ( )

( ) ( ) ( )
x x x

u
+ −1 1
3 2 1 2

= −
− − + − − + − + −

−
x x x

u
x x x

u
x x x

u
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

6
2 1 1

2
1 2

21 0 1

+ 
( ) ( )x x x

u
+ −1 1

6 2 (64)

From (63) and (64), we observe that

R.H.S. = L.H.S.

Hence the result.
Example 9. Prove that Lagrange’s formula can be expressed in the form

P (x) 1 x x ... ... x

f(x ) 1 x x ... ... x
f(x ) 1 x x ... ... x

... ... ... ... ... ... ...

f(x ) 1 x x ... ... x

n
2 n

0 0 0
2

0
n

1 1 1
2

1
n

n n n
2

n
n

 = 0 where Pn(x) = f(x).

Sol. Let Pn(x) = a0 + a1x + a2x
2 + ... + anxn

Given   x = x0, x1, ..., xn, and Pn(xi) = f(xi), i = 0, 1, 2, ..., n

 f(x0) = a0 + a1x0 + a2x0
2 + ... + anx0

n

 f(x1) = a0 + a1x1 + a2x1
2 + ... + anx1

n

... ... ... ... ... ...

 f(xn) = a0 + a1xn + a2xn
2 + ... + anxn

n ... (n + 2)

Eliminating a0, a1, a2, ......, an from these equations, we get

−
−
−

−

P x x x x
f x x x x
f x x x x

f x x x x

n
n

n

n

n n n n
n

( ) ... ...
( ) ... ...
( ) 1 ... ...

... ... ... ... ... ... ...
( ) ... ...

1
1

1

2

0 0 0
2

0

1 1 1
2

1

2

 = 0
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or

P x x x x

f x x x x
f x x x x

f x x x x

n
n

n

n

n n n n
n

( ) ... ...

( ) ... ...
( ) 1 ... ...
... ... ... ... ... ... ...

( ) ... ...

1

1

1

2

0 0 0
2

0

1 1 1
2

1

2

 = 0

ASSIGNMENT 4.11

1. Apply Lagrange’s formula to find f(5) and f(6) given that

f(2) = 4, f(1) = 2, f(3) = 8, f(7) = 128

Explain why the result differs from those obtained by completing the series of powers
of 2?

2. Values of f(x) for values of x are given as

f(1) = 4, f(2) = 5, f(7) = 5, f(8) = 4

Find f(6) and also the value of x for which f(x) is maximum or minimum.

3. Find by Lagrange’s formula, the value of

(i) u5 if u0 = 1, u3 = 19, u4 = 49, u6 = 181

(ii) u4 if u3 = 16, u5 = 36, u7 = 64, u8 = 81 and u9 = 100.

4. Using Lagrange’s formula, find the values of

(i) y5 if y1 = 4, y3 = 120, y4 = 340, y5 = 2544

(ii) y0 if y–30 = 30, y–12 = 34, y3 = 38, y18 = 42.

5. Find the value of tan 33° by Lagrange’s formula if

tan 30° = 0.5774, tan 32° = 0.6249,

tan 35° = 0.7002, tan 38° = 0.7813.

6. Use Lagrange’s formula to find f(6) from the following table:

x: 2 5 7 10 12

f(x): 18 180 448 1210 2028.

7. Apply Lagrange’s formula to find f(15), if

x: 10 12 14 16 18 20

f(x): 2420 1942 1497 1109 790 540.

8. If y0, y1, ..., y9 are consecutive terms of a series, prove that

y5 = 
1

70
[56(y4 + y6) – 28(y3 + y7) + 8(y2 + y8) – (y1 + y9)]
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9. Using the following table, find f(x) as a polynomial in x:

x: – 1 0  3 6 7

f(x): 3 – 6 39 822 1611.

10. If y(1) = – 3, y(3) = 9, y(4) = 30, and y(6) = 132, find the four-point

Lagrange interpolation polynomial that takes the same values as the function y at the
given points.

11. Given the table of values

x: 150 152 154 156

y = x : 12.247 12.329 12.410 12.490

Evaluate 155  using Lagrange’s interpolation formula.

12. Applying  Lagrange’s formula, find a cubic polynomial which approximates the follow-
ing data:

x: – 2 – 1 2 3

y(x): – 12 – 8 3 5.

13. Given the table of values

x: 50 52 54 56

x3 : 3.684 3.732 3.779 3.825

Use Lagrange’s formula to find x when x3  = 3.756.

14. Find the equation of the cubic curve that passes through the points (4, – 43), (7, 83),
(9, 327) and (12, 1053).

15. Values of f(x) are given at a, b, and c. Show that the maximum is obtained by

x = 
f a b c f b c a f c a b

f a b c f b c a f c a b
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2− + − + −
− + − + −

.

16. The following table gives the viscosity of an oil as a function of temperature. Use
Lagrange’s formula to find the viscosity of oil at a temperature of 140°.

Temp° : 110 130 160 190
Viscosity: 10.8 8.1 5.5 4.8

17. Certain corresponding values of x and log10x are given below:

x: 300 304 305 307

log10 x: 2.4771 2.4829 2.4843 2.4871

Find log10 310 by Lagrange’s formula.

18. The following table gives the normal weights of babies during the first 12 months of life:

Age in months: 0 2 5 8 10 12

Weight in lbs: 7.5 10.25 15 16 18 21
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19. Given f(0) = – 18,  f(1) = 0,  f(3) = 0,  f(5) = – 248,  f(6) = 0,  f(9) = 13104; find f(x).
20. (i) Determine by Lagrange’s formula, the percentage number of criminals under 35 years:

Age % number of criminals

under 25 years 52

under 30 years 67.3

under 40 years 84.1

under 50 years 94.4

(ii) Find a Lagrange’s interpolating polynomial for the data given below:

x0 = 1,   x1 = 2.5,  x2 = 4 and x3 = 5.5

f(x0) = 4, f(x1) = 7.5, f(x2) = 13 and f(x3) = 17.5

Also, find the value of f(5).

4.25 ERROR IN LAGRANGE’S INTERPOLATION FORMULA

Remainder,

 y(x) – Ln(x) = Rn(x) = 
Πn x
n

+

+
1

1
( )

( ) !
 y(n+1) (ξ) , a < ξ < b

where Lagrange’s formula is for the class of functions having continuous
derivatives of order upto (n + 1) on [a, b].

Quantity EL = max.
[ , ]a b

 | Rn(x) | may be taken as an estimate of error.

Let us assume

 |  y(n+1) (ξ) | ≤ Mn+1, a ≤ ξ ≤ b

then,  EL ≤ 
Mn

n
+

+
1

1( ) !
 max.

[ , ]a b
 | Πn+1(x) |.

EXAMPLES

Example 1. Show that the truncation error of quadratic interpolation in an

equidistant table is bounded by h

9 3

3
 max | f ″′(ξ) | where h is the step size and

f is the tabulated function.
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Sol. Let xi–1, xi, xi+1 denote three consecutive equispaced points with step size h.
The truncation error of the quadratic Lagrange interpolation is bounded

by

| E2(f; x) | ≤ 
M3

6
 max | (x – xi–1)(x – xi)(x – xi+1) |

where xi–1 ≤ x ≤ xi+1 and M3 = max
a x b≤ ≤

 | f ″′(x) |

Substitute t = 
x x

h
i−
 then,

 x – xi–1 = x – (xi – h) = x – xi + h = th + h = (t + 1)h

 x – xi+1 = x – (xi + h) = x – xi – h = th – h = (t – 1)h

and  (x – xi–1)(x – xi)(x – xi+1) = (t + 1) t(t – 1)h3 = t(t2 – 1)h3 = g(t)

Setting g ′(t) = 0, we get

 3t2 – 1 = 0 ⇒ t = ± 
1

3
.

For both these values of t, we obtain

max | (x – xi–1)(x – xi)(x – xi+1) | = h3 max
− ≤ ≤1 1t

 | t(t2 – 1) | = 
2

3 3

3h

Hence, the truncation error of the quadratic interpolation is bounded by

| E2(f; x) | ≤ 
h3

3
9 3

M

or, | E2(f; x) | ≤ 
h3

9 3
 max | f ″′(ξ) |.

Example 2. Determine the step size that can be used in the tabulation of

f(x) = sin x in the interval 0,
4
πL

NM
O

QP
 at equally spaced nodal points so that the

truncation error of the quadratic interpolation is less than 5 × 10–8.

Sol. From Example 1, we have

| E2(f; x) | ≤ 
h3

9 3
 M3

For f(x) = sin x, we get f ″′(x) = – cos x

and  M3 = max |cos |
/0 4≤ ≤x

x
π

 = 1
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Hence the step size h is given by

 
h3

9 3
 ≤ 5 × 10–8 or h ≈ 0.009

Example 3. Using Lagrange’s interpolation formula, find the value of sin 
π
6
F
HG
I
KJ

from the following data:

x: 0 π/4 π/2

y = sin x: 0 0.70711 1.0

Also estimate the error in the solution.

Sol. sin 
π
6
F
HG
I
KJ

 = 

π π π

π π π
6

0
6 2

4
0

4 2

−F
HG

I
KJ

−F
HG

I
KJ

−F
HG

I
KJ

−F
HG

I
KJ

 (0.70711) + 

π π π

π π π
6

0
6 4

2
0

2 4

−F
HG

I
KJ

−F
HG

I
KJ

−F
HG

I
KJ

−F
HG

I
KJ

 (1)

 = 
8
9

 (0.70711) – 
1
9

 = 
4 65688

9
.

 = 0.51743

Now, y(x) = sin x, y′(x) = cos x, y″(x) = – sin x, y′″(x) = – cos x

Hence,  | y′″ (ξ) | < 1

when x = π/6.

 | Rn(x) | ≤ 

π π π π π
6

0
6 4 6 2

3

−F
HG

I
KJ

−F
HG

I
KJ

−F
HG

I
KJ

!
 = 0.02392

which agrees with the actual error in problem.

4.26 EXPRESSION OF RATIONAL FUNCTION AS A SUM OF PARTIAL

FRACTIONS

Let f(x) = 3 1
1 2 3

2x x
x x x

+ +
− − −( )( )( )

Consider φ(x) = 3x2 + x + 1 and tabulate its values for x = 1, 2, 3, we get

x: 1 2 3

3x2 + x + 1: 5 15 31
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Using Lagrange’s interpolation formula, we get

f(x) = 
( )( )
( )( )
x x− −

− −
2 3

1 2 1 3
 (5) + 

( )( )x x− −
−
1 3

1
 (15) + 

( )( )x x− −1 2
2

 (31)

 = 
5
2

 (x – 2)(x – 3) – 15 (x – 1)(x – 3) + 
31
2

 (x – 1)(x – 2)

 = 
5

2 1( )x −  – 
15

2x −
 + 

31
2 3( )x − .

4.27 INVERSE INTERPOLATION

The  process  of  estimating  the  value  of  x for the value of y not in the table is
called inverse interpolation.

When values of x are unevenly spaced, Lagrange’s method is used by
interchanging x and y.

EXAMPLES

Example 1. Values of elliptic integral F(θ) = 2
0

θ

z
d

1 cos2

θ

θ+
 are given below:

θ: 21° 23° 25°

F(θ): 0.3706 0.4068 0.4433

Find θ for which F(θ) = 0.3887.

Sol. By inverse interpolation formula

θ = 
(F F )(F F )

(F F )(F F )
1 2

0 1 0 2

− −
− −

 θ0 + 
(F F )(F F )

(F F )(F F )
0 2

1 0 1 2

− −
− −

 θ1 + 
(F F )(F F )

(F F )(F F )
0 1

2 0 2 1

− −
− −

 θ2

= 
( . ) ( . )
( . )( . )
0 0 4068 0 0 4433
0 0 4068 0 0 4433
.3887 .3887
.3706 .3706

− −
− −

 (.3706) + ... + ...

= 7.884 + 17.20 – 3.087 = 22°.

Example 2. From the given table:

x: 20 25 30 35

y(x): 0.342 0.423 0.5 0.65

Find the value of x for y(x) = 0.390.
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Sol. By inverse interpolation formula,

x = 
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
y y y y y y

y y y y y y
x

y y y y y y
y y y y y y

x
− − −
− − −

+
− − −
− − −

1 2 3

0 1 0 2 0 3
0

0 2 3

1 0 1 2 1 3
1

+  
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
y y y y y y

y y y y y y
x

y y y y y y
y y y y y y

x
− − −
− − −

+
− − −
− − −

0 1 3

2 0 2 1 2 3
2

0 1 2

3 0 3 1 3 2
3

= 
(. . ) (. . ) (. . )

(. . ) (. . ) (. . )
( )

39 423 39 5 39 65
342 423 342 5 342 65

20
− − −

− − −

+ 
(. . ) (. . ) (. . )

(. . ) )(. . ) (. . )
( )

39 342 39 5 39 65
423 342 423 5 423 65

25
− − −

− − −

+ 
(. . ) (. . ) (. . )

(. . ) (. . ) (. . )
( )

39 342 39 423 39 65
5 342 5 423 5 65

30
− − −
− − −

+ 
(. . ) (. . ) (. . )
(. . ) (. . ) (. . )

( )
39 342 39 423 39 5
65 342 65 423 65 5

35
− − −
− − −

= 22.84057797.

4.28 DIVIDED DIFFERENCES

Lagrange’s interpolation formula has the disadvantage that if another
interpolation point were added, the interpolation coefficient will have to be
recomputed.

We therefore seek an interpolation polynomial which has the property that
a polynomial of higher degree may be derived from it by simply adding new
terms.

Newton’s general interpolation formula is one such formula and it employs
divided differences.

If (x0, y0), (x1, y1), (x2, y2) ...... be given points then the first divided difference
for the arguments x0, x1 is defined by

 Δ|
x1

y0 = [x0, x1] = 
y y
x x

1 0

1 0

−
−

Similarly,  [x1, x2] = 
y y
x x

2 1

2 1

−
−

 and so on.

The second divided difference for x0, x1, x2 is defined as

   Δ|
,

2

1 2x x
 y0 = [x0,  x1, x2] = 

[ , ] [ , ]x x x x
x x

1 2 0 1

2 0

−
−
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Third divided difference for x0, x1, x2, x3 is defined as

[x0,  x1, x2, x3] = 
[ , , ] [ , , ]x x x x x x

x x
1 2 3 0 1 2

3 0

−
−

  and so on.

4.29 PROPERTIES OF DIVIDED DIFFERENCES

1. The divided differences are symmetrical in their arguments, i.e.,
independent of the order of arguments.

[x0, x1] = 
y

x x
1

1 0−
 + 

y
x x

0

0 1−
 = [x1, x0]

Also, [x0, x1, x2] = 
y

x x x x
0

0 1 0 2( )( )− −
 + 

y
x x x x

1

1 0 1 2( )( )− −
 + 

y
x x x x

2

2 0 2 1( )( )− −

 = [x2, x0, x1] or [x1, x2, x0]

2. The nth divided differences of a polynomial of nth degree are
constant.
Let the arguments be equally spaced so that

 x1 – x0 = x2 – x1 = ..... = xn – xn–1 = h

then, [x0, x1] = 
y y
x x

1 0

1 0

−
−

 = 
Δy
h

0

 [x0, x1, x2] = 
[ , ] [ , ]

( )
x x x x

x x
1 2 0 1

2 0

−
−

= 
1

2h
 

Δ Δy
h

y
h

1 0−F
HG

I
KJ

 = 
1
2

1
2!

.
h

 (Δ2 y0)

In general,

[x0, x1, x2, ......, xn] = 
1
n !

 . 1
hn

 Δny0

If tabulated function is a nth degree polynomial. ∴ Δny0 = constant

∴ nth divided differences will also be constant.
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4.30 NEWTON’S GENERAL INTERPOLATION FORMULA

O R

NEWTON’S DIVIDED DIFFERENCE INTERPOLATION FORMULA

Let y0, y1, ......, yn be the values of y = f(x) corresponding to the arguments x0, x1,
......, xn then from the definition of divided differences, we have

 [x, x0] = 
y y
x x

−
−

0

0

so that, y = y0 + (x – x0) [x, x0] (65)

Again,  [x, x0, x1] = [ , ] [ , ]x x x x
x x

0 0 1

1

−
−

which gives, [x, x0] = [x0, x1] + (x – x1) [x, x0, x1] (66)

From (65) and (66),

  y = y0 + (x – x0) [x0, x1] + (x – x0) (x – x1) [x, x0, x1] (67)

Also  [x, x0, x1, x2] = 
[ , , ] [ , , ]x x x x x x

x x
0 1 0 1 2

2

−
−

which gives  [x, x0, x1] = [x0, x1, x2] + (x – x2) [x, x0, x1, x2] (68)

From (67) and (68),

   y = y0 + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

+ (x – x0) (x – x1) (x – x2) [x, x0, x1, x2]

Proceeding in this manner, we get

 y = f(x) = y0 + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

+ (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3]

+ ..... + (x – x0) (x – x1) (x – x2)

  ..... (x – xn–1) [x0, x1, x2, x3, ......, xn]

+ (x – x0) (x – x1) (x – x2)

  ..... (x – xn) [x, x0, x1, x2, ......, xn]

which is called Newton’s general interpolation formula with divided differences,
the last term being the remainder term after (n + 1) terms.



364 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

Newton’s divided difference formula can also be written as

 y = y0 + (x – x0) Δ| y0 + (x – x0) (x – x1) Δ| 2y0

+ (x – x0) (x – x1) (x – x2) Δ| 3y0

+ (x – x0) (x – x1) (x – x2) (x – x3) Δ| 4y0

+ ..... + (x – x0) (x – x1) ..... (x – xn–1) Δ| ny0

4.31 RELATION BETWEEN DIVIDED DIFFERENCES AND ORDINARY

DIFFERENCES

Let the arguments x0, x1, x2, ....., xn be equally spaced such that

x1 – x0 = x2 – x1 = ... = xn – xn–1 = h

∴  x1 = x0 + h

x2 = x0 + 2h

.........

xn = x0 + nh

Now Δ|
x1

 f(x0) = 
f x f x

x x
( ) ( )1 0

1 0

−
−

 = 
f x h f x

h
( ) ( )0 0+ −

 = 
Δ f x

h
( )0 (69)

|Δ2

1 2x x
 f(x0) = 

1

2 0x x−
 [f(x1, x2) – f(x0, x1)]

= 
1

2 0x x−
 

f x f x
x x

f x f x
x x

( ) ( ) ( ) ( )2 1

2 1

1 0

1 0

−
−

−
−
−

L

N
M

O

Q
P

= 1
2

20 0 0 0

h
f x h f x h

h
f x h f x

h
( ) ( ) ( ) ( )+ − +

−
+ −L

N
M

O

Q
P

= 
1

2
2 2

2 0 0 0
h

f x h f x h f x[ ( ) ( ) ( )]+ − + +

 = 
Δ2

0
22

f x

h

( )

! . (70)
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|
, ,
Δ3

1 2 3x x x
 f(x0) = 

1

2 0x x−
 [f(x1, x2, x3) – f(x0, x1, x2)]

 = 
1

3h
 

Δ Δ2
1

2

2
0

22 2
f x
h

f x

h
( ) ( )

−
L

N
M
M

O

Q
P
P
 = Δ Δ2

1
2

0
36

f x f x

h

( ) ( )−

[From (69)]

 = 
Δ3

0
33

f x

h

( )

!

... ... ...

Δ|
,.....,

n

x xn1

 f(x0) = 
Δn

n

f x

n h

( )

!
0 .

4.32 MERITS AND DEMERITS OF LAGRANGE’S FORMULA

1. The formula is simple and easy to remember.
2. There is no need to construct the divided difference table and we can directly

interpolate the unknown value with the help of given observations.
3. The calculations in the formula are more complicated than in the divided

difference formula.
4. The application of the formula is not speedy
5. There is always a chance of commiting some error due to a number of (+)ve

and (–)ve sign in the denominator and numerator of each term.
6. The calculations provide no check whether the functional values used are

taken correctly or not, whereas the differences used in a difference formula
provide a check on the functional values.

EXAMPLES

Example 1. Construct a divided difference table for the following:

x: 1 2 4 7 12

f(x): 22 30 82 106 216.



366 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

Sol.

x f(x) Δ| f(x) Δ| 2f(x) Δ| 3f(x) Δ| 4f(x)

1 22
30 22

2 1
−
−

 = 8

2 30
26 8
4 1

−
−

 = 6

82 30
4 2

−
−

 = 26
− −

−
3 6 6
7 1
.

 = – 1.6

4 82
8 26
7 2

−
−

 = – 3.6
0 6

12 1
.535 1.+

−
 = 0.194

106 82
7 4

−
−

 = 8
175 3 6

12 2
. .+

−
 = 0.535

7 106
22 8
12 4

−
−

 = 1.75

216 106
5
−

 = 22

12 216

Example 2. (i) Find the third divided difference with arguments 2, 4, 9, 10 of
the function f(x) = x3 – 2x.

(ii) If f(x) = 
1
x2 , find the first divided differences f(a, b), f(a, b, c), f(a, b, c, d).

(iii) If f(x) = g(x) h(x), prove that
f(x1, x2) = g(x1) h(x1, x2) + g(x1, x2) h (x2).

Sol. (i)

x f(x) Δ| f(x) Δ| 2f(x) Δ| 3f(x)

2 4
56 4
4 2

26
−

−
=

4 56
131 26

9 2
15

−
−

=

711 56
9 4

131
−
−

= 23 15
10 2

1
−
−

=

9 711
269 131

10 4
23

−
−

=

980 711
10 9

269
−
−

=

10 980

Hence, the third divided difference is 1.
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(ii)

x f(x) = 
1

x2 Δ| f(x) Δ| 2f(x) Δ| 3f(x)

a
1
2a

1 1
2 2b a
b a

−F
HG

I
KJ

−
 = – 

a b

a b

+F
HG

I
KJ2 2

b
1
2b

ab bc ca

a b c

+ +
2 2 2

− +F
HG

I
KJ

b c

b c2 2 – 
abc acd abd bcd

a b c d

+ + +F
HG

I
KJ2 2 2 2

c
1
2c

bc cd db

b c d

+ +
2 2 2

− +F
HG

I
KJ

c d

c d2 2

d
1
2d

From the above divided difference table, we observe that the first divided
differences,

f(a, b) = – 
a b
a b

+F
HG

I
KJ2 2

f(a, b, c) = 
ab bc ca

a b c
+ +
2 2 2

and  f(a, b, c, d) = – 
abc acd abd bcd

a b c d
+ + +F

HG
I
KJ2 2 2 2

(iii) R.H.S. = g(x1) 
h x h x

x x
g x g x

x x
h x

( ) ( ) ( ) ( )
( )2 1

2 1

2 1

2 1
2

−
−

+
−
−

= 
1

2 1x x−
 [{g(x1) h(x2) – g(x1)h(x1)}

+ {g(x2) h(x2) – g(x1) h(x2)}]

= 
g x h x g x h x

x x
( ) ( ) ( ) ( )2 2 1 1

2 1

−
−

= Δ|
x2

g(x1) h(x1) = Δ|
x2

 f(x1) = f(x1, x2) = L.H.S.

Hence the result.
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Example 3. (i) Prove that

Δ|
bcd

3 1
a

1
abcd

F
HG
I
KJ

= −

(ii) Show that the nth divided differences

[x0, x1, ....., xn]  for  ux = 
1
x

 is 
( 1)

x x ..... x

n

0 1 n

−L

N
M

O

Q
P.

Sol. (i)

x f(x) Δ| f(x) Δ| 2f(x) Δ| 3f(x)

a
1
a

1 1
b a
b a

−

−
 = – 

1
ba

b
1
b

(– 1)2 
1

abc
1 1
c b
c b

−

−
 = – 

1
bc

(– 1)3 
1

abcd

c
1
c

(– 1)2 
1

bdc
1 1
d c
d c

−

−
 = – 

1
dc

d
1
d

From the table, we observe that

Δ| 3

bcd
 

1
a
F
HG
I
KJ  = – 

1
abcd

. (71)

(ii) From (71), we see that

Δ| 3

bcd
 

1

a
F
HG
I
KJ  = – 

1
abcd

 = (– 1)3 f(a, b, c, d)

∴ In general,

Δ|, , .....,
n

x x xn x0 1

1

0

F

HG
I

KJ
 = (– 1)n f (x0, x1, x2, ....., xn) = 

( )
.....

−L

N
M

O

Q
P

1

0 1 2

n

nx x x x
.
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Example 4. Using Newton’s divided difference formula, find a polynomial
function satisfying the following data:

x: – 4 – 1 0 2 5

f(x): 1245 33 5 9 1335

Hence find f(1).

Sol. The divided difference table is:

x f(x) Δ| f(x) Δ| 2f(x) Δ| 3f(x) Δ| 4f(x)

– 4 1245

– 404

– 1 33 94

– 28 – 14

0 5 10 3

2 13

2 9 88

442

5 1335

Applying Newton’s divided difference formula

f(x) = 1245 + (x + 4) (– 404) + (x + 4) (x + 1) 94

+ (x + 4) (x + 1) (x – 0) (– 14) + (x + 4)(x + 1)x(x – 2)(3)

 = 3x4 – 5x3 + 6x2 – 14x + 5

Hence, f(1) = 3 – 5 + 6 – 14 + 5 = – 5.

Example 5. By means of Newton’s divided difference formula, find the values
of f(8) and f(15) from the following table:

x: 4 5 7 10 11 13

f(x): 48 100 294 900 1210 2028.

Sol. Newton’s divided difference formula, using the arguments 4, 5, 7, 10, 11,
and 13 is

f(x) = f(4) + (x – 4) Δ|
5

 f(4) + (x – 4)(x – 5) Δ|
,5 7

 f(4)

+ (x – 4)(x – 5)(x – 7) Δ|
,

3

5 7, 10
 f(4)

+ (x – 4)(x – 5)(x – 7)(x – 10) Δ|
, ,

4

5 7, 10 11
 f(4)

+ (x – 4)(x – 5)(x – 7) (x – 10)(x – 11) Δ|
, , ,

4

5 7, 10 11 13
 f(4) (72)
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The divided difference table is as follows:

x f(x) Δ|  f(x) Δ| 2 f(x) Δ| 3f(x) Δ| 4f(x)

4 48
100 48

5 4
−

−  =  52

5 100
97 52
7 4

−
−  =   15

294 100
7 5

97
−
−

= 21 15
10 4

−
−  =   1

7 294
202 97

10 5
21

−
−

= 0

900 294
10 7

202
−
−

= 27 21
11 5

1
−
−

=

10 900
310 202

11 7
27

−
−

= 0

1210 900
11 10

310
−

−
= 33 27

13 7
−
−  = 1

11 1210
409 310

13 10
−
−  = 33

2028 1210
13 11

409
−
−

=

13 2028

Substituting the values of the divided differences in (72),

f(x) = 48 + (x – 4) × 52 + (x – 4)(x – 5) × 15 + (x – 5)(x – 4)(x – 7) × 1

= 48 + 52(x – 4) + 15(x – 4)(x – 5) + (x – 4)(x – 5)(x – 7)

Putting x = 8 and 15

f(8) = 48 + 52 × 4 + 15 × 4 × 3 + 4 × 3 × 1

= 48 + 208 + 180 + 12 = 448

 f(15) = 48 + 52 × 11 + 15 × 11 × 10 + 11 × 10 × 8

= 48 + 572 + 1650 + 880 = 3150.

Example 6. Given the following table, find f(x) as a polynomial in powers of
(x – 5)

x: 0 2 3 4 7 9

f(x): 4 26 58 112 466 922.
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Sol. The divided difference table is:

x f(x) Δ| f(x) Δ| 2f(x) Δ| 3f(x)

0 4
11

2 26 7
32 1

3 58 11
54 1

4 112 16
118 1

7 466 22
228

9 922

By Newton’s divided difference formula, we get

f(x) = 4 + (x – 0)(11) + (x – 0)(x – 2)7 + (x – 0)(x – 2)(x – 3) 1

= x3 + 2x2 + 3x + 4

In order to express it in power of (x – 5), we use synthetic division, as

5 1 2 3 4
5 35 190

5 1 7 38 194
5 60

5 1 12 98
5

1 17

∴ 2x2 + x3 + 3x + 4 = (x – 5)3 + 17(x – 5)2 + 98 (x – 5) + 194.

Example 7. Given

log10 654 = 2.8156, log10 658 = 2.8182, log10 659 = 2.8189 and
log10 661 = 2.8202, find by the divided difference formula the value of log10 656.

Sol. For the arguments 654, 658, 659, and 661, the divided difference formula
is

f(x) = f(654) + (x – 654) Δ|
658

 f(654)

+ (x – 655) (x – 658) Δ|
,658 659

2  f(654)

+ (x – 654) (x – 658) (x – 659) Δ|
, ,658 659 661

3  f(654) (73)
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The divided difference table is as follows:

x 105 f(x) 105 Δ| f(x) 105 Δ| 2f(x) 105 Δ| 3 f(x)

654 281560

260
4

 =   65

658 281820
70 65

5
−

 =   1

70
1

 = 70
− −166 1

7
.

 =   – 0.38

659 281890
65 70

3
−

 = – 1.66

130
2

 = 65

661 282020

From (73),

105f(x) = 281560 + (x – 654) (65) + (x – 654) (x – 658) (1)

+ (x – 654) (x – 658) (x – 659) (0.38)

Putting x = 656, we get

105 f(656) = 281560 + (2) (65) + (2) (– 2) (1)

+ (2) (– 2) (– 3) (.38)

= 281690.56

∴ f(656) = 2.8169056

Hence,  log10 656 = 2.8169056.

Example 8. Find f ′(10) from the following data:

x: 3 5 11 27 34

f(x): – 13 23 899 17315 35606.
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Sol. The divided difference table is:

x f(x) Δ| f(x) Δ| 2f(x) Δ| 3f(x) Δ| 4f(x)

3 – 13
18

5 23 16
146 1

11 899 40 0
1026 1

27 17315 69
2613

34 35606

By Newton’s divided difference formula,

 f(x) = – 13 + (x – 3) 18 + (x – 3)(x – 5)16 + (x – 3)(x – 5)(x – 11)1

∴  f ′(x) = 3x2 – 6x – 7

Put  x = 10, f ′(10) = 3(10)2 – 6(10) – 7 = 233.

Example 9. Given that

log10 2 = 0.3010, log10 3 = 0.4771, log10 7 = 0.8451,

find the value of log10  33.

Sol. log 30 = 1.4771,

log 32 = 5 log 2 = 5 × 0.3010 = 1.5050

log 36 = 2 (log 2 + log 3) = 2 × (0.3010 + 0.4771) = 1.5562

log 35 = log 
70
2

 = log 70 – log 2 = 1.8451 – 0.3010 = 1.5441.

The divided difference table is as follows:

x 104 log10 x 104 Δ|  log10 x 104Δ| 2 log10 x 104Δ| 3log10 x

30 14771
279

2
139 5= .

32 15050 – 9 2
5

184
.

.= −

391
3

130 3= . – 
0 48

6
0 08

.
.= −

35 15441 – 
9 3
7

2 32
.

.= −

121
1

 = 121

36 15562
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Applying Newton’s divided difference formula, we get

104 log10 x = 14771 + (x – 30) (139.5) + (x – 30)(x – 32) (– 1.84)

  + (x – 30)(x – 32)(x – 35)(– 0.08)

Putting x = 33

104 log10 33 = 14771 + 3 × 139.5 + 3 × 1 × (– 1.84) + 3 × 1 × (– 2)(– 0.08)

 = 14771 + 418.5 – 5.52 + 0.48 = 15184.46

∴  log10 33 = 1.5184.

Example 10. Find approximately the real root of the equation x3 – 2x – 5 = 0.

Sol. Let   f(x) = x3 – 2x – 5.

The real root of f(x) = 0 lies between 2 and 2.1.

∴ Values of f(x) at x = 1.9, 2, 2.1, 2.2 are – 1.941, – 1.000, 0.061, 1.248,
respectively.

Let

x: – 1.941 – 1.000 0.061 1.248

ux: 1.9 2.0 2.1 2.2

We have to find ux at u = 0.

The divided difference table is:

x ux Δ|  ux Δ| 2 ux Δ| 3 ux

– 1.941 1.9
0.1062699

– 1.000 2.0 – 0.0060035
0.0942507 0.0004869

0.061 2.1 – 0.0044505
0.0842459

1.248 2.2

Applying the Newton-divided difference formula,

 ux = 1.9 + (x + 1.941) × 0.1062699 + (x + 1.941)(x + 1)(– 0.0060035)

+ (x + 1.941)(x + 1)(x – 0.061) × 0.0004869.

Given x = 0

 u0 = 1.9 + 0.2062698 – 0.0116527 – 0.0000576 = 2.0945595

∴ The required root is 2.0945595.
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Example 11. The mode of a certain frequency curve y = f(x) is very near to x = 9
and the values of frequency density f(x) for x = 8.9, 9.0 and 9.3 are respectively
equal to 0.30, 0.35, and 0.25. Calculate the approximate value of mode.

Sol. The divided difference table is as follows:

x 100 f(x) 100Δ| f(x) 100 Δ| 2f(x)

8.9 30

5
0 9

50
9.

=

9.0 35 – 
350

9 0 4
3500

36×
= −

.

– 
10
0 3

100
3.

= −

9.3 25

Applying Newton’s divided difference formula

100 f(x) = 30 + (x – 8.9) × 
50
9

 + (x – 8.9)(x – 9) −F
HG

I
KJ

3500
36

= – 97.222 x2 + 1745.833x – 1759.7217.

∴ f(x) = – .9722x2 + 17.45833x – 17.597217

 f ′(x) = – 1.9444 x + 17.45833

Given f ′(x) = 0, we get

x = 
17 45833

19444
.
.

 = 8.9788

Also,

f ″(x) = – 1.9444 i.e., (–)ve

∴ f(x) is maximum at x = 8.9788

Hence, the mode is 8.9788.

Example 12. The following are the mean temperatures (°F) on three days, 30
days apart during summer and winter. Estimate the approximate dates and
values of maximum and minimum temperature.
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Summer Winter

Day Date Temp. Date Temp.

0 15 June 58.8 16 Dec. 40.7

30 15 July 63.4 15 Jan. 38.1

60 14 August 62.5 14 Feb. 39.3

Sol. The divided difference table for summer is:

x f(x) Δ| f(x) Δ| 2f(x)

0 58.8
4.6

1 63.4 – 2.75
– 0.9

2 62.5

∴  f(x) = 58.8 + (x – 0)(4.6) + (x – 0)(x – 1)(– 2.75)

   = – 2.75 x2 + 7.35 x + 58.8

For maximum and minimum of f(x), we have

    f ′ (x) = 0

⇒ – 5.5 x + 7.35 = 0 ⇒ x = 1.342

Again,    f ″ (x) = – 5.5 < 0

∴ f(x) is maximum at  x = 1.342

Since unit 1 ≡ 30 days

∴ 1.342 ≡ 30 × 1.342 = 40.26 days

∴ The maximum temperature was on 15 June + 40 days, i.e., on 25 July,
and the value of the maximum temperature is

  [f(x)]max. = [f(x)]1.342 = 63.711°F. approximately.

The divided difference table for winter is as follows:

x f(x) Δ| f(x) Δ| 2f(x)

0 40.7
– 2.6

1 38.1 1.9
1.2

2 39.3
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∴  f(x) = 40.7 + (x – 0) (– 2.6) + x(x – 1)(1.9)

= 1.9x2 – 4.5x + 40.7

For f(x) to be maximum or minimum, we have f ′(x) = 0

3.8x – 4.5 = 0 ⇒ x = 1.184

Again,   f ″ (x) = 3.8 > 0

∴ f(x) is minimum at x = 1.184

Again, unit 1 ≡ 30 days

∴   1.184 ≡ 30 × 1.184 = 35.52 days
∴ The minimum temperature was on 16 Dec. + 35.5 days, i.e., at mid-

night on the 20th of January and its value can be obtained similarly.

[f(x)]min. = [f(x)]1.184 = 63.647°F approximately.

Example 13. Using Newton’s divided difference formula, calculate the value
of f(6) from the following data:

x: 1 2 7 8

f(x): 1 5 5 4.

Sol. The divided difference table is:

x f(x) Δ| f(x) Δ| 2f(x) Δ| 3f(x)

1 1
4

2 5 − 2
3

0
1

14

7 5 − 1
6

– 1
8 4

Applying Newton’s divided difference formula,

f(x) = 1 + (x – 1) (4) + (x – 1) (x – 2) −F
HG

I
KJ

2
3

  + (x – 1) (x – 2) (x – 7) 
1

14
F
HG
I
KJ
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∴ f(6) = 1 + 20 + (5) (4) −F
HG

I
KJ

2
3  + (5) (4) (– 1) 

1
14
F
HG
I
KJ

= 6.2381.

Example 14. Referring to the following table, find the value of f(x) at point
x = 4:

x: 1.5 3 6

f(x): – 0.25 2 20.

Sol. The divided difference table is:

x f(x) Δ| f(x) Δ| 2f(x)

1.5 – 0.25
1.5

3 2 1
6

6 20

Applying Newton’s divided difference formula,

f(x) = – 0.25 + (x – 1.5) (1.5) + (x – 1.5) (x – 3) (1)

Putting x = 4, we get

f(4) = 6.

Example 15. Using Newton’s divided difference formula, prove that

f(x) = f(0) + xΔf(– 1) + 
(x 1)x

2 !
+

 Δ2 f(– 1)

   + 
(x 1)x(x 1)

3 !
+ −

 Δ3f(– 2) + ......

Sol. Taking the arguments, 0, – 1, 1, – 2, ...... the divided Newton’s difference
formula is

f(x) = f(0) + x Δ|
− 1

 f(0) + x(x + 1) Δ|
,− 1 1

2  f(0)

+ x(x + 1)(x – 1) Δ|
, ,

3

1 1 2− −
 f(0) + ... (74)

      = f(0) + x Δ|
0

 f(– 1) + x(x + 1) Δ|
,

2

0 1
 f(– 1)

+ (x + 1)x(x – 1) Δ|
, ,

3

1 0 1−
 f(– 2) +   ....



INTERPOLATION    379

Now Δ|
0

 f(– 1) = 
f f( ) ( )

( )
0 1
0 1

− −
− −

 = Δ f(– 1)

Δ|
,

2

0 1
 f(– 1) = 

1
1 1− −( )

 [Δ|
1

 f(0) – Δ|
0

f(– 1)]

 = 1
2 [Δ f(0) – Δ f(– 1)] = 1

2  Δ2 f(– 1)

 Δ|
, ,

3

1 0 1−
 f(– 2) = 

1
1 2− −( )

 [Δ|
,

2

0 1
 f(– 1) – Δ|

,

2

1 0−
 f(– 2)]

 = 
1
3

Δ Δ2 21
2

2
2

f f( ) ( )− − −L

N
M

O

Q
P

 = 
Δ Δ3 32

3 2
2

3
f f( )
.

( )
!

− = −
and so on.

Substituting these values in (74)

 f(x) = f(0) + xΔ f(– 1) + 
( )

!
x x+ 1

2
 Δ2 f(– 1)

+ 
( ) ( )

!
x x x+ −1 1

3
 Δ3 f(– 2) + ......

ASSIGNMENT 4.12

1. Given the values:

x: 5 7 11 13 17

f(x): 150 392 1452 2366 5202

Evaluate f(9) using Newton’s divided difference formula.
2. The observed values of a function are, respectively, 168, 120, 72, and 63 at the four

positions 3, 7,  9, and 20 of the independent variable. What is the best estimate you can
give for value of the function at the position 6 of the independent variable?

3. Apply Newton’s divided difference formula to find the value of f(8) if

f(1) = 3, f(3) = 31, f(6) = 223, f(10) = 1011, f(11) = 1343.

4. Given that

x: 1 3 4 6 7

yx: 1 27 81 729 2187

Find y5. Why does it differ from 35?

5. Use Newton’s divided difference formula to find f(7) if f(3) = 24, f(5) = 120, f(8) = 504,
f(9) = 720, and f(12) = 1716.
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6. The following table is given:

x: 0 1 2 5

f(x): 2 3 12 147

What is the form of the function?

7. Find the function ux in powers of x – 1, given that u0 = 8, u1 = 11, u4 = 68, u5 = 123.

8. Find ux in powers of x – 4 where u0 = 8, u1 = 11, u4 = 68, u5 = 125.

9. Using Lagrange’s interpolation formula express the function

x x

x x x

2

3 2
3

2 2
+ −

− − +

as sums of portial fractions
10. Express the function

x x

x x x

2

2
6 1

1 4)( 6
+ −

− − −( )( )

as a sum of partial fractions.
11. Certain corresponding values of x and log10 x are given below:

x: 300 304 305 307

log10 x: 2.4771 2.4829 2.4843 2.4871

Find log10 310 by Newton’s divided difference formula.

12. (i) The following table gives the values of x and y:

x: 1.2 2.1 2.8 4.1 4.9 6.2

y: 4.2 6.8 9.8 13.4 15.5 19.6

Find the value of x corresponding to y = 12 using Lagrange’s technique of inverse inter-
polation.

(ii) Obtain the value of t when A = 85 from the following table using Lagrange’s method

t: 2 5 8 14

A: 94.8 87.9 81.3 68.7

13. Using Newton’s divided difference method, compute f(3) from the following table

x: 0 1 2 4 5 6

f(x): 1 14 15 5 6 19

14. Find the Newton’s divided difference interpolation polynomial for:

x: 0.5 1.5 3.0 5.0 6.5 8.0

f(x): 1.625 5.875 31.0 131.0 282.125 521.0
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15. If f(x) = U(x)V(x), find the divided difference f(x0, x1) in terms of U(x0), V(x1) and the
divided differences U(x0, x1), V(x0, x1). Write a code in C to implement.

16. Write an algorithm to compute the value of a function using Lagrange’s interpolation.

4.33 HERMITE’S INTERPOLATION FORMULA

So far we have considered the interpolation formulae which make use only of a
certain number of function values. We now derive an interpolation formula in
which both the function and its first derivative are to be assigned at each point
of interpolation. This is called Hermite’s interpolation formula or
osculating interpolation formula.

Let the set of data points (xi, yi, yi′), 0 ≤ i ≤ n be given. A polynomial of the
least degree say H(x) is to be determined such that

 H(xi) = yi and H′(xi) = yi′; i = 0, 1, 2, ... n (75)

H(x) is called Hermite’s interpolating polynomial.
Since there are 2n + 2 conditions to be satisfied, H(x) must be a polynomial

of degree ≤ 2n + 1.
The required polynomial may be written as

  H(x) = u x y v x yi i i i
i

n

i

n

( ) ( )+ ′
==
∑∑

00

(76)

where ui(x) and vi(x) are polynomials in x of degree ≤ (2n + 1) and satisfy

(i) ui(xj) = 
0
1
,
,

i j
i j

≠
=

R
S
T

U
V
W

(77 (i))

(ii) vi(xj) = 0 ∀ i, j (77 (ii))

(iii) ui′(xj) = 0 ∀ i, j (77 (iii))

(iv) vi′(xj) = 
0
1
,
,

i j
i j

≠
=

R
S
T

U
V
W

(77 (iv))

Using the Lagrange fundamental polynomials Li(x), we choose

ui(x) = Ai(x) [Li(x)]2

and vi(x) = Bi(x) [Li(x)]2 (78)

where Li(x) is defined as

Li(x) = 
( )( ) ... ( )( ) ... ( )

( )( ) ... ( )( ) ... ( )
x x x x x x x x x x

x x x x x x x x x x
i i n

i i i i i i i n

− − − − −
− − − − −

− +

− +

0 1 1 1

0 1 1 1

U
V
W
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Since Li
2(x) is a polynomial of degree 2n, Ai(x) and Bi(x) must be linear

polynomials.
Let Ai(x) = aix + bi

and Bi(x) = cix + di so that from (78),

ui(x) = (aix + bi) [Li(x)]2

vi(x) = (cix + di) [Li(x)]2 (79)

using conditions (77(i)) and (77(ii)) in (79), we get

 aix + bi = 1 (80 (i))

and  cix + di = 0 (80 (ii)) | since [Li(xi)]
2 = 1

Again, using conditions (77(iii)) and (77(iv)) in (79), we get

ai + 2Li′(xi) = 0 (80 (iii))

and    ci = 1 (80 (iv))

From equations (80(i)), (80(ii)), (80(iii)) and (80(iv)), we deduce

 ai = – 2Li′(xi)

 bi = 1 + 2xiLi′(xi) (81)
 ci = 1

and  di = – xi

Hence, from (79),

ui(x) = [– 2x Li′(xi) + 1 + 2xiLi′(xi)] [Li(x)]2

= [1 – 2(x – xi) Li′(xi)] [Li(x)]2

and vi(x) = (x – xi) [Li(x)]2

Therefore from (76),

H(x) = 
i

n

=
∑

0
[1 – 2(x – xi) Li′(xi)] [Li(x)]2 yi + ( ) [ ( )]x x x yi i i

i

n

− ′
=
∑ L 2

0

which is the required Hermite’s interpolation formula.

EXAMPLES

Example 1. Apply Hermite’s interpolation formula to find a cubic polynomial
which meets the following specifications.

U
V
W

U

V

|
|

W

|
|
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xi yi yi′

0 0 0

1 1 1

Sol. Hermite interpolation formula is

H(x) = [ ( ) ( )] [ ( )]1 2 2

0

1

− − ′
=
∑ x x x x yi i i i i
i

L L  + 
i

i i ix x x y
=
∑ − ′

0

1
2( ) [ ( )]L

= [1 – 2 (x – x0) L0′(x0)] [L0(x)]2 y0

+ [1 – 2(x – x1) L1′(x1)] [L1(x)]2 y1

+ (x – x0) [L0(x)]2 y0′ + (x – x1) [L1 (x)]2 y1′ (82)

Now,   L0(x) = 
x x
x x

x−
−

= −
−

1

0 1

1
0 1

 = 1 – x

L1 (x) = 
x x
x x

x−
−

= −
−

0

1 0

0
1 0

 = x

∴  L0′(x) = – 1

and  L1′(x) = 1

Hence, L0′(x0) = – 1 and L1′(x1) = 1

∴ From (82),

   H(x) = [1 – 2 (x – 0) (– 1) [ (1 – x)2 (0)

+ [1 – 2 (x – 1) (1) ] x2 (1)

+ (x – 0) (1 – x)2 (0) + (x – 1) x2 (1)

 = x2 – 2x2(x – 1) + x2 (x – 1)

 = x2 – x2 (x – 1) = x2(2 – x)

 = 2x2 – x3.

Example 2. Apply Hermite’s formula to find a polynomial which meets these
specifications

xk yk yk′

0 0 0

1 1 0

2 0 0
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Sol. Hermite’s interpolation formula is

 H(x) = 
i

i i i i i
i

i i ix x x x y x x x y
= =
∑ ∑− − ′ + − ′

0

2
2

0

2
21 2[ ( ) ( )][ ( )] ( ) [ ( )]L L L

= [1 – 2(x – x0) L0′(x0)] [L0 (x)]2 y0 + [1 – 2(x – x1) L1′(x1)] [L1(x)]2 y1

+ [1 – 2 (x – x2) L2′(x2)] [L2(x)]2 y2 + (x – x0) [L0(x)]2 y0′

+ (x – x1) [L1(x)]2 y1′ + (x – x2) [L2(x)]2 y2′ (83)

Now,   L0(x) = 
( ) ( )

( ) ( )
( ) ( )
( ) ( )

x x x x
x x x x

x x− −
− −

= − −
− −

=1 2

0 1 0 2

1 2
0 1 0 2

1
2

(x2 – 3x + 2)

 L1 (x) = 
( ) ( )

( ) ( )
( ) ( )
( ) ( )

x x x x
x x x x

x x− −
− −

= − −
− −

0 2

1 0 1 2

0 2
1 0 1 2

 = 2x – x
2

  L2(x) = 
( ) ( )

( ) ( )
( ) ( )
( ) ( )

x x x x
x x x x

x x− −
− −

= − −
− −

=0 1

2 0 2 1

0 1
2 0 2 1

1
2

(x2 – x)

∴   L0′(x) = 
2 3

2
x −

, L1′(x) = 2 – 2x,  L2′(x) = 
2 1

2
x −

Hence, L0′(x0) = – 
3
2

, L1′(x1) = 0, L2′(x2) = 
3
2

∴ From (83),

 H(x) = 1 2 0
3
2

1
4

− − −F
HG
I
KJ

L

N
M

O

Q
P( )x (x2 – 3x + 2)2 (0)

+ [1 – 2(x – 1) (0)] (2x – x2)2 (1)

+ 1 2 2
3
2

1
4

− − F
HG
I
KJ

L

N
M

O

Q
P( )x  (x2 – x)2 (0)

+ (x – 0) 
1
4

 (x2 – 3x + 2)2 (0)

+ (x – 1) (2x – x2)2 (0) + (x – 2) 
1
4

 (x2 – x)2 (0)

= (2x – x2)2 = x4 – 4x3 + 4x2.

Example 3. A switching path between parallel railroad tracks is to be a cubic
polynomial joining positions (0, 0) and (4, 2) and tangent to the lines y = 0 and
y = 2 as shown in the figure. Apply Hermite’s interpolation formula to obtain
this polynomial.
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(0, 0)

(4, 2)

X

Y

Sol. Since tangents are parallel to X-axis,
y′ = 0 in both the cases.

∴ We have the table of values,

x y y′

0 0 0

4 2 0

The hermite interpolation formula is

 H(x) = [ ( ) ( )][ ( )] ( ) [ ( )]1 2 2

0

1

0

1
2− − ′ + − ′

= =
∑ ∑x x x x y x x x yi i i i i
i i

i i iL L L (84)

Now,   L0(x) = x x
x x

x x−
−

= −
−

= −1

0 1

4
0 4

1
4

  L1(x) = 
x x
x x

x x−
−

= −
−

=0

1 0

0
4 0 4

∴ L0′( x) = – 
1
4

and L1′(x) = 
1
4

Hence, L0′(x0) = – 
1
4

and L1′(x1) = 
1
4

∴ From (84),  H(x) = 1 2 0
1
4

1
4

2

− − −F
HG

I
KJ

L

N
M

O

Q
P −F
HG

I
KJ

( )x
x

 (0)

+ 1 2 4
1
4 4

2

− − F
HG
I
KJ

L

N
M

O

Q
P
F
HG
I
KJ

( )x
x  (2)

+ (x – 0) 1
4

2

−F
HG

I
KJ

x  (0) + (x – 4) x
4

2
F
HG
I
KJ

 (0)

= 1
4

2 8

2

− −F
HG

I
KJ

L

N
M

O

Q
P

x x
 = 

( )6
16

1
16

2− =x x
(6x2 – x3).
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ASSIGNMENT 4.13

1. Apply Hermite’s interpolation formula to find f(x) at x = 0.5 which meets the following
requirement:

xi f(xi) f ′(xi)

– 1 1 – 5

0 1 1

1 3 7

Also find f(– 0.5).
2. Apply Hermite’s interpolating formula to obtain a polynomial of degree 4 for the follow-

ing data:

xi yi yi′

0 1 0

1 0 0

2 9 24

3. Apply Hermite’s formula to find a polynomial which meets the following specifications:

xi yi yi′

– 1 – 1 0

0 0 0

1 1 0

4. Apply osculating interpolation formula to find a polynomial which meets the following
requirements:

xi yi yi′

0 1 0

1 0 0

2 9 0
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5. Apply Hermite’s formula to interpolate for sin 1.05 from the following data:

x sin x cos x

1.00 0.84147 0.54030

1.10 0.89121 0.45360

6. Find y = f(x) by Hermite’s interpolation from the table:

xi yi yi′

– 1 1 – 5

0 1 1

1 3 7

Compute y2 and y2′.

7. Compute e  by Hermite’s formula for the function f(x) = ex at the points 0 and 1. Com-
pare the value with the value obtained by using Lagrange’s interpolation.

8. Show that

f 
a b f a f b b a f a f b+F
HG

I
KJ

= + + − ′ − ′
2 2 8

( ) ( ) ( ) [ ( ) ( )]

by Hermite’s interpolation.
9. Apply Hermite’s interpolation to find f(1.05) given:

x f f ′

1 1.0 0.5

1.1 1.04881 0.47673

10. Apply Hermite’s interpolation to find log 2.05 given that

x log x 1
x

2.0 0.69315 0.5

2.1 0.74194 0.47619
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11. Determine the Hermite polynomial of degree 5 which fits the following data and hence
find an approximate value of loge 2.7.

x y = logex y′ = 
1
x

2.0 0.69315 0.5

2.5 0.91629 0.4

3.0 1.09861 0.33333

12. Using Hermite’s interpolation formula, estimate the value of ln (3.2) from the following
table:

x 3 3.5 4.0

y = ln (x) 1.09861 1.25276 1.38629

y′ = 
1
x

0.33333 0.28571 0.25000

13. (i) Construct the Hermite interpolation polynomial that fits the data:

x f(x) f ′(x)

1 7.389 14.778

2 54.598 109.196

Estimate the value of f(1.5).
(ii) Consider the cubic polynomial

P(x) = c0 + c1x + c2 x
2 + c3 x

3.

Fit the data in problem 13(i) and find P(x). Are these polynomials different? Comment.
14. (i) Construct the Hermite interpolation polynomial that fits the data:

x f(x) f ′(x)

2 29 50

3 105 105

Interpolate f(x) at x = 2.5.

(ii) Fit the cubic polynomial P(x) = c0 + c1x + c2x2 + c3x3  to the data given in problem
14(i). Are these polynomials same?
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15. (i) Construct the Hermite interpolation polynomial that fits the data:

x f(x) f ′(x)

0 0 1

0.5 0.4794 0.8776

1.0 0.8415 0.5403

Estimate the value of f(0.75).
(ii) Construct the Hermite interpolation polynomial that fits the data:

x y(x) y′(x)

0 4 – 5

1 – 6 – 14

2 – 22 – 17

Interpolate y(x) at x = 0. 5 and 1.5.

16. Obtain  the  unique  polynomial  p(x)  of  degree 3 or less corresponding to a function f(x)
where f(0) = 1, f ′(0) = 2, f(1) = 5, f ′(1) = 4.
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5.1 INTRODUCTION

C onsider a function of a single variable y = f(x). If f(x) is defined as an
expression, its derivative or integral may often be determined using the
techniques of calculus.

However, when f(x) is a complicated function or when it is given in a tabular
form, numerical methods are used.

This section discusses numerical methods for approximating the
derivative(s) f(r)(x), r ≥ 1 of a given function f(x) and for the evaluation of the

integral 
a

b
f x dxz ( )  where a, b may be finite or infinite.

The accuracy attainable by these methods would depend on the given
function and the order of the polynomial used. If the polynomial fitted is exact
then the error would be, theoretically, zero. In practice, however, rounding
errors will  introduce errors in the calculated values.

The error introduced in obtaining derivatives is, in general, much worse
than that introduced in determining integrals.

It may be observed that any errors in approximating a function are amplified
while taking the derivative whereas they are smoothed out in integration.

Thus numerical differentiations should be avoided if an alternative exists.

Chapt e r5

NUMERICAL INTEGRATION

AND DIFFERENTIATION

393
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5.2 NUMERICAL DIFFERENTIATION

In the case of numerical data, the functional form of f(x) is not known in general.
First we have to find an appropriate form of f(x) and then obtain its derivatives.
So “Numerical Differentiation” is concerned with the method of finding the
successive derivatives of a function at a given argument, using the given table
of entries corresponding to a set of arguments, equally or unequally spaced.
Using the theory of interpolation, a suitable interpolating polynomial can be
chosen to represent the function to a good degree of approximation in the given
interval of the argument.

For the proper choice of interpolation formula, the criterion is the same as
in the case of interpolation problems. In the case of equidistant values of x, if
the derivative is to be found at a point near the beginning or the end of the
given set of values, Newton’s forward or backward difference formula should
be used accordingly. Also if the derivative is to be found at a point near the
middle of the given set of values, then any one of the central difference formulae
should be used. However, if the values of the function are not known at
equidistant values of x, Newton’s divided difference or Lagrange’s formula
should be used.

5.3 FORMULAE FOR DERIVATIVES

(1) Newton’s forward difference interpolation formula is

y = y0 + u Δy0 + u u
y

u u u
y

( )
!

( )( )
!

....
− + − − +1

2
1 2
3

2
0

3
0Δ Δ (1)

where u = 
x a

h
−

(2)

Differentiating eqn. (1) with respect to u, we get

dy
du

y
u

y
u u= + − + − +Δ Δ0

2
0

22 1
2

3 6 2
6

 Δ3y0 + ... (3)

Differentiating eqn. (2) with respect to x, we get

du
dx h

= 1
(4)

We know that

dy
dx

dy
du

du
dx h

y
u

y
u u

y= = + −F
HG

I
KJ

+ − +F

HG
I

KJ
+

L

N
M
M

O

Q
P
P

. ...
1 2 1

2
3 6 2

60
2

0

2
3

0Δ Δ Δ (5)
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Expression (5) provides the value of 
dy
dx

 at any x which is not tabulated.

Formula (5) becomes simple for tabulated values of x, in particular when
x = a and u = 0
Putting u = 0 in (5), we get

dy
dx h

y y y y y
x a

F
HG
I
KJ

= − + − + −L
NM

O
QP=

1 1
2

1
3

1
4

1
50

2
0

3
0

4
0

5
0Δ Δ Δ Δ Δ ... (6)

Differentiating eqn. (5) with respect to x, we get

 d y
dx

d
dx

dy
dx

2

2 = F
HG
I
KJ

 = 
d

du
dy
dx

du
dx

F
HG
I
KJ

= 
1

1
6 18 11

12
12

0
3

0

2
4

0h
y u y

u u
y

h
Δ Δ Δ+ − + − +F

HG
I

KJ
+

L

N
M
M

O

Q
P
P

( ) ...

= 
1

1
6 18 11

122
2

0
3

0

2
4

0
h

y u y
u u

yΔ Δ Δ+ − + − +F

HG
I

KJ
+

L

N
M
M

O

Q
P
P

( ) ... (7)

Putting u = 0 in (7), we get

d y

dx h
y y y

x a

2

2 2
2

0
3

0
4

0
1 11

12

F

HG
I

KJ
= − + +F

HG
I
KJ

=

Δ Δ Δ ... (8)

Similarly, we get

 d y
dx h

y y
x a

3

3 3
3

0
4

0
1 3

2

F

HG
I

KJ
= − +F

HG
I
KJ

=

Δ Δ ... (9)

and so on.
Formulae for computing higher derivatives may be obtained by
successive differentiation.
Aliter: We know that

 E = ehD ⇒ 1 + Δ = ehD

∴  hD = log (1 + Δ) = Δ Δ Δ Δ− + − +
2 3 4

2 3 4
...
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⇒  D = 
1 1

2
1
3

1
4

2 3 4

h
Δ Δ Δ Δ− + − +L

NM
O

QP
...

Similarly,

D2 = 
1 1

2
1
3

1
4

1 11
12

5
62

2 3 4
2

2
2 3 4 5

h h
Δ Δ Δ Δ Δ Δ Δ Δ− + − +F
HG

I
KJ

= − + − +F
HG

I
KJ

... ...

and D3 = 
1 3

23
3 4

h
Δ Δ− +F
HG

I
KJ

...

(2) Newton’s backward difference interpolation formula is

y = yn + u ∇yn + 
u u

y
u u u

n
( )

!
( )( )

!
+ ∇ + + +1

2
1 2
3

2  ∇3yn + ... (10)

where u = 
x x

h
n−

(11)

Differentiating (10) with respect to, u, we get

dy
du

y
u

y
u u

n n= ∇ + +F
HG

I
KJ

∇ + + +F

HG
I

KJ
2 1

2
3 6 2

6
2

2

 ∇3yn + ... (12)

Differentiating (11) with respect to x, we get

du
dx h

= 1
(13)

Now,

dy
dx

dy
du

du
dx

= .

= 
1 2 1

2
3 6 2

6
2

2
3

h
y

u
y

u u
yn n n∇ + +F

HG
I
KJ

∇ + + +F

HG
I

KJ
∇ +

L

N
M
M

O

Q
P
P

... (14)

Expression (14) provides us the value of 
dy
dx

 at any x which is not tabulated.

At x = xn, we have u = 0

∴ Putting u = 0 in (14), we get

 
dy
dx h

y y y y
x x

n n n n
n

F
HG
I
KJ

= ∇ + ∇ + ∇ + ∇ +F
HG

I
KJ=

1 1
2

1
3

1
4

2 3 4 ... (15)
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Differentiating (14) with respect to x, we get

   
d y
dx

d
du

dy
dx

du
dx

2

2 = F
HG
I
KJ

= 
1

1
6 18 11

122
2 3

2
4

h
y u y

u u
yn n n∇ + + ∇ + + +F

HG
I

KJ
∇ +

L

N
M
M

O

Q
P
P

( ) ... (16)

Putting u = 0 in (16), we get

d y
dx h

y y y
x x

n n n

n

2

2 2
2 3 41 11

12

F

HG
I

KJ
= ∇ + ∇ + ∇ +F

HG
I
KJ

=

... (17)

Similarly, we get

d y
dx h

y y
x x

n n

n

3

3 3
3 41 3

2

F

HG
I

KJ
= ∇ + ∇ +F

HG
I
KJ

=

... (18)

and so on.
Formulae for computing higher derivatives may be obtained by

successive differentiation.
Aliter: We know that

  E–1 = 1 – ∇

 e–hD = 1 – ∇

∴ – hD = log (1 – ∇) = – ∇ + ∇ + ∇ + ∇ +F
HG

I
KJ

1
2

1
3

1
4

2 3 4 ...

⇒  D = 
1 1

2
1
3

1
4

2 3 4

h
∇ + ∇ + ∇ + ∇ +F
HG

I
KJ

...

Also, D2 = 
1 1

2
1
32

2 3
2

h
∇ + ∇ + ∇ +F
HG

I
KJ

...

= ∇ + ∇ + ∇ +F
HG

I
KJ

1 11
122

2 3 4

h
...

Similarly, D3 = 
1 3

23
3

h
∇ + ∇ +F
HG

I
KJ

4 ...  and so on.
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(3) Stirling’s central difference interpolation formula is

  y = y0 + 
u y y u

y
u u y y

1 2 2
1

3 2
0 1

2
2

1

2 2 3
1

3
2

! !
( )

!
Δ Δ Δ Δ Δ+F
HG

I
KJ

+ + − +F

HG
I

KJ
−

−
− −

+ 
u u

y
u u u y y2 2 2

4
2

2 2 2 2 5
2

5
31

4
1 2

5 2
( )

!
( )( )

!
− + − − +F

HG
I

KJ
−

− −Δ Δ Δ
 + ...

(19)

where u = 
x a

h
−

(20)

Differentiating eqn. (19) with respect to u, we get

dy
du

y y
u y

u y y= + + + −F

HG
I

KJ
+F

HG
I

KJ
−

−
− −Δ Δ Δ Δ Δ0 1 2

1

2 3
1

3
2

2
3 1

6 2

+ 
4 2

4
5 15 4

5 2

3
4

2

4 2 5
2

5
3u u

y
u u y y−F

HG
I

KJ
+ − +F

HG
I

KJ
+F

HG
I

KJ
−

− −

! !
Δ Δ Δ

 + ... (21)

Differentiating (20) with respect to x, we get

du
dx h

= 1
(22)

Now,

dy
dx

dy
du

du
dx

= .

= 
1

2
3 1

6 2
0 1 2

1

2 3
1

3
2

h
y y

u y
u y yΔ Δ

Δ
Δ Δ+

+ + −F

HG
I

KJ
+F

HG
I

KJ
L

N
M
M

−
−

− −

+ 
4 2

4
5 15 4

5 2

3
4

2

4 2 5
2

5
3u u

y
u u y y−F

HG
I

KJ
+ − +F

HG
I

KJ
+F

HG
I

KJ
+
O

Q
P
P

−
− −

! !
...Δ

Δ Δ

(23)

Expression (23) provides the value of 
dy
dx

 at any x which is not tabulated.

Given x = a, we have u = 0
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∴ Given u = 0 in (23), we get

dy
dx h

y y y y

x a

F
HG
I
KJ

=
+F

HG
I
KJ

−
+F

HG
I

KJ
L

N
M
M=

− − −1
2

1
6 2

0 1
3

1
3

2Δ Δ Δ Δ  + 
1

30 2

5
2

5
3Δ Δy y− −+F

HG
I

KJ
−
O

Q
P
P

...

(24)

Differentiating (23) with respect to x, we get

 
d y
dx

d
du

dy
dx

du
dx

2

2 = F
HG
I
KJ

= 
1

2
6 1

122
2

1

3
1

3
2

2

h
y u

y y uΔ
Δ Δ

−
− −+

+F

HG
I

KJ
+ −F

HG
I

KJ
L

N
M
M

 Δ4y–2

+ 
2 3

12 2

3 5
2

5
3u u y y−F

HG
I

KJ
+F

HG
I

KJ
+
O

Q
P
P

− −Δ Δ
... (25)

Given u = 0 in (25), we get

d y
dx h

y y y
x a

2

2 2
2

1
4

2
6

3
1 1

12
1

90

F

HG
I

KJ
= − + −F

HG
I
KJ

=
− − −Δ Δ Δ ... (26)

and so on.

Formulae for computing higher derivatives may be obtained by
successive differentiation.

(4) Bessel’s central difference interpolation formula is

y = 
y y

u y
u u y y0 1

0

2
1

2
0

2
1
2

1
2 2

+F
HG

I
KJ

+ −F
HG

I
KJ

+ − +F

HG
I

KJ
−Δ

Δ Δ( )
!

+ 
u u u

y
( )

!

− −F
HG

I
KJ

−

1
1
2

3
3

1Δ  + + − − +F

HG
I

KJ
− −( ) ( )( )

!
u u u u y y1 1 2

4 2

4
2

4
1Δ Δ

+ 
( ) ( )( )

!

u u u u u
y

+ − − −F
HG

I
KJ

−

1 1 2
1
2

5
5

2Δ

+ 
( )( ) ( )( )( )

!
u u u u u u y y+ + − − − +F

HG
I

KJ
− −2 1 1 2 3

6 2

6
3

6
2Δ Δ

 + ... (27)

where u = 
x a

h
−

(28)
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Differentiating eqn. (27) with respect to u, we get

dy
du

y
u y y

= + −F
HG

I
KJ

+F

HG
I

KJ
−Δ

Δ Δ
0

2
1

2
02 1

2 2!
 + 

3 3
1
2

3

2u u− +F

H
G
G

I

K
J
J!   Δ3y–1

+ 
4 6 2 2

4 2
5 10 5 1

5

3 2 4
2

4
1

4 3u u u y y u u u− − +F

HG
I

KJ
+F

HG
I

KJ
+ − + −F

HG
I

KJ
− −

! !
Δ Δ

 Δ5y–2

+ 
6 15 20 45 8 12

6 2

5 4 3 2 6
3

6
2u u u u u y y− − + + −F

HG
I

KJ
+F

HG
I

KJ
− −

!
Δ Δ

 + ... (29)

Differentiating (28) with respect to x, we get

du
dx h

= 1

Now,
dy
dx

dy
du

du
dx

= .

= 
1 2 1

2 2

3 3
1
2

30

2
1

2
0

2

h
y

u y y u u
Δ

Δ Δ
+ −F
HG

I
KJ

+F

HG
I

KJ
+

− +F

H
G
G

I

K
J
J

L

N

M
M
M
M

−

! !   Δ3y–1

+ 
4 6 2 2

4 2
5 10 5 1

5

3 2 4
2

4
1

4 3u u u y y u u u− − +F

HG
I

KJ
+F

HG
I

KJ
+ − + −F

HG
I

KJ
− −

! !
Δ Δ

 Δ5y–2

+ 6 15 20 45 8 12
6 2

5 4 3 2 6
3

6
2u u u u u y y− − + + −F

HG
I

KJ
+F

HG
I

KJ
+
O

Q
P
P

− −

!
...

Δ Δ   (30)

Expression (30) provides us the value of 
dy
dx

 at any x which is not tabu-

lated.
Given x = a, we have u = 0
∴ Given u = 0 in (30), we get

dy
dx h

y
y y

y
y y

x a

F
HG
I
KJ

= −
+F

HG
I

KJ
+ +

+F

HG
I

KJ
L

N
M
M=

−
−

− −1 1
2 2

1
12

1
12 20

2
1

2
0 3

1

4
2

4
1Δ

Δ Δ
Δ

Δ Δ

– 
1

120 60 2
5

2

6
3

6
2Δ

Δ Δ
y

y y
−

− −− 1 +F

HG
I

KJ
+
O

Q
P
P

... (31)
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Differentiating (30) with respect to x, we get

d y
dx

d
dx

dy
dx

2

2 = F
HG
I
KJ

 = 
d

du
dy
dx

du
dx

F
HG
I
KJ

 = 
1

2
2 1

2
6 6 1

122

2
1

2
0 3

1

2

h

y y u
y

u uΔ Δ Δ−
−

+F

H
G

I

K
J + −F
HG

I
KJ

+ − −F

HG
I

KJ
L

N
M
M

 
Δ Δ4 4

1

2
y y–2 +F

HG
I

KJ
−

 + 
4 6 1

24

3 2u u− +F

HG
I

KJ
 Δ5y–2

+ 
15 30 30 45 4

360 2

4 3 2 6
3

6
2u u u u y y− − + +F

HG
I

KJ
+F

HG
I

KJ
+
O

Q
P
P

− −Δ Δ
... (32)

Given u = 0 in (32), we get

d y
dx h

y y
y

y y

x a

2

2 2

2
1

2
0 3

1

4
2

4
11

2 2
1

12 2

F

HG
I

KJ
=

+F

HG
I

KJ
− 1 −

+F

HG
I

KJ
L

N
M
M=

−
−

− −Δ Δ
Δ

Δ Δ

+ 
1

24
1

90 2
5

2

6
3

6
2Δ Δ Δ

y
y y

−
− −+ +F

HG
I

KJ
+
O

Q
P
P

... (33)

and so on.
(5) For unequally spaced values of the argument

(i) Newton’s divided difference formula is

f(x) = f(x0) + (x – x0) f(x0) + (x – x0)(x – x1) 2f(x0) + (x – x0)(x – x1)

(x – x2) 3f(x0) + (x – x0)(x – x1) (x – x2)(x – x3) 
4f(x0) + ... (34)

f ′(x) is given by

f ′(x) = f(x0) + {2x – (x0 + x1)} 2f(x0) + {3x2 – 2x(x0 + x1 + x2)

+ (x0x1 + x1x2 + x2x0)} 
3f(x0) + ... (35)

(ii) Lagrange’s interpolation formula is

 f(x) = 
( )( ) ... ( )

( )( ) ... ( )
x x x x x x

x x x x x x
n

n

− − −
− − −

1 2

0 1 0 2 0
 f(x0)

+ 
( )( ) ... ( )

( )( ) ... ( )
x x x x x x

x x x x x x
n

n

− − −
− − −

0 2

1 0 1 2 1
 f(x1) + ... (36)

f ′(x) can be obtained by differentiating f(x) in eqn. (36).
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1. Formula (8) can be extended as

d y

dx

1

h

11
12

5
6

137
180

7
10

363
560

...

2

2
x a

2

2 3 4 5

6 7 8

F

HG
I

KJ
=

− + −

+ − + +

F

H

G
G
G

I

K

J
J
J=

Δ Δ Δ Δ

Δ Δ Δ
 y0

2. Formula (17) can be extended as

d y

dx

1

h

11
12

5
6

137
180

7
10

363
560

...

2

2
x x

2

2 3 4 5 6

7 8
n

F

HG
I

KJ
=

∇ + ∇ + ∇ + ∇ + ∇

+ ∇ + ∇ +

F

H

G
G
G

I

K

J
J
J=

 yn.

5.4 MAXIMA AND MINIMA OF A TABULATED FUNCTION

Since maxima and minima of y = f(x) can be found by equating 
dy
dx

 to zero and

solving the equation for the argument x, the same method can be used to
determine maxima and minima of tabulated function by differentiating the
interpolating polynomial.

For example, if Newton’s forward difference formula is used, we have

y = y0 + u Δy0 + 
u u

y
u u u( )

!
( )( )

!
− + − −1

2
1 2
3

2
0Δ  Δ3y0 + ... (37)

Differentiating (37) with respect to u, we get

dy
du

y
u

y
u u= + − + − +Δ Δ0

2
0

22 1
2

3 6 2
3! !

 Δ3y0 + ...

For maxima or minima,

  
dy
du

 = 0

⇒ Δy0 + 
2 1

2
3 6 2

3
2

0

2u
y

u u− + − +
! !

Δ  Δ3y0 + ... = 0 (38)

If we terminate L.H.S. series after third differences for convenience, eqn.
(38) being a quadratic in u gives two values of u.

Corresponding to these values, x = a + uh will give the corresponding x at
which function may be maximum or minimum.

NOTE
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For maximum, d y
du

2

2
 = (–)ve

For minimum, d y
du

2

2
 = (+)ve.

EXAMPLES

Example 1. Find 
dy
dx

 at x = 0.1 from the following table:

x: 0.1 0.2 0.3 0.4
y: 0.9975 0.9900 0.9776 0.9604.

Sol. Take a = 0.1. The difference table is:

x y Δy Δ2y Δ3y

0.1 0.9975
– 0.0075

0.2 0.9900 – 0.0049
– 0.0124 0.0001

0.3 0.9776 – 0.0048
– 0.0172

0.4 0.9604

Here h = 0.1 and y0 = 0.9975

  
dy
dx h

y y y
x

L

NM
O

QP
= − +L

NM
O

QP= 0.1
0

2
0

3
0

1 1
2

1
3

Δ Δ Δ

= 
1

0
0 0075

1
2

0 0049
1
3

0 0001
.1

− − − +L

NM
O

QP
. ( . ) ( . )

= – 0.050167.

Example 2. The table given below reveals the velocity ‘v’ of a body during the
time ‘t’ specified. Find its acceleration at t = 1.1.

t: 1.0 1.1 1.2 1.3 1.4

v: 43.1 47.7 52.1 56.4 60.8.
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Sol. The difference table is:

t v Δv Δ2v Δ3v Δ4v

1.0 43.1
4.6

1.1 47.7 – 0.2
4.4 0.1

1.2 52.1 – 0.1 0.1
4.3 0.2

1.3 56.4 0.1
4.4

1.4 60.8

Let   a = 1.1,

∴  v0 = 47.7 and h = 0.1

Acceleration at t = 1.1 is given by

dv
dt h

v v v
t

L

NM
O

QP
= − +L

NM
O

QP
= − − +L

NM
O

QP= 1.1

1
0.1

4.4
1
2

( 0.1)
1
3

(0.2)
1 1

2
1
30

2
0

3
0Δ Δ Δ

= 45.1667

Hence the required acceleration is 45.1667.

Example 3. Find f ′(1.1) and f ″(1.1) from the following table:

  x: 1.0 1.2 1.4 1.6 1.8 2.0

f(x): 0.0 0.1280 0.5540 1.2960 2.4320 4.000.

Sol. Since we are to find f ′(x) and f ″(x) for non-tabular value of x, we proceed
as follows:

Newton’s forward difference formula is

y = y0 + u Δy0 + 
u u

y
u u u( )

!
( )( )

!
− + − −1

2
1 2
3

2
0Δ  Δ3y0

+ 
u u u u( )( )( )

!
− − −1 2 3

4
 Δ4y0 + ...        (39)

where  u = 
x a

h
−

(40)
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Differentiating eqn. (39) with respect to u, we get

 dy
du

y
u

y
u u= + −F

HG
I
KJ

+ − +F

HG
I

KJ
Δ Δ0

2
0

22 1
2

3 6 2
6

 Δ3y0

  + 
2 9 11 3

12

3 2u u u− + −F

HG
I

KJ
 Δ4y0 + ... (41)

Differentiating eqn. (40) with respect to x

 
du
dx h

= 1
(42)

∴ dy
dx

dy
du

du
dx

= .

= 
1 2 1

2
3 6 2

60
2

0

2

h
y

u
y

u uΔ Δ+ −F
HG

I
KJ

+ − +F

HG
I

KJ
L

N
M
M

Δ3
0y

+ − + −F

HG
I

KJ
+
O

Q
P
P

2 9 11 3
12

3 2
4

0
u u u

yΔ ... (43)

Also, at x = 1.1, u = 
1.1 1.0

0.2
− = 1

2
Here 1.0

and 0.2
a
h

=
=

The forward difference table is as follows:

x f(x) = y Δy Δ2y Δ3y Δ4y Δ5y

1.0 0.0

0.1280

1.2 0.1280 0.298

0.4260 0.018

1.4 0.5540 0.316 0.06

0.7420 0.078 – 0.1

1.6 1.2960 0.394 – 0.04

1.1360 0.038

1.8 2.4320 0.432

1.5680

2.0 4.000
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From eqn. (43),

  
dy
dx h

y
u

y
u u

y= +
−F

HG
I
KJ

+
− +F

H
G

I

K
J

L

N
M
M

1 2 1
2

3 6 2
60

2
0

2
3

0Δ Δ Δ

+ − + −F

H
G

I

K
J

2 9 11 3
12

3 2u u u
 Δ4y0

+ 
5 40 105 100 24

120

4 3 2
5

0
u u u u

y
− + − +F

HG
I

KJ
+
O

Q
P
P

Δ ... (44)

At x = 1.1, we get

f ′(1.1) = 
dy
dx x

F
HG
I
KJ =1.1

 = 
1

0.2
 

L

N

M
M
M0.1280 + 

2
1
2

1

2

F
HG
I
KJ

−R
S
|

T|

U
V
|

W|
 (0.298)

+ 

3
1
2

6
1
2

2

6

2
F
HG
I
KJ

− F
HG
I
KJ

+
R

S
|

T
|

U

V
|

W
| (0.018) + 

2
1
2

9
1
2

11
1
2

3

12

3 2
F
HG
I
KJ

− F
HG
I
KJ

+ F
HG
I
KJ

−
R

S
|

T
|

U

V
|

W
| (.06)

+ 

5
1
2

40
1
2

105
1
2

100
1
2

24

120

4 3 2
F
HG
I
KJ

− F
HG
I
KJ

+ F
HG
I
KJ

− F
HG
I
KJ

+
R

S
|

T
|

U

V
|

W
| (– 0.1)

O

Q

P
P
P

= 0.66724.

Differentiating eqn. (44), with respect to x, we get

d y
dx

d
du

dy
du

du
dx

2

2 = F
HG
I
KJ

 = 
1

1
6 18 11

122
2

0
3

0

2
4

0h
y u y

u u
yΔ Δ Δ+ − + − +F

HG
I

KJ
L

N
M
M

( )

+ 
2 12 21 10

12

3 2
5

0
u u u

y
− + −F

HG
I

KJ
+
O

Q
P
P

Δ ...
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At x = 1.1, we get

f ″(1.1) = 
d y

dx x

2

2

F

HG
I

KJ =1.1

 =
1

2( )0.2  

L

N

M
M
M0.298 + 

1
2

1−F
HG

I
KJ  (0.018) + 

6
1
2

18
1
2

11

12

2
F
HG
I
KJ

− F
HG
I
KJ

+
R

S
|

T
|

U

V
|

W
|  (0.06)

+ 
2

1
2

12
1
2

21
1
2

10

12

3 2
F
HG
I
KJ

− F
HG
I
KJ

+ F
HG
I
KJ

−
R

S
|

T
|

U

V
|

W
| (– 0.1)

O

Q

P
P
P

 = 8.13125.

Example 4. The distance covered by an athlete for the 50 meter race is given in
the following table:

Time (sec): 0 1 2 3 4 5 6

Distance (meter): 0 2.5 8.5 15.5 24.5 36.5 50

Determine the speed of the athlete at t = 5 sec., correct to two decimals.
Sol. Here we are to find derivative at t = 5 which is near the end of the table,
hence we shall use the formula obtained from Newton’s backward difference
formula. The backward difference table is as follows:

t s ∇s ∇2s ∇3s ∇4s ∇5s ∇6s

0 0

2.5

1 2.5 3.5

6 – 2.5

2 8.5 1 3.5

7 1 – 3.5

3 15.5 2 0 1

9 1 – 2.5

4 24.5 3 – 2.5

12 – 1.5

5 36.5 1.5

13.5

6 50
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The speed of the athlete at t = 5 sec is given by

  
ds
dt h

s s s s s
t

F
HG
I
KJ

= ∇ + ∇ + ∇ + ∇ + ∇L
NM

O
QP=5

5
2

5
3

5
4

5
5

5
1 1

2
1
3

1
4

1
5

= 
1
1

12
1
2

3
1
3

1
1
4

0
1
5

+ + + + −L

NM
O

QP
( ) ( ) ( ) ( )3.5

= 13.1333 ≈ 13.13 metre/sec.

Example 5. Find 
dy
dx

 and d y
dx

2

2
 at x = 6, given that

x: 4.5 5.0 5.5 6.0 6.5 7.0 7.5

y: 9.69 12.90 16.71 21.18 26.37 32.34 39.15.

Sol. Here a = 6.0 ∴ y0 = 21.18 and h = 0.5

The forward difference table is:

x y Δy Δ2y Δ3y Δ4y

4.5 9.69
3.21

5.0 12.9 0.60
3.81 0.06

5.5 16.71 0.66 0
4.47 0.06

6.0 21.18 0.72 0
5.19 0.06

6.5 26.37 0.78 0
5.97 0.06

7.0 32.34 0.84
6.81

7.5 39.15

We know that

dy
dx h

y y y
x

L
NM
O
QP

= − +F
HG

I
KJ= 6

0
2

0
3

0
1 1

2
1
3

Δ Δ Δ

= 
1

0.5
5.19

1
2

(0.78)
1
3

(0.06)− +L

NM
O

QP
 = 9.64
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and     
d y

dx h
y y y

x

2

2
6

2
2

0
3

0
4

0
1 11

12

L

N
M

O

Q
P = − +L

NM
O

QP=

Δ Δ Δ

= 
1

0.25
 [0.78 – 0.06] = 4(0.72) = 2.88.

Example 6. From the following table of values of x and y, obtain 
dy
dx

 and d y
dx

2

2

for x = 1.2, 2.2 and 1.6

x: 1.0 1.2 1.4 1.6 1.8 2.0 2.2

y: 2.7183 3.3201 4.0552 4.9530 6.0496 7.3891 9.0250.

Sol. The forward difference table is:

x y Δy Δ2y Δ3y Δ4y Δ5y Δ6y

1.0 2.7183
0.6018

1.2 3.3201 0.1333
0.7351 0.0294

1.4 4.0552 0.1627 0.0067
0.8978 0.0361 0.0013

1.6 4.9530 0.1988 0.0080 0.0001
1.0966 0.0441 0.0014

1.8 6.0496 0.2429 0.0094
1.3395 0.0535

2.0 7.3891 0.2964
1.6359

2.2 9.0250

(i) Here  a = 1.2
∴ y0 = 3.3201; h = 0.2

 
dy
dx x

L

NM
O

QP
= − + − +L

NM
O

QP= 1.2

1
0.2

0.7351
1
2

(0.1627)
1
3

(0.0361)
1
4

(0.008)
1
5

(0.0014)

= 3.3205

d y
dx x

2

2
1

2
1

0

L

N
M

O

Q
P = − + −L

NM
O

QP= .2 ( ).2
0.1627 0.0361

11
12

(0.0080)
5
6

(0.0014)

= 3.318
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(ii) Here      a = 2.2,
∴  yn = 9.02 and h = 0.2

dy
dx x

L

N
M
O

Q
P = + +L

N
M

= 2 2.

1
0.2

1.6359
1
2

(0.2964)
1
3

(0.0535) + + O

Q
P

1
4

(0.0094)
1
5

(0.0014)

= 9.0228

d y
dx x

2

2
1L

N
M

O

Q
P = + + +L

NM
O

QP= 2.2
0.04

0.2964 0.0535
11
12

(0.0094)
5
6

(0.0014)

= 8.992.

(iii) Here  a = 1.6

∴  y0 = 4.9530, y–1 = 4.0552

y–2 = 3.3201, y–3 = 2.7183 and h = 0.2

By using  Stirling’s formula for derivatives, we get

dy
dx x

L
NM
O
QP

= +F
HG

I
KJ

− +F
HG

I
KJ

L

N
M

= 1.6

1
0.2

1.0966 0.8978
2

1
6

0.0441 0.0361
2

+
+F

HG
I
KJ
O

Q
P

1
30

0.0014 0.0013
2

= 4.9530

and 
d y
dx x

2

2

L

N
M

O

Q
P = − +L

NM
O

QP= 1.6

1
0.04

0.1988
1

12
(.0080)

1
90

(.0001)

= 4.9525.

Example 7. Using Bessel’s formula, find f ′(7.5) from the following table:

x: 7.47 7.48 7.49 7.5 7.51 7.52 7.53

f(x): 0.193 0.195 0.198 0.201 0.203 0.206 0.208.
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Sol. The difference table is:

x y Δy Δ2y Δ3y Δ4y Δ5y Δ6y

7.47 0.193
0.002

7.48 0.195 0.001
0.003 – 0.001

7.49 0.198 0.000 0.000
0.003 – 0.001 0.003

7.50 0.201 – 0.001 0.003 – 0.01
0.002 0.002 – 0.007

7.51 0.203 0.001 – 0.004
0.003 – 0.002

7.52 0.206 – 0.001
0.002

7.53 0.208

Let a = 7.5, h = 0.01

f ′(7.5) = dy
dx

y
y y

y
x

F
HG
I
KJ

= −
+F

HG
I

KJ
+

L

N
M
M=

−
−

7.5 0.01
1 1

2 2
1

120

2
1

2
0 3

1Δ
Δ Δ

Δ

+ 
1

12 2
1

120
1

60 2

4
2

4
1 5

2

6
3

6
2Δ Δ

Δ
Δ Δy y

y
y y− −

−
− −+F

HG
I

KJ
− −

+F

HG
I

KJ
+
O

Q
P
P

...

= 
1 1

2 2
1

12
1

120.01
.002

.001 .001
0.002( ) ( )−

− +R
S
T

U
V
W

+ +
L

N
M

.003 .004
0.007

.01
2

+ −R
S
T

U
V
W

− − −
−F
HG

I
KJ
O

Q
P

( )
( )

2
1

120
1

60

= 0.226667.

Example 8. A rod is rotating in a plane. The following table gives the angle θ
(in radians) through which the rod has turned for various values of time t (in
seconds)

t: 0 0.2 0.4 0.6 0.8 1.0 1.2

θ: 0 0.12 0.49 1.12 2.02 3.20 4.67.

Calculate the angular velocity and angular acceleration of the rod at
t = 0.6 sec.
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Sol. The forward difference table is:

t θ Δθ Δ2θ Δ3θ Δ4θ

0 0
0.12

0.2 0.12 0.25
0.37 0.01

0.4 0.49 0.26 0
0.63 0.01

0.6 1.12 0.27 0
0.9 0.01

0.8 2.02 0.28 0
1.18 0.01

1.0 3.20 0.29
1.47

1.2 4.67

Here a = 0.6

∴ θ0 = 1.12 and h = 0.2

Since the goal is to find derivatives at t = 0.6 sec, which is in the middle of
the table, use the formula obtained from Stirling’s or Bessel’s central difference
formula.

Choose the formula obtained from Bessel’s central difference formula.
Angular velocity at t = 0.6 sec is given by

d
dt ht

θ θ θ
θF

HG
I
KJ

= −
+F

HG
I

KJ
+

L

N
M
M

O

Q
P
P=

−
−

0.6

1 1
2 2

1
120

2
1

2
0 3

1Δθ
Δ Δ

Δ

= 
1 1

2 2
1

120.2
0.9

0.27 0.28
0.01−

+F
HG

I
KJ

+
L

N
M

O

Q
P( )

= 3.81667 rad./sec.

Angular acceleration at t = 0.6 sec is given by

 
d
dt ht

2

2 2

2
1

2
0 3

1
1

2
1
2

θ θ θ
θ

F

HG
I

KJ
=

+F

HG
I

KJ
−

L

N
M
M

O

Q
P
P=

−
−

0.6

Δ Δ
Δ

= 
1

2
1
22( )

( )
0.2

0.27 0.28
0.01

+F
HG

I
KJ

−
L

N
M

O

Q
P

= 6.75 rad./sec2.
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In case we choose the formula obtained from Stirling’s formula,
at t = 0.6 sec.,

angular velocity    d
dt

1
h 2

1
6 2

0 1
3

1
3

2θ θ θF
HG
I
KJ

=
+F

HG
I
KJ

−
+F

H
G

I

K
J

L

N
M
M

O

Q
P
P

− − −Δθ Δθ Δ Δ

= 
1

0.2
.9 + .63

2
1
6

.01 .01
2

F
HG

I
KJ

− +F
HG

I
KJ

L

N
M

O

Q
P

= 3.81667 rad./sec.

and angular acceleration d

dt

1

h

1

(0.2)

2

2 2
2

1 2

θ θ
F

HG
I

KJ
= =−( )Δ  (0.27)

= 6.75 rad./sec2.

Example 9. The table below gives the result of an observation. θ is the observed
temperature in degrees centigrade of a vessel of cooling water, t is the time in
minutes from the beginning of observations:

t: 1 3 5 7 9

θ: 85.3 74.5 67.0 60.5 54.3

Find the approximate rate of cooling at t = 3 and 3.5.
Sol. The forward difference table is:

t θ Δθ Δ2θ Δ3θ Δ4θ

1 85.3
– 10.8

3 74.5 3.3
– 7.5 – 2.3

5 67.0 1.0 1.6
– 6.5 – 0.7

7 60.5 0.3
– 6.2

9 54.3

(i) When t = 3, θ0 = 74.5
Here h = 2

Rate of cooling = 
d
dt

θ

NOTE
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∴
d
dt ht

θ θ θ θF
HG
I
KJ

= − + −L
NM

O
QP=3

0
2

0
3

0
4

0
1 1

2
1
3

1
4

Δθ Δ Δ Δ

= 
1
2

1
1
3

− − + −L

NM
O

QP
7.5

1
2

0.7( ) ( )

= – 4.11667°C/min.

(ii) t = 3.5 is the non-tabular value of t so, we have from Newton’s forward
difference formula,

 
dy
dx h

y
u

y
u u

y= + −F
HG

I
KJ

+ − +F

HG
I

KJ
L

N
M
M

1 2 1
2

3 6 2
60

2
0

2
3

0Δ Δ Δ

+ 
2 9 11 3

12

3 2
4

0
u u u

y
− + −F

HG
I

KJ
+
O

Q
P
P

Δ ...

Here,
d
dt h

u u uθ θ θ= + −F
HG

I
KJ

+ − +F

HG
I

KJ
L

N
M
M

1 2 1
2

3 6 2
60

2
0

2
3

0Δθ Δ Δ

+ 
2 9 11 3

12

3 2
4

0
u u u− + −F

HG
I

KJ
+
O

Q
P
P

Δ θ ... (45)

At t = 3.5, u = 
3.5 3.0 0.5− =

2 2
 = 0.25 | Here a = 3.0 and h = 2

From (45),

d
dt t

θF
HG
I
KJ

= − + −R
S
T

U
V
W

+ − +R
S
T

U
V
W

−
L

N
M
M

O

Q
P
P=3.5

.25 .25 .25
.7

1
2

7 5
2 1

2
1

3 6 2
6

2

.
( )

( )
( ) ( )

( )

= – 3.9151°C/min.

Example 10. Find x for which y is maximum and find this value of y

x: 1.2 1.3 1.4 1.5 1.6

y: 0.9320 0.9636 0.9855 0.9975 0.9996.
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Sol. The difference table is as follows:

x y Δ Δ2 Δ3 Δ4

1.2 0.9320
0.0316

1.3 0.9636 – 0.0097
0.0219 – 0.0002

1.4 0.9855 – 0.0099 0.0002
0.0120 0

1.5 0.9975 – 0.0099
0.0021

1.6 0.9996

Let y0 = 0.9320 and a = 1.2

By Newton’s forward difference formula,

y = y0 + u Δy0 + 
u u

y
( )

...
− +1

2
2

0Δ

= 0.9320 + 0.0316 u + 
u u( )

(– )
− 1

2
0.0097  | Neglecting higher

differences

dy
du

u= + −F
HG

I
KJ

−0.0316 0.0097
2 1

2
( )

At a maximum,
dy
du

 = 0

⇒ 0.0316 = u −F
HG

I
KJ

1
2

 (0.0097) ⇒ u = 3.76

∴ x = a + hu = 1.2 + (0.1) (3.76) = 1.576

To find ymax., we use the backward difference formula,

 x = xn + hu

⇒ 1.576 = 1.6 + (0.1)u ⇒ u = – 0.24

y(1.576) = yn + u ∇yn + 
u u

y
u u u

yn n
( )

!
( )( )

!
+ ∇ + + + ∇1

2
1 2
3

2 3
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= 0.9996 – (0.24 × 0.0021) + 
( 0.24)(1 0.24)

2
− −

 (– 0.0099)

= 0.9999988 = 0.9999 nearly

∴ Maximum y = 0.9999 approximately.

Example 11. Assuming Bessel’s interpolation formula, prove that

d
dx

(y ) y
1
24

yx x 1/2
3

x 3/2= −− −Δ Δ  + ...

Sol. Bessel’s formula is

 yx = 
y y

x y
x x y y0 1

0

2
1

2
0

2
1
2

1
2 2

+F
HG

I
KJ

+ −F
HG

I
KJ

+ − +F

HG
I

KJ
−Δ

Δ Δ( )
!

+ 
x x x( )

!

− −F
HG

I
KJ

1
1
2

3
 Δ3y–1 + ... (46)

Replacing x by x + 
1
2

, we get

 yx+1/2 = 
y y

x y
x x

0 1
02

1
2

1
2

2
+F

HG
I
KJ

+ +
+F

HG
I
KJ

−F
HG

I
KJ

Δ
!

 
Δ Δ2

1
2

0

2
y y− +F

HG
I

KJ

+
+F

HG
I
KJ

−F
HG

I
KJ

−

x x x
y

1
2

1
2

3
3

1!
Δ  + ... (47)

Differentiating (47) with respect to x, we get

d
dx

y y
x y y

x( )
!+

−= + +F

HG
I

KJ
1/2 0

2
1

2
02

2 2
Δ Δ Δ

 + 
3

1
4

3

2x −F

H
G
G

I

K
J
J!

 Δ3y–1 + ...

Given x = 0, we get

d
dx

y yx( )+ = −1/2 0
1

24
Δ  Δ3y–1 + ...

Shifting the origin from x = 0 to x – 
1
2

, we get

d
dx

y y yx x x( ) /= −− −Δ Δ1/2
3

3 2
1

24
 + ...
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Example 12. Find f ″′(5) from the data given below:

x: 2 4 9 13 16 21 29

f(x): 57 1345 66340 402052 1118209 4287844 21242820

Sol. In this case, the values of argument x are not equally spaced and therefore
we shall apply Newton’s divided difference formula.

f(x) = f(x0) + (x – x0)  f(x0) + (x – x0)(x – x1) 2f(x0)

+ (x – x0)(x – x1)(x – x2) 3f(x0)

+ (x – x0) (x – x1)(x – x2)(x – x3) 
4f(x0) + ...  (48)

Newton’s divided difference table is as follows:

x f(x) f(x) 2 f(x) 3 f(x) 4 f(x) 5 f(x) 6 f(x)

2 57
644

4 1345 1765
12999 556

9 66340 7881 45
83928 1186 1

13 402052 22113 64 0
238719 2274 1

16 1118209 49401 89
633927 4054

21 4287844 114265
2119372

29 21242820

Substituting values in eqn. (48), we get

f(x) = 57 + (x – 2)(644) + (x – 2)(x – 4)(1765)

+ (x – 2)(x – 4)(x – 9)(556)

+ (x – 2)(x – 4)(x – 9)(x – 13)(45)

+ (x – 2)(x – 4)(x – 9)(x – 13)(x – 16)(1)

= 57 + 644(x – 2) + 1765(x2 – 6x + 8)

+ 556(x3 – 15x2 + 62x – 72)

+ 45(x4 – 28x3 + 257x2 – 878x + 936)

+ x5 – 44x4 + 705x3 – 4990x2 + 14984x – 14976
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f ′(x) = 644 + 1765(2x – 6) + 556(3x2 – 30x + 62)

+ 45(4x3 – 84x2 + 514x – 878)

+ 5x4 – 176x3 + 2115x2 – 9980x + 14984

f ″(x) = 3530 + 556(6x – 30) + 45(12x2 – 168x + 514)

+ 20x3 – 528x2 + 4230x – 9980

f ″′(x) = 3336 + 45(24x – 168) + 60x2 – 1056x + 4230

= 60x2 + 24x + 6

where x = 5,

f ″′ (5) = 60(5)2 + 24(5) + 6 = 1626

Example 13. Find f ′(4) from the following data:

x: 0 2 5 1

f(x): 0 8 125 1.

Sol. Though this problem can be solved by Newton’s divided difference formula,
we are giving here, as an alternative, Lagrange’s method. Lagrange’s
polynomial, in this case, is given by

 f(x) = 
( )( )( )
( )( )( )

( )
( )( )( )
( )( )( )

x x x x x x− − −
− − −

+ − − −
− − −

2 5 1
0 2 0 5 0 1

0
0 5 1

2 0 2 5 2 1
 (8)

+ 
( )( )( )
( )( )( )

( )
( )( )( )
( )( )( )

x x x x x x− − −
− − −

+ − − −
− − −

0 2 1
5 0 5 2 5 1

125
0 2 5

1 0 1 2 1 5
 (1)

= – 
4
3

 (x3 – 6x2 + 5x) + 
25
12

 (x3 – 3x2 + 2x) + 
1
4

 (x3 – 7x2 + 10x)

= x3

∴ f ′(x) = 3x2

when x = 4, f ′(4) = 3(4)2 = 48

Example 14. State the three different finite difference approximations to the
first derivative f ′(x0) together with the order of their truncation errors.

Derive the forward difference approximation and its leading error term.

Sol. (i) Newton’s forward difference approximation is given by

 f(x) = f0 + u Δf0 + 
u u( )− 1

2
 Δ2f0

where u = 
x x

h
− 0 and E = 

1
6

 u(u – 1) (u – 2) h3 f ′″(ξ)
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We have, f ′(x) = 
df
du

du
dx

.

= 
1
h

 Δ Δf u f0
2

0
1
2

2 1+ −L

NM
O

QP
( )

and  | E′(x0) | = | E′(u = 0) | ≤ 
h2

3
 M3

where  M3 = max| ( )|′′′
≤ ≤

f x
x x x0 2

(ii) Newton’s backward difference approximation is given by

 f(x) = f2 + u ∇f2 + 
1
2

 u(u + 1) ∇2 f2

where u = 
x x

h
− 2 and E = 

1
6

 u (u + 1) (u + 2) h3 f ′″(ξ)

We have, f ′(x) = 
1 1

2
2 12

2
2h

f u f∇ + + ∇L

NM
O

QP
( )

and  | E′(x2) | = | E′ (u = 0) | ≤ 
h2

3
 M3

(iii) Central difference approximation is given by

f(x) = f0 + 
u
2

 (δf1/2 + δf–1/2)

where   u = 
x x

h
− 0 .

We have   f ′(x) = 
1

2h
(δf1/2 + δf–1/2)

= 
1

2h
[(f1 – f0) + (f0 – f–1)]

= 
1

2h
(f1 – f–1)

and | E′(x) | ≤ 
h2

6
 M3.
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ASSIGNMENT 5.1

1. Given that
x: 1.0 1.1 1.2 1.3 1.4 1.5 1.6
y: 7.989 8.403 8.781 9.129 9.451 9.750 10.031

Find 
dy
dx

 and d y

dx

2

2
 at

(i) x = 1.1 (ii) x = 1.6.
2. Find first and second derivatives of the function tabulated below at x = 0.6

x: 0.4 0.5 0.6 0.7 0.8
y: 1.5836 1.7974 2.0442 2.3275 2.6511.

3. Find y′(0) and y″(0) from the given table:
x: 0 1 2 3 4 5
y: 4 8 15 7 6 2

4. Find y′(1.5) and y″(1.5) from the following table:
x: 1.5 2.0 2.5 3 3.5 4

f(x): 3.375 7 13.625 24 38.875 59.
5. Given the following table of values of x and y:

x: 1 1.05 1.1 1.15 1.2 1.25 1.30
y: 1 1.0247 1.0488 1.0723 1.0954 1.1180 1.1401

Find 
dy
dx

 and d y

dx

2

2
 at

(i) x = 1 (ii) x = 1.25 (iii) x = 1.15.
6. Find y′(4) from the given table:

x: 1 2 4 8 10
y: 0 1 5 21 27.

7. Find the numerical value of y′(10°) for y = sin x given that:
  sin 0° = 0.000, sin 10° = 0.1736,
sin 20° = 0.3420, sin 30° = 0.5000, sin 40° = 0.6428.

8. Find 
d
dx

( )J0  at x = 0.1 from the following table:

x: 0.0 0.1 0.2 0.3 0.4
J0(x): 1 0.9975 0.99 0.9776 0.9604.

9. Find the first and second derivatives for the function tabulated below at the point
x = 3.0:
x:  3 3.2 3.4 3.6 3.8 4.0
y: – 14 – 10.032 – 5.296 0.256 6.672 14.

10. (i) A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod
is given below for various values of the time t seconds. Find the velocity of the slider
and its acceleration when t = 0.3 second.
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t: 0 0.1 0.2 0.3 0.4 0.5 0.6
x: 30.13 31.62 32.87 33.64 33.95 33.81 33.24.

(ii) A slider in a machine moves along a fixed straight rod. Its distance x(in cm) along
the rod is given at various times t (in secs).
t: 0 0.1 0.2 0.3 0.4 0.5 0.6
x: 30.28 31.43 32.98 33.54 33.97 33.48 32.13

Evaluate
dx
dt

 at t = .1 and at t = .5.

11. Using Newton’s divided difference formula, find f ′(10) from the following data:

  x:   3 5 11 27 34

f(x): – 13 23 899 17315 35606

12. From the table below, for what value of x, y is minimum? Also find this value of y

x: 3 4 5 6 7 8

y: 0.205 0.240 0.259 0.262 0.250 0.224.

13. Given the following table of values, find f ′(8):

  x: 6 7 9 12

f(x): 1.556 1.690 1.908 2.158.

14. Find the minimum value of y from the following table:

x: 0.2 0.3 0.4 0.5 0.6 0.7

y: 0.9182 0.8975 0.8873 0.8862 0.8935 0.9086

15. Prove that

d
dx

y
hx( ) = 1  (yx+h – yx–h) – 

1
2h

 (yx+2h – yx–2h) + 
1

3h
 (yx+3h – yx–3h) – ...

Hint: R.H.S. =
1 E

1 E
E D1

1 1
h

y
h

y yx x xlog log ( )
+

+

F

HG
I

KJ
= F
HG

I
KJ

=
L

N
M
M

O

Q
P
P−

16. Find f ′(6) from the following table:

  x: 0 1 3 4 5 7 9

f(x): 150 108 0 – 54 – 100 – 144 – 84

17. Take 10 figure logarithm to base 10 from x = 300 to x = 310 by unit increments. Calculate
the first derivative of log10 x when x = 310.

18. Given the following table:

x: 1 1.05 1.1 1.15 1.2 1.25 1.3

f(x) = x : 1 1.0247 1.04881 1.07238 1.09544 1.11803 1.14014

Apply the above results to find f ′(1), f ″(1) and f ″′(1).

19. The following table gives values of pressure P and specific volume V of saturated steam:

P: 105 42.7 25.3 16.7 13

V: 2 4 6 8 10
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Find

(a) the rate of change of pressure with respect to volume at V = 2

(b) the rate of change of volume with respect to pressure at P = 105.

20. y is a function of x satisfying the equation xy″ + ay′ + (x – b) y = 0, where a and b are
integers. Find the values of constants a and b if y is given by the following table:

x: 0.8 1 1.2 1.4 1.6 1.8 2 2.2

y: 1.73036 1.95532 2.19756 2.45693 2.73309 3.02549 2.3333 3.65563.

5.5 ERRORS IN NUMERICAL DIFFERENTIATION

In numerical differentiation, the error in the higher order derivatives occurs
due to the fact that, although the tabulated function and its approximating
polynomial would agree at the set of data points, their slopes at these points
may vary considerably. Numerical differentiation is, therefore, an unsatisfactory
process and should be used only in rare cases.

The numerical computation of derivatives involves two types of errors:
truncation errors and rounding errors.

The truncation error is caused by replacing the tabulated function by means
of an interpolating polynomial.

The truncation error in the first derivative = 
1

6 2

3
2

3
1

h
y yΔ Δ− −+

.

The truncation error in the second derivative = 
1

12 2
4

2
h

y| |Δ − .

The rounding error is proportional to 
1
h

 in the case of the first derivatives,

while it is proportional to 1
2h

 in the case of the second derivatives, and so on.

The maximum rounding error in the first derivative = 
3
2

ε
h

The maximum rounding error in the second derivative = 
4

2
ε

h
where ε is the maximum error in the value of yi.

Example. Assuming that the table of values given in Example 6 and the function

values are correct to the accuracy given, estimate the errors in 
dy
dx

 at x = 1.6.
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Sol. Since the values are correct to four decimals, it follows that
ε = 0.5 × 10–4

Truncation error = 
1

6 2
1

2

3
1

3
0

h
y yΔ Δ− + = +F

HG
I
KJ1.2

0.0361 0.0441

| See difference table in Example 6
= 0.03342

Rounding error = 
3
2

ε
h

= × ×
×

−3 0.5 10
2 0.2

4

 = 0.00038.

5.6 NUMERICAL INTEGRATION

Given a set of tabulated values of the integrand f(x), determining the value of

x

xn
f x dx

0
z ( )  is called numerical integration. The given interval of integration is

subdivided into a large number of subintervals of equal width h and the function
tabulated at the points of subdivision is replaced by any one of the interpolating
polynomials like Newton-Gregory’s, Stirling’s, Bessel’s over each of the
subintervals and the integral is evaluated. There are several formulae for
numerical integration which we shall derive in the sequel.

Y

O x0

y0 y1 y2 yn

x + h0 x + 2h0 x + nh0

X

y = f(x)

5.7 NEWTON-COTE’S QUADRATURE FORMULA

Let I = y dx
a

b

z , where y takes the values y0, y1, y2, ......., yn for x = x0, x1, x2, ......, xn.
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Let the interval of integration (a, b) be divided into n equal sub-intervals,

each of width h = 
b a

n
−

 so that

x0 = a, x1 = x0 + h, x2 = x0 + 2h, ......., xn = x0 + nh = b.

∴ I = f x dx
x

x nh
( )

0

0 +

z

Since any x is given by x = x0 + rh and dx = hdr

∴ I = h f x rh dr
n

( )0
0

+z

= h y r y
r r

y
r r r

y dr
n

0 0
2

0
3

0
0

1
2

1 2
3

+ +
−

+
− −

+
L

N
M

O

Q
Pz Δ Δ Δ

( )
!

( )( )
!

.......

[by Newton’s forward interpolation formula]

= h ry
r

y
r r

y0

2

0

3 2
2

02
1
2 3 2

+ + −
F

HG
I

KJ
L

N
M
M

Δ Δ

+ − +
F

HG
I

KJ
+

O

Q
P
P

1
6 4

4
3 2 3

0

0

r
r r y

n

Δ .......

= nh y
n

y
n n

y
n n

y0 0
2

0

2
3

02
2 3
12

2
24

+ + − + − +
L

N
M

O

Q
PΔ Δ Δ( ) ( )

........ (49)

This is a general quadrature formula and is known as Newton-Cote’s
quadrature formula. A number of important deductions viz. Trapezoidal rule,
Simpson’s one-third and three-eighth rules, Weddle’s rule can be immediately
deduced by putting n = 1, 2, 3, and 6, respectively, in formula (49).

5.8 TRAPEZOIDAL RULE (n = 1)

Putting n = 1 in formula (49) and taking the curve through (x0, y0) and (x1, y1)
as a polynomial of degree one so that differences of an order higher than one
vanish, we get

 f x dx h y y
h

y y y
h

y y
x

x h
( ) [ ( )] ( )= +F

HG
I
KJ

= + − = +
+

z 0 0 0 1 0 0 1
1
2 2

2
20

0
Δ
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Similarly, for the next sub-interval (x0 + h, x0 + 2h), we get

 f x dx
h

y y
x h

x h
( ) ( ) , ......,= +

+

+

z 2 1 2

2

0

0
 f x dx

h
y yn n

x n h

x nh
( ) ( )

( )
= +−

+ −

+

z 2 1
10

0

Adding the above integrals, we get

 f x dx
h

y y y y yn n
x

x nh
( ) [( ) ( ...... )]= + + + + + −

+

z 2
20 1 2 1

0

0

which is known as Trapezoidal rule. By increasing the number of subintervals,
thereby making h very small, we can improve the accuracy of the value of the
given integral.

5.9 SIMPSON’S ONE-THIRD RULE (n = 2)

Putting n = 2 in formula (49) and taking the curve through (x0, y0), (x1, y1) and
(x2, y2) as a polynomial of degree two so that differences of order higher than
two vanish, we get

f x dx h y y y
x

x h
( ) = + +L

NM
O

QP

+

z 2
1
60 0

2
0

2

0

0
Δ Δ

= 
2
6

6 20 1 0 2 1 0
h

y y y y y y[6 ( ) ( )]+ − + − +

= 
h

y y y
3

40 1 2( )+ +

Similarly,

f x dx
h

x h

x h
( ) =

+

+

z 30

0

2

4
 (y2 + 4y3 + y4), ...... ,

f x dx
h

y y yn n n
x n h

x nh
( ) ( )

( )
= + +− −

+ −

+

z 3
42 1

20

0

Adding the above integrals, we get

 f x dx
h

x

x nh
( ) =

+

z 30

0

 [(y0 + yn) + 4(y1 + y3 + ... + yn–1)

+ 2(y2 + y4 + ... + yn–2)]

which is known as Simpson’s one-third rule.



426 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

While using this formula, the given interval of integration must be
divided into an even number of sub-intervals, since we find the area over
two sub-intervals at a time.

5.10 SIMPSON’S THREE-EIGHTH RULE (n = 3)

Putting  n = 3  in formula (49) and taking the curve through (x0, y0), (x1, y1),
(x2, y2), and (x3, y3) as a polynomial of degree three so that differences of order
higher than three vanish, we get

f x dx h y y y y
x

x h
( ) = + + +F

HG
I
KJ

+

z 3
3
2

3
4

1
80 0

2
0

3
0

3

0

0
Δ Δ Δ

= 
3
8
h

 [8y0 + 12(y1 – y0) + 6(y2 – 2y1 + y0) + (y3 – 3y2 + 3y1 – y0)]

= 
3
8
h

 [y0 + 3y1 + 3y2 + y3]

Similarly, f x dx
h

x h

x h
( ) =

+

+

z
3
80

0

3

6
 [y3 + 3y4 + 3y5 + y6], ...

f x dx
h

x n h

x h
( )

(
=

+ −

+

z
3
80

0

3)

6
 [yn–3 + 3yn–2 + 3yn–1 + yn]

Adding the above integrals, we get

f x dx
h

x

x nh
( ) =

+

z
3
80

0

 [(y0 + yn) + 3(y1 + y2 + y4 + y5

+ ..... + yn–2 + yn–1) + 2(y3 + y6 + ...... + yn–3)]

which is known as Simpson’s three-eighth rule.
While using this formula, the given interval of integration must be

divided into sub-intervals whose number n is a multiple of 3.

5.11 BOOLE’S RULE

Putting n = 4 in formula (49) and neglecting all differences of order higher
than four, we get
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x

x h
f x dx

0

0 4+

z ( )  = h y r y
r r

y
r r r

y0 0
2

0
3

0
0

4 1
2

1 2
3

+ +
−

+
− −L

N
Mz Δ Δ Δ

( )
!

( )( )
!

+
− − − O

Q
P

r r r r
y dr

( )( )( )
!

1 2 3
4

4
0Δ

| By Newton’s forward interpolation formula

  = 4h y
n

y
n n

y
n n

y0 0
2

0

2
3

02
2 3
12

2
24

+ +
−

+
−L

N
M
M

Δ Δ Δ
( ) ( )

+ − + −
F

HG
I

KJ
O

Q
P
P

n n n
n

y4 3 2 4
0

0

4

5
3

2
11

3
3

4
Δ

!

  = 4 2
5
3

3
2

7
900 0

2
0

3
0

4
0h y y y y y+ + + +L

NM
O

QP
Δ Δ Δ Δ

  = 
2
45
h

 (7y0 + 32y1 + 12y2 + 32y3 + 7y4)

Similarly,  f x dx
h

x h

x h
( )

0

0

4

8 2
45+

+

z =  (7y4 + 32y5 + 12y6 + 32y7 + 7y8) and so on.

Adding all these integrals from x0 to x0 + nh, where n is a multiple of 4, we
get

 f x dx
h

x

x nh
( ) =

+

z
2
450

0
 [7y0 + 32y1 + 12y2 + 32y3 + 14y4 + 32 y5

+ 12y6 + 32y7 + 14y8 + ......]

This is known as Boole’s rule.
While  applying  Boole’s  rule,  the  number  of  sub-intervals  should  be

taken as a multiple of 4.

5.12 WEDDLE’S RULE (n = 6)

Putting n = 6 in formula (49) and neglecting all differences of order higher than
six, we get
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x

x h
f x dx h y r y

r r
y

r r r
y

0

0 6

0 0
2

0
3

0
0

6 1
2

1 2
3

+

z z= + +
−

+
− −L

N
M( )

( )
!

( )( )
!

Δ Δ Δ

+ − − − + − − − −r r r r
y

r r r r r
y

( )( )( )
!

( )( )( )( )
!

1 2 3
4

1 2 3 4
5

4
0

5
0Δ Δ

+
− − − − − O

Q
P

r r r r r r
y dr

( )( )( )( )( )
!

1 2 3 4 5
6

6
0Δ

= h ry
r

y
r r

y
r

r r y0

2

0

3 2
2

0

4
3 2 3

02
1
2 3 2

1
6 4

+ + −
F

HG
I

KJ
+ − +
F

HG
I

KJ
L

N
M
M

Δ Δ Δ

+ − + −
F

HG
I

KJ
1
24 5

3
2
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3

3
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2 4
0
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r yΔ
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F
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1

120 6
2

35
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50
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5
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2 5
0

r
r

r r
r yΔ

+ − + − + −
F
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KJ
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Q
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P

1
720 7

5
2

17
225

4
274

3
60

7 6
5

4 3
2 6

0

0

6
r r

r
r r

r yΔ

= 6h y y y y y0 0
2

0
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4
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2

4
41
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N
M Δ Δ Δ Δ

+ + O

Q
P

11
20

41
840

5
0

6
0Δ Δy y

= 
6
20

20 60 90 80 410 0
2

0
3

0
4

0
h

y y y y y+ + + +
L

N

M
M

Δ Δ Δ Δ

+ + O

Q
P11

41
42

5
0

6
0Δ Δy y

= 
3
10
h

 [20y0 + 60(y1 – y0) + 90(y2 – 2y1 + y0)

+ 80(y3 – 3y2 + 3y1 – y0)
+ 41(y4 – 4y3 + 6y2 – 4y1 + y0)
+ 11 (y5 –5y4 + 10y3 – 10y2 + 5y1 –  y0)
+ (y6 – 6y5 + 15y4 – 20y3

+ 15y2 – 6y1 + y0)] ∵

41
42

1~−L

NM
O

QP
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= 
3
10
h

 [y0 + 5y1 + y2 + 6y3 + y4 + 5y5 + y6]

Similarly,

f x dx
h

x h

x h
( ) =

+

+

z
3
100

0

6

12
 [y6 + 5y7 + y8 + 6y9 + y10 + 5y11 + y12]

...................................................................................................

...................................................................................................

  f x dx
h

x n h

x nh
( )

( )
=

+ −

+

z
3
100

0

6
 [yn–6 + 5yn–5 + yn–4 + 6yn–3 + yn–2 + 5yn–1 + yn]

Adding the above integrals, we get

f x dx
h

x

x nh
( ) =

+

z
3
100

0

 [y0 + 5y1 + y2 + 6y3 + y4 + 5y5 + 2y6

+ 5y7 + y8 + 6y9 + y10 + 5y11 + 2y12 + ......]

which is known as Weddle’s rule. Here n must be a multiple of 6.

5.13 ALGORITHM OF TRAPEZOIDAL RULE

Step 01. Start of the program.
Step 02. Input Lower limit a
Step 03. Input Upper Limit b
Step 04. Input number of sub intervals n
Step 05. h=(b-a)/n
Step 06. sum=0
Step 07. sum=fun(a)+fun(b)
Step 08. for i=1; i<n; i++
Step 09. sum +=2*fun(a+i)
Step 10. End Loop i
Step 11. result =sum*h/2;
Step 12. Print Output result
Step 13. End of Program
Step 14. Start of Section fun
Step 15. temp = 1/(1+(x*x))
Step 16. Return temp
Step 17. End of Section fun.
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5.14 FLOW-CHART FOR TRAPEZOIDAL RULE

START

STOP

Define function y(x)

Get values x , x , n0 n

h = (x – x )/nn 0

s = y(x ) + y(xn)0

Loop for i = 1 to n – 1

s + = 2 * y * (x + i * h)0

End loop(i)

t = (h/2) * s

Print ‘‘soln.’’, t
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/* ***********************************************************

5.15 PROGRAM  TO  IMPLEMENT  TRAPEZOIDAL  METHOD  OF

NUMERICAL INTEGRATION

*********************************************************** */

//... HEADER FILES DECLARATION

# include <stdio.h>

# include <conio.h>

# include <math.h>

# include <process.h>

# include <string.h>

//... Function Prototype Declaration

float fun(float);

//... Main Execution Thread

void main()

{

//... Variable Declaration Field

//... Floating Type

float result=1;

float a,b;

float h,sum;

//... Integer Type

int i,j;

int n;

//... Invoke Clear Screen Function

clrscr();

//... Input Section

//... Input Range

printf(“\n\n Enter the range - ”);

printf(“\n\n Lower Limit a - ”);

scanf(“%f” ,&a);
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printf(“\n\n Upper Limit b - ");

scanf(“%f” ,&b);

//... Input Number of subintervals

printf(“\n\n Enter number of subintervals - ”);

scanf(“%d” ,&n);

//... Calculation and Processing Section

h=(b-a)/n;

sum=0;
sum=fun(a)+fun(b);

for(i=1;i<n;i++)

{

sum+=2*fun(a+i);

}

result=sum*h/2;

//... Output Section

printf(“n\n\n\n Value of the integral is %6.4f\t”,result);

//...Invoke User Watch Halt Function

printf(“\n\n\n Press Enter to Exit”);

getch();

}

//... Termination of Main Execution Thread

//... Function Body

float fun(float x)

{

float temp;

temp = 1/(1+(x*x));

return temp;

}

//... Termination of Function Body
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5.16 OUTPUT

Enter the range -

Lower Limit a - 0

Upper Limit b - 6

Enter number of subintervals - 6

Value of the integral is 1.4108

Press Enter to Exit

5.17 ALGORITHM OF SIMPSON’S 3/8
th

 RULE

Step 01. Start of the program.

Step 02. Input Lower limit a

Step 03. Input Upper limit b

Step 04. Input number of sub itervals n

Step 05. h = (b – a)/n

Step 06. sum = 0

Step 07. sum = fun(a) + fun (b)

Step 08. for i = 1; i < n; i++

Step 09. if i%3=0:

Step 10. sum + = 2*fun(a + i*h)

Step 11. else:

Step 12. sum + = 3*fun(a+(i)*h)

Step 13. End of loop i

Step 14. result = sum*3*h/8

Step 15. Print Output result

Step 16. End of Program

Step 17. Start of Section fun

Step 18. temp = 1/(1+(x*x))

Step 19. Return temp

Step 20. End of section fun
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5.18 FLOW-CHART OF SIMPSON’S 3/8
th

 RULE

START

STOP

Define fn. f(x)

Get values x , x , n0 n

h = (x – x )/nn 0

Sum = 0

Sum = f(a) + f(b)

Loop for i = 1 to n

Sum + = 2 * f(a + i * h)

Sum + = 3 * f(a + i * h)

End loop i

Print sum

Yes

No

Is
i% 3 = 0
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/*************************************************************

5.19 PROGRAM  TO IMPLEMENT SIMPSON’S 3/8
th

 METHOD OF

NUMERICAL INTEGRATION

***************************************************************/

//... HEADER FILES DECLARATION

# include <stdio.h>

# include <conio.h>

# include <math.h>

# include <process.h>

# include <string.h>

//... Function Prototype Declaration

float fun(float);

//... Main Execution Thread

void main()
{

//... Variable Declaration Field

//... Floating Type

float result=1;

float a,b;

float h,sum;

//...Integer Type

int i,j;

int n;

//...Invoke Clear Screen Function

clrscr();

//...Input Section

//...Input Range

printf("\n\n Enter the range - ");

printf("\n\n Lower Limit a - ");

scanf("%f" ,&a);
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printf("\n\n Upper Limit b - ");

scanf("%f" ,&b);

//...Input Number of Subintervals

printf("\n\n Enter number of subintervals - ");

scanf("%d" ,&n);

//...Calculation and Processing Section

h=(b-a)/n;

sum=0;
sum=fun(a)+fun(b);

for(i=1;i<n;i++)

{

if(i%3==0)

{

sum+=2*fun(a+i*h)

}

else

{

sum+=3*fun(a+(i)*h);

}

}

result=sum*3*h/8;

//... Output Section

printf("\n\n\n\n Value of the integral is %6.4f\t",result);

//... Invoke User Watch Halt Function

printf("\n\n\n Press Enter to Exit");

getch();

}

//... Termination of Main Execution Thread

//... Function Body
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float fun(float x)

{

float temp;

temp=1/(1+(x*x));

return temp;

}

//... Termination of Function Body

5.20 OUTPUT

Enter the range -

Lower Limit a - 0

Upper Limit b - 6

Enter number of subintervals - 6

Value of the integral is 1.3571

Press Enter to Exit

5.21 ALGORITHM OF SIMPSON’S 1/3
rd

 RULE

Step 01. Start of the program.
Step 02. Input Lower limit a
Step 03. Input Upper limit b
Step 04. Input number of subintervals n
Step 05. h=(b–a)/n
Step 06. sum=0
Step 07. sum=fun(a)+4*fun(a+h)+fun(b)
Step 08. for i=3; i<n; i + = 2
Step 09. sum + = 2*fun(a+(i – 1)*h) + 4*fun(a+i*h)
Step 10. End of loop i
Step 11. result=sum*h/3
Step 12. Print Output result
Step 13. End of Program
Step 14. Start of Section fun
Step 15. temp = 1/(1+(x*x))
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Step 16. Return temp
Step 17. End of Section fun

5.22 FLOW-CHART OF SIMPSON’S 1/3
rd

 RULE

START

STOP

Define fn y(x)

Get values of x , x , n0 n

h = (x – x )/nn 0

s = y + y + 4y0 n 1

Loop for i = 3 to n – 1 step 2

s + = 4 * y + 2 * yi i + 1

End loop (i)

P = s * (h/3)

Print ''solution'', P
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/* ***********************************************************

5.23 PROGRAM TO IMPLEMENT SIMPSON’S 1/3
rd

 METHOD OF

NUMERICAL INTEGRATION

*********************************************************** */

//... HEADER FILES DECLARATION

# include <stdio.h>

# include <conio.h>

# include <math.h>

# include <process.h>

# include <string.h>

//... Function Prototype Declaration

float fun(float);

//... Main Execution Thread

void main()

{

//...Variable Declaration Field

//... Floating Type

float result=1;

float a,b;

float h,sum;

//... Integer Type

int i,j;

int n;

//... Invoke Clear Screen Function

clrscr();

//... Input Section

//...Input Range

printf("\n\n Enter the range - ");
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printf("\n\n Lower Limit a - ");

scanf("%f" ,&a);

printf("\n\n Upper Limit b - ");

scanf("%f" ,&b);

//... Input Number of Subintervals

printf("\n\n Enter number of subintervals - ");

scanf("%d",&n);

//... Calculation and Processing Section

h=(b-a)/n;

sum=0;

sum=fun(a)+4*fun(a+h)fun(b);

for(i=3;i<n;i+=2)

{

sum+=2*fun(a+(i-1)*h)+4*fun(a+i*h);

}

result=sum*h/3;

//... Output Section

printf("\n\n\n\n Value of the integral is %6.4f\t",result);

//... Invoke User Watch Halt Function

printf("\n\n\n Press Enter to Exit");

getch();

}

//... Termination of Main Execution Thread

//... Function Body

float fun(float x)

{

float temp;

temp=1/(1+(x*x));

return temp;

}

//... Termination of Function Body
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5.24 OUTPUT

Enter the range -

Lower Limit a - 0

Upper Limit b - 6

Enter number of subintervals - 6

Value of the integral is 1.3662

Press Enter to Exit

EXAMPLES

Example 1. Use Trapezoidal rule to evaluate x dx3

0

1

z  considering five sub-

intervals.

Sol.  Dividing  the  interval  (0, 1)  into  5  equal parts, each of width h = 
1 0

5
−

= 0.2, the values of f(x) = x3 are given below:
x: 0 0.2 0.4 0.6 0.8 1.0

f(x): 0 0.008 0.064 0.216 0.512 1.000
y0 y1 y2 y3 y4 y5

By Trapezoidal rule, we have

x dx
h3

0

1

2
=z  [(y0 + y5) + 2(y1 + y2 + y3 + y4)]

= 
0.2
2

 [(0 + 1) + 2(0.008 + 0.064 + 0.216 + 0.512)]

= 0.1 × 2.6 = 0.26.

Example 2. Evaluate dx
1 x20

1

+z  using

(i) Simpson’s 
1
3

 rule taking h = 
1
4

(ii) Simpson’s 
3
8

 rule taking h = 
1
6

(iii) Weddle’s rule taking h = 
1
6

Hence compute an approximate value of π in each case.
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Sol. (i) The values of f(x) = 
1

1 2+ x
 at x = 0, 

1
4

2
4

3
4

1, , ,  are given below:

x: 0 1
4

1
2

3
4

1

f(x): 1
16
17

0.8 0.64 0.5

y0 y1 y2 y3 y4

By Simpson’s 
1
3

 rule,

  dx
x

h
1 320

1

+
=z  [(y0 + y4) + 4(y1 + y3) + 2y2]

= 
1

12
1 4

16
17

2( ) ( )+ + +R
S
T

U
V
W

+
L

N
M

O

Q
P0.5 .64 0.8  = 0.785392156

Also  
dx

x
x

1
1

420

1

0

1

+
=
L

N
M
M

O

Q
P
P

= =z tan tan–1 –1 π

∴  
π
4

~– 0.785392156 ⇒ π ~–  3.1415686

(ii) The values of f(x) = 
1

1 2+ x
 at x = 0, 

1
6

2
6

3
6

4
6

5
6

1, , , , ,  are given below:

  x: 0
1
6

2
6

3
6

4
6

5
6

1

f(x): 1
36
37

9
10

4
5

9
13

36
61

1
2

y0 y1 y2 y3 y4 y5 y6

By Simpson’s 
3
8

 rule,

0

1

21
3
8z +

=dx
x

h
 [(y0 + y6) + 3(y1 + y2 + y4 + y5) + 2y3]
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= 
3

1
6

8
1

1
2

3
36
37

9
10

9
13

36
61

2
4
5

F
HG
I
KJ

+F
HG

I
KJ

+ + + +R
S
T

U
V
W

+ F
HG
I
KJ

L

N
M

O

Q
P

= 0.785395862

Also,  
0

1

21 4z +
=dx

x
π

∴
π
4

 = 0.785395862

⇒ π = 3.141583

(iii) By Weddle’s rule, using the values as in (ii),

 
0

1

21
3
10z +

=dx
x

h
 (y0 + 5y1 + y2 + 6y3 + y4 + 5y5 + y6)

= 
3

1
6

10
1 5

36
37

9
10

6
4
5

9
13

5
36
61

1
2

F
HG
I
KJ

+ F
HG
I
KJ

+ + F
HG
I
KJ

+ + F
HG
I
KJ

+R
S
T

U
V
W

= 0.785399611

Since  
0

1

21 4z +
=

dx
x

π

∴
π
4

 = 0.785399611

⇒ π = 3.141598.

Example 3. Evaluate

0

6

2
dx

1 xz +
 by using

(i) Simpson’s one-third rule

(ii) Simpson’s three-eighth rule

(iii) Trapezoidal rule

(iv) Weddle’s rule.
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Sol. Divide the interval (0, 6) into six parts each of width h = 1.

The values of f(x) = 
1

1 2+ x
 are given below:

  x: 0 1 2 3 4 5 6

f(x): 1 0.5 0.2 0.1
1

17
1

26
1

37

y0 y1 y2 y3 y4 y5 y6

(i) By Simpson’s one-third rule,

 
0

6

21 3z +
=dx

x
h

 [(y0 + y6) + 4(y1 + y3 + y5) + 2(y2 + y4)]

= 
1
3

1
1

37
4 2

1
17

+F
HG

I
KJ

+ + +F
HG

I
KJ

+ +F
HG

I
KJ

L

N
M

O

Q
P0.5 0.1

1
26

0.2

= 1.366173413.

(ii) By Simpson’s three-eighth rule,

0

6

21
3
8z +

=dx
x

h
 [(y0 + y6) + 3(y1 + y2 + y4 + y5) + 2y3]

= 
3
8

1
1

37
3

1
17

1
26

2+F
HG

I
KJ

+ + + +F
HG

I
KJ

+
L

N
M

O

Q
P.5 .2 .1( )

= 1.357080836.

(iii) By Trapezoidal rule,

0

6

21 2z +
=dx

x
h

 [(y0 + y6) + 2(y1 + y2 + y3 + y4 + y5)]

= 
1
2

1
1

37
2

1
17

1
26

+F
HG

I
KJ

+ + + + +F
HG

I
KJ

L

N
M

O

Q
P.5 .2 .1

= 1.410798581.

(iv) By Weddle’s rule,

0

6

21
3
10z +

=
dx

x
h

 [y0 + 5y1 + y2 + 6y3 + y4 + 5y5 + y6]
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= 
3

10
1 5 5

1
26

1
37

+ + + F
HG
I
KJ

+
L

N
M

O

Q
P( ).5 .2 + 6(.1) +

1
17

= 1.373447475.

Example 4. The speed, v meters per second, of a car, t seconds after it starts, is
shown in the following table:

t 0 12 24 36 48 60 72 84 96 108 120

v 0 3.60 10.08 18.90 21.60 18.54 10.26 5.40 4.50 5.40 9.00

Using Simpson’s rule, find the distance travelled by the car in 2 minutes.
Sol. If s meters is the distance covered in t seconds, then

ds
dt

 = v

∴ s v dt
t

t
L

NM
O

QP
=

=

=

z
0 0

120120

since the number of sub-intervals is 10 (even). Hence, by using Simpson’s 
1
3

rd

rule,

 
0

120

3z =v dt
h  [(v0 + v10) + 4(v1 + v3 + v5 + v7 + v9) + 2(v2 + v4 + v6 + v8)]

= 
12
3

 [(0 + 9) + 4(3.6 + 18.9 + 18.54 + 5.4 + 5.4)

+ 2(10.08 + 21.6 + 10.26 + 4.5)]

= 1236.96 meters.

Hence, the distance travelled by car in 2 minutes is 1236.96 meters.

Example 5. Evaluate 
0.6

2
y dxz , where y is given by the following table:

x: 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

y: 1.23 1.58 2.03 4.32 6.25 8.36 10.23 12.45.

Sol. Here the number of subintervals is 7, which is neither even nor a multiple
of 3. Also, this number is neither a multiple of 4 nor a multiple of 6, hence
using Trapezoidal rule, we get
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0.6

2

2z =y dx
h

 [(y0 + y7) + 2(y1 + y2 + y3 + y4 + y5 + y6)]

= 
0.2
2

 [(1.23 + 12.45) + 2(1.58 + 2.03 + 4.32 + 6.25 + 8.36 + 10.23)]

| Here h = 0.2
= 7.922.

Example 6. Find 
1

11
f(x) dxz , where f(x) is given by the following table, using a

suitable integration formula.

   x: 1 2 3 4 5 6 7 8 9 10 11

f(x): 543 512 501 489 453 400 352 310 250 172 95

Sol. Since the number of subintervals is 10 (even) hence we shall use Simpson’s
1
3

rd rule.

f x dx
h

( )
1

11

3z =  [(y0 + y10) + 4(y1 + y3 + y5 + y7 + y9) + 2(y2 + y4 + y6 + y8)]

= 
1
3

 [(543 + 95) + 4(512 + 489 + 400 + 310 + 172)

+ 2(501 + 453 + 352 + 250)]

= 
1
3

 [638 + 7532 + 3112] = 3760.67.

Example 7. Evaluate 
dx

1 x0

1

+z  by dividing the interval of integration into 8 equal

parts. Hence find loge 2 approximately.
Sol. Since the interval of integration is divided into an even number of
subintervals, we shall use Simpson’s one-third rule.

Here, y = 
1

1 + x
 = f(x)

y0 = f(0) = 
1

1 0+
 = 1, y1 = f 1

8
1

1
1
8

8
9

F
HG
I
KJ

=
+

= , y2 = f 
2
8

4
5

F
HG
I
KJ

=

y3 = f 
3
8

8
11

F
HG
I
KJ

= ,  y4 = f 
4
8

2
3

F
HG
I
KJ

= , y5 = f 
5
8

8
13

F
HG
I
KJ

=
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y6 = f 
6
8

4
7

F
HG
I
KJ

= , y7 = f 
7
8

8
15

F
HG
I
KJ

=  and y8 = f(1) = 
1
2

Hence the table of values is

x: 0
1
8

2
8

3
8

4
8

5
8

6
8

7
8

1

y: 1
8
9

4
5

8
11

2
3

8
13

4
7

8
15

1
2

y0 y1 y2 y3 y4 y5 y6 y7 y8

By Simpson’s 
1
3

rd rule,

0

1

1 3z +
=dx

x
h

 [(y0 + y8) + 4(y1 + y3 + y5 + y7) + 2(y2 + y4 + y6)]

= 
1

24
1

1
2

4
8
9

8
11

8
13

8
15

2
4
5

2
3

4
7

+F
HG

I
KJ

+ + + +F
HG

I
KJ

+ + +F
HG

I
KJ

L

N
M

O

Q
P

| Here h = 1/8
= 0.69315453

Since,   
0

1

0

1

1
1z +

= +
L

N
M
M

O

Q
P
P

dx
x

xelog ( )  = loge 2

∴ loge 2 = 0.69315453.

Example 8. Find, from the following table, the area bounded by the curve and
the x-axis from x = 7.47 to x = 7.52.

 x: 7.47 7.48 7.49 7.50 7.51 7.52

f(x): 1.93 1.95 1.98 2.01 2.03 2.06.

Sol. We know that

Area = 
7.47

7.52

z f x dx( )

with h = 0.01, the trapezoidal rule gives,

Area = 
.01
2

 [(1.93 + 2.06) + 2(1.95 + 1.98 + 2.01 + 2.03)]

= 0.09965.
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Example 9. Use Simpson’s rule for evaluating

−z 0.6

0.3
f(x) dx

from the table given below:

x: – 0.6 – 0.5 – 0.4 – 0.3 – 0.2 – 0.1 0 .1 .2 .3

f(x): 4 2 5 3 – 2 1 6 4 2 8

Sol. Since the number of subintervals is 9(a multiple of 3), we will use Simpson’s
3/8th rule here.

∴
−z =
0.6

0.3 .1
f x dx( )

( )3
8

 [(4 + 8) + 3{2 + 5 + (– 2) + 1 + 4 + 2} + 2(3 + 6)]

= 2.475.

Example 10. Evaluate 
1

2 1
2

x
e dxz

−
 using four intervals.

Sol. The table of values is:
x: 1 1.25 1.5 1.75 2

y = e–x/2: .60653 .53526 .47237 .41686 .36788
y0 y1 y2 y3 y4

Since we have four (even) subintervals here, we will use Simpson’s 
1
3

rd

rule.

∴  
1

2 1
2

3z
−

=e dx
hx

 [(y0 + y4) + 4(y1 + y3) + 2y2]

= 
.25
3

 [(.60653 + .36788) + 4(.53526) + .41686) + 2(.47237)]

= 0.4773025.

Example 11. Find e
1 x

dx
x

0

6

+z  approximately using Simpson’s 
3
8

th rule

on integration.

Sol. Divide the given integral of integration into 6 equal subintervals, the
arguments are 0, 1, 2, 3, 4, 5, 6; h = 1.

f(x) = e
x

x

1 +
;  y0 = f(0) = 1
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 y1 = f(1) = 
e
2

, y2 = f(2) = 
e2

3
, y3 = f(3) = 

e3

4
,

 y4 = f(4) = 
e4

5
, y5 = f(5) = 

e5

6
, y6 = f(6) = 

e6

7

The table is as below:

x: 0 1 2 3 4 5 6

y: 1
e
2

e2

3
e3

4
e4

5
e5

6
e6

7

y0 y1 y2 y3 y4 y5 y6

Applying Simpson’s three-eighth rule, we have

0

6

1
3
8z +

=e
x

dx
hx

 [(y0 + y6) + 3(y1 + y2 + y4 + y5) + 2y3]

= 
3
8

1
7

3
2 3 5 6

2
4

6 2 4 5 3

+
F

HG
I

KJ
+ + + +
F

HG
I

KJ
+

L

N
M
M

O

Q
P
P

e e e e e e

= 
3
8

 [(1 + 57.6327) + 3(1.3591 + 2.463 + 10.9196

+ 24.7355 + 2(5.0214)]
= 70.1652.

It is not possible to evaluate 
0

6 xe
1 x

dxz +  by using usual calculus method.

Numerical integration comes to our rescue in such situations.

Example 12. A train is moving at the speed of 30 m/sec. Suddenly brakes are
applied. The speed of the train per second after t seconds is given by

Time (t): 0 5 10 15 20 25 30 35 40 45

Speed (v): 30 24 19 16 13 11 10 8 7 5

Apply Simpson’s three-eighth rule to determine the distance moved by the
train in 45 seconds.

Sol. If s meters is the distance covered in t seconds, then

 
ds
dt

v= ⇒ s v dt
t

t
L

NM
O

QP
=

=

=

z
0 0

4545

NOTE
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Since the number of subintervals is 9 (a multiple of 3) hence by using

Simpson’s 
3
8
F
HG
I
KJ

th

 rule,

 
0

45 3
8z =v dt
h

 [(v0 + v9) + 3(v1 + v2 + v4 + v5 + v7 + v8) + 2(v3 + v6)]

   = 
15
8

 [(30 + 5) + 3(24 + 19 + 13 + 11 + 8 + 7) + 2(16 + 10)]

= 624.375 meters.

Hence the distance moved by the train in 45 seconds is 624.375 meters.

Example 13. Evaluate 
0

4

2
dx

1 xz +
 using Boole’s rule taking

(i) h = 1 (ii) h = 0.5

Compare the results with the actual value and indicate the error in both.

Sol. (i) Dividing the given interval into 4 equal subintervals (i.e., h = 1), the
table is as follows:

x: 0 1 2 3 4

y: 1
1
2

1
5

1
10

1
17

y0 y1 y2 y3 y4

using Boole’s rule,

0

4 2
45z =y dx
h  [7y0 + 32y1 + 12y2 + 32y3 + 7y4]

= 2 1
45

7 1 32
1
2

12
1
5

32
1

10
7

1
17

( )
( ) + F

HG
I
KJ

+ F
HG
I
KJ

+ F
HG
I
KJ

+ F
HG
I
KJ

L

N
M

O

Q
P

= 1.289412 (approx.)

∴
0

4

21z +
dx

x
 = 1.289412.
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(ii) Dividing the given interval into 8 equal subintervals (i.e., h = 0.5), the
table is as follows:

x: 0 .5 1 1.5 2 2.5 3 3.5 4

y: 1 0.8 0.5
4
13

.2
4
29

.1
4

53
1

17

y0 y1 y2 y3 y4 y5 y6 y7 y8

using Boole’s rule,

0

4

z ydx  = 
2
45

7 32 12 32 70 1 2 3 4
h

y y y y y[ ( ) ( ) ( ) ( ) ( )+ + + +

+ 7 32 12 32 74 5 6 7 8( ) ( ) ( ) ( ) ( )]y y y y y+ + + +

= 
1
45

7 1 32 8 12 5 32
4

13
7 2 7 2( ) (. ) (. ) (. ) (. )+ + + F

HG
I
KJ

+ +
L

N
M

+ F
HG
I
KJ

+32
4
29

12 1(. ) + F
HG
I
KJ

+ F
HG
I
KJ
O

Q
P32

4
53

7
1

17
= 1.326373

∴
0

4

21z +
dx

x
 = 1.326373

But the actual value is

0

4

21z +
dx

x
 = tan−F

HG
I

KJ
1

0

4

x  = tan–1 (4) = 1.325818

Error in result I = 
1325818 1289412

1325818
100

. .
.

−F
HG

I
KJ

×  = 2.746%

Error in result II = 
1325818 1326373

1325818
100

. .
.

−F
HG

I
KJ

×  = – 0.0419%.

Example 14. A river is 80 m wide. The depth ‘y’ of the river at a distance ‘x’
from one bank is given by the following table:

x: 0 10 20 30 40 50 60 70 80

y: 0 4 7 9 12 15 14 8 3
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Find the approximate area of cross-section of the river using
(i) Boole’s rule.

(ii) Simpson’s 
1
3

rd  rule.

Sol. The required area of the cross-section of the river

= 
0

80

z y dx

Here the number of sub intervals is 8.

(i) By Boole’s rule,

 
0

80 2
45z =y dx
h

 [7y0 + 32y1 + 12y2 + 32y3 + 7y4 + 7y4

+ 32y5 + 12y6 + 32y7 + 7y8]

= 
2 10

45
( )

 [7(0) + 32(4) + 12(7) + 32(9) + 7(12) + 7(12) + 32(15)

+ 12(14) + 32(8) + 7(3)]

= 708

Hence the required area of the cross-section of the river = 708 sq. m.

(ii) By Simpson’s 
1
3

rd  rule

 
0

80

3z =y dx
h [(y0 + y8) + 4(y1 + y3 + y5 + y7) + 2(y2 + y4 + y6)]

= 
10
3

[(0 + 3) + 4(4 + 9 + 15 + 8) + 2(7 + 12 + 14)]

= 710

Hence the required area of the cross-section of the river = 710 sq. m.

Example 15. Evaluate 
0.2

1.4

z  (sin x – loge x + ex) dx approximately using Weddle’s

rule correct to 4 decimals.

Sol. Let f(x) = sin x – log x + ex. Divide the given interval of integration into 12
equal parts so that the arguments are: 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
1.1, 1.2, 1.3, 1.4.
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The corresponding entries are

y0 = f(0.2) = 3.0295, y1 = f(0.3) = 2.8494, y2 = f(0.4) = 2.7975,

y3 = f(0.5) = 2.8213, y4 = f(0.6) = 2.8976, y5 = f(0.7) = 3.0147

y6 = f(0.8) = 3.1661, y7 = f(0.9) = 3.3483, y8 = f(1) = 3.5598,

y9 = f(1.1) = 3.8001, y10 = f(1.2) = 4.0698, y11 = f(1.3) = 4.3705

y12 = f(1.4) = 4.7042

Now, by Weddle’s rule,

0.2

1.4

z =f x dx
h

( )
3
10

[y0 + 5y1 + y2 + 6y3 + y4 + 5y5 + y6 + y6

+ 5y7 + y8 + 6y9 + y10 + 5y11 + y12]

= 
3

10
(0.1)[3.0295 + 14.2470 + 2.7975 + 16.9278 + 2.8976

+ 15.0735 + 3.1661 + 3.1661 + 16.7415 + 3.5598

+ 22.8006 + 4.0698 + 21.8525 + 4.7042]

= (0.03)[135.0335] = 4.051.

Example 16. A solid of revolution is formed by rotating about x-axis, the lines
x = 0 and x = 1 and a curve through the points with the following coordinates.

x: 0 0.25 0.5 0.75 1

y: 1 0.9896 0.9589 0.9089 0.8415

Estimate the volume of the solid formed using Simpson’s rule.
Sol. If V is the volume of the solid formed then we know that

 V = π y dx2

0

1

z
Hence we need the values of y2 and these are tabulated below correct to

four decimal places

x 0 .25 .5 .75 1

y2 1 .9793 .9195 .8261 .7081

with h = 0.25, Simpson’s rule gives

V = π ( . )0 25
3

[(1 + .7081) + 4(.9793 + .8261) + 2(.9195)]

= 2.8192.
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Example 17. A tank is discharging water through an orifice at a depth of x
meter below the surface of the water whose area is A m2. Following are the
values of x for the corresponding values of A.

A: 1.257 1.39 1.52 1.65 1.809 1.962 2.123 2.295 2.462 2.650 2.827

x: 1.5 1.65 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3

Using the formula (0.018) T = 
1.5

3.0 A

x
dxz , calculate T, the time (in seconds)

for the level of the water to drop from 3.0 m to 1.5 m above the orifice.

Sol. Here h = 0.15

The table of values of x and the corresponding values of A

x
 is

x 1.5 1.65 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3

y = A

x
1.025 1.081 1.132 1.182 1.249 1.308 1.375 1.438 1.498 1.571 1.632

Using Simpson’s 1
3

rd  rule, we get

1 5

3 15
3.

.
z =A

x
dx [(1.025+1.632) + 4(1.081 + 1.182 + 1.308 + 1.438

+ 1.571) + 2(1.132 + 1.249 + 1.375 + 1.498)]

= 1.9743

Using the formula

(0.018)T = 
1 5

3

.z
A

x
dx

We get 0.018T = 1.9743 ⇒ T = 110 sec. (approximately).

Example 18. Using the following table of values, approximate by Simpson’s

rule, the arc length of the graph y = 
1
x

 between the points (1, 1) and 5,
1
5

F
HG

I
KJ

x: 1 2 3 4 5

1 x
x

4

4
+ : 1.414 1.031 1.007 1.002 1.001.
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Sol. The given curve is

y = 
1
x

∴
dy
dx x

= −
1
2

∴ ds
dx

dy
dx x

x

x
= + F

HG
I
KJ

= + = +
1 1

1 12

4

4

4

∴ The arc length of the curve between the points (1, 1) and 5
1
5

,F
HG

I
KJ

= 
1

5 4

4
1

z
+ x
x

dx

= 
h
3

[(1.414 + 1.001) + 4(1.031 + 1.002) + 2(1.007)]

= 
1
3

(2.415 + 8.132 + 2.014) = 4.187

Example 19. From the following values of y = f(x) in the given range of values
of x, find the position of the centroid of the area under the curve and the x-axis

x: 0
1
4

1
2

3
4

1

y: 1 4 8 4 1

Also find
(i) the volume of solid obtained by revolving the above area about x-axis.

(ii) the moment of inertia of the area about x-axis.

Sol. Centroid of the plane area under the curve y = f(x) is given by ( , )x y  where

and

x
xy dx

y dx

y

y
y dx

y dx

y
dx

y dx

=

= =

O

Q

P
P
P
P
P
P
P
P
P

z

z

z

z

z

z

0

1

0

1

0

1

0

1
0

1 2

0

1
2 2

.
(50)
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From the given data, we obtain

x: 0
1
4

1
2

3
4

1

y: 1 4 8 4 1

xy: 0 1 4 3 1

y2

2
:

1
2

8 32 8
1
2

∴ By Simpson’s rule,

 
0

1 1 4
3z =xy dx

( / )
[(0 + 1) + 4(1 + 3) + 2(4)] = 

25
12

 
0

1 2

2
1

12
1
2

1
2

4 8 8 2 32z = +F
HG

I
KJ

+ + +L

N
M

O

Q
P

y
dx ( ) ( )  = 

129
12

 
0

1 1
12z =y dx [(1 + 1) + 4(4 + 4) + 2(8)] = 

50
12

From (50), x = =25 12
50 12

1
2

/
/

 = 0.5

y = =129 12
50 12

129
50

/
/

 = 2.58

∴ Centroid is the point (0.5, 2.58).

(i) We know that

V = Volume = π
0

1
2z y dx

∴ Required volume = π .2
20

1 2

z
y

dx  = 2
129
12

π ×  = 67.5442

(ii) We know that moment of inertia of the area about the x-axis is given by

M.I. = 
1
3

3ρ
a

b
y dxz

where ρ is the mass per unit area.
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Table for y3 is

x: 0
1
4

1
2

3
4

1

y: 1 4 8 4 1

y3: 1 64 512 64 1

0

1
3 1

12z =y dx [(1 + 1) + 4(64 + 64) + 2(512)] = 
769

6

∴ Reqd. M.I. = 
1
3

769
6

ρ F
HG

I
KJ

 = 
769
18

ρ = 42.7222 ρ.

Example 20. A reservoir discharging water through sluices at a depth h below
the water surface, has a surface area A for various values of h as given below:

h (in meters): 10 11 12 13 14

A (in sq. meters): 950 1070 1200 1350 1530

If t denotes time in minutes, the rate of fall of the surface is given by

dh
dt

48
A

h= −

Estimate the time taken for the water level to fall from 14 to 10 m above the
sluices.

Sol. From dh
dt

h= − 48
A

, we have

dt = − A
48

dh

h
Integration yields,

t = − =z z
1

48
1

4814

10

10

14A A

h
dh

h
dh

Here, y = 
A

h
. The table of values is as follows:

h: 10 11 12 13 14

A: 950 1070 1200 1350 1530

A

h
: 300.4164 322.6171 346.4102 374.4226 408.9097
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Applying Simpson’s 
1
3

rd  rule, we have

time t = 
1

48
1
3

. [(300.4164 + 408.9097)

+ 4(322.6171 + 374.4226) + 2(346.4102)]

= 29.0993 minutes.

ASSIGNMENT 5.2

1. Evaluate 
1

2 1
z x

dx  by Simpson’s 1
3

rd rule with four strips and determine the error by

direct integration.

2. Evaluate the integral 
0

2π
θ θ

/
cosz d  by dividing the interval into 6 parts.

3. Evaluate log
.

e x dx
4

5 2

z  by Simpson’s 
3
8

th  rule. Also write its programme in ‘C’ language.

4. Evaluate 
30

90

10
°

°

z log sin x dx  by Simpson’s 
1
3

rd  rule by dividing the interval into 6 parts.

5. Evaluate 
4

5 2.
logz e x dx  using

(i) Trapezoidal rule (ii) Weddle’s rule.

6. Evaluate using Trapezoidal rule

(i) t t dtsin
0

π

z (ii)
t dt

t5 22

2

+−z

7. Evaluate 
3

7

z  x2 log x dx taking 4 strips.

8. The velocities of a car running on a straight road at intervals of 2 minutes are given
below:

Time (in minutes): 0 2 4 6 8 10 12

Velocity (in km/hr): 0 22 30 27 18 7 0

Apply Simpson’s rule to find the distance covered by the car.

9. Evaluate 
0

1

z  cos x dx using h = 0.2.
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10. Evaluate 
0

4

z  ex dx by Simpson’s rule, given that e = 2.72, e2 = 7.39, e3 = 20.09, e4 = 54.6

and compare it with the actual value.
11. Find an approximate value of loge 5 by calculating to 4 decimal places, by Simpson’s

1
3

rd rule, 
0

5

4 5z +
dx
x

 dividing the range into 10 equal parts.

12. Use Simpson’s rule, taking five ordinates, to find an approximate value of 
1

2 1
z −x

x
dx

to 2 decimal places.

13. Evaluate 
0

2π/
sinz x dx  given that

x: 0 π/12 π/6 π/4 π/3 5π/12 π/2

sin x : 0 0.5087 0.7071 0.8409 0.9306 0.9878 1

14. The velocity of a train which starts from rest is given by the following table, time being
reckoned in minutes from the start and speed in kilometers per hour:
Minutes: 0 2 4 6 8 10 12 14 16 18 20
Speed (km/hr): 0 10 18 25 29 32 20 11 5 2 0

Estimate the total distance in 20 minutes. Hint:  Here step- size h =L

N
M

O

Q
P

2
60

15. A rocket is launched from the ground. Its acceleration is registered during the first 80

seconds and  is  given  in  the following table. Using  Simpson’s 
1
3

rd  rule, find the

velocity of the rocket at t = 80 seconds.
t(sec): 0 10 20 30 40 50 60 70 80
f(cm/sec2): 30 31.63 33.34 35.47 37.75 40.33 43.25 46.69 50.67.

16. A curve is drawn to pass through the points given by the following table:
x: 1 1.5 2 2.5 3 3.5 4
y: 2 2.4 2.7 2.8 3 2.6 2.1
Find

(i) Center of gravity of the area.

(ii) Volume of the solid of revolution.

(iii) The area bounded by the curve, the x-axis and lines x = 1, x = 4.

17. In an experiment, a quantity G was measured as follows:

G(20) = 95.9, G(21) = 96.85, G(22) = 97.77

G(23) = 98.68, G(24) = 99.56, G(25) = 100.41, G(26) = 101.24.

Compute 
20

26

z G(x dx)  by Simpson’s and Weddle’s rule, respectively.
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18. Using the data of the following table, compute the integral 
0 5

1 1

.

.

z xy dx  by Simpson’s

rule:

x: 0.5 0.6 0.7 0.8 0.9 1.0 1.1

y: 0.4804 0.5669 0.6490 0.7262 0.7985 0.8658 0.9281

19. Find the value of loge 2 from 
0

1 2

31

.

z +
x

x
dx  using Simpson’s 

1
3

rd rule by dividing the

range of integration into four equal parts. Also find the error.
20. Use Simpson’s rule dividing the range into ten equal parts to show that

0

1 2

2
1

1z
+

+
log ( )x

x
dx  = 0.173

21. Find by Weddle’s rule the value of the integral

I = 
0 4

1 6

.

.

sinhz
x

x
dx

by taking 12 sub-intervals.

22. Evaluate 
0 5

0 7
1/2

.

.

z −x e dxx  approximately by using a suitable formula.

23. (i) Compute the integral

I = 2

0

1
2)2

π z
−e dxx( /

Using Simpson’s 
1
3

rd  rule, taking h = 0.125.

(ii) Compute the value of I given by

 I = 
0 2

15 2

.

.

z −e dxx

Using Simpson’s 
1
3
F
HG
I
KJ  rule with four subdivisions.

24. Using Simpson’s 
1
3

rd rule, Evaluate the integrals:

(i)
10

1 8

2.

.

z
+ −e e

dx
x x

(taking h = 0.2)

(ii)
0

2

2 21
4

π/

sin cos
z

+

dx

x x
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25. Evaluate 
0

1

z +sin cosx x dx  correct to two decimal places using seven ordinates.

26. Use Simpson’s three-eighths rule to obtain an approximate value of

0

0 3
3 1/21 8

.
( )z − x dx

27. Evaluate 
0

1/2

21
z −

dx

x
 using Weddle’s rule.

28. Evaluate 
0

1 2

2
2

1z
+
+

x

x
dx  using Weddle’s rule correct to four places of decimals.

29. Using 
3
8

th Simpson’s rule,

Evaluate:
0

6

41z +
dx

x
.

30. Apply Simpson’s 
1
3

rd rule to evaluate the integral

I = 
0

1

z e dxx  by choosing step size h = 0.1

Show that this step size is sufficient to obtain the result correct to five decimal places.

31.  (i) Obtain the global truncation error term of trapezoidal method of integration.

(ii) Compute the approximate value of the integral

l = ( )1 2+ +z x x dx

Using Simpson’s rule by taking interval size h as 1. Write a C program to imple-
ment.

32. The function f(x) is known at one point x* in the interval [a, b]. Using this value, f(x) can
be expressed as

f(x) = p0(x) + f ′{ξ(x)} (x – x*) for x ∈ (a, b)

where p0(x) is the zeroth-order interpolating polynomial p0(x) = f(x*) and ξ (x) ∈ (a, b).
Integrate this expression from a to b to derive a quadrature rule with error term. Sim-
plify the error term for the case when x* = a.

5.25 EULER-MACLAURIN’S FORMULA

This formula is based on the expansion of operators. Suppose ΔF(x) = f(x), then
an operator Δ–1, called inverse operator, is defined as

F(x) = Δ–1 f(x) (51)
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Also, ΔF(x) = f(x) gives

F(x1) – F(x0) = f(x0)

Similarly, F( F(
                      

F( F(

x x f x

x x f xn n n

2 1 1

1 1

) ) ( )

) ) ( )

− =

− =− −

� � �

On adding, F(xn) – F(x0) = 
i

n

if x
=

−

∑

0

1

( ) (52)

where x0, x1, ......, xn are the (n + 1) equidistant values of x with difference h.

From (51), F(x) = (E – 1)–1 f(x)

= (ehD – 1)–1 f(x)

= 1
2 3

1

1

+ + +
F

HG
I

KJ
−

L

N
M
M

O

Q
P
P

−

h
h h

f xD +
D D2 2 3 3

! !
...... ( )

= h
h h

f xD +
D D2 2 3 3

2 3

1

! !
...... ( )+ +

L

N
M
M

O

Q
P
P

−

= + + +
F

HG
I

KJ
L

N
M
M

O

Q
P
P

−
−

(
! !

...... ( )h
h h

f xD)
D D1

2 2

1
2 3

1

= 
1

1
2 3h
h h

D
D D1

2 2
− − + +

F

HG
I

KJ
L

N
M
M ! !

......

+
− −

+ +
F

HG
I

KJ
+

O

Q

P
P

( ) ( )
! ! !

...... ...... ( )
1 2
2 2 3

2
h h

f x
D D2 2

= 
1

1
2 12 720

1
4

h
h h h

f xD
D D D2 2 4

− − + − +
L

N
M

O

Q
P...... ( )

F(x) = 1 1
2 12 720

3

h
f x dx f x

h
f x

h
f x( ) ( ) ( ) ( ) ......− + ′ − ′ ″ +z

(53)
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Putting x = xn and x = x0 in (53) and then subtracting, we get

F(xn) – F(x0) = 
1 1

20h
f x dx

x

xn

z −( )  [f(xn) – f(x0)] + 
h
12

 [f ′(xn) – f ′(x0)]

− h3

720
 [f ′″(xn) – f ′″(x0)] + ......

⇒ f x
h

f x dx f x f x
h

f x f xi
i

n

x

x

n n
n

( ) ( ) [ ( ) ( )] [ ( ) ( )]
=

−

∑ z= − − + ′ − ′
0

1

0 0
1 1

2 120

− ′ ″ − ′ ″ +h
f x f xn

3

0720
[ ( ) ( )] ...... | using (52)

⇒ 1 1
2 120 0

1

0 0h
f x dx f x f x f x

h
f x f x

x

x

i

n

i n n
n

z ∑= + − − ′ − ′
=

−

( ) ( ) [ ( ) ( )] [ ( ) ( )]

+ ′ ″ − ′ ″ −h
f x f xn

3

0720
[ ( ) ( )] ...... (54)

or
x

x

n
n

y dx
h

y y y y
0 2

2 20 1 2z = + + + +[ ...... ]

− ′ − ′ + ′ ″ − ′ ″ −h
y y

h
y yn n

2

0

4

012 720
( ) ( ) ......

= 
h

y y y y yn n2
20 1 2 1[( ) ( ...... )]+ + + + + −

− ′ − ′ + ′ ″ − ′ ″h
y y

h
y yn n

2

0

4

012 720
( ) ( )  – ...... (55)

which is called Euler-Maclaurin’s formula. The first term on the R.H.S. of
(55) represents the approximate value of the integral obtained from trapezoidal
rule and the other terms denote the successive corrections to this value.

This formula is often used to find the sum of a series of the form
y(x0) + y(x0 + h) + y(x0 + 2h) + ...... + y(x0 + nh).

5.26 GAUSSIAN QUADRATURE FORMULA

Consider the numerical evaluation of the integral

a

b
f x dxz ( ) (56)
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So far, we studied some integration formulae which require values of the
function at equally spaced points of the interval. Gauss derived a formula which
uses the same number of function values but with different spacing and gives
better accuracy.

Gauss’s formula is expressed in the form

  F( )u du
−z 1

1
 = W1 F(u1) + W2 F(u2) + ...... + Wn F(un)

= W Fi i
i

n

u( )
=
∑

1
(57)

where Wi and ui are called the weights and abscissae respectively. The formula
has an advantage that the abscissae and weights are symmetrical with respect
to the middle point of the interval.

In equation (57), there are altogether 2n arbitrary parameters and therefore
the weights and abscissae can be  determined so that the formula is exact
when F(u) is a polynomial of degree not exceeding 2n – 1. Hence, we start with

F(u) = C0 + C1 u + C2 u
2 + C3 u

3 + ...... + C2n – 1 u
2n – 1 (58)

Then from (57),

F( )u du
−z 1

1
 = ( ...... )C C C C C0 1 2

2
3

3
2 1

2 1

1

1
+ + + + + −

−

−z u u u u dun
n

= 2 C0 + 
2
3

2
52 4C C+ + ....... (59)

Set  u = ui  in (58), we get

 F(ui) = C0 + C1 ui + C2 ui
2 + C3 ui

3 + ...... + C2n – 1 ui
2n – 1

From (57),

F( )u du
−z 1

1
 = W1 (C0 + C1 u1 + C2 u1

2 + ........ + C2n – 1
 u1

2n – 1)

+ W2 (C0 + C1 u2 + C2 u2
2 + ...... + C2n – 1 u2

2n – 1)
+  W3 (C0 + C1 u3 + C2 u3

2 + ...... + C2n – 1 u3
2n – 1) + ......

+ Wn (C0 + C1 un + C2 un
2 + ...... + C2n – 1 un

2n – 1)

which can be written as

F( )u du
−z 1

1
 = C0 (W1 + W2 + ....... + Wn) + C1(W1 u1 + W2 u2

+ W3 u3 + ...... + Wn un) + C2(W1 u1
2 + W2 u2

2

+ W3 u3
2 + ...... + Wn un

2) + ......

+ C2n – 1(W1 u1
2n – 1 + W2 u2

2n – 1

+ W3 u3
2n – 1  + ...... + Wn un

2n – 1) (60)
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Now equations (59) and (60) are identical for all values of Ci and hence
comparing the coefficients of Ci,  we obtain 2n equations

 W1 + W2 + W3 + ....... + Wn = 2

  W1 u1 + W2 u2 + W3 u3 + ....... + Wn un = 0

   W1 u1
2 +  W2 u2

2
 + W3 u3

2
 + ........ + Wn un

2 = 
2
3

(61)

� � �

W1 u1
2n – 1 +  W2 u2

2n – 1
 + W3 u3

2n – 1
 + ........ + Wn un

2n – 1 = 0

in 2n unknowns Wi and ui (i = 1, 2, ......, n).

The abscissae ui  and the weights Wi  are extensively tabulated for different
values of n.

The table up to n = 5 is given below:

n ± ui Wi

2 0.57735, 02692 1.0

0.0 0.88888 88889

3 0.77459 66692 0.55555 55556

4 0.33998 10436 0.65214 51549

0.86113 63116 0.34785 48451

0.0 0.56888 88889

5 0.53846 93101 0.47862 86705

0.90617 98459 0.23692 68851

In general case, the limits of integral in (56) have to be changed to those in
(57) by transformation

 x = 
1
2

 u (b – a) + 
1
2

(a + b).

5.27 NUMERICAL EVALUATION OF SINGULAR INTEGRALS

The various numerical integration formulae we have discussed so far are valid
if  integrand f(x) can be expanded by a polynomial or, alternatively can be
expanded in a Taylor’s series in the interval [a, b]. In a case where function has
a singularity, the preceding formulae cannot be applied and special methods
will have to be adopted.

U

V

|
|
|
|

W

|
|
|
|



466 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

5.28 EVALUATION OF PRINCIPAL VALUE INTEGRALS

Consider, I(f) = 
f x
x t

dx
a

b ( )
−z (62)

which is singular at t = x.

Its Principal value,

P(I) = lim
( ) ( )

ε

ε

ε→

−

+−
+

−
L

N
M

O

Q
Pz z0

f x
x t

dx
f x
x t

dx
a

t

t

b
; a < t < b (63)

= I(f) (for t < a or t > b)

Set  x = a + uh and t = a + kh in (1), we get

P(I) = P 
f a hu

u k
du

p ( )+
−z0 (64)

Replacing f(a + hu) by Newton’s forward difference formula at x = a  and
simplifying, we get

 I(f) = 
Δ j

j
j

f a
j
( )
!=

∞

∑

0

C (65)

where the constants Cj  are given by

Cj = P 
( )u

u k
dujp

−z0 (66)

In (66), (u)0 = 1, (u)1 = u, (u)2 = u (u – 1) etc.

Various approximate formulae can be obtained by truncating the series on
R.H.S. of (65).

Eqn. (65) may be written as

In(f) = 
Δ j

j

n

j
f a
j
( )
!=

∑

0

C (67)

We obtain rules of orders 1, 2, 3, ...... etc. by setting n = 1, 2, 3, ......
respectively.

(i) Two point rule (n = 1): I1(f) = 
Δ j

j

f a
j
( )
!=

∑
0

1

 Cj

 = C0 f(a) + C1
 Δ f(a)

 = (C0 – C1) f(a) + C1 f (a + h) (68)



NUMERICAL INTEGRATION AND DIFFERENTIATION    467

(ii) Three-point rule (n = 2):

I2 (f) = 
Δ j

j

f a
j
( )
!=

∑

0

2

 Cj = C0 f(a) + C1 Δ f(a) + C2 Δ
2 f(a)

= C C C0 1 2
1
2

− +F
HG

I
KJ

 f(a) + (C1 – C2) f (a + h)

+ 
1
2

 C2 f (a + 2h) (69)

In above relations (68) and (69), values of Cj are  given by,

  C0 = log e 
p k

k
−

C1 = p + C0 k

C2 = 
1
2

 p2 + p (k – 1) + C0 k (k – 1) .

EXAMPLES

Example 1. Apply Euler-Maclaurin formula to evaluate

1
51

1
53

1
55

.......
1

992 2 2 2+ + + + .

Sol. Take y  = 
1
2x

, x0 = 51, h = 2, n = 24, we have

 y′ = −
2
3x

,  y′″ = −
24

5x
Then from Euler-Maclaurin’s formula,

dx
x251

99

z  = 
2
2

1
51

2
53

2
55

2
97

1
992 2 2 2 2+ + + + +L

NM
O

QP
......

– 
( ) ( )

( )
( )
( )

2
12

2
99

2
51

2

3 3
− − −L

N
M

O

Q
P  + 

( ) ( )
( )

( )
( )

2
720

24
99

24
51

4

5 5
− − −L

N
M

O

Q
P

∴
1

51
2

53
2

55
2

97
1

992 2 2 2 2+ + + + +......

= 
dx
x251

99

z  + 
2
3

1
51

1
993 3( ) ( )

−
L

N
M

O

Q
P  – 

8
15

 
1

51
1

995 5( ) ( )
−

L

N
M

O

Q
P +......
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⇒ 2 
1

51
1

53
1

55
1

992 2 2 2+ + + +L

NM
O

QP
......

= 
dx
x2 2 251

99 1
51

1
99

+ +F
HG

I
KJz  + 

2
3

1
51

1
993 3( ) ( )

−
L

N
M

O

Q
P

– 
8
15

 
1

51
1

995 5( ) ( )
−

L

N
M

O

Q
P  + ......

⇒
1

51
1

53
1

55
1

992 2 2 2( ) ( ) ( )
......

( )
+ + + +

= 
1
2 251

99 dx
xz  + 

1
2

 
1

51
1

992 2( ) ( )
+

L

N
M

O

Q
P   + 

1
3

1
51

1
993 3( ) ( )

−
L

N
M

O

Q
P

 – 
4
15

1
51

1
995 5( ) ( )

−
L

N
M

O

Q
P  + ......

= 
1
2

 −F
HG

I
KJ

1

51

99

x
 + 

1
2

1
51

1
992 2( ) ( )

+
L

N
M

O

Q
P + 

1
3

1
51

1
993 3( ) ( )

−
L

N
M

O

Q
P

 – 
4
15

1
51

1
995 5( ) ( )

−
L

N
M

O

Q
P  + .......

= 0.00475 + 0.000243 + 0.0000022 + ......

= 0.00499 approximately.

Example 2. Using Euler-Maclaurin’s formula, find the value of  loge 2 from

dx
1 x0

1

+z .

Sol. Take y = 
1

1 + x
, x0 = 0,  n = 10,  h = 0.1,

we have y′ = −
+
1

1 2( )x
and y′″ = 

−
+

6
1 4( )x
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Then from Euler-Maclaurin’s formula, we have

dx
x10

1

+z  = 
0
2
.1

 
1

1 0
2

1 01
2

1 0 2
2

1 0 3
2

1 0 4+
+

+
+

+
+

+
+

+
L

N
M . . . .

+
+

+
+

+
+

+
+

+
+

+
+
O

Q
P

2
1 0 5

2
1 0 6

2
1 0 7

2
1 0 8

2
1 0 9

1
1 1. . . . .

– 
( . ) ( )

( )
( )

( )
0 1
12

1
1 1

1
1 0

2

2 2
−
+

− −
+

L

N
M

O

Q
P  + 

( . ) ( )
( )

( )
( )

0 1
720

6
1 1

6
1 0

4

4 4
−
+

− −
+

L

N
M

O

Q
P

= 0.693773 – 0.000625  + 0.000001 = 0.693149

Also,   
dx

x10

1

+z  = log ( )1
0

1

+ x  = log 2

Hence   loge 2 = 0.693149.

Example 3. Evaluate sin x dx
0

/2π

z  using the Euler-Maclaurin formula.

Sol. sin
0

/2
x dx

π

z  = 
h
2

 [y0 + 2y1 + 2y2 + ....... + 2yn – 1 
 +  yn]

+ h h h2 4 6

12 720 30240
+ +  + ......

To evaluate the integral, let us take h = 
π
4

.

Then we obtain,

sin
0

/2
x dx

π

z  = 
π
8

 (0 + 2 + 0) + π2

192
 + π4

184320
 + ......

= π π π
4 192 184320

2 4

+ +  (approximately)

= 0.785398 + 0.051404 + 0.000528 = 0.837330

If we take  h = 
π
8

, we get

sin
0

/2
x dx

π

z  = 
π

16
 [0 + 2(0.382683 + 0.707117 + 0.923879) + 1]

= 0.987119 + 0.012851 + 0.000033 = 1.000003.
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Example 4. Use Euler-Maclaurin’s formula to prove that

x2

1

n

∑  = 
n (n 1) (2n 1)

6
+ +

.

Sol. By Euler–Maclaurin’s formula,

y dx
x

xn

0
z  = 

h
2

 [y0 + 2y1 + 2y2+ ......... + 2yn – 1 + yn] – h2

12
 (yn′ – y0′)

+ h4

720
(yn′″ – y0′″) – h6

30240
 (yn

(v) – y0
(v))  + .....

⇒ 1
2

 y0 + y1  + y2 + ...... +  yn – 1 +  
1
2

 yn

=  
1
h

 y dx
x

xn

0
z  + 

h
12

 (yn′ – y0′) – h3

720
 (yn′″ – y0′″)

+ h5

30240
 (yn

(v) – y0
(v)) – ....... (70)

Here y(x) = x2,  y′(x) = 2x  and  h = 1

∴ From (70),

Sum = x dx
n

2

1z  + 
1
2

 (n2 + 1) + 
1

12
 (2n – 2)

∵

1
2

 y0 = 
1
2

, 
1
2

 yn  = 
n2

2

= 
1
3

 (n3 – 1) + 
1
2

 (n2 + 1) +  
1
6

 (n – 1) = 
n n n( ) ( )+ +1 2 1

6
.

Example 5. Find  x dx
0

1

z  by  Gaussian formula.

Sol. Let us change the limits as

 x = 
1
2

u(1– 0) + 
1
2

 (1 + 0) = 
1
2

(u + 1)

This gives,

 I = 
1
4

( )u du+
−z 1

1

1
  = 

1
4

 W Fi i
i

n

u( )
=
∑

1

where F(ui) = ui + 1
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For simplicity, let n = 4 and using the abscissae and weights corresponding
to n = 4 in the table, we get

 I = 
1
4

 [(– 0.86114 + 1) (0.34785 ) + (– 0.33998 + 1) (0.65214)

+ (0.33998 + 1) (0.65214) + (0.86114 + 1) (0.34785)]

= 0.49999 .....

where the abscissae and weights have been rounded to 5 decimal places.

Example 6. Show that the integration formula f(x) dx
0

h

z  = hf h
2
F
HG
I
KJ

 is exact for

all polynomials of degree less than or equal to 1. Obtain an estimate for the
truncation error.

If |f ″(x)| < 1 for all x, then find the step size h so that the truncation error is
less than 10–3.

Sol. If f(x) = k (a constant or zero degree polynomial) then the result is obvious
since

f x dx
h

( )
0z  = kh (71)

and  hf 
h
2
F
HG
I
KJ  = hk (72)

∴ From (71) and (72),

f x dx
h

( )
0z  = hf 

h
2
F
HG
I
KJ

If f(x) is a polynomial of degree one then

 f(x) = ax + b

f x dx
h

( )
0z  = ( )ax b dx

h
+z0  = ah

bh
2

2
+ (73)

 hf 
h
2
F
HG
I
KJ  = h 

ah
b

2
+F

HG
I
KJ  = ah

bh
2

2
+ (74)

From (73) and (74), we have the result.

Now, y dx
h

0z  = y x x y
x x

y dx
h

0 0 0
0

2

0
0 2

+ − ′ + − ″ +
L

N
M
M

O

Q
P
Pz ( )

( )
.....
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= hy0 + 
h

y
h

y
2

0

3

02 3! !
.....′ + ″ + (75)

(where x – x0 = h)

Also, hf 
h
2
F
HG
I
KJ  = h y

h
y

h

y0 0

2

02
2
2

+ ′ +

F
HG
I
KJ

″ +

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

!
..... (76)

(75) – (76) gives the truncation error

= h3 
1
6

1
8

−F
HG

I
KJ

 y0″ (nearly)

Now,
h

y
3

024
″  < 

1
24

h3

⇒  
1

24
 h3

 < 10–3 or | h3 | < 24 × 10– 3  = 0.024

⇒ – 0 0243 .  < h < 0 0243 . .

Example 7. Find λ such that the quadrature formula 
f(x)

x
dx

0

1

z  ≈ Af(0) + Bf(λ)

+ Cf(1) may be exact for polynomials of degree 3.

Sol.
f x

x
dx

( )
0

1

z  = Af(0) + Bf(λ) + Cf(1)

Set f(x) = 1, x, x2 and  x3 in turn,

2 = A + B + C (77)
2
3

 = Bλ + C (78)

 
2
5

 = Bλ2 + C (79)
2
7

 = Bλ3 + C (80)

Subtracting (78) from (79), we get

Bλ (λ – 1) = − 4
15
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Subtracting (79) from (80), we get

 Bλ2(λ – 1) = – 
4
35

∴   λ = 
3
7

.

Example 8. Determine W0, W1 and W2 as functions of  α such that the error R
in

f(x) dx
–1

1

z  = W0 f(– α) + W1 f(0) + W2 f(α) + R, α ≠ 0

Vanishes when f(x) is an arbitrary polynomial of degree at most 3. Show

that the precision is five when α = 
3
5

 and  three otherwise.

Compute the error R when α = 3
5

.

Sol. f x dx( )
–1

1

z  = W0 f(– α) + W1 f(0) + W2 f(α) is exact for f(x) = 1, x, x2, x3.

 f(x) = 1 ⇒ W0 + W1 + W2 = 2

 f(x) = x ⇒  W0 = W2

 f(x) = x2 ⇒ 2W0α2 = 
2
3

 f(x) = x3 ⇒ W0 = W2

Solving, we find

 W0 = W2 = 
1

3 2α
, W1 = 2 1

1
3 2−F

HG
I
KJα

Choosing  f(x) = x4, we get

 
2
5

 = 2W0α4 = 
2
3

 α2

⇒ α = 3
5

With this value,  f(x) = x5 gives exact value.

∴ The precision is 5.



474 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

 If α ≠ 3
5

the precision is 3.

With α = 3
5

, we have

f x dx( )
–1

1

z  = 
5
9

f f−
F

HG
I

KJ
+
F

HG
I

KJ
L

N
M
M

O

Q
P
P

3
5

3
5

 + 
8
9

 f(0) + R

Hence the error term R is given by

R = 
2
7 !

 f (vi) (0) + terms involving higher order derivatives

= 
f vi( ) ( )0
2520

.

Example 9. Determine a, b and c such that the formula

f(x) dx
0

h

z  = h af(0) bf
h
3

cf (h)+ F
HG
I
KJ

+
R
S
T

U
V
W

is exact for polynomials of as high order as possible and determine the order of
truncation error.

Sol. Making the method exact for polynomials of degree up to 2, we get

 For f(x) = 1:   h = h (a + b + c) ⇒ a + b + c = 1

 For f(x) = x:   
h2

2
 = h 

bh
ch

3
+F

HG
I
KJ ⇒ b

3
 + c = 

1
2

 For f(x) = x2: h3

3
 =  h 

bh
ch

2
2

9
+

F

HG
I

KJ
⇒ b

9
 + c = 

1
3

Solving above eqns., we get

 a = 0, b = 
3
4

, c = 
1
4

Truncation error of the formula = 
c
3 !

 f ′″(ξ); 0 < ξ < h

and  c = x dx
h

3

0z  – h 
bh

ch
3

3

27
+

F

HG
I

KJ
 = – h4

36
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Hence, we have

Truncation error   = − h4

216
 f ′″ (ξ) = 0 (h4).

ASSIGNMENT 5.3

1. Using Euler-Maclaurin’s formula, evaluate

(i)
1

400
 + 

1
402

 + 
1

404
 + ....... + 

1
500

(ii)
1

201 2( )
 + 

1

203 2( )
 + 

1

205 2( )
 + ...... + 

1

299 2( )
.

2. Prove that x
n

3

1
∑  = 

n n( )+R
S
T

U
V
W

1
2

2

 applying Euler-Maclaurin’s formula.

3. Use Euler-Maclaurin’s formula to find the value of π from the formula

π
4

 = 
dx

x1 20

1

+z .

4. Find the sum of the fourth powers of first n natural numbers by means of Euler-
Maclaurin’s formula.

OR

Prove that,  i
n

4

0
∑  = 

n n n n5 4 3

5 2 3 30
+ + + .

5. Sum the series
1

100
1

101
1

102
1

103
1

104
+ + + + .

6. Determine α, β, γ and δ such that the relation

y′ a b+F
HG

I
KJ2

 = αy (a) + βy (b) + γ y″ (a) + δ y″ (b)

is exact for polynomials of as high degree as possible.
7. Find the values of α0 , α1, α2 so that the given rule of differentiation

f ′(x0) = α0 f0 + α1f1 +  α2f2 (xk = x0 + kh)
is exact for f ∈ P2.

8. Find the values a, b, c such that the truncation error in the formula

f x dx
h

h
( )

−z  = h [af(– h) +  bf (0) + af(h) + h2 c {f ′ (– h) – f ′ (h)}]

is minimized.

9. Show that i i
i

n

i

n
7

1

5

1

+
= =
∑ ∑  = 2 i

i

n
3

1

2

=
∑

F

H
G
G

I

K
J
J

.

10. Evaluate: 
1

10 2
0

( )+=

∞

∑ m
m

 by applying Euler-Maclaurin’s formula.
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6.1 INTRODUCTION

Aphysical situation concerned with the rate of change of one quantity
with respect to another gives rise to a differential equation.
Consider the first order ordinary differential equation

dy
dx

 = f (x, y) (1)

with the initial condition

y(x0) = y0 (2)

Many analytical techniques exist for solving such equations, but these
methods can be applied to solve only a selected class of differential equations.

However, a majority of differential equations appearing in physical problems
cannot be solved  analytically.  Thus  it  becomes  imperative  to  discuss  their
solution  by  numerical methods.

In  numerical  methods,  we  do not  proceed  in  the  hope  of  finding  a
relation  between variables but we find the numerical values of the dependent
variable for certain values of independent variable.

It must be noted that even the differential equations which are solvable by
analytical methods can be solved numerically as well.
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6.2 INITIAL-VALUE AND BOUNDARY-VALUE PROBLEMS

Problems in which all the conditions are specified at the initial point only are
called initial-value problems. For example, the problem given by eqns. (1)
and (2) is an initial value problem.

Problems involving second and higher order differential equations, in which
the conditions at two or more points are specified, are called boundary-value
problems.

To obtain a unique solution of nth order ordinary differential equation, it is
necessary to specify n values of the dependent variable and/or its derivative at
specific values of independent variable.

6.3 SINGLE STEP AND MULTI-STEP METHODS

The numerical  solutions  are obtained step-by-step  through  a series of equal
intervals in the independent variable so that as soon as the solution y has been
obtained at x = xi , the next step consists of evaluating yi+1 at x = xi+1. The
methods which require only  the numerical value yi in order to compute the
next value yi+1 for solving eqn. (1) given above are termed as single step
methods.

The methods which require not only the numerical value yi but also  at
least one of the past values yi–1, yi–2, ...... are termed as multi-step methods.

6.4 COMPARISON OF SINGLE-STEP AND MULTI-STEP METHODS

The single step method has obvious advantages over the multi-step methods
that use several past values (yn, yn–1, ......, yn–p) and that require initial values
(y1, y2, ......, yn) that have to be calculated by another method.

The major disadvantage of single-step methods is that they use many more
evaluations of the derivative to attain the same degree of accuracy compared
with the multi-step methods.

6.5 NUMERICAL METHODS OF SOLUTION OF O.D.E.

In this chapter we will discuss various numerical methods of solving ordinary
differential equations.

We know that these methods will yield the solution in one of the two forms:
(a) A series for y in terms of powers of x from which the value of y can be

obtained by direct substitution.
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(b) A set of tabulated values of x and y.
Picard’s method and Taylor’s method belong to class (a) while those of

Euler’s, Runge-Kutta, Adams-Bashforth, Milne’s, etc. belong to class (b).
Methods which belong to class (b) are called step-by-step methods or
marching methods because the values of y are computed by short steps ahead
for equal intervals of  the independent variable.

In Euler’s and Runge-Kutta methods, the interval range h should be kept
small, hence  they  can be applied  for tabulating y  only  over a limited range.
To get functional values over a wider range, the Adams-Bashforth, Milne,
Adams-Moulton, etc. methods may be used since they use finite differences
and require starting values, usually obtained by Taylor’s series or Runge-Kutta
methods.

6.6 PICARD’S METHOD OF SUCCESSIVE APPROXIMATIONS

Picard was a distinguished Professor of Mathematics at the university of Paris,
France. He was famous for his research on the Theory of Functions.

Consider the differential equation

dy
dx

 = f (x, y); y(x0) = y0 (3)

Integrating eqn. (3) between the limits x0 and x and the corresponding
limits y0 and y, we get

y

y

x

x
dy f x y dx

0 0
z z= ( , )

⇒  y – y0 = 
x

x
f x y dx

0
z ( , )

or,  y = y0 + 
x

x
f x y dx

0
z ( , ) (4)

In equation (4), the  unknown function y appears under the integral sign.
This type of equation is called  integral equation.

This equation can be solved by the method of successive approximations or
iterations.

To obtain the first approximation, we replace y by y0 in the R.H.S. of eqn. (4).
Now, the first approximation is

 y(1) = y0 + 
x

x
f x y dx

0
0z ( , )

The integrand is a function of x alone and can be integrated.
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For a second approximation, replace y0 by y(1) in f (x, y0) which gives

 y(2) = y0 + 
x

x
f x y dx

0
z { , }(1)

Proceeding in this way,  we obtain y(3), y(4), ......., y(n–1) and y(n) where

 y(n) = y0 + 
x

x
nf x y dx

0

1z −{ , }( )  with y(x0) = y0

As a matter of fact, the process is stopped when the two values of y viz.
y(n–1) and y(n) are the same to the desired degree of accuracy.

Picard’s method is of considerable theoretical value. Practically, it is
unsatisfactory because of the difficulties which arise in performing the necessary
integrations. However, each step gives a better approximation of the required
solution than the preceding one.

EXAMPLES

Example 1. Given the differential  eqn.

 
dy
dx

x

y 1

2

2
=

+
with the initial condition y = 0 when x = 0. Use Picard’s method to obtain y for
x = 0.25, 0.5 and 1.0 correct to three decimal places.
Sol. (a) The given initial value problem is

dy
dx

 = f(x, y) = 
x

y

2

2 1+
where y = y0 = 0  at x = x0 = 0

We have first approximation,

 y(1) = y0 + 
x

x
f x y dx

0
0z ( , )

= 0 + 
0

2

0 1

x x
z +  dx = 

1
3

x3 (5)

Second approximation,

 y(2) = y0 + 
x

x
f x y dx

0

1z { , }( )

= 0 + 
0

2

3 2

3
1

x x

x
dxz F

HG
I

KJ
+
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= tan−L

N
M

O

Q
P

1
3

0
3
x

x

 = tan–1 
x3

3

= 
1
3

x3 – 1
3

1
3

3
3

xF
HG

I
KJ

 + ......

= 
1
3

x3 – 
1

81
 x9 + ..... (6)

From (5) and (6), we see that y(1) and y(2) agree to the first term 
x3

3
. To find

the range of values of x so that  the series with the term 1
3

 x3 alone will give the

result correct to three decimal places, we put

1
81

 x9 ≤  .0005

which gives, x9  ≤  .0405 or x ≤  0.7

Hence, y(.25) = 
1
3

 (.25)3 = .005

and y(0.5) = 
1
3

(0.5)3 = .042

To find y(1.0), we make use of eqn. (6) which gives,

y(1.0) = 
1
3

 – 
1

81
 = 0.321.

Example 2. Use Picard’s method to obtain y for x = 0.2. Given:

dy
dx

 = x – y with initial  condition y = 1 when x = 0.

Sol.  Here f(x, y) = x – y, x0 = 0, y0 = 1

We have first  approximation,

 y(1) = y0 + f x y dx
x

( , )0
0z  = 1 + ( )x dx

x
−z 1

0
 = 1 – x + 

x2

2
Second  approximation,

 y(2) = y0 + 
0

1
x

f x y dxz { , }( )  = 1 + 
0

x
x y dxz −{ }(1)

= 1 + 
0

2

1
2

x
x x

x
dxz − + −

F

HG
I

KJ
 = 1 – x + x2 – 

x3

6
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Third approximation,

 y(3) = y0 + 
0

2
x

f x y dxz { , }( )  = 1 + 
0

2
x

x y dxz −{ }( )

= 1 + 
0

2
3

1
6

x
x x x

x
dxz − + − +

F

HG
I

KJ

= 1 – x + x2 – 
x x3 4

3 24
+

Fourth approximation,

 y(4) = y0 + 
0

3)
x

f x y dxz { , }(  = 1 + 
0

3)
x

x y dxz −{ }(

= 1 + 
0

2
3 4

1
3 24

x
x x x

x x
dxz − + − + −

F

HG
I

KJ

= 1 – x + x2 – 
x x x3 4 5

3 12 120
+ −

Fifth approximation,

 y(5) = y0 + 
0

4
x

f x y dxz { , }( )  = 1 + 
0

4
x

x y dxz −{ }( )

= 1 + 
0

2
3 4 5

1
3 12 120

x
x x x

x x x
dxz − + − + − +

F

HG
I

KJ

= 1 – x + x2  – 
x x x x3 4 5 6

3 12 60 720
+ − +

When x = 0.2, we get

 y(1) = .82, y(2) = .83867, y(3) = .83740

 y(4) = .83746, y(5) = .83746

Thus, y = .837 when x = .2.

Example 3. Use Picard’s  method to obtain y for x = 0.1. Given that:

dy
dx

 = 3x + y2; y = 1 at x = 0.

Sol. Here f(x, y) = 3x + y2, x0 = 0, y0 = 1
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First approximation,   y(1) = y0 + f x y dx
x

( , )0
0z

= 1 + ( )3 1
0

x dx
x

+z

= 1 + x + 
3
2

 x2

Second approximation,  y(2) = 1 + x + 
5
2

x2 + 
4
3

x3 + 
3
4

x4 + 
9
20

x5

Third approximation,   y(3) = 1 + x + 
5
2

x2 + 2x3 + 
23
12

x4 + 
25
12

x5

+ 
68
45

x6 + 
1157
1260

 x7 + 
17
32

x8 + 
47

240
 x9

+ 
27

400
x10 + 

81
4400

x11

when x = 0.1, we have

y(1) = 1.115, y(2) = 1.1264, y(3) = 1.12721

Thus,    y = 1.127 when x = 0.1.

Example 4. If dy
dx

y x
y x

= −
+

, find the value of y at x = 0.1 using Picard’s method.

Given that y(0) = 1.

Sol. First approximation,

 y(1) = y0 + 
y x
y x

dx
x

0

00

−
+z  = 1 + 

0

1
1

x x
x

dxz
−
+

F
HG

I
KJ

= 1 + 
0

2
1

1
x

x
dxz +

−
F
HG

I
KJ

= 1 – x + 2 log (1 + x)
Second approximation,

 y(2) = 1 + x – 2 
0 1 2 1

x x dx
xz + +log ( )

which is difficult to integrate.

Thus, when, x = 0.1, y(1) = 1 – 0.1 + 2 log (1.1) = 0.9828

Here in this example, only I approximation can be obtained and so it gives
the approximate value of y for x = 0.1.
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Example 5. Solve 
dy
dx

 = 1 + xy with x0 = 2, y0 = 0 using Picard’s method of

successive approximations.

Sol. Here, y(1) = y0 + 
2

0

x
f x y dxz ( , )  = 0 + 

2
1 0

x
x dxz +[ ( )]  = x – 2

 y(2) = 0 + 
2

1 2
x

x x dxz + −{ ( )}

= x x
x

x

− +
F

HG
I

KJ
2

3

2
3

 = – 
2
3

 + x – x2 + 
x3

3

And third approximation,

 y(3) = 0 + 
2

21
x

x y dxz +{ }( )

= – 
22
15

 + x – 
1
3 3 4 15

2
3 4 5

x
x x x+ − +

which is the required solution.

Example 6. Obtain y when x = 0.1, x = 0.2, given that 
dy
dx

 = x + y; y(0) = 1. Check

the result with exact value.

Sol. We have  
dy
dx

 = f(x, y) = x + y, x0 = 0, y0 = 1

Now first approximation,

 y(1) = 1 + ( )1
0

+z x dx
x

 = 1 + x + 
x2

2
Second approximation,

 y(2) = 1 + x x
x

dx
x

+ + +
F

HG
I

KJz 1
2

2

0
 = 1 + x + x2 + 

x3

6

Third approximation,

 y(3) = 1 + x + x2 + 
x x3 4

3 24
+

When x = .1,  y(1) = 1.105

 y(2) = 1.11016

y(3) = 1.11033 (closer appr.)
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When x = .2,

    y(3) = 1.2427

We can continue further to get the better approximations. Now we shall
obtain exact value.

dy
dx

 – y = x is the given differential equation. General sol. is

ye–x = – e–x (1 + x) + c | I.F. = e–x

Putting     y = 1, x = 0 we obtain, c = 2

∴   y = – x – 1 + 2ex

When   x = 0.1, y = 1.11034

and          x = 0.2,   y = 1.24281

These results reveal that the approximations obtained for x = 0.1 is correct
to four decimal places while that for x = 0.2 is correct to 3 decimal places.

Example 7. Find the solution of 
dy
dx

 = 1 + xy, y(0) = 1 which passes through

(0, 1) in the interval (0, 0.5) such that the value of y is correct to three decimal
places (use the whole interval as one interval only). Take h = 0.1.
Sol. The given initial value problem is

dy
dx

 = f(x, y) = 1 + xy; y(0) = 1

i.e., y = y0 = 1 at x = x0 = 0

Here,  y(1) = 1 + x + 
x2

2

 y(2) = 1 + x + 
x x x2 3 4

2 3 8
+ +

 y(3) = 1 + x + 
x x x x x2 3 4 5 6

2 3 8 15 48
+ + + +

y(4) = y(3) + 
x x7 8

105 384
+

when x = 0,       y = 1.000

x = 0.1, y(1) = 1.105, y(2) = 1.1053 ....

∴ y = 1.105 (correct up to 3 decimals)

x = 0.2, y(1) = 1.220, y(2) = 1.223 = y(3)
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∴ y = 1.223 (correct up to 3 decimals)

x = 0.3, y = 1.355 as y(2) = 1.355 = y(3)

x = 0.4, y = 1.505 (similarly)

x = 0.5, y = 1.677 as y(4) = y(3) = 1.677

Thus,

x 0 0.1 0.2 0.3 0.4 0.5

y 1.000 1.105 1.223 1.355 1.505 1.677

We have numerically solved the given differential eqn. for x = 0, .1, .2, .3,
.4, and .5.

6.7 PICARD’S METHOD FOR SIMULTANEOUS FIRST ORDER DIF-

FERENTIAL EQUATIONS

Let     
dy
dx

 = φ(x, y, z) and
dz
dx

 = f(x, y, z)

be the simultaneous differential eqns. with initial conditions y(x0) = y0; z(x0) = z0.
Picard’s method gives

 y(1) = y0 + x

x
x y z dx

0
0 0z φ( , , ) ; z(1) = z0 + 

x

x
f x y z dx

0
0 0z ( , , )

  y(2) = y0 + x

x
x y z dx

0

1 1z φ{ , , }( ) ( ) ; z(2) = z0 + 
x

x
f x y z dx

0

1 1z { , , }( ) ( )

and so on as successive approximations.

EXAMPLES

Example 1. Approximate y and z by using Picard’s method for the particular

solution of 
dy
dx

 = x + z, 
dz
dx

 = x – y2 given that y = 2, z = 1 when x = 0.

Sol. Let   φ(x, y, z) = x + z, f(x, y, z) = x – y2

Here, x0 = 0, y0 = 2, z0 = 1

We have,
dy
dx

 = φ(x, y, z) ⇒ y = y0 + 
x

x
x y z dx

0
z φ( , , )
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Also,
dz
dx

 = f(x, y, z) ⇒ z = z0 + 
x

x
f x y z dx

0
z ( , , )

First approximation,

 y(1) = y0 + 
x

x
x y z dx

0
0 0z φ( , , )  = 2 + 

0
0

x
x z dxz +( )

= 2 + 
0

1
x

x dxz +( )  = 2 + x + 
x2

2

and  z(1) = z0 + 
x

x
f x y z dx

0
0 0z ( , , )  = 1 + 

0
0

2
x

x y dxz −( )

= 1 + 
0

4
x

x dxz −( )  = 1 – 4x + 
x2

2
Second approximation,

 y(2) = y0 + 
x

x
x y z dx

0

1 1z φ{ , , }( ) ( )

= 2 + 
0

1
x

x z dxz +{ }( )

= 2 + 
0

2

1 4
2

x
x x

x
dxz + − +

F

HG
I

KJ

= 2 + x – 
3
2

 x2 + 
x 3

6

 z(2) = z0 + 
x

x
f x y z dx

0
z { , , }(1) (1)

= 1 + 
0

2 2

2
2

x
x x

x
dxz − + +

F

HG
I

KJ

L

N

M
M

O

Q

P
P

= 1 – 4x – 
3
2

x2 – x3 – 
x4

4
 – 

x5

20
.

Example 2. Solve by Picard’s method, the differential equations

dy
dx

 = z,
dz
dx

 = x3 (y + z)

where y = 1, z = 
1
2

at x = 0. Obtain the values of y and z from III

approximation when x = 0.2 and x = 0.5.
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Sol. Let φ(x, y, z) = z, f(x, y, z) = x3(y + z)

Here   x0 = 0, y0 = 1, z0 = 
1
2

First approximation,

 y(1) = y0 + 
0

0 0

x
x y z dxz φ( , , )  = 1 + 

0
0

x
z dxz

= 1 + 
1
2

 x

 z(1) = z0 + 
0

0 0
0

3
0 0

1
2

x x
f x y z dx x y z dxz z= + +( , , ) ( )

= 
1
2

3
2 4

4

+ x
.

Second approximation,

 y(2) = 1 + 
0

1
x

z dxz ( )  = 1 + 
0

41
2

3
8

x
x dxz +F

HG
I
KJ

= 1 + 
x
2

3
40

+  x5

 z(2) = 1
2 0

3 1 1+ +z
x

x y z dx{ }( ) ( )

= 
1
2

3
2 2

3
80

3 4+ + +F
HG

I
KJz

x
x

x
x dx

= 
1
2

3
8 10

3
64

4
5

8+ + +x
x

x

Third approximation,

 y(3) = 1 + z dx
x

( )2

0z  = 1 + 
0

4 5 81
2

3
8 10

3
64

x x x x
dxz + + +

F

HG
I

KJ

= 1 + 
x

x
x x

2
3
40 60

3
576

5
6 9

+ + +

 z(3) = 
1
2

3 2 2

0
+ +z x y z dx

x
{ }( ) ( )

= 
1
2

3
2 2

3
8

7
40

3
640

3 4 5 8+ + + + +R
S
T

U
V
Wz

x
x

x
x x x dx

= 
1
2

3
2 4

1
2 5

3
8 8

7
40 9

3
64 12

4 5 8 9 12

+ + + + +. . . . .
x x x x x
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= 
1
2

3
8

+ x4 + 
x5

10
3

64
+ x8 + 

7
360

x9 + 
3

768
x12

when x = 0.2

 y(3) = 1 + 0.1 + 
3

40
(0.2)5 + 

( . )0 2
60

3
576

6

+  (0.2)9

= 1.100024 (leaving higher terms)

 z(3) = 
1
2

3
8

+ (.2)4 + 
(. )2
10

3
64

5

+ (.2)8 + 
7

360
(.2)9 + 

3
768

 (.2)12

= .500632 (leaving higher terms)
when x = 0.5

 y(3) = 1 + 
.5
2

3
40

+ (.5)5 + 
(. )5
60

3
576

6

+  (.5)9

= 1.25234375

 z(3) = 
1
2

3
8

+ (.5)4 + 
(. )5
10

3
64

5

+  (.5)8 + 
7

360
(.5)9 + 

3
768

(.5)12

= .5234375.

ASSIGNMENT 6.1

1. For the differential equation
dy
dx

 = x – y2, y(0) = 0

Calculate y(0.2) by Picard’s method to third approximations and round-off the value at
the 4th place of decimals.

2. Find y(0.2) if 
dy
dx

 = log (x + y); y(0) = 1. Use Picard’s method.

3. Employ Picard’s method to obtain the solution of 
dy
dx

 = x2 + y2 for x = 0.1 correct to four

decimal places, given that y = 0 when x = 0.

4. Find an approximate value of y when x = 0.1 if  
dy
dx

 = x – y2 and y = 1 at x = 0 using

Picard’s method.

5. Solve numerically 
dy
dx

 = 2x – y, y(0) = 0.9 at x = 0.4 by Picard’s method with three

iterations and compare the result with the exact value.

6. Employ Picard’s method to find y (0.2) and y (0.4) given that  
dy
dx

= 1 + y2 and y (0) =  0.

7. Explain Picard’s method of successive approximation for numerical solution of ordinary
differential equations.
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8. Approximate y and z by using Picard’s method for the solution of simultaneous differential
equations

dy
dx

 = 2x + z,
dz
dx

 = 3xy + x2z

with y = 2, z = 0 at x = 0 up to third approximation.

9. Using Picard’s method, obtain the solution of 
dy
dx

 = x(1 + x3y), y (0) = 3

Tabulate the values of y(0.1), y(0.2).

6.8 EULER’S METHOD

Euler’s method is the simplest one-step method and has a limited application
because of its low accuracy. This method  yields solution of an ordinary
differential equation in the form of a set of tabulated values.

In this method, we determine the change Δy is y  corresponding to small
increase in the argument x. Consider the differential equation

 
dy
dx

f x y= ( , ) , y(x0) = y0 (7)

Let y = g(x) be the solution of (7). Let x0, x1, x2, ...... be equidistant values
of x.

In this  method, we use the property that in a small interval, a curve is
nearly a straight line. Thus at the point (x0, y0), we approximate the curve by
the tangent at the point (x0, y0).

Y

O
X

Q1

Q2

P0

x0 x1 x2

y0

y1

y2
slope f(x

, y )
0

0

slo
pe f(x

, y )
1

1

y
=

g(
x)

The eqn. of the tangent at P0(x0, y0) is

y – y0 = 
dy
dx

x xF
HG
I
KJ P0

0( – ) = f(x0, y0) (x – x0)

⇒ y = y0 + (x – x0) f(x0, y0) (8)
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This gives the y-coordinate of any point on the tangent. Since the curve is
approximated by the  tangent in the interval (x0, x1), the value of y on the curve
corresponding to x = x1 is given by the above value of y in eqn. (8) approximately.

Putting x = x1(= x0 + h) in eqn. (8), we get

 y1 = y0 + hf(x0, y0)

Thus Q1 is (x1, y1)

Similarly, approximating the curve in the next interval (x1, x2) by a line
through Q1(x1, y1)

 with slope f(x1, y1), we get

y2 = y1 + hf(x1, y1)

In general, it can be shown that,

yn+1 = yn
 + hf(xn, yn)

This is called Euler’s Formula.

A great disadvantage of this method lies in the fact that if 
dy
dx

 changes

rapidly over an interval, its value at the beginning of the interval may give a
poor approximation as compared to its average value over the interval and
thus the value of y calculated from Euler’s method may be in much error from
its true value. These errors accumulate in the succeeding intervals and the
value of y becomes erroneous.

In Euler’s method, the curve of the actual solution y = g(x) is approximated
by a sequence of short lines. The process is very slow. If h is not properly
chosen, the curve P0Q1Q2 ...... of short lines representing numerical solution
deviates significantly from the curve of actual solution.

To avoid this error, Euler’s modified method is preferred because in
this, we consider the curvature of the actual curve inplace of approximating
the curve by sequence of short lines.

6.9 ALGORITHM OF EULER’S METHOD

1. Function F(x,y)=(x–y)/(x+y)

2. Input x0,y0,h,xn

3. n=((xn–x0)/h)+1

4. For i=1,n

5. y=y0+h*F(x0,y0)

6. x=x+h

NOTE
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7. Print x0,y0

8. If x<xn then

x0=x

y0=y

ELSE

9. Next i

10. Stop

6.10 FLOW-CHART OF EULER’S METHOD

For i = 1, n

START

F(x, y) = (x – y)/(x + y)

Input x0, y0, h, xn

n = (xn – x0)/h + 1

y = y0 + h*F(x0, y0)
x = x + h

Print x0, y0

If
x < xn

x0 = x
y0 = y

STOP

No

Yes
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6.11 PROGRAM OF EULER’S METHOD

#include<stdio.h>

#define F(x,y) (x–y)/(x+y)

main ( )

{

int i,n;

float x0,y0,h,xn,x,y;

printf("\n Enter the values: x0,y0,h,xn: \n");

scanf ("%f%f%f%f",&x0,&y0,&h,&xn);

n=(xn–x0)/h+1;

for (i=1;i<=n;i++)

{

y=y0+h*F(x0,y0);

x=x0+h;

printf("\n X=%f Y=%f",x0,y0);

if(x<xn)

{

x0=x;

y0=y;

}

}

return;

}

6.11.1 Output

Enter the values: x0,y0,h,xn:

0 1 0.02 0.1

X=0.000000 Y=1.000000

X=0.020000 Y=0.980000

X=0.040000 Y=0.960800

X=0.060000 Y=0.942399

X=0.080000 Y=0.924793

X=0.100000 Y=0.907978
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6.11.2 Notations used in the Program

(i) x0 is the initial value of x.
(ii) y0 is the initial value of y.

(iii) h is the spacing value of x.
(iv) xn is the last value of x at which value of y is required.

6.12 MODIFIED EULER’S METHOD

The modified Euler’s method gives greater improvement in accuracy over the
original Euler’s method. Here the core idea is that we use a line through (x0, y0)
whose slope is the average of the slopes at (x0, y0) and (x1, y1

(1)) where y1
(1) = y0 +

hf(x0, y0). This line approximates the curve in the interval (x0, x1).
Geometrically, if L1 is the tangent at (x0, y0), L2 is a line through (x1, y1

(1)) of

slope f(x1, y1
(1)) and L  is the line through (x1, y1

(1)) but with a slope equal to the
average  of  f(x0, y0)  and  f(x1, y1

(1))  then  the  line  L  through (x0, y0) and

parallel to L  is used to approximate the curve in the interval (x0, x1). Thus the
ordinate of the point B will give the value of y1. Now, the eqn. of the line AL is
given by

Y

O
X

x0 x1

A L1

L2

L

L

B

(x , y )1 1

(x , y )1 1
(1)

(x , y )0 0

y1 = y0 + (x1 – x0) 
f x y f x y( , ) ( , )(1)

0 0 1 1

2
+L

N
M
M

O

Q
P
P

    = y0 + h 
f x y f x y( , ) ( , )( )

0 0 1 1
1

2
+L

N
M
M

O

Q
P
P
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A generalised form of Euler’s modified formula is

    y1
(n+1) = y0 + 

h
2

 [f(x0, y0) + f{x1, y1
(n)}] ; n = 0, 1, 2, ......

where y1
(n) is the nth approximation to y1.

The above iteration formula can be started by choosing y1
(1) from Euler’s

formula

y1
(1) = y0 + hf(x0, y0)

Since this formula attempts to correct the values of  yn+1 using the predicted
value of yn+1 (by Euler’s method), it is classified as a one-step predictor-corrector
method.

6.13 ALGORITHM OF MODIFIED EULER’S METHOD

1. Function F(x)=(x–y)/(x+y)

2. Input x(1),y(1),h,xn

3. yp=y(1)+h*F(x(1),y(1))

4. itr=(xn–x(1))/h

5. Print x(1),y(1)

6. For i=1,itr

7. x(i+1)=x(i)+h

8. For n=1,50

9. yc(n+1)=y(i)+(h/2*(F(x(i),y(i))+F(x(i+1),yp))

10. Print n,yc(n+1)

11. p=yc (n+1)-yp

12. If abs(p)<.0001 then

goto Step 14

ELSE

yp=yc(n+1)

13. Next n

14. y(i+1)=yc(n+1)

15. print x(i+1),yp

16. Next i

17. Stop
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6.14 FLOW-CHART OF MODIFIED  EULER’S METHOD

START

F(x) = (x – y)/(x + y)

Input x(1), y(1), h, xn

itr = (xn – x(1))/h

Print x(1), y(1)

yp = y(1) + h*F(x(1), y(1))

For i = 1, itr

x(i + 1) = x(i) + h

Print n, yc(n + 1)

If
abs(p) < 0.0001

yp = yc(n + 1)

STOP

No

Yes

For n = 1, 50

yc(n + 1) = y(i) + (h/2*(F(x(i), y(i)) +
F(x(i + 1), yp))

p = yc(n + 1) – yp

y(i + 1) = yc(n + 1)

Print x(i + 1), yp
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6.15 PROGRAM OF MODIFIED EULER’S METHOD

#include<stdio.h>

#include<math.h>

#define F(x,y) (x-y)/(x+y)

main ()

{

int i,n,itr ;

float x[5],y[50],yc[50],h,yp,p,xn;

printf("\n Enter the values: x[1],y[1],h,xn:\n");

scanf("%f%f%f%f",&x[1],&y[1],&h,&xn);

yp=y[1]+h*F(x[1],y[1]);

itr=(xn-x[1])/h;

printf("\n\n X=%f Y=%f\n",x[1],y[1];

for (i=1;i<=itr;i++)

{

x[i+1]=x[i]+h;

for (n=1;n<=50;n++)

{

yc[n+1]=y[i]+(h/2.0)*(F(x[i],y[i])+F(x[i+1],yp));

printf("\nN=%d Y=%f",n,yc[n+1]);

p=yc[n+1]-yp;

if(fabs (p)<0.0001)

goto next;

else

yp=yc[n+1];

}

next:

y[i+1]=yc[n+1];

printf("\n\n X=%f Y=%f\n",x[i+1], yp);

}

return;

}
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6.15.1 Output

Enter the values: x[1],y[1],h,xn:

0 1 0.02 0.06

X=0.000000 Y=1.000000

N=1 Y=0.980400

N=2 Y=0.980400

X=0.020000 Y=0.980400

N=1 Y=0.961584

N=2 Y=0.961598

X=0.040000 Y=0.961584

N=1 Y=0.943572

N=2 Y=0.943593

X=0.060000 Y=0.943572

6.15.2 Notations used in the Program

(i) x(1) is an array of the initial value of x.
(ii) y(1) is an array of the initial value of y.

(iii) h is the spacing value of x.
(iv) xn is the last value of x at which value of y is required.

EXAMPLES

Example 1. Given 
dy
dx

y – x
y x

=
+  with y = 1 for x = 0. Find y approximately for

x = 0.1 by Euler’s method.

Sol. We have

dy
dx

 = f(x, y) = 
y x
y x

–
+  ; x0 = 0, y0 = 1, h = 0.1

Hence the approximate value of y at  x = 0.1 is given by

y1 = y0 + hf(x0, y0) | using yn+1 = yn + hf(xn, yn)

= 1 + (.1) + 
1 0
1 0

–
+

F
HG

I
KJ
 = 1.1

Much better accuracy is obtained by breaking up the interval 0 to 0.1 into
five steps. The approximate value of y at xA = .02 is given by,
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y1 = y0 + hf(x0, y0)

= 1 + (.02) 
1 0
1 0

–
+

F
HG

I
KJ

 = 1.02

At xB = 0.04,   y2 = y1 + hf(x1, y1)

= 1.02 + (.02) 
102 02
102 02
. – .
. .+
F
HG

I
KJ  = 1.0392

At xC = .06,  y3 = 1.0392 + (.02) 
1.0392 – .04
1.0392 .04+
F

HG
I

KJ
 = 1.0577

At xD = .08,  y4 = 1.0577 + (.02) 1.0577 – .06
1.0577 .06+
F

HG
I

KJ
 = 1.0756

At xE = .1, y5 = 1.0756 + (.02) 
1.0756 – .08
1.0756 .08+
F

HG
I

KJ
 = 1.0928

Hence y = 1.0928 when x = 0.1

Y

O
X

A�

A
B

C

D

E

B� C� D� E�

Example 2. Solve the equation 
dy
dx

1 – y=  with the initial condition x = 0, y = 0

using Euler’s algorithm and tabulate the solutions at x = 0.1, 0.2, 0.3.

Sol. Here, f(x, y) = 1 – y

Taking h = 0.1, x0 = 0, y0 = 0, we obtain

y1 = y0 + hf(x0, y0)

= 0 + (.1) (1 – 0) = .1

∴ y(0.1) = 0.1
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Again,  y2 = y1 + hf(x1, y1)

= 0.1 + (0.1) (1 – .1)

= 0.1 + .09 = .19
∴ y(0.2) = 0.19

Again,  y3 = y2 + hf(x2, y2)

= .19 + (.1) (1 – .19)

= .19 + (.1) (.81) = .271

∴ y(0.3) = .271

Tabulated values are

x y(x)

0 0

0.1 0.1

0.2 0.19

0.3 0.271

Example 3. Using Euler’s modified method, obtain a solution of the equation

 
dy
dx

x | y| f(x, y)= + =

with initial condition y = 1 at x = 0 for the range 0 ≤ x ≤ 0.6 in steps of 0.2.

Sol. Here f(x, y) = x + | |y  ; x0 = 0, y0 = 1, h = .2

∴ f(x0, y0) = x0 + | |y 0  = 0 + 1 = 1

We have y1
(1) = y0 + hf(x0, y0)

= 1 + (.2) . 1 = 1.2

∴ f(x1, y1
(1)) = x1 +  | |( )y 1

1

= 0.2 + | . |12  = 1.2954

The second approximation to y1 is

y1
(2) = y0 + h

f x y f x y( , ) { , }( )
0 0 1 1

1

2
+L

N
M
M

O

Q
P
P

= 1 + (0.2) 1 12954
2

+F
HG

I
KJ

.  = 1.2295
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Again,   f{x1, y1
(2)} = x1 + | |

( )
y1

2
 = 0.2 + 12295.  = 1.3088

So, y1
(3) = y0 + 

h
2

 [f(x0, y0) + f{x1, y1
(2)}]

= 1 + 
0 2
2
.

 [1 + 1.3088] = 1.2309

We have f{x1, y1
(3)} = 0.2 + 12309.  = 1.309

Then y1
(4) = 1 + 

.2
2

 [1 + 1.309] = 1.2309

Since, y1
(4) = y1

(3) hence y1 = 1.2309
Now, y2

(1) = y1 + hf(x1, y1)

= 1.2309 + (0.2) [0.2 + 12309. ]

= 1.4927 |∵ x1 = 0.2

f{x2, y2
(1)} = x2 + y2

1( )  = 0.4 + 14927.

= 1.622 |∵ x2 = 0.4

Then, y2
(2) = y1 + 

h
2

 [f(x1, y1) + f{x2, y2
(1)}]

       = 1.2309 + 
0 2
2

2 12309 1622
.

[(. . ) . ]+ +  = 1.524

Now, y2
(3) = y1 + 

h
f x y f x y

2 1 1 2 2
2[ ( , ) { , }]( )+

= 1.2309 + 
0 2
2

2 1 2309 4 1524
.

[(. . ) (. . )]+ + +

= 1.5253

y2
(4) = 1.2309 + 

0.2
2

[(. . ) (. . )]2 1 2309 4 15253+ + +

Since,  y2
(4) = y2

(3)  hence y2 = 1.5253

Now,  y3
(1) = y2 + hf(x2, y2)

       = 1.5253 + (0.2) [.4 + 15253. ] = 1.8523

 y3
(2) = y2 + 

h
2

 [f(x2, y2) + f{x3, y3
(1)}]

 = 1.5253 + 
0 2
2

4 15253 6 18523
.

[(. . ) (. . )]+ + +

 = 1.8849
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Similarly, y3
(3) = 1.8861 = y3

(4)

Since, y3
(3) = y3

(4)

Hence, we take    y3 = 1.8861.

Example 4. Given that 
dy
dx

log (x y)10= +  with the initial condition that y = 1

when x = 0. Find y  for x = 0.2 and x = 0.5 using Euler’s modified formula.

Sol. Let x = 0, x1 = 0.2, x2 = .5 then y0 = 1

y1 and y2 are yet to be computed.

Here, f(x, y) = log (x + y)

∴  f(x0, y0) = log 1 = 0

∴ y1
(1) = y0 + hf(x0, y0) = 1

 f{x1, y1
(1)} = log {x1 + y1

(1)}  = log (.2 + 1) = log (1.2)

∴  y1
(2) = y0 + 

h
2

 [f(x0, y0) + f{x1, y1
(1)}]

= 1 + 
.2
2

 [0 + log (1.2)] = 1.0079

Also, y1
(3) = 1 + 

.2
2

 [0 + log (.2 + 1.0079)] = 1.0082

y1
(4) = 1 + 

.2
2

 [0 + log (.2 + 1.0082)] = 1.0082

Since,    y1
(4) = y1

(3) hence y1 = 1.0082

To obtain y2, the value of y at x = 0.5, we take,

   y2
(1) = y1 + hf(x1, y1)

= 1.0082 + 0.3 log (.2 + 1.0082)

= 1.0328 (∵ h = .5 – .2 = .3 here)

Now, y2
(2) = y1 + 

h
2

 [f(x1, y1) + f{x2, y2
(1)}]

= 1.0082 + 
.3
2

 [log (.2 + 1.0082) + log (.5 + 1.0328)]

= 1.0082 + 0.0401 = 1.0483

Also, y2
(3) = 1.0082 + 

.3
2

 [log (.2 + 1.0082) + log (.5 + 1.0483)]

= 1.0082 + .0408 = 1.0490
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Similarly, y2
(4) = 1.0490

Since, y2
(3) = y2

(4)  hence, y2 = 1.0490.

Example 5. Given : 
dy
dx

 = x – y2 ; y(.2) = 0.2, find y(.4) by modified Euler’s

method correct to 3 decimal places, taking h = 0.2.

Sol. Here,  f(x, y) = x – y2 ; x0 = 0.2, y0 = .02 and h = 0.2

Let x1 = 0.4 then we are to find y1 = y(0.4)

We have   f(x0, y0) = x0 – y0
2 = 0.2 – (.02)2 = 0.2 – .0004 = 0.1996

∴ y1
(1) = y0 + hf(x0, y0) = .02 + (.2) (.1996) = .060

 f{x1, y1
(1)} = x1 – {y1

(1)}2 = .4 – (.06)2 = .3964

∴    y1
(2) = y0 + 

h
2

 [f(x0, y0) + f{x1, y1
(1)}]

= .02 + 
.2
2

 [.1996 + .3964] = .0796 ~−  .080

Now,  f{x1, y1
(2)} = x1 – [y1

(2)]2 = .4 – (.08)2 = .3936

∴    y1
(3) = y0 + 

h
2

 [f(x0, y0) + f{x1, y1
(2)}]

= .02 + 
.2
2

 [.1996 + .3936] = .07932 ~−  .079

 f{x1, y1
(3)} = x1 – [y1

(3)]2 = .4 – (.079)2 = .3938

∴    y1
(4) = y0 + 

h
2

 [f(x0, y0) + f{x1, y1
(3)}]

= .02 + 
.2
2

 [.1996 + .3938] = .0793 ~− .079

Since y1
(3) = y1

(4) hence y1 = .079.

ASSIGNMENT 6.2

1. Find y for x = 0.2 and x = 0.5 using modified Euler’s method, given that

dy
dx

x ye= +log ( ) ; y(0) = 1

2. Taking h = .05, determine the value of y at x = 0.1 by Euler’s modified method, given
that,

dy
dx

 = x2 + y; y(0) = 1
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3. Given 
dy
dx

x y= +2 , y(0) = 1, find y(.02), y(.04) and y(.06) using Euler’s modified method.

4. Apply Euler’s method to the initial value problem 
dy
dx

 = x + y, y(0) = 0 at x = 0 to x = 1.0

taking h = 0.2.

5. Use Euler’s method with h = 0.1 to solve the differential equation 
dy
dx

 = x2 + y2, y(0) = 1

in the range x = 0 to x = 0.3.

6. Solve for y at x = 1.05 by Euler’s method, the differential equation 
dy
dx

y
x

= F
HG
I
KJ

2 –  where

y = 2 when x = 1. (Take h = 0.05).

7. Use Euler’s modified method to compute y for x = .05 and .10. Given that 
dy
dx

x y= +

with the initial condition x0
 = 0, y0 = 1. Give the correct result up to 4 decimal places.

8. Using Euler’s method, compute  y(0.04) for the differential eqn. 
dy
dx

y= – ; y(0) = 1. Take

h = 0.01.

9. Compute y(0.5) for the differential eqn. 
dy
dx

 = y2 – x2 with y(0) = 1 using Euler’s method.

10. Find y(2.2) using modified Euler’s method for 
dy
dx

 = – xy2; y(2) = 1. Take h = .1.

11. Given 
dy
dx

x y y= + =3 0 1, ( ) . Compute y (0.02) by Euler’s method taking h = 0.01.

12. Find y(1) by Euler’s method from the differential equation 
dy
dx

y
x

=
+

–
1

 when y(0.3) = 2.

Convert up to four decimal places taking step length h = 0.1.

6.16 TAYLOR’S METHOD

Consider the differential equation

     
dy
dx

 = f(x, y) U
V
W

(9)

with the initial condition y(x0) = y0.

If y(x) is the exact solution of (9) then y(x) can be expanded into a Taylor’s
series about the point x = x0 as

y(x) = y0 + (x – x0) y0′ + 
( )

!
x x− 0

2

2
 y0″ + 

( )
!

x x− 0
3

3
y0′″ + ...... (10)

where dashes denote differentiation with respect to x.
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Differentiating (9) successively with respect to x, we get

y″ = ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

f
x

f
y

dy
dx

f
x

f
f
y x

f
y

+ = + = +
F
HG

I
KJ

f (11)

∴  y″′ = 
d
dx

(y″) = 
∂

∂
∂
∂

∂
∂

∂
∂x

f
y

f
x

f
f
y

+
F
HG

I
KJ

+
F
HG

I
KJ

= ∂
∂

∂
∂

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

∂
∂

2

2

2 2 2
2

2

2

f

x

f
x

f
y

f
f

x y
f

f
y x

f
f
y

f
f

y
+ + + +

F
HG
I
KJ

+ (12)

and so on.
Putting  x = x0  and y = y0 in the expressions for y′, y″, y″′, ....... and

substituting them in eqn. (10), we get a power series for y(x) in powers of x – x0.

i.e.,  y(x) = y0 + (x – x0)y0′ + 
( )

!
x x− 0

2

2
 y0″

+ 
( )

!
x x− 0

3

3
 y0″′ + ....... (13)

Putting  x = x1 (= x0 + h) in (13), we get

y1 = y(x1) = y0 + hy0′ + 
h2

2 !
 y0″ + 

h3

3 !
 y0″′ + ....... (14)

Here y0′, y0″, y0″′, ...... can be found by using (9) and its successive
differentiations (11) and (12) at x = x0 . The series (14) can be truncated at any
stage if h is small.

After obtaining y1, we can calculate y1′, y1″, y1″′, ...... from (9) at x1 = x0 + h.
Now, expanding y(x) by Taylor’s series about x = x1, we get

y2 = y1 + hy′1 + 
h2

2 !
 y1″ + 

h3

3 !
 y1″′ + .......

Proceeding, we get

yn = yn –1 + hyn–1′ + 
h2

2 !
 yn–1″ + 

h3

3 !
 yn–1″′ + ........

Practically, this method is not of much importance because of its need of
partial derivatives.

Moreover if we are interested in a better approximation with a small
truncation error, the evaluation of higher order derivatives is needed which
are complicated in evaluation. Besides its impracticability, it is useful in judging
the degree of accuracy of the approximations given by other methods.
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We can determine the extent to which any other formula agrees with the
Taylor’s series expansion. Taylor’s method is one of those methods which yield
the solution of a differential equation in the form of a power series. This method
suffers from a serious disadvantage that h should be small enough so that
successive terms in the series diminish quite rapidly.

6.17 TAYLOR’S METHOD FOR SIMULTANEOUS I ORDER

DIFFERENTIAL EQUATIONS

Simultaneous differential equations of the type

   
dy
dx

 = f(x, y, z) (15)

and    
dz
dx

 = φ(x, y, z) (16)

with initial conditions  y(x0) = y0 and z(x0) = z0

can be solved by Taylor’s method.
If h is the step-size then

 y1 = y(x0 + h) and z1 = z(x0 + h)

Taylor’s algorithm for (15) and (16) gives

   y1 = y0 + hy0′ + 
h2

2 !
 y0″ + 

h3

3 !
 y0″′ + ...... (17)

and z1 = z0 + hz0′ + 
h2

2 !
 z0″ + 

h3

3 !
 z0″′ + ...... (18)

Differentiating (15) and (16) successively, we get y″, y″′, ......., z″, z″′, ......
etc. So the values y0″, y0″′, ...... and z0″, z0″′, ...... can be obtained.

Substituting them in (17) and (18), we get y1, z1 for the next step.

 y2 = y1 + hy1′ + 
h2

2 !
 y1″ + 

h3

3 !
 y1′″ + ......

and z2 = z1 + hz1′ + 
h2

2 !
 z1″ + 

h
z

3

13 !
″ ′ + .......

Since y1 and z1 are known, y1′, y1″, y1″′......., z1′, z1″ , z1″′, ....... can be calculated.
Hence y2 and z2 can be obtained. Proceeding in this manner, we get other values
of y, step-by-step.
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EXAMPLES

Example 1. Use Taylor’s series method to solve

dy
dx

 = x + y;  y(1) = 0

numerically up to x = 1.2 with h = 0.1. Compare the final result with the value
of explicit solution.

Sol. Here,  x0 = 1, y0 = 0

y′ = x + y i.e.,    y0′ = x0 + y0 = 1

⇒  y″ = 1 + y′ i.e.,   y0″ = 1 + y0′ = 2

⇒ y″′ = y″ i.e.,  y0″′ = y0″ = 2

⇒ y(iv) = y″′ i.e., y0
(iv) = 2

⇒  y(v) = y(iv) i.e.,  y0
(v) = 2

By Taylor’s series, we have

y1 = y0 + hy0′ + 
h2

2 !
 y0″ + 

h3

3 !
 y0″′ + 

h4

4 !
 y0

(iv) + ......

 y(1 + h) = 0 + (0.1) 1 + 
(0.1)

2 !

2

 2 + 
(0.1)

3 !

3

 2 +  
(0.1)

4 !

4

 2 + ......

⇒   y(1.1) = 0.1103081 = 0.110 (app.)

Also,  x1 = x0 + h = 1.1

Again, y1′ = x1 + y1 = 1.1 + 0.11 = 1.21

y1″ = 1 + y1′ = 1 + 1.21 = 2.21

  y1″′ = y1″ = 2.21

y1
(iv) = 2.21

  y1
(v) = 2.21

Now,   y(1.1 + h) = y1 + hy1′ + 
h2

2 !
 y1″  + 

h3

3 !
 y1″′ + ......

= 0 . 11 + (0.1) (1.21) + 
( . )0 1

2

2

 (2.21) + ......

⇒ y(1.2) = 0.232 (app.)
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The analytical solution of the given differential equation is
y = – x – 1 + 2ex –1

when x = 1.2, we get
y = – 1.2 – 1 + 2e0.2 = 0.242.

Example 2. For the differential eqn., 
dy
dx

 = – xy2, y (0) = 2. Calculate y(0. 2) by

Taylor’s series method retaining four non-zero terms only.

Sol. Here  x0 = 0, y0 = 2 Also y′ = – xy2

Taylor’s series for y(x) is given by

y(x) = y0 + xy0′ + 
x2

2
 y0″ + 

x3

6
y0″′ + 

x4

24
 y0

(iv)

 + 
x5

120
 y0

(v) + ....... (19)

The values of the derivatives y0′, y0″, ......., etc. are obtained as follows:
 y′ = – xy2   y0′ = – x0y0

2 = 0

y″ = – y2 – 2xyy′  y 0″ = – 22 – 0 = – 4

 y′″ = – 4yy′ – 2xy′2 – 2xyy″ y0′″ = 0

y(iv) = – 6y′2 – 6y′y″ – 6xy′y″ – 2xyy′″ y0
(iv) = 48

 y(v) = – 24y′y″ – 8yy′″ – 6xy″2  y0
(v) = 0

– 8xy′y″′ – 2xyy(iv)

y(vi) = – 40y′y′″ – 30y″2 – 10 yy(iv) – 20xy″y″′  y0
(vi) = – 1440

– 10xy′ y(iv) – 2xyy(v).

We stop here as we shall get four non-zero terms in the Taylor’s series (19).

∴ y(x) = 2 + 
x2

2
 (– 4) + 

x4

24
 (48) + 

x6

720
 (– 1440) + ......

= 2 – 2x2 + 2x4 – 2x6 + .......

∴     y(0.2) = 2 – 2(0.2)2 + 2(0.2)4 – 2 (0.2)6 + ......

= 2 – 0.08 + 0.0032 – 0.000128 = 1.923072

~−  1.9231 correct up to four decimal places.

Example 3. From the Taylor’s series, for y(x), find y(0.1) correct to four decimal

places if y(x)  satisfies 
dy
dx

 = x – y2 and y(0) = 1. Also find y(0.2).



NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS    511

Sol. Here x0 = 0, y0 = 1

y′ = x – y2 y0′ = 0 – 1 = – 1

y″ = 1 – 2yy′ y0″ = 3

y″′ = – 2yy″ – 2y′2 y0′″ = – 8

y(iv) = – 2yy′″ – 6y′y″ y0
(iv) = 34

y(v) = – 2yy(iv) – 8y′y′″ – 6y″2 y0
(v) = – 186

y(vi) = – 2yy(v) – 10y′y(iv) – 20 y″y′″ y0
(vi) = 1192 U

V
Wy(vii) = – 2yy(vi) – 12y′y(v) – 50 y″y(iv) y0

(vii) = – 10996 only for y(0.2)

– 20 y′″2

Using these values, Taylor’s series becomes

y(x) = 1 – x + 
3
2

x2 – 
4
3

 x3 + 
17
12

 x4 – 
31
20

 x5 + ...... (20)

Put x = 0.1 in (20), we get

y(0.1) = 0.91379 ~−  0.9138 (upto four decimal places)

To determine y(0.2), we have

y(x) = 1 – x + 
3
2

 x2 – 
4
3

x3 + 
17
12

x4 – 
31
20

x5 + 
1192
720

 x6 – 
10996
5040

 x7 + ........

= 0.8512 (correct to four decimal places).

Example 4. Using Taylor’s series, find the solution of the differential equation
xy′ = x – y, y(2) = 2 at x = 2.1 correct to five decimal places.

Sol. Here x0 = 2, y0 = 2

Also, y′ = 1 – 
y
x

  y0′ = 0

 y″ = – 
′

+
y
x

y
x2   y0″ = – 0 + 

2
4

1
2

=

y″′ = −
′′

+
′

−
y
x

y
x

y
x

2 2
2 3  y0″′ = 

− 3
4

y(iv) = – 
′′′ + ′′ − ′ +y
x

y
x

y
x

y
x

3 6 6
2 3 4 y0

(iv) = 
3
2

 and so on.

Putting these values in Taylor’s series, we get

y(2 + h) = 2 + 
h h h2 3 4

4 8 16
− +  + .......
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Put h = 0.1, we get

  y (2.1) = 2.00238 (correct to 5 decimal places).

Example 5. Find y(1) for 
dy
dx

 = 2y + 3ex , y(0) = 0. Also check the value.

Sol. Here       x0 = 0, y0 = 0

 y′(x) = 2y + 3ex   y0′ = 3, y0″ = 9,

y″(x) = 2y′ + 3ex  y0″′ = 21, y0
(iv) = 45

: :
: : y0

(v) = 93, y0
(vi) = 189

y(viii) (x) = 2y(vii) + 3ex  y0
(vii) = 381, y0

(viii) = 765

Now,   y(h) = 3h + 
9
2

h2 + 
7
2

h3 + 
15
8

h4 + 
31
40

h5 + 
21
80

h6 + 
127

1680
h7

+ 
17

896
h8 + .......

Put h = 1,  y(1) = 14.01

Exact solution.

 
dy
dx

 – 2y = 3ex

Solution is ye–2x = – 3e–x + c

 x = 0, y = 0 ∴ c = 3

∴ ye–2x = – 3e–x + 3

⇒ y = 3(e2x – ex)

when x = 1,

y = 3(e2 – e) = 14.01 correct to two decimal places.

Example 6. Solve the simultaneous equations

y′ = 1 + xyz, y (0) = 0

z′ = x + y + z, z(0) = 1.

Sol. Differentiating the given equations

y″ = yz + xy′z + xyz′, y″′ = 2y′z + 2yz′ + 2xy′z′ + xy″z + xyz″

 z″ = 1 + y′ + z′, z″′ = y″ + z″

with x = 0, y = 0, z = 1; we get y′  = 1, y″ = 0, y″′ = 2
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Also z′ = 1, z″ = 3, z″′ = 3

Hence, y(x) = x + 
x3

3
and z(x) = 1 + x + 

3
2

x2 + 
1
2

 x3.

ASSIGNMENT 6.3

1. Compute y for x = 0.1 and 0.2 correct to four decimal places given: y′ = y – x, y (0) = 2.

2. Solve by Taylor’s method, y′ = x2 + y2, y(0) = 1 compute y(0.1).

3. Solve by Taylor’s method: y′ = y –
2x
y

; y(0) = 1. Also compute y(0.1).

4. Using Taylor series method, solve 
dy
dx

 = x2 – y, y(0) = 1 at x = 0.1, 0.2, 0.3 and 0.4.

Compare the values with exact solution.

5. Solve 
dy
dx

 = x + z,
dz
dx

 =  x – y2 with y(0) = 2, z(0) = 1 to get y(0. 1), y(0. 2), z(0. 1) and

z(0. 2) approximately by Taylor’s algorithm.

6. Given the differential equation dy
dx x y

=
+
1

2
 with y(4)  = 4

Obtain y (4.1) and y(4.2) by Taylor’s series method.

6.18 RUNGE-KUTTA METHODS

More efficient methods in terms of accuracy were developed by two German
Mathematicians Carl Runge (1856-1927) and Wilhelm Kutta (1867-1944).
These methods are well-known as Runge-Kutta methods. They are
distinguished by their orders in the sense that they agree with Taylor’s series
solution up to terms of hr where r is the order of the method.

These methods do not demand prior computation of higher derivatives of
y(x) as in Taylor’s method. In place of these derivatives, extra values of the
given function f(x, y) are used.

The fourth order Runge-Kutta method is used widely for finding the
numerical solutions of linear or non-linear ordinary differential equations.

Runge-Kutta methods are referred to as single step methods. The major
disadvantage of Runge-Kutta methods is that they use many more evaluations
of the derivative f(x, y) to obtain the same accuracy compared with multi-step
methods. A class of methods known as Runge-Kutta methods combines the
advantage of high order accuracy with the property of being one step.
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6.18.1 First Order Runge-Kutta Method

Consider the differential equation

dy
dx

 = f(x, y);  y (x0) = y0 (21)

Euler’s method gives

y1 = y0 + hf(x0, y0) = y0 + hy0′ (22)

Expanding by Taylor’s series, we get

y1 = y(x0 + h) = y0 + hy0′ + 
h2

2 !
 y0″ + ....... (23)

Comparing (22) and (23), it follows that Euler’s method agrees with Taylor’s
series solution up to the term in h. Hence Euler’s method is the first order
Runge-Kutta method.

6.18.2 Second Order Runge-Kutta Method

Consider the differential equation

y′ = f(x, y) with the initial condition y(x0) = y0

Let h be the interval between equidistant values of x then in II order Runge-
Kutta method, the first increment in y is computed from the formulae

 k1 = hf (x0, y0)

 k2 = hf(x0 + h, y0 + k1)

Δy = 1
2 (k1 + k2)

taken in the given order.

Then,  x1 = x0 + h

 y1 = y0 + Δy = y0 + 1
2  (k1 + k2)

In a similar manner, the increment  in y for the second interval is computed
by means of the formulae,

 k1 = hf (x1, y1)

 k2 = hf (x1 + h, y1 + k1)

Δy = 1
2 (k1 + k2)

and similarly for the next intervals.
The inherent error in the second order Runge-Kutta method is of order h3.
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6.18.3 Third Order Runge-Kutta Method

This method gives the approximate solution of the initial value problem

 
dy
dx

 = f (x, y); y(x0) = y0 as

   y1 = y0 + δy
U
V
W

(24)
where  δy = 

h
6

(k1 + 4k2 + k3)

Here,  k1 = f (x0, y0)

 k2 = f x
h

y
k

0 0
1

2 2
+ +R

S
T

U
V
W

,

k3 = f (x0 + h, y0 + k′); k′ = hf (x0 + h, y0 + k1)

Formula (24) can be generalized for successive approximations. Expression
in (24) agrees with Taylor’s series expansion for y1 up to and including terms in
h3. This method is also known as Runge’s method.

6.19 FOURTH ORDER RUNGE-KUTTA METHOD

The fourth order Runge-Kutta Method is one of the most widely used methods
and is particularly suitable in cases when the computation of higher derivatives
is complicated.

Consider the differential equation y′ = f(x, y) with the initial condition
y(x0) = y0. Let h be the interval between equidistant values of x, then the first
increment in y is computed from the formulae

  k1 = hf (x0, y0)

  k2 = hf x
h

y
k

0 0
1

2 2
+ +F

HG
I
KJ

,

  k3 = hf x
h

y
k

0 0
2

2 2
+ +F

HG
I
KJ

,

U

V

|
|
|
|
|

W

|
|
|
|
|

(25)

  k4 = hf (x0 + h, y0 + k3)

 Δy = 
1
6

 (k1 + 2k2 + 2k3 + k4)

taken in the given order.

Then,   x1 = x0 + h and y1 = y0 + Δy
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In a similar manner, the increment in y for the II interval is computed by
means of the formulae

  k1 = hf (x1, y1)

  k2 = hf x
h

y
k

1 1
1

2 2
+ +F

HG
I
KJ

,

  k3 = hf x
h

y
k

1 1
2

2 2
+ +F

HG
I
KJ

,

  k4 = hf (x1 + h, y1 + k3)

  Δy = 
1
6

(k1 + 2k2 + 2k3 + k4)

and similarly for the next intervals.
This method is also simply termed as Runge-Kutta’s method.
It is to be noted that the calculations for the first increment are exactly the

same as for any other increment. The change in the formula for the different
intervals is only in the values of x and y to be substituted. Hence, to obtain Δy
for the nth interval, we substitute xn–1, yn–1, in the expressions for k1, k2, etc.

The inherent error in the fourth order Runge-Kutta method is of the order
h5.

6.19.1 Algorithm of Runge-Kutta Method

1. Function F(x)=(x-y)/(x+y)

2. Input x0,y0,h,xn

3. n=(xn-x0)/h

4. x=x0

5. y=y0

6. For i=0, n

7. k1=h*F(x,y)

8. k2=h*F(x+h/2,y+k1/2)

9. k3=h*F(x+h/2,y+k2/2)

10. k4=h*F(x+h,y+k3)

11. k=(k1+(k2+k3)2+k4)/6

12. Print x,y

13. x=x+h

14. y=y+k

15. Next i

16. Stop
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6.19.2 Flow-Chart of Runge-Kutta Method

For i = 0, n

START

F(x) = (x – y)/(x + y)

Input x0, y0, h, xn

n = (xn – x0)/h
x = x0
y = y0

k1 = h*F(x, y)
k2 = h*F(x + h/2, y + k1/2)
k3 = h*F(x + h/2, y + k2/2)

k4 = h*F(x + h, y + k3)
k = (k1 + 2(k2 + k3) + k4)/6

Print x, y

x = x + h
y = y + k

STOP

6.19.3 Program of Runge-Kutta Method

#include<stdio.h>

#define F(x,y) (x-y)/(x+y)

main()

{

int i,n;

float x0,y0,h,xn,k1,k2,k3,k4,x,y,k;

printf("\n Enter the values: x0,y0,h,xn:\n");
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scanf("%f%f%f%f", &x0,&y0,&h,&xn);

n=(xn-x0)/h;

x=x0;

y=y0;

for(i=0;i<=n;i++)

{

k1=h*F(x,y);

k2=h*F(x+h/2.0,y+k1/2.0);

k3=h*F(x+h/2.0,y+k2/2.0);

k4=h*F(x+h,y+k3);

k=(k1+(k2+k3)*2.0+k4)/6.0;

printf("\n X=%f Y=%f", x, y);

x=x+h;

y=y+k;

}

return;

}

6.19.4 Output

Enter the values: x0,y0,h,xn:

0 1 0.02 0.1

X=0.000000 Y=1.000000

X=0.020000 Y=0.980000

X=0.040000 Y=0.960816

X=0.060000 Y=0.942446

X=0.080000 Y=0.924885

X=0.100000 Y=0.908128

Notations used in the Program

(i) x0 is the initial value of x.
(ii) y0 is the initial value of y.

(iii) h is the spacing value of x.
(iv) xn is the last value of x at which value of y is required.
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6.20 RUNGE-KUTTA METHOD FOR SIMULTANEOUS FIRST ORDER

EQUATIONS

Consider the simultaneous equations

dy
dx

 = f1(x, y, z)

dz
dx

 = f2 (x, y, z)

With  the  initial  condition y(x0) = y0 and z(x0) = z0. Now, starting from
(x0, y0, z0), the increments k and l in y and z are given by the following formulae:

k1 = hf1(x0, y0, z0);

l1 = hf2(x0, y0, z0)

k2 = hf1 x
h

y
k

z
l

0 0
1

0
1

2 2 2
+ + +F

HG
I
KJ

, , ;

l2 = hf2 x
h

y
k

z
l

0 0
1

0
1

2 2 2
+ + +F

HG
I
KJ

, ,

k3 = hf1 x
h

y
k

z
l

0 0
2

0
2

2 2 2
+ + +F

HG
I
KJ

, , ;

l3 = hf2 x
h

y
k

z
l

0 0
2

0
2

2 2 2
+ + +F

HG
I
KJ

, ,

k4 = hf1(x0 + h, y0 + k3 , z0 + l3);

l4 = hf2(x0 + h, y0 + k3 , z0 + l3)

    k = 
1
6

(k1 + 2k2 + 2k3 + k4);

 l = 
1
6

(l1 + 2l2 + 2l3 + l4)

Hence       y1 = y0 + k, z1 = z0 + l

To compute y2, z2, we simply replace x0, y0, z0 by x1, y1, z1 in the above
formulae.
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EXAMPLES

Example 1. Solve the equation 
dy
dx

 = x + y with initial condition y(0) = 1 by

Runge-Kutta rule, from x= 0 to x = 0.4 with h = 0.1.

Sol. Here f(x, y) = x + y, h = 0.1, x0 = 0, y0 = 1

We have,

  k1 = hf (x0, y0) = 0.1 (0 + 1) = 0.1

  k2 = hf x
h

y
k

0 0
1

2 2
+ +F

HG
I
KJ

,  = 0.1 (0.05 + 1.05) = 0.11

  k3 = hf x
h

y
k

0 0
2

2 2
+ +F

HG
I
KJ

,  = 0.1105

  k4 = hf (x0 + h, y0 + k3) = 0.12105

∴  Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.11034

Thus,    x1 = x0 + h = 0.1 and y1 = y0 + Δy = 1.11034

Now for the second interval, we have

 k1 = hf (x1, y1) = 0.1 (0.1 + 1.11034) = 0.121034

 k2 = hf x
h

y
k

1 1
1

2 2
+ +F

HG
I
KJ

,  = 0.13208

   k3 = hf x
h

y
k

1 1
2

2 2
+ +F

HG
I
KJ

,  = 0.13263

 k4 = hf (x1 + h, y1 + k3) = 0.14429

∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.132460

Hence   x2 = 0.2 and y2 = y1 + Δy = 1.11034 + 0.13246 = 1.24280

Similarly, for finding y3, we have

  k1 = hf (x2, y2) = 0.14428

  k2 = 0.15649

  k3 = 0.15710 Repeating the above
process

  k4 = 0.16999
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∴  y3 = 0.13997

and for   y4 = y(0.4), we calculate

  k1 = 0.16997

  k2 = 0.18347

  k3 = 0.18414

  k4 = 0.19838

∴      y4 = 1.5836

Example 2. Given 
dy
dx

 = y – x, y(0) = 2. Find y(0.1) and y(0.2) correct to four

decimal places (use both II and IV order methods).

Sol. By II order Method
To find y(0.1)

Here  y′ = f (x, y) = y – x, x0 = 0, y0 = 2 and h = 0.1

Now,  k1 = hf (x0, y0) = 0.1(2 – 0) = 0.2

 k2 = hf (x0 + h, y0 + k1) = 0.21

∴ Δy = 
1
2

 (k1 + k2) = 0.205

Thus,  x1 = x0 + h = 0.1 and y1 = y0 + Δy = 2.205

To find y(0.2) we note that,

 x1 = 0.1, y1 = 2.205, h = 0.1

For interval II, we have

 k1 = hf (x1, y1) = 0.2105

 k2 = hf (x1 + h, y1 + k1) = 0.22155

∴ Δy = 
1
2

(k1 + k2) = 0.216025

Thus,  x2 = x1 + h = 0.2 and y2 = y1 + Δy = 2.4210

Hence  y(0.1) = 2.205, y(0.2) = 2.421.

By IV order method- As before

 k1 = 0.2, k2 = 0.205,

   k3 = hf (x0 + h/2, y0 + k2/2) = 0.20525

and  k4 = hf (x0 + h, y0 + k3) = 0.210525
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∴ Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.2052

Thus, x1 = x0 + h = 0 + 0.1 = 0.1

y1 = y0 + Δy = 2 + 0.2052 = 2.2052

Now to determine y2 = y(0.2), we note that

x1 = x0 + h = 0.1, y1 = 2.2052, h = 0.1

For interval II,   k1 = hf (x1, y1) = 0.21052

k2 = hf x
h

y
k

1 1
1

2 2
+ +F

HG
I
KJ

,  = 0.21605

 k3 = hf x h y
k

1 1
22
2

+ +F
HG

I
KJ

/ ,  = 0.216323

and  k4 = hf (x1 + h, y1 + k3) = 0.221523

∴   Δy = 
1
6

(k1 + 2k2 + 2k3 + k4) = 0.21613

Thus,  x2 = x1 + h = 0.1 + 0.1 = 0.2

and  y2 = y1 + Δy = 2.2052 + 0.21613 = 2.4213

Hence  y(0.1) = 2.2052, y(0.2) = 2.4213.

Example 3. Solve 
dy
dx

 = yz + x, 
dz
dx

 = xz + y;

given that y(0) = 1, z(0) = – 1 for y(0.1), z(0.1).

Sol. Here,   f1(x, y, z) = yz + x

 f2 (x, y, z) = xz + y

  h = 0.1, x0 = 0, y0 = 1, z0 = – 1

   k1 = hf1 (x0, y0, z0) = h (y0 z0 + x0) = – 0.1

l1 = hf2(x0, y0, z0) = h(x0 z0 + y0) = 0.1

   k2 = hf1 x
h

y
k

z
l

0 0
1

0
1

2 2 2
+ + +F

HG
I
KJ

, ,

= hf1(0.05, 0.95, – 0.95) = – 0.08525

l2 = hf2 x
h

y
k

z
l

0 0
1

0
1

2 2 2
+ + +F

HG
I
KJ

, ,

= hf2 (0.05, 0.95, – 0.95) = 0.09025
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  k3 = hf1 x
h

y
k

z
l

0 0
2

0
2

2 2 2
+ + +F

HG
I
KJ

, ,

= hf1(0.05, 0.957375, – 0.954875) = – 0.0864173

l3 = hf2 x
h

y
k

z
l

0 0
2

0
2

2 2 2
+ + +F

HG
I
KJ

, ,

= hf2 (0.05, 0.957375, – 0.954875) = – 0.0864173

  k4 = hf1 x h y k z l0 0 3 0 3+ + +, ,b g = – 0.073048.

l4 = hf2(x0 + h, y0 + k3, z0 + l3) = 0.0822679

k = 
1
6

(k1 + 2k2 + 2k3 + k4) = – 0.0860637

 l = 
1
6

(l1 + 2l2 + 2l3 + l4) = 0.0907823

∴   y1 = y(0.1) = y0 + k = 1 – 0.0860637 = 0.9139363

  z1 = z(0.1) = z0 + k = – 1 + 0.0907823 = – 0.9092176

ASSIGNMENT 6.4

1. Use the Runge-Kutta  Method   to  approximate  y  when  x = 0.1  given  that  x = 0  when

y = 1 and 
dy
dx

 = x + y.

2. Apply the Runge-Kutta  Fourth  Order Method to solve 10 
dy
dx

 = x2 + y2; y (0) = 1 for

0 < x ≤ 0. 4 and h = 0.1.

3. Use Runge-Kutta Fourth Order Formula to find y(1.4) if y (1) = 2 and 
dy
dx

 = xy. Take

h = 0.2.
4. Prove that the solution of y′ = y, y(0) = 1 by Second Order Runge-Kutta Method yields

ym  = 1
2

2
+ +

F

H
G

I

K
Jh

h
m

.

5. Solve y′ = 
1

x y+ , y(0) = 1 for x = 0.5 to x = 1 by Runge-Kutta Method (h = 0.5).

6. Solve  y′ = – xy2  and   By  Runge-Kutta Fourth Order Method, find y(0.6) given that
y = 1.7231 at x = 0.4. Take h = 0.2.
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7. Use Runge-Kutta Method to find y when x = 1.2 in steps of 0.1 given that

 
dy
dx

 = x2 + y2 and y(1) = 1.5

8. Given y′ = x2  – y,  y (0) = 1 find y(0.1), y(0.2) using Runge-Kutta Methods of (i) Second
Order (ii) Fourth Order.

9. Using Runge-Kutta Method of Fourth Order, solve for y(0.1), y(0.2) and y(0.3),
given that y′ = xy + y2, y(0) = 1.

10. Using Runge-Kutta Method, find y(0.2) for the equation

 
dy
dx

y x
y x

= −
+ , y (0) = 1. Take h = 0.2

11. (i) Using Runge-Kutta Method, find y(0.2) given that

 
dy
dx

 = 3x + 
1
2

y, y(0) = 1 taking h = 0.1.

(ii) Use the classical Runge-Kutta Formula of Fourth Order to find the numerical
solution at x = 0.8 for the differential equation

y′ = x y+ , y (0.4) = 0.41

Assume the step length h = 0.2.

12. Solve
dy
dx

 = x + z

 
dz
dx

 = x – y2

for y(0.1), z(0.1) given that y(0) = 2, z(0) = 1 by Runge-Kutta Method.

13. Use  classical  Runge-Kutta Method of Fourth Order to find the numerical solution at

x = 1.4 for 
dy
dx

 = y2 + x2,  y(1) = 0. Assume step size h = 0.2.

14. Explain Runge-Kutta Method with a  suitable example. Write a program in C to
implement.

15. Write the main steps to be followed in using the Runge-Kutta Method of Fourth Order

to solve an ordinary differential equation of the First Order. Hence solve 
dy
dx

 = x3 + y3,

y(0) = 1 and step length h = 0.1 upto three iterations.

16. Given 
dy
dx

 = xy with y(1) = 5. Using the Fourth Order Runge-Kutta Method, find the

solution in the interval (1, 1.5) using step size h = 0.1.
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17. Using the Runge-Kutta Method of Fourth Order, solve the following differential equation:

dy
dx

y x

y x
= −

+

2 2

2 2 with y (0) = 1 at x = 0.2, 0.4.

Also write computer program in ‘C’

18. Discuss the Fourth Order Runge-Kutta Method for solving differential equations.
Give program for the solution of differential equation using Fourth Order Runge-
Kutta Method. Use ‘C’ language.

6.21 PREDICTOR-CORRECTOR METHODS

In Runge-Kutta Methods, we need only the information at (xi, yi) to calculate
the value of yi + 1 and no attention is paid to the nature of the solution at the
earlier points.

To overcome this defect, Predictor-Corrector Methods are useful. The
technique of refining an initially crude predicted estimate of yi by means of a
more accurate corrector formula is called, Predictor-Corrector Method.

The modified Euler’s Method of solving the initial value problem,

 y′ = f(x, y), y(x0) = y0 (26)

can be stated as

y1
p = y0 + hf(x0, y0) (27)

y1
c = y0 + 

h
2

 [f(x0, y0) + f(x1, y1
p)] (28)

Here we predict the value of y1 by Euler’s Method and use it in (28) to get a
corrected or improved value. This is a typical case of Predictor-Corrector Method.

In this section, we will obtain two important Predictor-Corrector Methods,
namely, Milne’s Simpson Method and Adams-Moulton (or Adams-Bash Fourth)
Method. Both of these methods are of IV order and the error is of order h5.
These methods make use of four starting values of y, namely, y0, y1, y2, and y3.
Hence, these methods are also called as Multi-Step Methods.

6.22 MILNE’S METHOD

Milne’s Method is a simple and reasonably accurate method of solving
differential equations numerically. To solve the differential equation y′ = f(x, y)
by this method, first we get the approximate value of yn + 1 by predictor formula
and then improve this value using a corrector formula. These formula are
derived from Newton’s Formula.
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Newton’s Forward Interpolation Formula in terms of y′ and u is

 y′ = y0′ + uΔy0′ + 
u u( )− 1

2
 Δ2 y0′ + 

u u u( ) ( )− −1 2
6

Δ3 y0′

+ 
u u u u( ) ( ) ( )− − −1 2 3

24  Δ4 y0′ + ....... (29)

where u = 
x x

h
− 0 or x = x0 + uh

Now integrating (29) over the interval x0 to x0 + 4h (or u = 0 to 4), we get

   ′ = ′
+

z zy dx h y du
x

x h

0

0 4

0

4

| ∵ dx = h du

or   y4 – y0 = h 
0

4

0 0
2

0
3

0
1

2
1 2
6z ′ + ′ + −

′ + − −
′L

NM
y u y

u u
y

u u u
yΔ Δ Δ( ) ( ) ( )

+ 
u u u u

y du
( ) ( ) ( )

......
− − − ′ + O

QP
1 2 3

24
4

0Δ

= h 4 8
20
3

8
3

28
900 0

2
0

3
0

4
0′ + ′ + ′ + ′ + ′F

HG
I
KJ

y y y y yΔ Δ Δ Δ

| keeping up to IV differences

Here, y0 and y4 stand for values of y at x = x0 and x = x0 + 4h respectively.

Substituting the values of I, II and III differences, we get

y4 – y0 = h 4 8 1
20
3

1
8
3

1
28
900 0

2
0

3
0

4
0′ + − ′ + − ′ + − ′ + ′F

HG
I
KJ

y y y y y( ) ( ) ( )E E E Δ (30)

= 
4
3
h

(2y1′ – y2′ + 2y3′) + 
28
90

hΔ4y0′

or   y4 = y0 + 
4
3
h

(2y1′ – y2′ + 2y3′) + 
28
90

 hΔ4 y0′ (31)

This is Milne’s Predictor (Extrapolation) formula.

It is used to predict the value of y4 when the value of y0, y1, y2, and y3 are
known.

To obtain the corrector formula, we integrate (29) over the interval x0 to
x0 + 2h (or u = 0 to 2) and consequently.

y2 – y0 = h 2 2
1
3

1
900 0

2
0

4
0′ + ′ + ′ − ′F

HG
I
KJ

y y y yΔ Δ Δ
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Expressing the I, II and III differences in terms of the function value by
using D ≡ E – 1,

we obtain,

y2 – y0 = 
h
3

(y0′ + 4y1′ + y2′) – 
h
90

 Δ4y0′

⇒  y2 = y0 + 
h
3

(y0′ + 4y1′ + y2′) – 
h
90

 Δ4 y0′ (32)

This is Milne’s Corrector Formula.

The value of y4 obtained from (31) and (32) can be put as

yn + 1 = yn–3 + 
4
3
h

(2y′n–2 – y′n–1 + 2yn′) (33)

 y′n + 1 = yn–1 + 
h
3

 (y′n–1 + 4yn′ + y′n + 1) (34)

It is to be noted that we have considered the differences up to the third
order because we fit up a polynomial of degree four.

The terms containing Δ4y0′ are not used explicitly in the formula, but they
give the principal parts of the errors in the two values of yn + 1 as computed
from (33) and (34).

We notice that this error in (34) is of opposite sign to that in (33) but it is
very small in magnitude.

So we may take,  (yn + 1)exact = yn + 1 + 
28
90

 hΔ4y′

and (yn + 1)exact = y(1)
n + 1 – 

h
90

Δ4y′

where yn + 1 and y(1)
n + 1 denote the predicted and first corrected value of y

at x = xn + 1.

Equating these two values, we get

    yn + 1 – y(1)
n +1 = – 

29
90

hΔ4y′ = 29 δ

where δ = – 
h
90

 Δ4y′ denotes the principal part of the error in (34). Thus it gives

δ = 
1

29
[yn + 1 – y(1)

n + 1 ]

Thus we observe that the error in (34) is 
1

29
th of the difference between the

predicted and corrected values.
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6.22.1 Algorithm of Milne’s Predictor-Corrector Method

1. Function F(x,y)=x+y

2. Input xn

3. For i=0,3

4. Input x(i),y(i)

5. Next i

6. h=x(1)-x(0)

7. n=(xn-x(0))/h

8. For i=3,n

9. x(i+1)=x(i)+h

10. f=F(x(i),y(i))

11. f1=F(x(i-1),y(i-1))

12. f2=F(x(i-2),y(i-2))

13. yp=y(i-3)+4h/3(2f2-f1+2f)

14. yc=y(i-1)+h/3(f1+4f+F(x(i+1),yp))

15. If abs (yp-yc)<0.0005 then

y(i+1)=yc

print x(i+1), y(i+1)

ELSE

yp=yc

16. Next i

17. Stop
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6.22.2 Flow-Chart of Milne’s Predictor Corrector Method

For i = 0, 3

START

F(x, y) = x + y

Input xn

Input x(i), y(i)

h = x(1) – x(0)
n = (xn – x(0)/h

STOP

For i = 3, n

x(i + 1) = x(i) + h
f = F(x(i), y(i))

f1 = F(x(i – 1), y(i – 1))
f2 = F(x(i – 2), y(i – 2))

yp = y(i – 3) + 4h/3 (2f2 – f1 + 2f)
yc = y(i – 1) + h/3 (f1 + 4f + F(x(i + 1), yp))

If
abs (yp – yc) < 0.0005

Yes

y(i + 1) = yc

Print x(i + 1), y(i + 1)

No
yp = yc
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6.22.3 Program of Milne’s Method

#include<stdio.h>

#include<math.h>

#define F(x,y) x+y

main()

{

int i,n;

float x[20],y[20],h,f,f1,f2,yp,yc,xn;

printf("\n Enter the value: xn: "};

scanf{"%f",&xn);

printf("\n Enter the value: x{i], y[i]:\n"};

for(i=0;i<=3;i++)

scanf("%f%f",&x[i],&y[i]);

h=x[1]-x[0];

n=(xn-x[0]/h;

for(i=3;i<=n;i++)

{

x[i+1]=x[i]+h;

f=F[x[i],y[i]);

f1=F(x[i-1],y[i-1]);

f2=F(x[i-2],y[i-2]);

yp=y[i-3]+4.0*h/3.0*(2.0*f2-f1+2.0*f);

yc=y[i-1]+h/3.0*(f1+4.0*f+F(x[i+1],yp));

printf("\n\nPredicated Y=%f Correctd Y=%f", yp,yc);

If(fabs (yp-yc)<0.00005)

goto next;

yp=yc;

next;

y[i+1]=yc;

printf("\n\n X=%f Y=%f", x[i+1], y[i+1]);

}

return;

}
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6.22.4 Output

Enter the value: xn: 1

Enter the value: x[i], y[i]:

0.0 0.0

0.2 0.02

0.4 0.0906

0.6 0.2214

Predicted Y=0.423147 Corrected Y=0.429650

X=0.800000 Y=0.429650

Predicted Y=0.721307 Corrected Y=0.718820

X=1.000000 Y=0.718820

Notations used in the Program

(i) xn is the last value of x at which value of y is required.
(ii) x(i) is an array for prior values of x.

(iii) y(i) is an array for prior values of y.
(iv) yp is the predicted value of y.
(v) yc is the corrected value of y.

EXAMPLES

Example 1. Tabulate by Milne’s Method the numerical solution of 
dy
dx

 = x + y

with initial conditions x0 = 0, y0 = 1 from x = 0.20 to x = 0.30.

Sol. To obtain the solution, we find three consecutive values of y and y′
corresponding to x = 0.05, 0.10 and 0.15, i.e., taking h = 0.05

x y y′ = dy/dx

0.00 1 1

0.05 1.0525 1.1025

0.10 1.1103 1.2103

0.15 1.1736 1.3236

(using y = 2ex – x – 1 (35) as explicit solution of given equations)
In general form, Milne’s Predictor and Corrector Formulae are

 yn + 1 = yn – 3 + 
4
3
h

 (2y′n – 2 – y′n – 1 + 2yn′) (36)
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and yn + 1
(1) = yn – 1 + 

h
3

 (y′n – 1 + 4yn′ + y′n + 1) (37)

Put n = 3, h = 0.05 in (36), we get

y4 = y0 + 
4
3
h

 (2y1′ – y2′ + 2y3′)

= 1 + 
4 0 05

3
( . )

 [2.205 – 1.2103 + 2.6472]

= 1.2428 (predicted value)
It is corrected by

y4
(1) = y2 + 

h
3

 (y2′ + 4y3′ + y4′)

= 1.1103 + 
0 05

3
.

 [1.2103 + 5.2944 + 1.4428] = 1.2428

which is the same as predicted value.

Put x = 0.20 and y = 1.2428 in 
dy
dx

 = x + y,

we get y4′ = 1.4428

Hence, y = 1.2428 when x = 0.20 and y′ = 1.4428

Now, put n = 4, h = 0.05 in (36), we get

  y5 = y1 + 
4
3
h

 (2y2′ – y3′ + 2y4′)

 = 1.0525 + 
4 0 05

3
( . )

 [2.4206 – 1.3236 + 2.8856]

     = 1.3180
which is corrected by

    y5
(1) = y3 + 

h
3

 (y3′ + 4y4′ + y5′)

      = 1.1736 + 
0 05

3
.

 (1.3236 + 5.7712 + 1.568) = 1.3180

which is same as predicted value.

Thus,  y5 = y0.25 = 1.3180 and y5′ = 1.5680

Again putting n = 5, h = 0.05, we get

  y6 = 1.3997 which is corrected by

         y6
(1) = 1.3997 = y0.30
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The same as the predicted value.

y6 = 1.3997, y′6 = 1.6997 (y′ = x + y)

Collecting the results in Tabular form, we get

x y y′ = dy/dx

x4 = 0.20 y4 = 1.2428 y4′ = 1.4428

x5 = 0.25 y5 = 1.3180 y5′ = 1.5680

x6 = 0.30 y6 = 1.3997 y6′ = 1.6997

Example 2. Find y(2) if y(x) is the solution of 
dy
dx

 = 
1
2

 (x + y) where y(0) = 2,

y(0.5) = 2.636, y(1) = 3.595, y(1.5) = 4.968

Sol. Let x0 = 0, x1 = 0.5, x2 = 1, x3 = 1.5 then we are given y0, y1, y2, y3 and we
require y4 corresponding to x4 = 2.

By Predictor Formula, we get

y4 = y0 + 
4
3
h

 (2y1′ – y2′ + 2y3′) (38)

we have,   y′ = 
1
2

 (x + y)

∴    y1′ = 
1
2

 (x1 + y1) = 1.568

Similarly    y2′ = 2.2975, y3′ = 3.234

∴ from (38), y4 = 2 + 
4 0 5

3
( . )

 [3.136 – 2.2975 + 6.468] = 6.871

⇒    y4′ = 
1
2

 (x4 + y4) = 4.4355

This is corrected by

  y4
(1) = y2 + 

h
3

 (y2′ + 4y3′ + y4′)

 = 3.595 + 
0 5
3
.

 [2.2975 + 12.936 + 4.4355] = 6.87317

Now,  (y4
(1))′ = 

1
2

 [x4 + y4
(1)] = 

1
2

 (2 + 6.87317) = 4.43659
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Again by the Corrector Formula, we get the second corrected value i.e.,
y2.00.

 y4
(2) = y2 + 

h
3

 [y2′ + 4y3′ + (y4
(1))′]

= 3.595 + 
0 5
3
.

 [2.2975 + 12.936 + 4.43659] = 6.87335

Example 3. Using Milne’s Method, solve y′ = 1 + y2 with y(0) = 0, y(0.2) =
0.2027, y(0.4) = 0.4228, y(0.6) = 0.6841, obtain y(0.8) and y(1)

Sol. Let x0 = 0, x1 = 0.2, x2 = 0.4, x3 = 0.6. We are given y0, y1, y2, y3, and we
require y4 = y(0.8) and y5 = y(1.0). Here h = 0.2

We have, y′ = 1 + y2

∴   y1′ = 1 + y1
2 = 1 + (0.2027)2 = 1.0411

  y2′ = 1 + y2
2 = 1 + (0.4228)2 = 1.1788

y3′ = 1 + y3
2 = 1 + (0.6841)2 = 1.4680

By Predictor Formula, we get

y4 = y0 + 
4
3
h

 (2y1′ – y2′ + 2y3′)

= 0 + 
0 8
3
.

 [2.0822 – 1.1788 + 2.936] = 1.0238

 y4′ = 1 + y4
2 = 1 + (1.0238)2 = 2.0482

This is corrected by

 y4
(1) = y2 + 

h
3

 (y2′ + 4y3′ + y4′)

= 0.4228 + 
0 2
3
.

 [1.1788 + 5.872 + 2.0482] = 1.0294

Now,  [y4
(1)]′ = 1 + [y4

(1)]2 = 1 + (1.0294)2 = 2.0597

The second corrected value is,

 y4
(2) = y2 + 

h
3

 [y2′ + 4y3′ + y4
(1) ′]

= 0.4228 + 
0 2
3
.

[1.1788 + 5.872 + 2.0597] = 1.0302

Again, [y4
(2)]′ = 1 + [y4

(2)]2 = 1 + (1.0302)2 = 2.0613

Again,  y4
(3) = 1.0303 = y4

(4)

hence,  y4
 = y(0.8) = 1.0303
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Now, by Predictor Formula, also

 y5
 = y1

 + 
4
3
h

 (2y2′ – y3′ + 2y4′)

= 0.2027 + 
0.8
3

 [2.3576 – 1.468 + 4.123] | y4′ = 1 + (1.0303)2

= 1.5394

 y5′ = 1 + y5
2 = 3.3698

This is corrected by

y5′ = y3 + 
h
3

 ( y3′ + 4y4′ + y5′)

= 0.6841 + 
0 2
3
.

 (1.468 + 8.246 + 3.3698) = 1.5564

Now, [y5
(1)]′ = 1 + (1.5564)2 = 3.4224

The second corrected value is

   y5
(2) = 1.55999

Now, [y5
(2)]′ = 3.4333

Also,  y5
(3) = 1.5606

Similarly y5
(4) = 1.5607 = y5

(5)

Hence,  y5 = y(1.0) = 1.5607.

ASSIGNMENT 6.5

1. Apply Milne’s Method to solve the differential equation

 
dy
dx

 = – xy2 at x = 0.8, given that

y(0) = 2, y(0.2) = 1.923, y(0.4) = 1.724, y(0.6) = 1.471

2. Solve 10 
dy
dx

 = x2 + y2, y(0) = 1 and compute y(0.4) and y(0.5) by Milne’s Method given

x: 0.1 0.2 0.3

y: 1.0101 1.0206 1.0317

3. Part of a numerical solution of the differential equation

 
dy
dx

 = 0.2x + 0.1y



536 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

is shown in the following table:

x: 0 0.05 0.10 0.15

y: 2 2.0103 2.0212 2.0323

Use Milne’s Method to find the next entry in the table.

4. Given 
dy
dx

 = 
1
2

 (1 + x2) y2 and y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21, evaluate

y(0.4) by Milne’s Predictor-Corrector Method.

5. The differential equation 
dy
dx

 + 
1

10
 y2 = x satisfies the following pairs of values of x

and y:

x: – 0.2 – 0.1 0.0 0.1 0.2

y: 1.04068 1.01513 1 0.99507 1.00013

Compute the values of y when x = 0.3 by Milne’s Method.

6. Solve the differential equation

dy
dx

 = y – x2

by Milne’s Method and compute y at x = 0.80 when:

x: 0 0.2 0.4 0.6

y: 1 1.12186 1.46820 1.73790

7. Solve  y′ = – y  with  y(0) =  1  by  the  using  Milne’s Method from x = 0.5 to x = 0.8 with
h = 0.1. Given:

x: 0.1 0.2 0.3 0.4

y: 0.9048 0.8188 0.7408 0.6705

8. Given:  
dy
dx

 = 2 – xy2  and  y(0) = 1.  Show  that  by Milne’s Method, y(1) = 1.6505 taking

h = 0.2. You may use Picard’s Method to obtain the values of y(0.2), y(0.4), y(0.6).

9. Solve the initial value problem 
dy
dx

 = 1 + xy2, y(0) = 1 for x = 0.4, 0.5 by using Milne’s

Method. It is given that,

x: 0.1 0.2 0.3

y: 1.105 1.223 1.355

10. Derive Milne’s Predictor Formula and find the solution of the equation.

dy
dx

 = x – y2 for y(0.8) and y(1), given the starting values.

x: 0 0.2 0.4 0.6

y: 0 0.02 0.0795 0.1762
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11. Given: y(0) = 2, y(0.2) = 2.0933, y(0.4) = 2.1755, y(0.6) = 2.2493, find y(0.8) and y(1.0) by

solving 
dy
dx

 = 
1

x y+  by Milne’s Method.

12. Solve numerically

  
dy
dx

 = 2ex – y at x = 0.4 and 0.5 by Milne’s Method given:

x: 0 0.1 0.2 0.3

y: 2 2.010 2.040 2.090

13. Given 
dy
dx

 = – xy with y(0) = 1. Solve the equation in the interval (0, 1) using step size = 0.5

using Predictor-Corrector Method. Give algorithm of Predictor-Corrector Method.

14. Apply Predictor-Corrector Method on a differential equation

 
dx
dt

 = f (t, x).

Let  x = x(t)

The method is of order IV with step-size h is x(t + h) = x(t) + 
1
6

 (k1 + 2k2 + 2k3 + k4)

where, k1 = h f (t, x)

k2 = h f t
h

x
k+ +F

HG
I
KJ2 2

1,

 k3 = h f  t
h

x
k+ +F

HG
I
KJ2 2

2,

k4 = h f (t + h, x + k3)

Use this method with h = 0.1 to find x(0.1) and x(0.2) where 
dx
dt

 = t – x and x(0) = 0.

15. Discuss Predictor-Corrector Method for solving differential equation. Illustrate method
using figure. Give program of Predictor-Corrector Method in ‘C’ language.

6.23 ADAMS–MOULTON (OR ADAMS–BASHFORTH) FORMULA

Consider the initial value problem

dy
dx

 = f (x, y) with y(x0) = y0 (39)

We compute  y–1 = y(x0 – h), y–2 =  y (x0 – 2h), y– 3 = y(x0 – 3h),......
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Now integrating (39) on both sides with respect to x in [x0, x0 + h], we get

y1 = y0 + 
x

x h
f x y dx

0

0 +

z ( , ) (40)

Replacing f (x, y) by Newton’s Backward Interpolation Formula, we get

y1 = y0 + h 
0

1

0 0
2

0
3

0
1

2
1 2
6z + ∇ + + ∇ + + + ∇ +R

S
T

U
V
W

f u f
u u

f
u u u

f
( ) ( ) ( )

...  du

∵ x x hu
dx h du

u

= +
∴ =

0

0 1Limits of are from to

 = y0 + h f f f f0 0
2

0
3

0
1
2

5
12

3
8

+ ∇ + ∇ + ∇ +F
HG

I
KJ

... (41)

Neglecting the fourth order and higher order differences and using

   ∇ f0 = f0 – f–1

∇2 f0 = f0 – 2f–1 + f–2

∇3 f0 = f0 – 3f–1 + 3f–2 – f–3 in (41), we get after simplification,

 y1 = y0 + 
h

24
 (55f0 – 59f –1 + 37f–2  – 9f–3)

which is known as Adams–Bashforth or Adams–Moulton–Predictor
Formula and is denoted generally as

 yp
n + 1 = yn + 

h
24

 (55fn – 59fn –1 + 37fn –2  – 9fn –3)

or  yp
n + 1 = y0 + 

h
24

 (55yn′ – 59y′n –1 + 37y′n –2  – 9y′n –3)

Having found y1, we find f1 = f (x0 + h, y1)

To find a better value of y1, we derive a corrector formula by substituting
Newton’s Backward Interpolation Formula at f1 in place of f (x, y) in (40) i.e.,

y1 = y0 + 
x

x h
f u f

u u
f

u u u
f

0

0

1 1
2

1
3

1
1

2
1 2
6

+

z + ∇ + + ∇ + + + ∇ +L

NM
O

QP
( ) ( ) ( )

...  dx

 = y0 + h 
−z + ∇ + + ∇ + + +F

HG
I

KJ
∇ +

L

N
M
M

O

Q
P
P1

0

1 1

2
2

1

3 2
3

12
3 2

6
f u f

u u
f

u u u
f

( )
...  du

∵x x hu
dx h du

= +
∴ =

1
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= y0 + h f f f f1 1
2

1
3

1
1
2

1
12

1
24

− ∇ − ∇ − ∇ −F
HG

I
KJ

... (42)

Neglecting the fourth order and higher order differences and using

∇ f1 = f1 – f0, ∇2f1 = f1 – 2f0 + f–1,∇3f1 = f1 – 3f0 + 3f–1 – f–2 in (42), we get

 y1 = y0 + 
h
24

 (9f1 + 19f0 – 5f–1  + f–2)

which is known as Adams–Bashforth or Adams–Moulton Corrector
Formula and is denoted generally as

 yc
n + 1 = yn + 

h
24

 (9fn + 1 – 19fn – 5fn –1  + fn –2)

or  yc
n + 1 = yn + 

h
24

 (9y′n + 1 – 19yn′ – 5y′n –1  + y′n –2)

EXAMPLES

Example 1. Using Adam’s–Moulton–Bashforth Method to find y (1.4) given:

dy
dx

 = x2 (1 + y), y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548 and y(1.3) = 1.979.

Sol. Here,  y′ = x2 (1 + y), h = 0.1

 x0 = 1, x1 = 1.1, x2 = 1.2, x3 = 1.3

 y0 = 1, y1 = 1.233, y2 = 1.548, y3 = 1.979

Now, Adams–Bashforth Predictor Formula is

 y4
p

  = y3 + 
h

24
 (55y3′ – 59y2′ + 37y1′  – 9y0′) (43)

y1′ = x1
2 (1 + y1) = 2.70193

y2′ = x2
2 (1 + y2) = 3.66912

y3′ = x3
2 (1 + y3) = 5.03451

∴ from (43),

 y4
p

  = 1.979 + 
01
24
.F

HG
I
KJ

 [55(5.03451) – 59(3.66912)

+ 37(2.70193) – 9(2)]
= 2.5722974

Now, (y4′)p = x4
2 (1 + y4

p) = (1.4)2 (1 + 2.5722974)

= 7.0017029
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Now, the Corrector Formula is

y4
c = y3 + 

h
24

 (9y4′p + 19y3′ – 5y2′  + y1′)

= 1.979 + 
0 1
24
.F

HG
I
KJ  [9(7.0017029) + 19(5.03451)

– 5(3.66912) + 2.70193]
= 2.5749473

∴ y(0.4) = 2.5749

Example 2. Find y(0.1), y(0.2), y(0.3) from

dy
dx

 = x2 – y; y(0) = 1

by using Taylor’s Series Method and hence obtain y(0.4) using Adams–Bashforth
Method.

Sol. We have,  y′ = x2 – y, y(0) = 1

By Taylor’s Series Method, we have

y(0.1) = 0.905125

y(0.2) = 0.8212352

y(0.3) = 0.7491509

Hence, x0 = 0, x1 = 0.1, x2 = 0.2, x3 = 0.3

y0 = 1, y1 = 0.905125, y2 = 0.8212352, y3 = 0.7491509

Also,  y0′ = – 1, y1′ =  – 0.895125, y2′ = – 0.7812352

and  y3′ = – 0.6591509

Now, Adams–Bashforth Predictor Formula is

 y4
p
  = y3 + 

h
24

 (55y3′ – 59y2′ + 37y1′  – 9y0′)

 = 0.7491509 + 01
24
.F

HG
I
KJ

 [55(– 0.6591509) – 59(– 0.7812352)

+ 37(– 0.895125) – 9(– 1)]
 = 0.6896507

Now,     y4′p = x4
2 – y4

p = (0.4)2 – 0.6896507 = – 0.5296507

The Corrector Formula is

y4
c = y3 + 

h
24

 (9y4′p + 19y3′ – 5y2′ + y1′)
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= 0.7491509 + 01
24
.F

HG
I
KJ

 [9(– 0.5296507)

+ 19(– 0.6591509) – 5(– 0.7812352) + (– 0.895125)]

= 0.6896522

∴ y(0.4) = 0.6896522

ASSIGNMENT 6.6

1. Using Adams–Bashforth Formula, find y(0.4) and y(0.5) if y satisfies the differential
equation

dy
dx

 = 3ex + 2y with y(0) = 0.

Compute y at x = 0.1, 0.2, 0.3 by means of Runge-Kutta Method.

2. Determine y(0.4) given the equation 
dy
dx

 = 
1
2

 xy using Adams–Moulton Method, given

that
    y(0) = 1,  y(0.1) = 1.0025, y(0.2) = 1.0101, y(0.3) = 1.0228.

3. Using Adams–Bashforth Predictor–Corrector Method, find y(1.4) given that

x2y′ + xy = 1; y(1) = 1, y(1.1) = 0.996, y(1.2) = 0.986, y(1.3) = 0.972

4. Compute y(1) by Adam’s Method given

 y′ = x2 – y3 , y(0) = 1, y(0.25) = 0.821028, y(0.5)

   = 0.741168, y(0.75) = 0.741043.

5. Given y′ = 2y – 1, y(0) = 1. Compute y for x = 0.1, 0.2, 0.3 by the IV order Runge-Kutta
Method and y(0.4) by Adam’s Method.

6.24 STABILITY

A numerical method for solving a mathematical problem is considered stable if
the sensitivity of the numerical answer to the data is no greater than in the
original mathematical problem. Stable problems are also called well-posed
problems.

If a problem is not stable, it is called unstable or ill-posed.
A problem f(x, y) = 0 is said to be stable if the solution y depends in a

continuous way on the variable x.
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6.25 STABILITY IN THE SOLUTION OF ORDINARY DIFFERENTIAL

EQUATIONS

The idea of stability may be defined as

(i) A computation is stable if it does not blow up.
(ii) Stability is a boundedness of the relative error.

Two types of stability considerations enter in the solution of ordinary
differential equations.
(a) Inherent stability
(b) Numerical stability

Inherent stability is determined by the mathematical formulations of the
problem and is dependent on the Eigen values of Jacobean Matrix of the
differential equation.

Numerical stability is a function of the error propagation in the numerical
method. Three types of errors occur in the application of numerical integration
methods:

(a) Truncation error (b) Round-off error (c) Propagation error.

6.26 STABILITY OF I ORDER LINEAR DIFFERENTIAL EQUATION OF

FORM 

dy

dx

 = Ay WITH INITIAL CONDITION y(x
0

) = y
0

The solution of this equation is

y(x) = y(x0) e A(x– x0)

Let, yn = y(xn) + εn at xn = x0 + nh

εn being the total truncation error.
Let E(Ah) be the polynomial approximation to e–Ah (for small Ah). Then the

computed result of one step length is

 yn + 1 = E(Ah) yn

while the correct solution is

y(xn + 1) = eAh y(xn)

Thus, yn + 1 – y(xn + 1) = E(Ah) yn – eAh y(xn)

= E(Ah) [y(xn) + En] – eAh y(xn)

= [E(Ah) – eAh] y(xn) + E(Ah) εn
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Clearly,  the  error  εn  will  be  amplified  if  E(Ah) > 1  which  is   possible
for   sufficiently   large  Ah  at  xn + k = x0 + (n + k) h.  It  will  have  grown  by
factor  Ek(Ah).  Thus  meaningful results can be obtained only for E(Ah) < 1. If
| E(Ah) | < eAh then we say that the method is relatively stable for that value
of Ah.

EXAMPLES

Example 1. How many terms are to be retained if we want to have an accuracy
of 10–10 in solving y′ = x + y, y(0) = 1, x∈(0, 1) by Taylor’s series method?

Sol.  y′ = x + y

⇒ y′′ = 1 + y′, y′′′ = y′′, ..., and so on

⇒ y(p + 1) = y(p), p = 2, 3...

∴ y′(0) = 1, y′′(0) = 2,..., y(p)(0) = 2

Hence,   y(x) = 1 + x + x2 + ... + 
2
p !  xp + ...

In order to obtain results, which will be accurate up to 10–10 for x ≤ 1,
we have

 
1

1( ) !p +
 < 5 × 10–10

⇒ p ≈ 15
Hence about 15 terms are required to obtain the accuracy of 10–10 for solving

dy
dx

 = x + y by Taylor’s Series Method when x ≤ 1.

Example 2. Discuss the stability of Euler’s Method for solving the differential
equation.

dy
dx

 = λy

Sol.
dy
dx

 = λy = f (x, y)

True solution is y(x) = ceλx so that

 y(xn + 1) = y(xn)eλh, h = xn + 1 – xn

Approximate solution using Euler’s Method is

yn + 1 = yn + h f(xn,  yn) = yn + h λ yn

= (1 + hλ) yn
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Let yn = y(xn) + εn

where εn is the total solution error.
⇒ yn + 1 = y(xn + 1) + εn + 1 = (1 + hλ) yn

= (1 + hλ) [y(xn) + εn]

Therefore,

yn + 1 – y(xn + 1) = (1 + λh) y(xn) + (1 + λh) εn – y(xn) eλh

⇒ εn + 1 = (1 + λh – eλh) y(xn) + (1 + λh) εn

The first term on R.H.S. is the total truncation error while the second term
is the contribution to the error from the previous step (inherited error).

Hence, we have  E(λh) = 1 + λh

where E(λh) is a polynomial approximation to eλh for small λh.
Obviously, Euler’s Method is absolutely stable if | 1 + λh | < 1 or – 2

< λh < 0; relatively stable if λh is greater than the solution of λh = – 1 – e–λh.
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� Statistical Computation

Frequency Charts, Curve Fitting, Principle of Least Squares, Fitting

a Straight Line, Exponential Curves etc., Data Fitting with Cubic

Splines, Regression Analysis, Linear Regression, Polynomial Fit:

Non-linear Regression, Multiple Linear Regression, Statistical Quality

Control.

� Testing of Hypothesis

Population or Universe, Sampling, Parameters of Statistics, Test of

Significance, t-Test, F-Test, Chi-square (χ2

) Test.





7.1 THE STATISTICAL METHODS

Statistical methods are devices by which complex and numerical data are
so systematically treated as to present a comprehensible and intelligible
view of them. In other words, the statistical method is a technique used

to obtain, analyze and present numerical data.

7.2 LIMITATION OF STATISTICAL METHODS

There are certain limitations to the Statistics and Statistical Methods.
1. Statistical laws are not exact laws like mathematical or chemical laws.

They are derived by taking a majority of cases and are not true for
every individual. Thus, the statistical inferences are uncertain.

2. Statistical technique applies only to data reducible to quantitative forms.
3. Statistical technique is the same for the social as for physical sciences.
4. Statistical results might lead to fallacious conclusions if they are quoted

short of their context.

C h a p t e r7 STATISTICAL COMPUTATION

547
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7.3 FREQUENCY CHARTS

7.3.1 Variable

A quantity which can vary from one individual to another is called a variable.
It is also called a variate. Wages, barometer readings, rainfall records, heights,
and weights are the common examples of variables.

Quantities which can take any numerical value within a certain range are
called continuous variables. For example, the height of a child at various
ages is a continuous variable since, as the child grows from 120 cm to 150 cm,
his height assumes all possible values within the limit.

Quantities which are incapable of taking all possible values are called
discontinuous or discrete variables. For example, the number of rooms in
a house can take only the integral values such as 2, 3, 4, etc.

7.3.2 Frequency Distributions

The scores of 50 students in mathematics are arranged below according to
their roll numbers, the maximum scores being 100.

19, 70, 75, 15, 0, 23, 59, 56, 27, 89, 91, 22, 21, 22, 50, 89, 56, 73, 56, 89, 75,
65, 85, 22, 3, 12, 41, 87, 82, 72, 50, 22, 87, 50, 89, 28, 89, 50, 40, 36, 40, 30,
28, 87, 81, 90, 22, 15, 30, 35.
The data given in the crude form (or raw form) is called ungrouped data.

If the data is arranged in ascending or descending order of magnitude, it is
said to be arranged in an array. Let us now arrange it in the intervals 0–10,
10–20, 20–30, 30–40, 40–50, 50–60, 60–70, 70–80, 80–90, 90–100. This is
arranged by a method called the tally method.

In this we consider every observation and put it in the suitable class by
drawing a vertical line. After every 4 vertical lines, we cross it for the 5th entry
and then a little space is left and the next vertical line is drawn.
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Scores Number of Students Frequency Cumulative
(Class-interval) (f ) Frequencies

0—10 | | 2 2
10—20 | |  | | 4 6
20—30 | | | |  | | | | 10 16
30—40 | |  | | 4 20
40—50 | | | 3 23
50—60 | | | |  | | | 8 31
60—70  | 1 32
70—80 | | | | 5 37
80—90 | | | |  | | | |  | 11 48
90—100 | | 2 50

Total Σf = 50

This type of representation is called a grouped frequency distribution
or simply a frequency distribution. The groups are called the classes and
the boundary ends 0, 10, 20, ...... etc. are called class limits. In the class limits
10—20, 10 is the lower limit and 20 is the upper limit. The difference between
the upper and lower limits of a class is called its magnitude or class-interval.
The number of observations falling within a particular class is called its
frequency or class frequency. The frequency of the class 80—90 is 11. The
variate value which lies mid-way between the upper and lower limits is called
mid-value or mid-point of that class. The mid-points of these are respectively
5, 15, 25, 35, ...... The cumulative frequency corresponding to a class is the
total of all the frequencies up to and including that class. Thus the cumulative
frequency of the class 10—20 is 2 + 4, i.e., 6 the cumulative frequency of the
class 20—50 is 6 + 10, i.e., 16, and so on.

While preparing the frequency distribution the following points must be
remembered:

1. The class-intervals should be of equal width as far as possible A
comparison of different distributions is facilitated if the class interval
is used for all. The class-interval should be an integer as far as possible.

2. The number of classes should never be fewer than 6 and not more than
30. With a smaller number of classes, the accuracy may be lost, and
with a larger number of classes, the computations become tedious.

3. The observation corresponding to the common point of two classes
should always be put in the higher class. For example, a  number
corresponding  to the value 30 is to be put up in the class 30—40 and
not in 20—30.
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The following forms of the above table may also be used:

Cumulative Frequency

Scores Number of Students Scores Number of Students

Under 10 2 above 90 2

Under 20 6 above 80 13

Under 30 16 above 70 18

Under 40 20 above 60 19

Under 50 23 above 50 27

Under 60 31 above 40 30

Under 70 32 above 30 34

Under 80 37 above 20 44

Under 90 48 above 10 48

Under 100 50 above 0 50

7.4 GRAPHICAL REPRESENTATION OF A FREQUENCY DISTRIBU-

TION

Representation of frequency distribution by means of a diagram makes the
unwieldy data intelligible and conveys to the eye the general run of the
observations. The graphs and diagrams have a more lasting effect on the brain.
It is always easier to compare data through graphs and diagrams. Forecasting
also becomes easier with the help of graphs. Graphs help us in interpolation of
values of the variables.

However there are certain disadvantages as well. Graphs do not give
measurements of the variables as accurate as those given by tables. The
numerical value can be obtained to any number of decimal places in a table,
but from graphs it can not be found to 2nd or 3rd places of decimals. Another
disadvantage is that it is very difficult to have a proper selection of scale. The
facts may be misrepresented by differences in scale.

7.5 TYPES OF GRAPHS AND DIAGRAMS

Generally the following types of graphs are used in representing frequency
distributions:

(1) Histograms, (2) Frequency Polygon, (3) Frequency Curve, (4) Cumulative
Frequency Curve or the Ogive, (5) Historigrams, (6) Bar Diagrams, (7) Area
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Diagrams, (8) Circles or Pie Diagrams, (9) Prisms, (10) Cartograms and Map
Diagrams, (11) Pictograms.

7.6 HISTOGRAMS

To draw the histograms of a given grouped frequency distribution, mark off
along a horizontal base line all the class-intervals on a suitable scale. With the
class-intervals as bases, draw rectangles with the areas proportional to the
frequencies of the respective class-intervals. For equal class-intervals, the
heights of the rectangles will be proportional to the frequencies. If the class-
intervals are not equal, the heights of the rectangles will be proportional to the
ratios of the frequencies to the width of the corresponding classes. A diagram
with all these rectangles is a Histogram.
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(Histogram for the previous table)

Histograms are also useful when the class-intervals are not of the same
width. They are appropriate to cases in which the frequency changes rapidly.
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7.7 FREQUENCY POLYGON

If the various points are obtained by plotting the central values of the class
intervals as x co-ordinates and the respective frequencies as the y co-ordinates,
and these points are joined by straight lines taken in order, they form a polygon
called Frequency Polygon.
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(Frequency Polygon)

In a frequency polygon the variables or individuals of each class are assumed
to be concentrated at the mid-point of the class-interval.

Here in this diagram dotted is the Histogram and a polygon with lines as
sides is the Frequency Polygon.

7.8 FREQUENCY CURVE

If through the vertices of a frequency polygon a smooth freehand curve is drawn,
we get the Frequency Curve. This is done usually when the class-intervals
are of small widths.
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7.9 CUMULATIVE FREQUENCY CURVE OR THE OGIVE

If from a cumulative frequency table, the upper limits of the class taken as x
co-ordinates and the cumulative frequencies as the y co-ordinates and the points
are plotted, then these points when joined by a freehand smooth curve give the
Cumulative Frequency Curve or the Ogive.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Scores

C
um

ul
at

iv
e

fr
eq

ue
nc

ie
s

X

Y

Ogive

7.10 TYPES OF FREQUENCY CURVES

Following are some important types of frequency curves, generally obtained in
the graphical representations of frequency distributions:

1. Symmetrical curve or bell shaped curve.
2. Moderately asymmetrical or skewed curve.
3. Extremely asymmetrical or J-shaped curve or reverse J-shaped.
4. U-shaped curve.
5. A bimodal frequency curve.
6. A multimodal frequency curve.

1. Symmetrical curve or Bell shaped curve. If a curve can be folded
symmetrically along a vertical line, it is called a symmetrical curve. In
this type the class frequencies decrease to zero symmetrically on either
side of a central maximum, i.e., the observations equidistant from the
central maximum have the same frequency.
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(Bell shaped curve) (Skewed curve)

2. Moderately asymmetrical or skewed curve. If there is no symmetry
in the curve, it is called a Skew Curve. In this case the class frequencies
decrease with greater rapidity on one side of the maximum than on the
other. In this curve one tail is always longer than the other. If the long
tail is to the to be a positive side, it is said to be a positive skew curve,
if long tail is to the negative side, it is said to be a negative skew curve.

3. Extremely asymmetrical or J-shaped curve. When the class
frequencies run up to a maximum at one end of the range, they form a
J-shaped curve.

J-shaped curve Reversed J-shaped curve U-shaped curve

4. U-shaped curve. In this curve, the maximum frequency is at the ends
of the range and a maximum towards the center.

5. A Bimodal curve has two maxima.

Bimodal curve Multimodal curve

6. A multimodal curve has more than two maxima.
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7.11 DIAGRAMS

1. Bar diagrams. Bar diagrams are used to compare the simple
magnitude of different items. In bar diagrams, equal bases on a
horizontal or vertical line are selected and rectangles are constructed
with the length proportional to the given data. The width of bars is an
arbitrary factor. The distance between two bars should be taken at
about one-half of the width of a bar.

2. Area diagrams. When the difference between two quantities to be
compared is large, bars do not show the comparison so clearly. In such
cases, squares or circle are used.

3. Circle or Pie-diagrams. When circles are drawn to represent an area
equivalent to the figures, they are said to form pie-diagrams or circles-
diagrams. In case of circles, the square roots of magnitudes are
proportional to the radii.

4. Subdivided Pie-diagram. Subdivided Pie-diagrams are used when
comparison of the component parts is done with another and the total.
The total value is equated to 360° and then the angles corresponding to
the component parts are calculated.

5. Prisms and Cubes. When the ratio between the two quantities to be
compared is very great so that even area diagrams are not suitable, the
data can be represented by spheres, prisms, or cubes. Cubes are in
common use. Cubes are constructed on sides which are taken in the
ratio of cube roots of the given quantities.

6. Cartograms or map diagrams. Cartograms or map diagrams are
most suitable for geographical data. Rainfalls and temperature in
different parts of the country are shown with dots or shades in a
particular map.

7. Pictograms. When numerical data are represented by pictures,
they give a more attractive representation. Such pictures are called
pictograms.
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7.12 CURVE FITTING

Let  there  be  two variables x and  y which give us a set of n  pairs of numerical
values (x1, y1), (x2, y2).......(xn, yn). In order to have an approximate idea about
the relationship of these two variables, we plot these n paired points on a graph,
thus we get a diagram showing the simultaneous variation in values of both
the variables called scatter or dot diagram. From scatter diagram, we get only
an approximate non-mathematical relation between two variables. Curve fitting
means an exact relationship between two variables by algebraic equations.
In fact, this relationship is the equation of the curve. Therefore, curve fitting
means to form an equation of the curve from the given data. Curve fitting is
considered of immense importance both from the point of view of theoretical
and practical statistics.

Theoretically, curve fitting is useful in the study of correlation and
regression. Practically, it enables us to represent the relationship between two
variables by simple algebraic expressions, for example, polynomials,
exponential, or logarithmic functions.

Curve fitting is also used to estimate the values of one variable
corresponding to the specified values of the other variable.

The constants occurring in the equation of an approximate curve can be
found by the following methods:

(i) Graphical method
(ii) Method of group averages

(iii) Principle of least squares
(iv) Method of moments.
Out of the above four methods, we will only discuss and study here the

principle of least squares.

7.13 PRINCIPLE OF LEAST SQUARES

Principle of least squares provides a unique set of values to the constants and
hence suggests a curve of best fit to the given data.

Suppose we have m-paired observations (x1, y1), (x2, y2), ......, (xm, ym) of two
variables x and y. It is required to fit a polynomial of degree n of the type

y = a + bx + cx2 + ...... + kxn (1)

of these values. We have to determine the constants a, b, c, ..., k such that they
represent the curve of best fit of that degree.

In case m = n, we get in general a unique set of values satisfying the given
system of equations.
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But if m > n, then we get m equations by putting different values of x and
y in equation (1) and we want to find only the values of n constants. Thus there
may be no such solution to satisfy all m equations.

Therefore we try to find out those values of a, b, c, ......, k which satisfy all
the equations as nearly as possible. We apply the principle of least squares in
such cases.

Putting x1, x2, ..., xm for x in (1), we get

y1′ = a + bx1 + cx1
2 + ...... + kx1

n

y2′ = a + bx2 + cx2
2 + ...... + kx2

n

� �

ym′ = a + bxm + cxm
2 + ...... + kxm

n

where  y1′,  y2′, ......, ym′  are the expected values of y for x = x1, x2, ......., xm respectively.
The values y1, y2, ......,  ym are called observed values of y corresponding to

x = x1, x2, ......, xm respectively.
The expected values are different from the observed values, the difference

yr – yr′ for different values of r are called residuals.
Introduce a new quantity U such that

U = Σ(yr – yr′)
2 = Σ(yr – a – bxr – cxr

2 – ..... – kxr
n)2

The constants a, b, c, ......, k are choosen in such a way that the sum of the
squares of  the residuals is minimum.

Now the condition for U to be maximum or minimum is 
∂
∂
U
a

 = 0 = 
∂
∂

∂
∂

U U
b c

=

= ...... = 
∂
∂
U
k

. On simplifying these relations, we get

Σy = ma + bΣx + ..... + kΣxn

 Σxy = aΣx + bΣx2 + ....... + k Σxn+1

Σx2y = aΣx2 + bΣx3 + ....... + k Σxn+2

� �

Σxny = aΣxn + bΣxn+1 + ....... + k Σx2n

These are known as Normal equations and can be solved as simultaneous
equations to give the values of the constants a, b, c, ......., k. These equations
are (n + 1) in number.

If we calculate the second order partial derivatives and these values are
given, they give a positive value of the function, so U is minimum.
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This method does not help us to choose the degree of the curve to be fitted
but helps us is finding the values of the constants when the form of the curve
has already been chosen.

7.14 FITTING A STRAIGHT LINE

Let (xi, yi), i = 1, 2, ......, n be n sets of observations of related data and

    y = a + bx (2)

be the straight line to be fitted. The residual at x = xi is

Ei = yi – f(xi) = yi – a – bxi

Introduce a new quantity U such that

U = 
i

n

i
i

n

i iy a bx
= =
∑ ∑= − −

1

2

1

2E ( )

By the principle of Least squares, U is minimum

∴  
∂
∂
U
a

 = 0 and
∂
∂
U
b

 = 0

∴ 2 1 0
1i

n

i iy a bx
=
∑

− − − =( )( ) or Σy = na + bΣx (3)

and 2 0
1i

n

i i iy a bx x
=
∑

− − − =( )( ) or Σxy = aΣx + bΣx2 (4)

Since xi, yi are known, equations (3) and (4) result in a and b. Solving these,
the best values for a and b can be known, and hence equation (2).

In case of change of origin,

if n is odd then,  u = 
x (middle term)

interval (h)
−

but if n is even then  u = 
x (mean of two middle terms)

1
2

(interval)

−
.

NOTE
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7.15 ALGORITHM FOR FITTING A STRAIGHT LINE OF THE FORM

y = a + bx FOR A GIVEN SET OF DATA POINTS

Step 01. Start of the program.

Step 02. Input no. of terms observ

Step 03. Input the array ax

Step 04. Input the array ay

Step 05. for i=0 to observ

Step 06. sum1+=x[i]

Step 07. sum2+=y[i]

Step 08. xy[i]=x[i]*y[i];

Step 09. sum3+=xy[i]

Step 10. End Loop i

Step 11. for i = 0 to observ

Step 12. x2[i]=x[i]*x[i]

Step 13. sum4+=x2[i]

Step 14. End of Loop i

Step 15. temp1=(sum2*sum4)-(sum3*sum1)

Step 16. a=temp1/((observ *sum4)-(sum1*sum1))

Step 17. b=(sum2-observ*a)/sum1

Step 18. Print output a,b

Step 19. Print “line is: y = a+bx”

Step 20. End of Program
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7.16 FLOW-CHART FOR FITTING A STRAIGHT LINE y = a + bx FOR A

GIVEN SET OF DATA POINTS

START

Input number of observations

Input array ax and ay

Loop for i = 0 to observ

Sum 1 + = x[i]

Sum 2 + = y[i]

xy[i] = x[i]*y[i]

Sum 3 + = xy[i]

End loop i

Loop for i = 0 to observ

x2[i] = x[i]*x[i]

Sum 4 + = x2[i]

End loop i

STOP

Print ‘‘output’’

a = ((Sum 2* Sum4) – (Sum 3* Sum1))/
((observ* sum4) – (sum 1* sum1))

b = ((sum 2 – observ* a)/sum1)
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/* **********************************************************

7.17 PROGRAM TO IMPLEMENT CURVE FITTING TO FIT A

STRAIGHT LINE

********************************************************** */

//... HEADER FILE DECLARATION

# include <stdio.h>

# include <conio.h>

# include <math.h>

//... Main Execution Thread

void main()

{

//... Variable Declaration Field

//... Integer Type

int i=0;

int observ;

//... Floating Type

float x[10];

float y[10];

float xy[10];

float x2[10];

float sum1=0.0;

float sum2=0.0;

float sum3=0.0;

float sum4=0.0;

//... Double Type

double a;

double b;

//... Invoke Function Clear Screen

clrscr ();

//... Input Section

//... Input Number of Observations

printf(“\n\n Enter the number of observations - ”);

scanf(“%d” ,&observ);
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//... Input Sequel For Array X

printf(“\n\n\n Enter the values of x – \n");

for (;i<observ;i++)

{

printf("\n\n Enter the Value of x%d: ",i+1);

scanf(“%f” ,&x[i]);

sum1 +=x[i];

}

//... Input Sequel For Array Y

printf(“\n\n Enter the values of y - \n”);

for(i=0;i<observ;i++)

{

printf("\n\n Enter the value of y%d:",i+1);

scanf("%f",&y[i]);

sum2+=y[i];

}

//... Processing and Calculation Section

for(i=0;i<observ;i++)

{

xy[i]=x[i]*y[i];

sum3 +=xy[i];

}

for(i=0;i<observ; i++)

{

x2[i]=x[i]*x[i];

sum4+ =x2[i];

}

a=(sum2*sum4–sum3*sum1)/(observ*sum4–sum1*sum1);

b=(sum2–observ*a)/sum1;

//... Output Section

printf(“\n\n\n\n Equation of the STRAIGHT LINE");

printf("of the form y = a + b*x is:");

printf(“\n\n\n \t\t\t Y = %.2f + (%.2f) X", a,b);

//... Invoke User Watch Halt Function
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printf("\n\n\n Press Enter to Exit");

getch();

}

//... Termination of Main Execution Thread

EXAMPLES

Example 1. By the method of least squares, find the straight line that best fits
the following data:

x: 1 2 3 4 5

y: 14 27 40 55 68.

Sol. Let the straight line of best fit be

y = a + bx (5)

Normal equations are Σy = ma + bΣx (6)

and Σxy = aΣx + bΣx2 (7)

Here m = 5
The table is as below:

x y xy x2

1 14 14 1

2 27 54 4

3 40 120 9

4 55 220 16

5 68 340 25

Σx = 15 Σy = 204 Σxy = 748 Σx2 = 55

Substituting in (6) and (7), we get

204 = 5a + 15b

748 = 15a + 55b

Solving, we get a = 0, b = 13.6

Hence required straight line is y = 13.6x

Example 2. Fit a straight line to the following data:

x: 0 1 2 3 4

y: 1 1.8 3.3 4.5 6.3.
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Sol. Let the straight line obtained from the given data be y = a + bx then the
normal equations are

  Σy = ma + b Σx (8)

Σxy = aΣx + bΣx2 (9)

Here  m = 5

x y xy x2

0 1 0 0
1 1.8 1.8 1
2 3.3 6.6 4
3 4.5 13.5 9
4 6.3 25.2 16

Σx = 10 Σy = 16.9 Σxy = 47.1 Σx2 = 30

From (8) and (9), 16.9 = 5a + 10b

and 47.1 = 10a + 30b

Solving, we get  a = 0.72, b = 1.33

∴ Required line is y = 0.72 + 1.33 x.

Example 3. Fit a straight line to the following data regarding x as the indepen-
dent variable:

x: 1 2 3 4 5 6

y: 1200 900 600 200 110 50.

Sol. Let the equation of the straight line to be fitted be y = a + bx
Here m = 6

x y x2 xy

1 1200 1 1200

2 900 4 1800

3 600 9 1800

4 200 16 800

5 110 25 550

6 50 36 300

Σx = 21 Σy = 3060 Σx2 = 91 Σxy = 6450
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From normal equations, we get

3060 = 6a + 21b, 6450 = 21a + 91b

Solving, we get   a = 1361.97, b = – 243.42

∴ Required line is

 y = 1361.97 – 243.42 x.

Example 4. Show that the line of fit to the following data is given by
y = 0.7x + 11.285:

x: 0 5 10 15 20 25

y: 12 15 17 22 24 30.

Sol. Since m is even,

Let x0 = 12.5 h = 5 y0 = 20 (say)

Then let,  u = 
x − 12.5

2.5
and v = y – 20

x y u v uv u2

0 12 – 5 – 8 40 25
5 15 – 3 – 5 15 9

10 17 – 1 – 3 3 1
15 22 1 2 2 1
20 24 3 4 12 9
25 30 5 10 50 25

Total Σu = 0 Σv = 0 Σuv = 122 Σu2 = 70

Normal equations are 0 = 6a and 122 = 70b

⇒  a = 0, b = 1.743

Line of fit is   v = 1.743u

Put u = 
x − 12.5

2.5
and v = y – 20, we get

y = 0.7x + 11.285.

Example 5. Fit a straight line to the following data:

x: 71 68 73 69 67 65 66 67

y: 69 72 70 70 68 67 68 64.
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Sol. Let the equation of the straight line to be fitted be

 y = a + bx (10)

Normal equations are

  Σy = ma + bΣx (11)

and   Σxy = aΣx + bΣx2 (12)

Here m = 8. Table is as below:

x y xy x2

71 69 4899 5041
68 72 4896 4624
73 70 5110 5329
69 70 4830 4761
67 68 4556 4489
65 67 4355 4225
66 68 4488 4356
67 64 4288 4489

Σx = 546 Σy = 548 Σxy = 37422 Σx2 = 37314

Substituting these values in equations (11) and (12), we get
     548 = 8a + 546b

37422 = 546a + 37314b

Solving, we get
 a = 39.5454, b = 0.4242

Hence the required line of best fit is

y = 39.5454 + 0.4242 x.

Example 6. Show that the best fitting linear function for the points (x1, y1),
(x2, y2), ....., (xn, yn) may be expressed in the form

x y 1
x y n
x x y x

i i

i
2

i i i

Σ Σ
Σ Σ Σ

 = 0 (i = 1, 2, ......, n)

Show that the line passes through the mean point ( , )x y .

Sol. Let the best fitting linear function be y = a + bx (13)
Then the normal equations are

 Σyi = na + bΣxi (14)

and  Σxiyi = aΣxi + bΣxi
2 (15)
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Equations (13), (14), (15) may be rewritten as

bx – y + a = 0

 bΣxi – Σyi + na = 0

and  bΣxi
2 – Σxiyi + aΣxi = 0

Eliminating a and b between these equations

x y
x y n
x x y x

i i

i i i i

1

2
Σ Σ
Σ Σ Σ

 = 0 (16)

which is the required best fitting linear function for the mean point ( , )x y ,

x  = 
1
n

 Σxi
y  = 

1
n

Σyi .

Clearly, the line (16) passes through point ( , )x y as two rows of determinants
being equal make it zero.

ASSIGNMENT 7.1

1. Fit a straight line to the given data regarding x as the independent variable:

x 1 2 3 4 6 8

y 2.4 3.1 3.5 4.2 5.0 6.0

2. Find the best values of a and b so that y = a + bx fits the given data:

x 0 1 2 3 4

y 1.0 2.9 4.8 6.7 8.6

3. Fit a straight line approximate to the data:

x 1 2 3 4

y 3 7 13 21

4. A simply supported beam carries a concentrated load P(lb) at its mid-point. Corresponding
to various values of P, the maximum deflection Y (in) is measured. The data are given
below. Find a law of the type Y = a + bP
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P 100 120 140 160 180 200

Y 0.45 0.55 0.60 0.70 0.80 0.85

5. In the following table y in the weight of potassium bromide which will dissolve in 100
grams of water at temperature x0. Find a linear law between x and y

x0(c) 0 10 20 30 40 50 60 70

y gm 53.5 59.5 65.2 70.6 75.5 80.2 85.5 90

6. The weight of a calf taken at weekly intervals is given below. Fit a straight line using
the method of least squares and calculate the average rate of growth per week.

Age 1 2 3 4 5 6 7 8 9 10

Weight 52.5 58.7 65 70.2 75.4 81.1 87.2 95.5 102.2 108.4

7. Find the least square line for the data points

(– 1, 10), (0, 9), (1, 7), (2, 5), (3, 4), (4, 3), (5, 0) and (6, – 1).

8. Find the least square line y = a + bx for the data:

xi – 2 – 1 0 1 2

yi 1 2 3 3 4

9. If P is the pull required to lift a load W by means of a pulley block, find a linear law of
the form P = mW + c connecting P and W, using the data:

P 12 15 21 25

W 50 70 100 120

where P and W are taken in kg-wt.

10. Using the method of least squares, fit a straight line to the following data:

x 1 2 3 4 5

y 2 4 6 8 10

11. Differentiate between interpolating polynomial and least squares polynomial obtained
for a set of data.
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7.18 FITTING OF AN EXPONENTIAL CURVE y = ae
bx

Taking logarithms on both sides, we get

  log10 y = log10 a + bx log10 e

i.e.,  Y = A + Bx (17)

where Y = log10 y, A = log10 a and B = b log10 e

The normal equations for (17) are ΣY = nA + BΣx and ΣxY = AΣx + BΣx2

Solving these, we get A and B.

Then a = antilog A and b = 
B

log10 e
.

7.19 FITTING OF THE CURVE y = ax
b

Taking the logarithm on both sides, we get

log10 y = log10 a + b log10 x

i.e.,  Y = A + bX (18)

where Y = log10 y, A = log10 a and X = log10 x.

The normal equations to (18) are ΣY = nA + bΣX

and  ΣXY = AΣX + bΣX2

which results A and b on solving and a = antilog A.

7.20 FITTING OF THE CURVE y = ab
x

Take the logarithm on both sides,

  log y = log a + x log b

⇒   Y = A + Bx

where Y = log y, A = log a, B = log b.

This is a linear equation in Y and x.
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For estimating A and B, normal equations are

ΣY = nA + B Σx

and ΣxY = A Σx + B Σx2

where n is the number of pairs of values of x and y.

Ultimately, a = antilog (A) and b = antilog (B).

7.21 FITTING OF THE CURVE pv
r

 = k

pvr = k ⇒ v = k1/r p–1/r

Taking logarithm on both sides,

log v = 
1 1
r

k
r

log −  log p

⇒ Y = A + BX

where Y = log v, A = 
1
r

 log k, B = – 
1
r

and X = log p

r and k are determined by the above equations. Normal equations are obtained
as per that of the straight line.

7.22 FITTING OF THE CURVE OF TYPE xy = b + ax

xy = b + ax ⇒ y = 
b
x

 + a

⇒ Y = bX + a, where X = 
1
x

.

Normal equations are ΣY = na + bΣX
 ΣXY = aΣX + bΣX2.

7.23 FITTING OF THE CURVE y = ax
2

 + 

b

x

Let the n points be (x1, y1), (x2, y2), ..... , (xn, yn)

Error of estimate for ith point (xi, yi) is

 Ei = y ax
b
xi i

i
− −

F

HG
I

KJ
2
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By principle of Least squares, the values of a and b are such that

 U = 
i

n

i
=
∑

1

2E  = 
i

n

i i
i

y ax
b
x=

∑ − −
F

HG
I

KJ1

2
2

 is minimum.

Normal equations are given by

∂
∂
U
a

 = 0

⇒
i

n

i i
i

n

i
i

n

ix y a x b x
= = =
∑ ∑ ∑= +

1

2

1

4

1

and
∂
∂
U
b

 = 0

⇒  
i

n
i

i i

n

i
i

n

i

y
x

a x b
x= = =

∑ ∑ ∑= +
1 1 1

2
1

or Dropping the suffix i, normal equations are

Σx2y = a Σx4 + bΣx

and  ∑
y
x

 = a Σx + b ∑
1
2x

.

7.24 FITTING OF THE CURVE y = ax + bx
2

Error of estimate for ith point (xi, yi) is Ei = (yi
 – axi– bxi

2)

By the principle of Least Squares, the values of a and b are such that

 U = 
i

n

i
i

n

i i iy ax bx
= =
∑ ∑= − −

1

2

1

2 2E ( )  is minimum.

Normal equations are given by 
∂
∂
U
a

 = 0

⇒  
i

n

i i
i

n

i
i

n

ix y a x b x
= = =
∑ ∑ ∑= +

1 1

2

1

3

and  
∂
∂
U
b

 = 0



572 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

⇒
i

n

i i
i

n

i
i

n

ix y a x b x
= = =
∑ ∑ ∑= +

1

2

1

3

1

4

or Dropping the suffix i, normal equations are

Σxy = a Σx2 + bΣx3

Σx2y = a Σx3 + bΣx4.

7.25 FITTING OF THE CURVE y = ax + 

b

x

Error of estimate for ith point (xi, yi) is

Ei = yi – axi – b
xi

By the principle of Least Squares the values of a and b are such that

 U = 
i

n

i
i

n

i i
i

y ax
b
x= =

∑ ∑= − −
F

HG
I

KJ1

2

1

2

E  is minimum.

Normal equations are given by

 
∂
∂
U
a

= 0

⇒ 2 0
1i

n

i i
i

iy ax
b
x

x
=
∑ − −
F

HG
I

KJ
− =( )

⇒
i

n

i i
i

n

ix y a x nb
= =
∑ ∑= +

1 1

2

and ∂
∂
U
b

= 0

⇒ 2
1

0
1i

n

i i
i i

y ax
b
x x=

∑ − −
F

HG
I

KJ
−
F

HG
I

KJ
=

⇒  
i

n
i

i i

n

i

y
x

na b
x= =

∑ ∑= +
1 1

2
1
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Dropping the suffix i, normal equations are

  Σxy = aΣx2 + nb

and  ∑ ∑= +
y
x

na b
x
1
2

where n is the number of pairs of values of x and y.

7.26 FITTING OF THE CURVE y = a + 

b

x

 + 

c

x

2

Normal equations are

Σy = ma + b 
∑ ∑+1 1

2x
c

x

∑ ∑ ∑ ∑= + +
y
x

a
x

b
x

c
x

1 1 1
2 3

∑ ∑ ∑ ∑= + +
y

x
a

x
b

x
c

x2 2 3 4
1 1 1

where m is the number of pairs of values of x and y.

7.27 FITTING OF THE CURVE y = 

c

x

0

 + c x
1

Error of estimate for ith point (xi, yi) is

Ei = yi – 
c
x

c x
i

i
0

1−

By the principle of Least Squares, the values of a and b are such that

U = 
i

n

i
i

n

i
i

i iy
c
x

c x
= =
∑ ∑= − −

1

2

1

0 2E ( )  is minimum.

Normal equations are given by

 ∂
∂
U
c0

0= and
∂
∂
U
c1

 = 0

Now,  
∂
∂
U
c0

0=
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⇒ 2
1

0
1

0
1

i

n

i
i

i
i

y
c
x

c x
x=

∑ − −
F

HG
I

KJ
−
F

HG
I

KJ
=

⇒  
i

n
i

i i

n

i i

n

i

y
x

c
x

c
x= = =

∑ ∑ ∑= +
1

0
1

2 1
1

1 1
(19)

Also,
∂
∂
U
c1

0=

⇒ 2 0
1

0
1

i

n

i
i

i iy
c
x

c x x
=
∑ − −
F

HG
I

KJ
− =( )

⇒
i

n

i i
i

n

i i

n

iy x c
x

c x
= = =
∑ ∑ ∑= +

1
0

1
1

1

1
(20)

Dropping the suffix i, normal equations (19) and (20) become

 ∑ ∑ ∑= +y
x

c
x

c
x

0 2 1
1 1

and   ∑ ∑=y x c
x

0
1

 + c1 Σx.

7.28 FITTING OF THE CURVE 2
x

 = ax
2

 + bx + c

Normal equations are

Σ 2xx2 = aΣx4+ bΣx3 + cΣx2

Σ 2x . x = aΣx3 + bΣx2 + cΣx

and Σ 2x = aΣx2 + bΣx + mc

where m is number of points (xi, yi)

EXAMPLES

Example 1. Find the curve of best fit of the type y = aebx to the following data by
the method of Least Squares:

x: 1 5 7 9 12

y: 10 15 12 15 21.
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Sol. The curve to be fitted is y = aebx

or Y = A + Bx,

where Y = log10 y, A = log10 a, and B = b log10 e

∴ The normal equations are ΣY = 5A + BΣx

and ΣxY = AΣx + BΣx2

x y Y = log10 y x2 xY

1 10 1.0000 1 1

5 15 1.1761 25 5.8805

7 12 1.0792 49 7.5544

9 15 1.1761 81 10.5849

12 21 1.3222 144 15.8664

Σx = 34 ΣY = 5.7536 Σx2 = 300 ΣxY = 40.8862

Substituting the values of Σx, etc. calculated by means of above table in the
normal equations.

We get 5.7536 = 5A + 34B

and 40.8862 = 34A + 300B

On solving   A = 0.9766; B = 0.02561

∴ a = antilog10 A = 9.4754; b = 
B

log10 e
 = 0.059

Hence the required curve is y = 9.4754e0.059x.

Example 2. For the data given below, find the equation to the best fitting
exponential curve of the form y = aebx

x: 1 2 3 4 5 6

y: 1.6 4.5 13.8 40.2 125 300.

Sol. y = aebx

Take log,  log y = log a + bx log e

which is of the form  Y = A + Bx

where  Y = log y, A = log a, B = b log e
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x y Y = log y x2 xY

1 1.6 .2041 1 .2041

2 4.5 .6532 4 1.3064

3 13.8 1.1399 9 3.4197

4 40.2 1.6042 16 6.4168

5 125 2.0969 25 10.4845

6 300 2.4771 36 14.8626

Σx = 21 ΣY = 8.1754 Σx2 = 91 ΣxY = 36.6941

Normal equations are

and
Σ Σ

Σ Σ Σ
Y A B
Y A B

= +
= +

U
V
W

m x
x x x2 (21)

Here m = 6
∴ From (21), 8.1754 = 6A + 21B, 36.6941 = 21A + 91B
⇒  A = – 0.2534, B = 0.4617
∴ a = antilog A = antilog (– .2534)

= antilog ( . )1 7466  = 0.5580

and b = 
B .4617

.4343log e
=  = 1.0631

Hence required equation is

y = 0.5580 e1.0631 x.

Example 3. Determine  the  constants  a  and b by the Method of Least Squares
such that y = aebx fits the following data:

x 2 4 6 8 10

y 4.077 11.084 30.128 81.897 222.62

Sol. y = aebx

Taking log on both sides

log y = log a + bx log e

or  Y = A + BX,

where  Y = log y

 A = log a
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 B = b log10 e

 X = x.

Normal equations are

 ΣY = mA + BΣX (22)

and ΣXY = AΣX + BΣX2. (23)

Here m = 5.

Table is as follows:

x y X Y XY X2

2 4.077 2 .61034 1.22068 4

4 11.084 4 1.04469 4.17876 16

6 30.128 6 1.47897 8.87382 36

8 81.897 8 1.91326 15.30608 64

10 222.62 10 2.347564 23.47564 100

ΣX = 30 ΣY = 7.394824 ΣXY = 53.05498 ΣX2 = 220

Substituting these values in equations (22) and (23), we get

7.394824 = 5A + 30B

and 53.05498 = 30A + 220B.

Solving, we get  A = 0.1760594

and B = 0.2171509

∴ a = antilog (A)

= antilog (0.1760594) = 1.49989

and  b = 
B

log10 e
 = 

0 2171509
4342945
.
.

 = 0.50001

Hence the required equation is

 y = 1.49989 e0.50001x.

Example 4. Obtain a relation of the form y = abx for the following data by the
Method of Least Squares:

x 2 3 4 5 6

y 8.3 15.4 33.1 65.2 126.4
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Sol. The curve to be fitted is y = abx

or Y = A + Bx,

where  A = log10 a, B = log10 b and Y = log10 y.

∴ The normal equations are ΣY = 5A + BΣx

and  ΣXY = AΣx + BΣx2.

x y Y = log10 y x2 xY

2 8.3 0.9191 4 1.8382

3 15.4 1.1872 9 3.5616

4 33.1 1.5198 16 6.0792

5 65.2 1.8142 25 9.0710

6 127.4 2.1052 36 12.6312

Σx = 20 ΣY = 7.5455 Σx2 = 90 ΣxY = 33.1812

Substituting the values of Σx, etc. from the above table in normal equations,
we get

 7.5455 = 5A + 20B and 33.1812 = 20A + 90B.

On solving A = 0.31 and B = 0.3

∴ a = antilog A = 2.04

and  b = antilog B = 1.995.

Hence the required curve is

y = 2.04(1.995)x.

Example 5. By the method of least squares, find the curve y = ax + bx2 that best
fits the following data:

x 1 2 3 4 5

y 1.8 5.1 8.9 14.1 19.8

Sol. Error of estimate for ith point (xi, yi) is Ei = (yi – axi – bxi
2)

By the principle of least squares, the values of a and b are such that

U = 
i

i
i

i i iy ax bx
= =
∑ ∑= − −

1

5
2

1

5
2 2E ( )  is minimum.
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Normal equations are given by

∂
∂
U
a

 = 0

⇒
i

i i
i

i
i

ix y a x b x
= = =
∑ ∑ ∑= +

1

5

1

5
2

1

5
3

and
∂
∂
U
b

 = 0

⇒
i

i i
i

i
i

ix y a x b x
= = =
∑ ∑ ∑= +

1

5
2

1

5
3

1

5
4

Dropping the suffix i, Normal equations are

 Σxy = aΣx2 + bΣx3 (24)

and Σx2y = aΣx3 + bΣx4 (25)

Let us form a table as below:

x y x2 x3 x4 xy x2y

1 1.8 1 1 1 1.8 1.8

2 5.1 4 8 16 10.2 20.4

3 8.9 9 27 81 26.7 80.1

4 14.1 16 64 256 56.4 225.6

5 19.8 25 125 625 99 495

Total Σx2 = 55 Σx3 = 225 Σx4 = 979 Σxy = 194.1 Σx2y = 822.9

Substituting these values in equations (24) and (25), we get

194.1 = 55 a + 225 b

and 822.9 = 225 a + 979 b

⇒  a = 
83 85

55
.

 ~ 1.52

and  b = 
317.4
664

 ~ .49

Hence the required parabolic curve is y = 1.52 x + 0.49 x2.
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Example 6. Fit the curve pvγ = k to the following data:

p (kg/cm2) 0.5 1 1.5 2 2.5 3

v (liters) 1620 1000 750 620 520 460

Sol. pvγ = k

v = 
k
p
F
HG
I
KJ

1/ γ

 = k1/γ p–1/γ

Taking log, log v = 1 1
γ γ

log k −  log p

which is of the form  Y = A + BX

where Y = log v, X = log p, A = 
1
γ

 log k and B = – 
1
γ

p v X Y XY X2

.5 1620 – .30103 3.20952 – .96616 0.09062

1 1000 0 3 0 0

1.5 750 .17609 2.87506 .50627 .03101

2 620 .30103 2.79239 .84059 .09062

2.5 520 .39794 2.716 1.08080 .15836

3 460 .47712 2.66276 1.27046 .22764

Total ΣX = 1.05115 ΣY = 17.25573 ΣXY = 2.73196 ΣX2 = .59825

Here m = 6

Normal equations are

17.25573 = 6A + 1.05115 B

and 2.73196 = 1.05115 A + 0.59825 B

Solving these, we get
A = 2.99911 and B = – 0.70298

∴   γ = – 
1
B

1
.70298

=  = 1.42252

Again, log k = γA = 4.26629

∴ k = antilog (4.26629) = 18462.48
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Hence the required curve is

pv1.42252 = 18462.48.

Example 7. Given the following experimental values:

x: 0 1 2 3

y: 2 4 10 15

Fit by the method of least squares a parabola of the type y = a + bx2.

Sol. Error of estimate for ith point (xi, yi) is Ei = (yi  –  a – bxi
2)

By the principle of Least Squares, the values of a, b are such that

U = 
i

i
i

i iy a bx
= =
∑ ∑= − −

1

4
2

1

4
2 2E ( )  is minimum.

Normal equations are given by

∂
∂
U
a

 = 0 ⇒ Σy = ma + bΣx2 (26)

and
∂
∂
U
b

 = 0 Σx2y = aΣx2 + bΣx4 (27)

x y x2 x2y x4

0 2 0 0 0

1 4 1 4 1

2 10 4 40 16

3 15 9 135 81

Total Σy = 31 Σx2 = 14 Σx2y = 179 Σx4 = 98

Here m = 4

From (26) and (27), 31 = 4a + 14b and 179 = 14a + 98b

Solving for a and b, we get a = 2.71, b = 1.44

Hence the required curve is y = 2.71 + 1.44 x2.

Example 8. The pressure of the gas corresponding to various volumes V is
measured, given by the following data:

V (cm3): 50 60 70 90 100

P (kg cm–2): 64.7 51.3 40.5 25.9 78

Fit the data to the equation PVγ = C.
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Sol.  PVγ = C

⇒ P = CV–γ

Take log on both sides,

 log P = log C – γ log V

⇒ Y = A + BX

where Y = log P, A = log C, B = – γ, X = log V

Normal equations are

ΣY = mA + BΣX

and ΣXY = AΣX + BΣX2

Here m = 5
Table is as below:

V P X = log V Y = log P XY X2

50 64.7 1.69897 1.81090 3.07666 2.88650

60 51.3 1.77815 1.71012 3.04085 3.16182

70 40.5 1.84510 1.60746 2.96592 3.40439

90 25.9 1.95424 1.41330 2.76193 3.81905

100 78 2 1.89209 3.78418 4

ΣX = 9.27646 ΣY = 8.43387 ΣXY = 15.62954 ΣX2 = 17.27176

From Normal equations, we have

8.43387 = 5A + 9.27646 B

and 15.62954 = 9.27646 A + 17.27176 B

Solving these, we get

A = 2.22476, B = – 0.28997

∴ γ = – B = 0.28997

C = antilog (A) = antilog (2.22476) = 167.78765

Hence the required equation of curve is

PV0.28997 = 167.78765.
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Example 9. Use the Method of Least Squares to fit the curve: y = 
c
x

c x0
1+  to

the following table of values:

x: 0.1 0.2 0.4 0.5 1 2

y: 21 11 7 6 5 6.

Sol. As derived in article 5.16, normal equations to the curve

y = 
c
x

c x0
1+  are

∑ ∑ ∑= +y
x

c
x

c
x

0 2 1
1 1

(28)

and ∑ ∑ ∑= +y x c
x

c x0 1
1

(29)

The table is as below:

x y y/x y x
1

x
1

x2

0.1 21 210 6.64078 3.16228 100

0.2 11 55 4.91935 2.23607 25

0.4 7 17.5 4.42719 1.58114 6.25

0.5 6 12 4.24264 1.41421 4

1 5 5 5 1 1

2 6 3 8.48528 .70711 0.25

Σx = 4.2 Σ(y/x) = 302.5 Σy x  = 33.71524
1
x∑  = 10.10081

1
2x∑  = 136.5

From equations (28) and (29), we have

302.5 = 136.5 c0 + 10.10081 c1

and 33.71524 = 10.10081 c0 + 4.2 c1

Solving these, we get

  c0 = 1.97327 and c1 = 3.28182

Hence the required equation of curve is

 y = 
197327

3 28182
.

.
x

x+ .
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ASSIGNMENT 7.2

1. Fit an equation of the form y = aebx to the following data by the method of least squares:

x 1 2 3 4

y 1.65 2.7 4.5 7.35

2. The voltage V across a capacitor at time t seconds is given by the following table. Use
the principle of least squares to fit a curve of the form V = aekt to the data:

t 0 2 4 6 8

V 150 63 28 12 5.6

3. Using the method of least squares, fit the non-linear curve of the form y = aebx to the
following data:

x 0 2 4

y 5.012 10 31.62

4. Fit a curve of the form y = axb to the data given below:

x 1 2 3 4 5

y 7.1 27.8 62.1 110 161

5. Fit a curve of the form y = abx in least square sense to the data given below:

x 2 3 4 5 6

y 144 172.8 207.4 248.8 298.5

6. Fit an exponential curve of the form y = abx to the following data:

x 1 2 3 4 5 6 7 8

y 1 1.2 1.8 2.5 3.6 4.7 6.6 9.1

7. Fit a curve y = axb to the following data:

x 1 2 3 4 5 6

y 2.98 4.26 5.21 6.1 6.8 7.5
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8. Fit a least square geometric curve y = axb to the following data:

x 1 2 3 4 5

y 0.5 2 4.5 8 12.5

9. Derive the least square equations for fitting a curve of the type y = ax2 + 
b
x

 to a set of n

points.
Hence fit a curve of this type to the data:

x 1 2 3 4

y – 1.51 0.99 3.88 7.66

10. Derive  the  least  squares  approximations  of  the type ax2 + bx + c to the function 2x at the
points xi = 0, 1, 2, 3, 4.

11. A person runs the same race track for 5 consecutive days and is timed as follows:

Day (x) 1 2 3 4 5

Time (y) 15.3 15.1 15 14.5 14

Make a least square fit to the above data using a function a + 
b
x

c

x
+

2 .

12. It is known that the variables x and y hold the relation of the form y = ax + 
b
x

.

Fit the curve to the given data:

x 1 2 3 4 5 6 7 8

y 5.43 6.28 8.23 10.32 12.63 14.86 17.27 19.51

13. Fit a curve of the type xy = ax + b to the following data:

x 1 3 5 7 9 10

y 36 29 28 26 24 15

14. Determine the constants of the curve y = ax + bx2 for the following data:

x 0 1 2 3 4

y 2.1 2.4 2.6 2.7 3.4
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15. The presssure and volume of a gas are related by the equation pva = b where a and b are
constants. Fit this equation to the following set of data:

p (kg/cm3) 0.5 1 1.5 2 2.5 3

v (liters) 1.62 1 0.75 0.62 0.52 0.46

7.29 MOST PLAUSIBLE SOLUTION OF A SYSTEM OF LINEAR

EQUATIONS

Consider a set of m equations in n variables x, y, z,......, t;

a1x + b1y + c1z + ...... + k1t = l1

a2x + b2y + c2z + ...... + k2t = l2

U

V

|
|

W

|
|

(30)

� � �  � � �

amx + bmy + cmz + ...... + kmt = lm

where ai, bi, ci, ....., ki, li; i = 1, 2, ......, m are constants.

In case m = n, the system of equation (30) can be solved uniquely by using
algebra.

In case m > n, we find the values of x, y, z, ......, t which will satisfy the
system (30) as nearly as possible using normal equations.

On solving normal equations simultaneously, they give the values of x, y, z,
......, t; known as the best or most plausible values.

On calculating the second order partial derivatives and substituting values
of x, y, z,......, t so obtained, we will observe that the expression will be positive.

EXAMPLES

Example 1. Find the most plausible values of x and y from the following
equations:

3x + y = 4.95, x + y = 3.00, 2x – y = 0.5, x + 3y = 7.25.
Sol. Let S = (3x + y – 4.95)2 + (x + y – 3)2 + (2x – y – 0.5)2 + (x + 3y – 7.25)2

(31)
Differentiating S partially with respect to x and y separately and equating

to zero, we have

∂
∂
S
x

= 0 = 2(3x + y – 4.95) (3) + 2(x + y – 3)

+ 2(2x – y – 0.5) (2) + 2(x + 3y – 7.25)
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⇒ 30x + 10y = 52.2

or  3x + y = 5.22 (32)

and ∂
∂
S
y

= 0 = 2(3x + y – 4.95) + 2(x + y – 3)

+ 2(2x – y – 0.5) (– 1) + 2(x + 3y – 7.25) (3)

⇒ 10x + 24y = 58.4

or x + 2.4y = 5.84 (33)

Solving equations (32) and (33), we get

 x = 1.07871 and y = 1.98387.

Example 2. Three independent measurements on each of the angles A, B, and
C of a triangle are as follows:

A B C

39.5° 60.3° 80.1°

39.3° 63.2° 80.3°

39.6° 69.1° 80.4°

Obtain the best estimate of the three angles when the sum of the angles is
taken to be 180°.

Sol. Let the three measurements of angles A, B, C be x1, x2, x3; y1, y2, y3 and z1,
z2, z3 respectively. Further suppose the best estimates of the angle A, B, and C
to be α, β, γ respectively where γ = 180° – (α + β)

According to Least squares method,

S = 
i

i
i

i
i

ix y z
= = =
∑ ∑ ∑− + − + − + +

1

3
2

1

3
2

1

3
2180( ) ( ) ( )α β α β

(34)

and ∂
∂α

α α βS = = − − + − + +
= =
∑ ∑0 2 2 180

1

3

1

3

i
i

i
ix z( ) ( )

∂
∂β

β α βS = = − − + − + +
= =
∑ ∑0 2 2 180

1

3

1

3

i
i

i
iy z( ) ( )

or
− + + − + + =

+ + − + + =
R
S
T

Σ Σ
Σ Σ
x z
y z

3 540 3 3 0
3 540 3 3 0

α α β
β α β–

or R
S
T

6α + 3β = 540 + Σx – Σz = 417.6 (35)

3α + 6β = 540 + Σy – Σz = 481.8 (36)
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Solving equations (35) and (36), we get

α = 39.2667, β = 60.6667, γ = 80.0666

ASSIGNMENT 7.3

1. Find the most plausible values of x and y from the following equations:

x + y = 3, x – y = 2, x + 2y = 4, x – 2y = 1

2. Find the most plausible values of x and y from the equations:

x + y = 3.31, 2x – y = .03, x + 3y = 7.73, 3x + y = 5.47

3. Find the most plausible values of x, y, and z from the follwoing equations:

  x – y + 2z = 3, 3x + 2y – 5z = 5,

4x + y + 4z = 21, – x + 3y + 3z = 14

4. Find the most plausible values of x, y, and z from the following equations:

(i) x + y = 3.01, 2x – y = 0.03, x + 3y = 7.02 and 3x + y = 4.97

(ii) x + 2y = 4, x = y + 2, x + y – 3 = 0, x – 2y = 1

(iii) x + 2.5y = 21, 4x + 1.2y = 42.04, 3.2x – y = 28 and 1.5x + 6.3y = 40

(iv) x – 5y + 4 = 0, 2x – 3y + 5 = 0

x + 2y – 3 = 0, 4x + 3y + 1 = 0

5. Find the most plausible values of x, y, and z from the following equations:

(i) 3x + 2y – 5z = 13 (ii)  x + 2y + z = 1

x – y + 2z = – 2 2x + y + z = 4

  4x + y + 4z = 3 – x + y + 2z = 3

– x + 3y + 3z = 0 4x + 2y – 5z = – 7

(iii) x – y + 2z = 3, 3x + 2y – 5z = 5

4x + y + 4z = 21, – x + 3y + 3z = 14.

7.30 CURVE-FITTING BY SUM OF EXPONENTIALS

We are to fit a sum of exponentials of the form

y = f(x) = A A A1 2
1 2e e ex x

n
xnλ λ λ+ + +...... (37)

to a set of data points say (x1, y1), (x2, y2), ......, (xn, yn)

In equation (37), we assume that n is known and A1, A2, ......, An, λ1, λ2, ......,
λn are to be determined.

Since equation (37) involves n arbitrary constants,
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It can be seen that f(x) satisfies a differential equation of the type

d y
dx

a
d y
dx

a
d y
dx

n

n

n

n

n

n+ +
−

−

−

−1

1

1 2

2

2
 + ...... + any = 0 (38)

where coefficients a1, a2, ......, an are unknown.
According to the Froberg Method, we numerically evaluate the derivatives

at the n data points  and  substitute them in (38) thus obtaining a system of n
linear equations for n unknowns a1, ......., an which can be solved thereafter.

Again, since λ1, λ2, ......, λn are the roots of algebraic equation

λn + a1λn–1 + a2λn–2 + ...... + an = 0 (39)

which, when solved, enables us to compute A1, A2, ....., An from equation (37) by
the method of least squares.

An obvious disadvantage of the method is the numerical evaluation of the
derivatives whose accuracy deteriorates with their increasing order, leading to
unreliable results.

In 1974, Moore described a computational technique which leads to more
reliable results.

We demonstrate the method for the case n = 2.
Let the function to be fitted to a given data be of the form

y = A A1 2
1 2e ex xλ λ+ (40)

which satisfies a differential equation of the form

d y
dx

a
dy
dx

2

2 1=  + a2y (41)

where the constants a1 and a2 have to be determined.
Assuming that a is the initial value of x, we obtain by integrating (41) from

a to x, the following equation

y′(x) – y′(a) = a1y(x) – a1y(a) + a2 
a

x
y x dxz ( ) (42)

where y′(x) denotes dy
dx

.

Integrating (42) again from a to x, we get

y(x) – y(a) – y′(a) (x – a) = a1 
a

x
y x dxz ( )  – a1(x – a) y(a)

+ a2 a

x

a

x
y x dxz z ( )  dx (43)



590 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

using the formula,

a

x

a

x

a

x
nf x dx dx

n
x t f t dtz z z=

−
− −...... ( ) ......

( ) !
( ) ( )

1
1

1
(44)

equation (43) simplifies to,

y(x) – y(a) – (x – a) y′(a) = a1 
a

x
y x dxz ( )  – a1(x – a) y(a) + a2 

a

x
x t y t dtz −( ) ( )

(45)

In order to use equation (45) to set up a linear system for a1 and a2, y′(a)
should be eliminated.

To do this, we choose two data points x1 and x2 such that

a – x1 = x2 – a
then from (45),

y(x1) – y(a) – (x1– a) y′(a)

= a1
a

x

a

x
y x dx a x a y a a x t y t dt

1 1

1 1 2 1z z− − + −( ) ( ) ( ) ( ) ( )

y(x2) – y(a) – (x2 – a) y′(a)

= a1
a

x

a

x
y x dx a x a y a a x t y t dt

2 2

1 2 2 2z z− − + −( ) ( ) ( ) ( ) ( )

Adding the above equations and simplifying, we get

y(x1) + y(x2) – 2y(a) = a1 a

x

a

x
y x dx y x dx

1 2

z z+L

N
M

O

Q
P( ) ( )

+ − + −L

N
M

O

Q
Pz za x t y t dt x t y t dt

a

x

a

x

2 1 2
1 2

( ) ( ) ( ) ( ) (46)

we find integrals using Simpson’s rule and equation (46) can be used to set up
a linear system of equations for a1 and a2, then we obtain λ1 and λ2 from the
characteristic equation

λ2 = a1λ + a2 (47)

Finally, A1 and A2 can be obtained by the Method of Least Squares.

Example. Fit a function of the form

y = A e A e1
x

2
x1 2λ λ+

to the data given by
x: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

y: 1.54 1.67 1.81 1.97 2.15 2.35 2.58 2.83 3.11.
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Sol. Choose x1 = 1,  x2 = 1.4, a = 1.2

so that,    a – x1 = x2 – a  then,

y(x1) + y(x2) – 2y(a) = a1 
a

x

a

x
y x dx y x dx

1 2

z z+L

N
M

O

Q
P( ) ( )

+ − + −L

N
M

O

Q
Pz za x t y t dt x t y t dt

a

x

a

x

2 1 2
1 2

( ) ( ) ( ) ( )

⇒ 1.54 + 2.15 – 3.62 = a1 − +L

N
M

O

Q
Pz z1

1 2

1 2

1 4.

.

.
( ) ( )y x dx y x dx

+ − − + −L

N
M

O

Q
Pz za t y t dt t y t dt2

1

1 2

1 2

1 4
1 14

.

.

.
( ) ( ) ( . ) ( ) (48)

Evaluation of 
1

1.2
y(x) dxz

The table of values is

x: 1 1.1 1.2

y(x): 1.54 1.67 1.81

By Simpson’s 
1
3

rd  rule,

  
1

1.2
(1.54 1.81) 4(1.67z = + +y x dx( )

.
[ )]

0 1
3

 = 0.33433

Evaluation of 
1.2

1.4
y(x) dxz

The table of values is

x: 1.2 1.3 1.4

y(x): 1.81 1.97 2.15

By Simpson’s 
1
3

rd  rule,

1

1 4 0 1
3.2

.
( )

.
z =y x dx  [(1.81 + 2.15) + 4(1.97)] = 0.39466
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Evaluation of 
1

1.2
(1 t) y(t) dtz −

The table of values is

t: 1 1.1 1.2

y(t): 1.54 1.67 1.81

(1 – t) y(t): 0 – 0.167 – 0.362

By Simpson’s 
1
3

rd  rule,

 
1

1.2

z − =( ) ( )
.

1
0 1
3

t y t dt [0 – .362 + 4 (– .167)] = – .03433

Evaluation of 
1.2

1.4
(1.4 t) y(t) dtz −

The table of values is

t: 1.2 1.3 1.4

(1.4 – t): .2 .1 0

y(t): 1.81 1.97 2.15

(1.4 – t) y(t): .362 .197 0

By Simpson’s 1
3

rd  rule,

1.2

1.4

z − =( . ) ( )
.

1 4
0 1
3

t y t dt [(0.362 + 0) + 4(.197)] = 0.03833

Substituting values of above obtained integrals in equation (48), we get

0.07 = a1[– 0.33433 + 0.39466] + a2[0.03433 + 0.03833]

 0.07 = 0.06033 a1 + 0.07266 a2

⇒ 1.8099 a1 + 2.1798 a2 = 2.10

or 1.81 a1 + 2.18 a2 = 2.10 (49)

Again, letting x1 = 1.4, a = 1.6 and x2 = 1.8

so that a – x1 = x2 – a then,

y(x1) + y(x2) – 2y(a) = a y x dx y x dx
a

x

a

x

1
1 2

z z+L

N
M

O

Q
P( ) ( )

+ a x t y t dt x t y t dt
a

x

a

x

2 1 2
1 2

z z− + −L

N
M

O

Q
P( ) ( ) ( ) ( )
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⇒  2.15 + 3.11 – 5.16 = a y x dx y x dx1
1 4

1 6

1 6

1 8
− +L

N
M

O

Q
Pz z.

.

.

.
( ) ( )

+ a t y t dt t y t dt2
1 4

1 6

1 6

1 8
1 4 18− − + −L

N
M

O

Q
Pz z.

.

.

.
( . ) ( ) ( . ) ( )

Evaluating all of the above integrals by Simpson’s 
1
3

rd rule and substituting,

we obtain

2.88 a1 + 3.104 a2 = 3.00 (50)

Solving (49) and (50), we get

a1 = 0.03204, a2 = 0.9364

Characteristic equation is

 λ2 = a1λ + a2

⇒ λ2 – 0.03204λ – 0.9364 = 0

⇒ λ1 = 0.988 ≈ 0.99

and λ2 = – 0.96

Now the curve to be fitted is

y = A1e
0.99x + A2e

–0.96x (51)

Residual Ei = yi – A1e ex xi i0.99
2

0.96− −A

Consider U = 
i

n

i
i

n

i
x xy e ei i

= =

−
∑ ∑= − −

1

2

1
1

0.99
2

0.96 2E A A( )

By the Method of Least Squares, values of A1 and A2 are chosen such that
U is the minimum.

For U to be minimum,

∂
∂

U
A1

0= and
∂

∂
U
A2

0=

Now, ∂
∂

U
A1

0= ⇒ 2 01
99

2
96 99

∑ − − − =−( ) ( ). . .y e e ex x xA A

⇒ ∑ ∑= +ye e ex x x. . .99
1

1 98
2

03A A (52)
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and ∂
∂

U
A2

0= ⇒ 2 01
99

2
96 96

∑ − − − =− −( ) ( ). . .y e e ex x xA A

⇒
∑ ∑ ∑

− −= +ye e ex x x. . .96
1

03
2

1 92A A   (53)

Solving normal equations (52) and (53) using values of x and y given in the
table, we get

A1 = 0.499 and A2 = 0.491

Hence the required function is

y = 0.499 e0.99x + 0.491 e–0.96x.

7.31 SPLINE INTERPOLATION

When computers were not available, the draftsman used a device to draw a
smooth curve through a given set of points such that the slope and curvature
were also continuous along the curve, i.e., f(x), f ′(x), and f ″(x) were continuous
on the curve. Such a device was called a spline and plotting of the curve was
called spline fitting.

The given interval [a, b] is subdivided into n subintervals [x0, x1], [x1, x2],......,
[xn–1 , xn] where a = x0 < x1 < x2 < ..... < xn = b. The nodes (knots) x1, x2,....., xn–1
are called internal nodes.

7.32 SPLINE FUNCTION

A spline function of degree n with knots (nodes) xi, i = 0, 1,......, n is a function
F(x) satisfying the properties

(i) F(xi) = f(xi); i = 0, 1,......, n.
(ii) on each subinterval [xi–1, xi], 1 ≤ i ≤ n, F(x) is a polynomial in x of degree

at most n.
(iii) F(x) and its first (n – 1) derivatives are continuous on [a, b]
(iv) F(x) is a polynomial of degree one for x < a and x > b.

7.33 CUBIC SPLINE INTERPOLATION

A cubic spline satisfies the following properties:
(i) F(xi) = fi, i = 0, 1,......, n
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(ii) On each subinterval [xi–1, xi], 1 ≤ i ≤ n, F(x) is a third degree polynomial.

(iii) F(x), F′(x) and F″(x) are continuous on [a, b].

Since  F(x)  is  piecewise  cubic, polynomial F″(x) is a linear function of x in
the interval xi–1 ≤ x ≤ xi and hence can be written as

 F″(x) = 
x x

x x
i

i i

−
− −1

 F″(xi–1) + 
x x
x x

i

i i

−
−

−

−

1

1
 F″(xi) (54)

For equally spaced intervals,

xi – xi–1 = h; 1 ≤ i ≤ n

From (54),  F″(x) = 
1
h

 [(xi – x) F″(xi–1) + (x – xi–1) F″(xi)] (55)

Integrating equation (55) twice, we get

  F(x) = 
1

6 6

3

1
1

3

h
x x

x
x x

xi
i

i
i

( )
( )

( )
( )

− ″ + − ″
L

N
M
M

O

Q
P
P

−
−F F

+ c1(xi – x) + c2(x – xi–1) (56)

where c1 and c2 are arbitrary constants which are to be determined by conditions

F(xi) = fi; i = 0, 1, 2,......, n

Then, fi = 
1

6

3

2h
h

x c hiF″
L

N
M

O

Q
P +( )

⇒  c2 = 
f
h

h
xi

i− ″
6

F ( ) (57)

and  fi–1 = 1
6

3

1 1h
h

x c hiF″
L

N
M

O

Q
P +−( )

⇒  c1 = 
f
h

h
xi

i
−

−− ″1
16

F ( ) (58)

Putting the values of c1 and c2 in equation (56), we get

F(x) = 
1

6 6

3

1
1

3

h
x x

x
x x

xi
i

i
i

( )
( )

( )
( )

−
″ +

−
″

L

N
M
M

−
−F F

+ (xi – x) f
h

xi i− −− ″
R
S
T

U
V
W

1

2

16
F ( )

+ (x – xi–1) f
h

xi i− ″
R
S
T

U
V
W

O

Q
P
P

2

6
F ( ) (59)
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Denoting F″(xi) = Mi, we have

F(x) = 
1

6
3

1 1
3

h
x x x xi i i i[( ) ( )− + −− −M M

 + (xi – x) {6fi–1 – h2 Mi–1} + (x – xi–1) {6fi – h2 Mi}] (60)

Now, F′(x) = 
1

6h
[– 3(xi – x)2 Mi–1 + 3(x – xi–1)

2 Mi

+ 6(fi – fi–1) + h2Mi–1 – h2Mi] (61)

Now, we require that the derivative F′(x) be continuous at x = xi ± ε as ε → 0

Therefore,

(i) F′(xi–1 + 0) = 
1

6h
[– 3h2Mi–1 + h2Mi–1 – h2Mi + 6(fi – fi–1)]

= 
1

6h
[– h2Mi – 2h2Mi–1 + 6(fi – fi–1)] (62)

Again in the interval [xi–2, xi–1],

F′(x) = 
1

6h
[– 3(xi–1 – x)2 Mi–2 + 3(x – xi–2)2 Mi–1 + 6(fi–1 – fi–2)

+ h2Mi–2 – h2Mi–1] (63)

(ii) From (63),

F′(xi–1 – 0) = 
1

6h
[3h2Mi–1 + 6fi–1 – 6fi–2 + h2Mi–2 – h2Mi–1]

= 
1

6h
 [2h2Mi–1 + h2Mi–2 + 6fi–1 – 6fi–2] (64)

As F′(x) is continuous at xi–1,

∴  F′(xi–1 – 0) = F′(xi–1 + 0)

∴ 2h2Mi–1 + h2Mi–2 + 6fi–1 – 6fi–2 = – h2Mi – 2h2Mi–1 + 6fi – 6fi–1

or   h2 (Mi + 4Mi–1 + Mi–2) = 6(fi – 2fi–1 + fi–2)

For the interval [xi–1, xi],

we have h2 [Mi+1 + 4Mi + Mi–1] = 6(fi+1 – 2fi + fi–1) (65)

where i = 1, 2,......, n
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This gives a system of (n – 1) linear equations with (n + 1) unknowns
M0, M1,......, Mn.

Two additional conditions may be taken in one of the following forms:

(i) M0 = Mn = 0 (Natural spline)

(ii) M0 = Mn, M1 = Mn+1, f0 = fn, f1 = fn+1, h1 = hn+1

A spline satisfying the above conditions is called a periodic spline.

(iii) For a non-periodic spline, we use the conditions

F′(a) = f ′(a) = f0′ and F′(b) = f ′(b) = fn′

Splines usually provide a better approximation of the behavior of functions
that have abrupt local changes. Further, splines perform better than higher
order polynomial approximations.

7.34 STEPS TO OBTAIN CUBIC SPLINE FOR GIVEN DATA

Step 1. For interval (xi–1, xi), write cubic spline as

F(x) = 
1

6h
[(xi – x)3 Mi–1 + (x – xi–1)

3 Mi + (xi – x) {6fi–1 – h2Mi–1}

+ (x – xi–1){6fi – h2Mi}]

Step 2. If not given, choose M0 = 0 = M3 (for the interval 0 ≤ x ≤ 3)

Step 3. For i = 1, 2,......, n, choose values of M1 and M2 such that

h2[Mi+1 + 4Mi + Mi–1] = 6[fi+1 – 2fi + fi–1]

exists for two sub intervals 0 ≤ x ≤ 1 and 1 ≤ x ≤ 2 respectively,
where h is the interval of differencing.

Step 4. Find F(x) for different sub-intervals and tabulate at last.

EXAMPLES

Example 1. Obtain the cubic spline for the following data:

x: 0 1 2 3

y: 2 – 6 – 8 2.

Sol. For the interval (xi–1, xi), the cubic spline is

F(x) = 
1

6h
 [(xi – x)3 Mi–1 + (x – xi–1)3 Mi + (xi – x) {6fi–1 – h2Mi–1}

+ (x – xi–1) {6fi – h2Mi}]
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With M0 = M3 = 0 and for i = 1, 2,......, n; we also have

  h2[Mi–1 + 4 Mi + Mi+1] = 6 [fi+1 – 2fi + fi–1]

Here h = 1

∴  M0 + 4M1 + M2 = 6(f2 – 2f1 + f0) | For 0 ≤ x ≤ 1

and  M1 + 4M2 + M3 = 6(f3 – 2f2 + f1) | For 1 ≤ x ≤ 2

Here,  M2 + 4M1 + M0 = 6[– 8 – 2(– 6) + 2] = 36

and  M3 + 4M2 + M1 = 6 [2 – 2 (– 8) + (– 6) = 72

Putting M0 = M3 = 0, we get

 M2 + 4M1 = 36

 4M2 + M1 = 72

Solving, we get M1 = 4.8, M2 = 16.8

Hence for 0 ≤ x ≤ 1,

F(x) = 
1
6

 [(1 – x)3 M0 + (x – 0)3 M1 + (1 – x) (6f0 – M0)

+ (x – 0) (6f1 – M1)]

= 
1
6

 [x3(4.8) + (1 – x) (12) + x (– 36 – 4.8)]

= 0.8x3 – 8.8x + 2

For 1 ≤ x ≤ 2,

F(x) = 
1
6

 [(2 – x)3 M1 + (x – 1)3 M2 + (2 – x) {6f1 – M1}

+ (x – 1) {6f2 – M2}]

= 
1
6

 [(2 – x)3 (4.8) + (x – 1)3 (16.8) + (2 – x) {– 36 – 4.8}

+ (x – 1) {– 48 – 16.8}]

= 2x3 – 3.6x2 – 5.2x + 0.8

For 2 ≤ x ≤ 3,

F(x) = 
1
6

 [(3 – x)3 M2 + (x – 2)3 M3 + (3 – x) {6f2 – h2M2}

+ (x – 2) {6f3 – h2M3}]

= 
1
6

 [(3 – x)3 (16.8) + (3 – x) {– 48 – 16.8} + (x – 2) (12)]

| using M3 = 0
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⇒ F(x) = 
1
6

 [(27 – x3 – 27x + 9x2) (16.8) – 64.8 (3 – x) + 12x – 24]

= 
1
6

 [– 16.8x3 + 151.2x2 – 376.8x + 235.2]

= – 2.8x3 + 25.2x2 – 62.8x + 39.2

Therefore, cubic splines in different intervals are tabulated as below:

Interval Cubic spline

[0, 1] 0.8x3 – 8.8x + 2

[1, 2] 2x3 – 3.6x2 – 5.2x + 0.8

[2, 3] – 2.8x3 + 25.2x2 – 62.8x + 39.2.

Example 2. Obtain the cubic spline for every subinterval from the given data:

x: 0 1 2 3

f(x): 1 2 33 244

with the end conditions M0 = M3 = 0. Hence find an estimate of f(2.5).

Sol. For the interval (xi–1, xi), the cubic spline is

F(x) = 
1

6h
 [(xi – x)3 Mi–1 + (x – xi–1)3 Mi + (xi – x) {6fi–1 – h2Mi–1}

+ (x – xi–1) {6fi – h2Mi}] (66)

For i = 1, 2,......., n, we have

h2 [Mi–1 + 4Mi + Mi+1] = 6[fi+1 – 2fi + fi–1] (67)

and  M0 = M3 = 0 (68)

Here h = 1

∴ From (67), For 0 ≤ x ≤ 1,

 M0 + 4M1 + M2 = 6(f2 – 2f1 + f0) (69)

and for 1 ≤ x ≤ 2,

M1 + 4M2 + M3 = 6(f3 – 2f2 + f1) (70)

From (69), we get

 M0 + 4M1 + M2 = 6[33 – 4 + 1] = 180 (71)

and         M1 + 4M2 + M3 = 6[244 – 66 + 2] = 1080 (72)

Using (68), equations (71) and (72) reduce to

4M1 + M2 = 180

and M1 + 4M2 = 1080
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Solving, we get

 M1 = – 24 and M2 = 276 (73)

Hence for 0 ≤≤≤≤≤ x ≤≤≤≤≤ 1,

F(x) = 
1
6

 [(1 – x)3 M0 + (x – 0)3 M1 + (1 – x) {6f0 – M0}

+ (x – 0) {6f1 – M1}] | ∵ h = 1

= 
1
6

 [x3 (– 24) + (1 – x) {6} + x(12 + 24)]

= 
1
6

 [– 24x3 + 6 – 6x + 36x] = – 4x3 + 5x + 1

For 1 ≤ x ≤ 2,

F(x) = 
1
6

 [(2 – x)3 M1 + (x – 1)3 M2 + (2 – x) {6f1 – M1}

+ (x – 1) {6f2 – M2}]

= 
1
6

 [(2 – x)3 (– 24) + (x – 1)3 (276) + (2 – x) (12 + 24)

+ (x – 1) {198 – 276}]

= 
1
6

 [(2 – x)3 (– 24) + 276 (x – 1)3 + 36(2 – x) – 78(x – 1)]

= 50x3 – 162 x2 + 167 x – 53
For 2 ≤ x ≤ 3,

 F(x) = 
1
6

 [(3 – x)3 M2 + (x – 2)3 M3 + (3 – x) (6f2 – M2)

+ (x – 2) (6f3 – M3)]

= 
1
6

 [(3 – x)3 (276) + (x – 2)3 (0) + (3 – x) (198 – 276)

+ (x – 2) {(6 × 244) – 0}]

= 
1
6

[(27 – x3 – 27x + 9x2) (276) + (3 – x) (– 78) + 1464 (x – 2)]

= – 46x3 + 414x2 – 985x + 715
Therefore, the cubic splines in different intervals are tabulated as below:

Interval Cubic Spline

[0, 1] – 4x3 + 5x + 1

[1, 2] 50x3 – 162x2 + 167x – 53

[2, 3] – 46x3 + 414x2 – 985x + 715
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An estimate at x = 2.5 is

f(2.5) = – 46 (2.5)3 + 414(2.5)2 – 985 (2.5) + 715 = 121.25.

7.35 APPROXIMATIONS

The problem of approximating a function is an important problem in numerical
analysis due to its wide application in the development of software for digital
computers. The functions commonly used for approximating given functions
are polynomials, trigonometric functions, exponential functions, and rational
functions. However, from an application point of view, the polynomial functions
are mostly used.

7.36 LEGENDRE AND CHEBYSHEV POLYNOMIALS

In the theory of approximation of functions, we often use the well known
orthogonal polynomials, Legendre and Chebyshev polynomials, as the
coordinate functions while applying the method of least squares.

Chebyshev polynomials are also used in the economization of power series.

7.37 LEGENDRE POLYNOMIALS

Pn(x) is a Legendre polynomial in x of degree n and satisfies the Legendre
differential equation

(1 – x2) 
d y
dx

x
dy
dx

n n y
2

2 2 1 0− + + =( )

we have  Pn(– x) = (– 1)n Pn(x).

From this, we conclude that Pn(x) is an even function of x if n is even and an
odd function of x if n is odd.

Legendre polynomials satisfy the recurrence relation

(n + 1) Pn+1 (x) = (2n + 1) xPn(x) – nPn–1(x)

 P0(x) = 1, P1(x) = x

we have

Pn(x) = 
13 5 2 1 1

2 2 1
1 2 3

2 4 2 1 2 3
2 4. . ...... ( )

!
( )

( )
( )( )( )
. .( ) ( )

......
n

n
x

n n
n

x
n n n n

n n
xn n n−

−
−
−

+
− − −

− −
−

L

N
M

O

Q
P

− −
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In particular,

P2(x) = 
3 1

2

2x −
, P3(x) = 

5 3
2

3x x−

P4(x) = 
35 30 3

8

4 2x x− +
, P5(x) = 

63 70 15
8

5 3x x x− +

Legendre polynomials Pn(x) are orthogonal on the interval [– 1, 1] with
respect to the weight function W(x) = 1

We have

–1
( ) ( )

1

z P Pm nx x dx  = 
0
2

2 1

,

,

if

if

m n

n
m n

≠

+
≠

R

S
|

T|

U

V
|

W|

7.38 CHEBYSHEV POLYNOMIALS

The Chebyshev polynomial of first kind of degree n over the interval [– 1, 1] is
denoted by Tn(x) and is defined by the relation

 Tn(x) = cos (n cos–1 x) = cos nθ

where θ = cos–1 x or x = cos θ

we have,  T0(x) = 1 and T1(x) = x

The Chebyshev polynomial of second kind of degree n over the interval
[– 1, 1] is denoted by Un(x) and is defined by the relation

 Un(x)  = sin (n cos–1 x) = sin nθ

where θ = cos–1
 x or x = cos θ

1. Chebyshev’s polynomials are also known as Tchebichef or Tchebicheff
or Tchebysheff.

2. Sometimes the Chebyshev polynomial of the second kind is defined by

Un(x) = 
sin {(n 1) cos x}

1 x

U (x)

1 x

1

2

n 1

2

+

−
=

−

−
+ .

NOTE
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7.39 SPECIAL VALUES OF CHEBYSHEV POLYNOMIALS

T0 (x) = cos 0 = 1

T1 (x) = cos (cos–1 x)  = x

T2 (x) = cos (2 cos–1 x) = 2 cos2 (cos–1 x) – 1 = 2x2 – 1

T3 (x) = cos (3 cos–1 x)  = 4 cos3 (cos–1 x) – 3 cos (cos–1 x) = 4x3 – 3x

T4 (x) = cos (4 cos–1 x) = 2 cos2 (2 cos–1 x) – 1

= 2 (2x2 – 1)2 – 1 = 8x4 – 8x2 + 1

T5(x) = cos (5 cos–1 x) = cos (3 cos–1 x) cos (2 cos–1 x)

– sin (3 cos–1 x) sin (2 cos–1 x)

= 16x5 – 20x3 + 5x

Similarly,  T6 (x) = 32x6 – 48x4 + 18x2 – 1 and so on.

7.40 ORTHOGONAL PROPERTIES

To prove:

(1)   
−z −

=
≠
= ≠
= =

R

S
|

T|

U

V
|

W|
1

1

21

0
2 0

0

T T if
/ if

if

n mx x

x
dx

m n
m n
m n

( ) ( ) ;
;

;
π
π

(2)
−z −

=
≠
= ≠
= =

R
S
|

T|

U
V
|

W|
1

1

21

0
2 0

0 0

U U if
/ if

if

n mx x

x
dx

m n
m n
m n

( ) ( ) ;
;

;
π .

7.41 RECURRENCE RELATIONS

1.  Tn+1
 (x) – 2x Tn(x) + Tn–1(x) = 0.

2. (1 – x2) Tn′(x) = – nxTn(x) + n Tn–1(x).

3. Un+1(x) – 2x Un(x) + Un–1(x) = 0.

4. (1 – x2) Un′(x) = – nx Un(x) + nUn–1(x).
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7.42 ALITER TO FIND CHEBYSHEV POLYNOMIALS

The recurrence relation

Tn + 1(x) = 2x Tn (x) – Tn–1(x) (74)

Can also be used to compute all Tn(x) successively since we know T0(x) and
T1(x).

 T0(x) = 1, T1(x) = x

Given n = 1 in (74), we have

 T2(x) = 2xT1(x) – T0(x) = 2x2 – 1

Given n = 2 in (74), we get

  T3 (x) = 2x T2(x) – T1(x) = 2x (2x2– 1) – x = 4x3 – 3x

Given n = 3 in (74), we get

T4 (x) = 2x T3(x) – T2(x) = 2x (4x3 – 3x) – (2x2 – 1)

= 8x4 – 6x2 – 2x2 + 1 = 8x4 – 8x2 + 1

Given n = 4 in (74), we get

   T5 (x) = 2x T4(x) – T3(x) = 2x (8x4 – 8x2 + 1) – (4x3 – 3x)

= 16x5 – 20x3 + 5x

Similarly, T6 (x) = 2x T5(x) – T4(x)

= 2x (16x5 – 20x3 + 5x) – (8x4 – 8x2 + 1)

 = 32x6 – 48x4 + 18x2 – 1.

7.43 EXPRESSION OF POWERS OF X INTERMS OF CHEBYSHEV

POLYNOMIALS

1 = T0(x)

x = T1(x)

x2 =
1
2

 [T0(x) + T2(x)]

x3 =
1
4

 [3 T1(x) + T3(x)]

x4 =
1
8

 [3 T0(x) + 4T2(x) + T4(x)]
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x5 =
1

16
 [10 T1(x) + 5T3(x) + T5(x)]

x6 =
1

32
 [10 T0(x) + 15T2(x) + 6T4(x) + T6(x)]

and so on.

The above expressions will be useful in the economization of power series.

7.44 PROPERTIES OF CHEBYSHEV POLYNOMIALS

(i) Tn(x) is a polynomial of degree n. We have Tn(– x) = (– 1)n Tn(x) so that
Tn(x) is an even function of x if n is even and it is an odd function of x if
n is odd.

(ii) Tn(x) has n simple zeros.

xk = cos 
2 1

2
k

n
−F

HG
I
KJ

π ,  k = 1, 2, ......, n on the interval [– 1, 1]

(iii) Tn(x) assumes extreme values at (n + 1) points xk = cos 
k
n
π

, k = 0, 1, 2,

......, n and the extreme value at xk is (– 1)k.
(iv) | Tn(x) | ≤ 1, x ∈ [– 1, 1]
(v) Tn(x) are orthogonal on the interval [– 1, 1] with respect to the weight

function

W(x) = 
1

1 2− x

(vi) If pn(x) is any monic polynomial of degree n and 
~

( )
( )

T
T

n
n
nx

x
= −2 1  is the

monic Chebyshev polynomial, then

max |
~

( )| max | ( )|
− ≤ ≤ − ≤ ≤

≤
1 1 1 1x

n
x

nx p xT .

7.45 CHEBYSHEV POLYNOMIAL APPROXIMATION

Let f(x) be a continuous function defined on the interval [– 1, 1] and let c0 + c1x
+ c2x2 + ...... + cnxn be the required minimax (or uniform) polynomial
approximation for f(x).



606 COMPUTER-BASED NUMERICAL AND STATISTICAL TECHNIQUES

Suppose f(x) = 
a

a x
i

i i
0

1
2

+
=

∞

∑ T ( )  is the Chebyshev series expansion for f(x).

Then the truncated series or the partial sum

 Pn(x) = 
a

a x
i

n

i i
0

1
2

+
=
∑ T ( ) (75)

is very nearly the solution to the problem

max ( ) min ( )
− ≤ ≤

=
− ≤ ≤

=

− = −∑ ∑1 1
0

1 1
0

x
i

n

i
i

x
i

n

i
if x c x f x c x

i.e., the partial sum (75) is nearly the best uniform approximation to f(x).

Reason. Suppose we write

f(x) = 
a0

2
 + a1T1(x) + a2T2(x) + ...... + anTn(x) + an + 1Tn + 1(x) + remainder

(76)

Neglecting the remainder, we obtain from (76),

f(x) – 
a

a x
i

n

i i
0

1
2

+
L

N
M
M

O

Q
P
P=

∑ T ( )  = an+1Tn+1(x) (77)

Since Tn + 1 (x) has n + 2 equal maxima and minima which alternate in sign,
therefore by Chebyshev equioscillation theorem, the polynomial (75) of degree
n is the best uniform approximation to f(x).

7.46 LANCZOS ECONOMIZATION OF POWER SERIES FOR A

GENERAL FUNCTION

First we express the given function f(x) as a power series in x in the form

  f(x) = 
i

i
ia x

=

∞

∑

0

, – 1 ≤ x ≤ 1 (78)

Then we change each power of x in (78) in terms of Chebyshev polynomials
and we obtain

f(x) = 
i

i ic x
=

∞

∑

0

T ( ) (79)
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as the Chebyshev series expansion for f(x) on [– 1, 1]. It has been found that for
a large number of functions f(x), the series (79) converges more rapidly than
the power series given by eqn. (78). If we truncate series (79) at Tn(x), then the
partial sum

 Pn(x) = 
i

n

i ic x
=
∑

0

T ( ) (80)

is a good uniform approximation to f(x) in the sense

max
− ≤ ≤1 1x

 | f(x) – Pn(x) | ≤ | cn + 1 | + | cn + 2 | + ...... ≤ ε (say)

For a given ε, it is possible to find the number of terms that should be
retained in eqn. (80). This process is known as Lanczos Economization.
Replacing each Ti(x) in eqn. (80) by its polynomial form and rearranging the
terms, we get the required economized polynomial approximation for f(x).

EXAMPLES

Example 1. Prove that

1 x2−  Tn(x) = Un + 1 (x) – x Un(x).

Sol. If x = cos θ, we get

 Tn (cos θ) = cos nθ

and Un (cos θ) = sin nθ

Then we are to prove,

sin θ cos nθ = sin (n + 1)θ – cos θ sin nθ

Now,  R.H.S. = sin nθ cos θ + cos nθ sin θ – cos θ sin nθ

= sin θ cos nθ = L.H.S.

Example 2. Find the best lower order approximation to the cubic 2x3 + 3x2.

Sol. We know that

x3 = 
1
4

[3T1(x) + T3(x)]

 2x3 + 3x2 = 2
1
4

{3 ( ) ( )}T T1 3x x+L

NM
O

QP
 + 3x2

= 
3
2

1
2

3 2T T1 3( ) ( )x x x+ +  = 3x2 + 
3
2

1
2

x x+ T3( )

[∵ T1(x) = x]
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Since | T3(x) | ≤ 1, – 1 ≤ x ≤ 1 therefore,  the polynomial 3x2 + 
3
2

x  is the

required lower order approximation to the given cubic with a max. error ± 
1
2

 in

range [– 1, 1].

Example 3. Express 2 T0 (x) – 
1
4

T2 (x) + 
1
8

T4  (x) as polynomials in x.

Sol.  2T0 (x) – 
1
4

 T2  (x) + 
1
8

 T4  (x)

= 2 (1)
1
4

− − + − +( ) ( )2 1
1
8

8 8 12 4 2x x x

= − + + − +2
1
2

1
4

1
8

2 4 2x x x

= x x4 23
4

19
8

− + .

Example 4. Express 1 – x2 + 2x4 as sum of Chebyshev polynomials.

Sol.  1 – x2 + 2x4 = 1 – x2 + 2
1
8

4{3 ( ) ( ) ( )}T T T0 2 4x x x+ +L

NM
O

QP

= 1 – x2 + 
3
4

1
4

T T T0 2 4( ) ( ) ( )x x x+ +

= 1
1
2

3
4

1
4

− + + + +[ ( ) ( )] ( ) ( ) ( )T T T T T0 2 0 2 4x x x x x

= T T T T T T0 0 2 0 2 4( ) ( ) ( ) ( ) ( ) ( )x x x x x x− − + + +1
2

1
2

3
4

1
4

= 
5
4

T T T0 2 4( ) ( ) ( )x x x+ +1
2

1
4

.

Example 5. Economize the power series: sin x ≈ x
x
6

x
120

x
5040

3 5 7

− + −  + ...... to

three significant digit accuracy.

Sol. The truncated series is

 sin x ≈ x x x− +
3 5

6 120
(81)
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which is obtained by truncating the last term since 
1

5040
 = 0.000198 will produce

a change in the fourth decimal place only.
Converting the powers of x in (81) into Chebyshev polynomials, we get

 sin x ≈ T
1
6

T T T T T1 1 3 1 3 5( ) {3 ( ) ( )} { ( ) ( ) ( )}x x x x x x− +L

NM
O

QP
+ + +L

NM
O

QP
1
4

1
120

1
16

10 5

≈ T
1

24
T T T T T1 1 3 1 3 5( ) [3 ( ) ( )] [ ( ) ( ) ( )]x x x x x x− + +

×
+ +1

120 16
10 5

≈ 169
192

5
128

1
1920

T T T1 3 5( ) ( ) ( )x x x− +

Truncated series is

 sin x ≈ 
169
192

5
128

T T1 3( ) ( )x x−

which is obtained by truncating the last term since 
1

1920
 = 0.00052 will pro-

duce a change in the fourth decimal place only.
Economized series is

 sin x ≈ 169
192

5
128

x − (4x3 – 3x)

= 
383
384

5
32

3x x−  = 0.9974x – 0.1526x3

which gives sin x to three significant digit accuracy.

Example 6. Using the Chebyshev polynomials, obtain the least squares
approximation of second degree for f(x) = x4 on [– 1, 1].
Sol. Let  f(x) ≈ P(x) = C0T0(x) + C1T1(x) + C2T2(x)

We have

U(C0, C1, C2) = 
−z −1

1

2

1

1 x
(x4 – C0T0 – C1T1 – C2T2)

2 dx

which is to be minimum.
Normal equations are given by

∂
∂

U
C0

 = 0 ⇒
−z − − −

−1

1
4

21
( )x

x
dxC T C T C T

T
0 0 1 1 2 2

0  = 0
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∂
∂

U
C1

 = 0 ⇒
−z − − −

−1

1
4

21
( )x

x
dxC T C T C T

T
0 0 1 1 2 2

1  = 0

and
∂
∂

U
C2

 = 0 ⇒
−z − − −

−1

1
4

21
( )x

x
dxC T C T C T

T
0 0 1 1 2 2

2  = 0

We find that

C0 = 
1

1

3
81

1

2π −z −
=

x

x
dx

4
0T

C1 = 
2

1
0

1

1

2π −z −
=

x

x
dx

4
1T

  C2 = 
2

1

1
21

1

2π −z −
=

x

x
dx

4
2T

Hence the required approximation is f(x) = 
3
8

1
2

T T0 2+ .

Example 7. Find  a  uniform  polynomial  approximation  of degree four or less
to ex on [– 1, 1] using Lanczos economization with a tolerance of ε = 0.02.

Sol. We have

f(x) = ex = 1 + x + x x x x2 3 4 5

2 6 24 120
+ + + + ......

Since
1

120
0 008= . ......, therefore

 ex
 = 1 + x + x x x2 3 4

2 6 24
+ + (82)

with a tolerance of ε = 0.02.

Changing each power of x in (82) in terms of Chebyshev polynomials, we
get

 ex = T0 + T1 + 
1
4

 (T0 + T2) + 
1

24
(3T1 + T3) + 

1
192

 (3T0 + 4T2 + T4)

= 
81
64

9
8

13
48

1
24

1
192

T T T T T0 1 2 3 4+ + + + (83)
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We have
1

192
 = 0.005 ......

∴ The magnitude of last term on R.H.S. of (83) is less than 0.02.
Hence the required economized polynomial approximation for ex is given

by

 ex = 
81
64

9
8

13
48

1
24

T T T T0 1 2 3+ + +

or  ex = x
x x

3
2

6
13
24

191
192

+ + + .

Example 8. The function f is defined by

f(x) = 
1
x

1 e
t

dt
0

x t

2

2

z
− −

Approximate f by a polynomial P(x) = a + bx + cx2 such that

max.
x 1| | ≤

 | f(x) – P(x) | ≤ 5 × 10–3.

Sol. The given function

f(x) = 
1

1
2 6 24 120 7200

2 4 6 8 10

x
t t t t t

dt
x

z − + − + − +
F

HG
I

KJ
......

= 1
6 30 168 1080 7920

2 4 6 8 10

− + − + − +x x x x x
...... (84)

The tolerable error is 5 × 10–3 ≈ 0.005.

Truncating the series (84) at x8, we get

 P(x) = 1
6 30 168 1080

2 4 6 8

− + − +x x x x

= T0 – 
1

12
(T2 + T0) + 

1
240

(T4 + 4T2 + 3T0)

– 
1

5376
 (T6 + 6T4 + 15T2 + 10T0)

+ 
1

138240
(T8 + 8T6 + 28T4 + 56T2 + 35T0)
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= 0.92755973 T0 – 0.06905175 T2 + 0.003253 T4

– 0.000128 T6 + 0.000007 T8 (85)

Truncating R.H.S. of (85) at T2, we obtain the required polynomial

 P(x) = 0.92755973 T0 – 0.06905175 T2

= 0.99661148 – 0.13810350x2

= 0.9966 – 0.1381x2

The maximum absolute error in the neglected terms is obviously less than
the tolerable error.

ASSIGNMENT 7.4

1. Express 1 + x – x2 + x3 as sum of Chebyshev polynomials.

2. Prove that x2 = 
1
2

 [T0(x) + T2(x)]

3. Express T0(x) + 2T1(x) + T2(x) as polynomials in x.

4. Obtain the best lower degree approximation to the cubic x3 + 2x2.

5. Explain how to fit a function of the form

 y = A A1 2e ex xλ λ1 2+

to the given data.

6. Obtain y(1.5) from the following data using cubic spline.

x: 1 2 3

y: – 8 – 1 18

7. Economize the series

 f(x) = 1
2 8 16

2 3
− − −x x x

8. Economize the series sinh x = x
x x x+ + +

3 5 7

6 120 5040
 on the interval [– 1, 1] allowing for a

tolerance of 0.0005.

9. Economize the series cos x = 1
2 24 720

2 4 6
− + −x x x

.

10. Obtain the cubic spline approximation valid in [3, 4], for the function given in the tabu-
lar form

x: 1 2 3 4

f(x): 3 10 29 65

under the natural spline conditions:

  M(1) = 0 = M(4)
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11. Obtain the cubic spline fit for the data

x: 0 1 2 3

f(x): 1 4 10 8

under the end conditions f″(0) = 0 = f ″(3) and valid in the interval [1, 2].

Hence obtain the estimate of f(1.5).

12. Fit the following four points by the cubic splines:

x: 1 2 3 4

y: 1 5 11 8

Use the end conditions y″(1) = 0 = y″(4). Hence compute y(1.5).

13. Find the natural cubic spline that fits the data

x: 1 2 3 4

f(x): 0 1 0 0

14. Find whether the following functions are splines or not?

(i) f(x) = 
− − − ≤ ≤

− + ≤ ≤

U
V
|

W|

x x x

x x x

2 3

2 3

2 1 0

2 0 1

,

,

(ii) f(x) = 
− − − ≤ ≤

+ ≤ ≤

U
V
|

W|

x x x

x x x

2 3

2 3

2 1 0

2 0 1

,

,

[Hint: Check the continuity of f(x), f ′ (x) and f″(x) at x = 0]

15. Find the values of α and β such that the function

f(x) = x x x
x x

2 1 1 2
3 2 3

− + ≤ ≤
− ≤ ≤

R
S
T

U
V
W

α
β

,
,

is a quadratic spline. [Hint: For f(x) to be continuous at x = 2, 5 – 2α = 6 – β
and For f′(x) to be continuous at x = 2, 4 – α = 3]

16. We are given the following values of a function of the variable t:

t: 0.1 0.2 0.3 0.4

f: 0.76 0.58 0.44 0.35

Obtain a least squares fit of the form

f = ae–3t + be–2t.

17. Evaluate

I = 1
10

1

+z x
dx  using the cubic spline method.

18. Explain approximation of function by Taylor series by taking suitable example.
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7.47 REGRESSION ANALYSIS

The term ‘regression’ was first used by Sir Francis Galton (1822–1911), a British
biometrician in connection with the height of parents and their offspring. He
found that the offspring of tall or short parents tend to regress to the average
height. In other words, though tall fathers do tend to have tall sons, the average
height of tall fathers is more than the average height of their sons and the
average height of short fathers is less than the average height of their sons.

The term ‘regression’ stands for some sort of functional relationship between
two or more related variables. The only fundamental difference, if any, between
problems of curve-fitting and regression is that in regression, any of the variables
may be considered as independent or dependent while in curve-fitting, one
variable cannot be dependent.

Regression measures the nature and extent of correlation. Regression is
the estimation or prediction of unknown values of one variable from known
values of another variable.

7.48 CURVE OF REGRESSION AND REGRESSION EQUATION

If two variates x and y are correlated, i.e., there exists an association or
relationship between them, then the scatter diagram will be more or less
concentrated round a curve. This curve is called the curve of regression and the
relationship is said to be expressed by means of curvilinear regression.

The mathematical equation of the regression curve is called regression
equation.

7.49 LINEAR REGRESSION

When the points of the scatter diagram concentrate round a straight line, the
regression is called linear and this straight line is known as the line of regression.

The regression will be called non-linear if there exists a relationship other
than a straight line between the variables under consideration.

7.50 LINES OF REGRESSION

A line of regression is the straight line which gives the best fit in the least
square sense to the given frequency.

In case of n pairs (xi, yi); i = 1, 2, ..., n from a bivariate data, we have no
reason or justification to assume y as a dependent variable and x as an
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independent variable. Either of the two may be estimated for the given values
of the other. Thus, if we wish to estimate y for given values of x, we shall have
the regression equation of the form y = a + bx, called the regression line of y on
x. If we wish to estimate x for given values of y, we shall have the regression
line of the form x = A + By, called the regression line of x on y.

Thus it implies, in general, we always have two lines of regression.
If the line of regression is so chosen that the sum of the squares of deviation

parallel to the axis of y is minimized [See Figure (a)], it is called the line of
regression of y on x and it gives the best estimate of y for any given value of x.

If the line of regression is so chosen that the sum of the squares of deviations
parallel to the axis of x is minimized [See Figure (b)], it is called the line of
regression of x on y and it gives the best estimate of x for any given value of y.

A

B

Y

O X

H(x , y )i i

P (x , y )i i i

A

B

Y

O X

H(x , y )i i

P (x , y )i i i

     FIGURE (a) FIGURE (b)

The independent variable is called the predictor or Regresser or Explanator
and the dependent variable is called the predictant or Regressed or Explained
variable.

7.51 DERIVATION OF LINES OF REGRESSION

7.51.1 Line of Regression of y on x

To obtain the line of regression of y on x, we shall assume y as dependent
variable and x as independent variable.

Let y = a + bx be the equation of regression line of y on x.

The residual for ith point is Ei = yi – a – bxi.

Introduce a new quantity U such that

 U = Ei
i

n
2

1=
∑  = ( )y a bxi i

i

n

− −
=
∑

2

1

(86)
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According to the principle of Least squares, the constants a and b are chosen
in such a way that the sum of the squares of residuals is minimum.

Now, the condition for U to be maximum or minimum is

 
∂
∂
U
a

 = 0 and
∂
∂
U
b

 = 0

From (86),  ∂
∂
U
a

i

n

=
=
∑2

1

(yi – a – bxi)(– 1)

 
∂
∂
U
a

 = 0 gives  2 
i

n

=
∑

1

(yi – a – bxi)(– 1) = 0

⇒ Σy = na + b Σx (87)

Also, ∂
∂
U
b

y a bx x
i

n

i i i= − − −
=
∑2

1

( )( )

 
∂
∂
U
b

 = 0 gives 2 
i

n

=
∑

1

(yi – a – bxi)(– xi) = 0

⇒  Σxy = a Σx + b Σx2 (88)

Equations (87) and (88) are called normal equations.

Solving (87) and (88) for ‘a’ and ‘b’, we get

b = 
Σ Σ Σ

Σ Σ

Σ Σ Σ
Σ Σ

xy
n

x y

x
n

x

n xy x y
n x x

−

−
= −

−

1

12 2 2 2
( ) ( )

(89)

and a = 
Σ Σy
n

b
x

n
y bx− = − (90)

Eqn. (90) gives y a bx= +

Hence y = a + bx line passes through point ( , )x y .

Putting a = y bx−  in equation of line y = a + bx, we get

y – y b x x= −( ) (91)

Equation (91) is called regression line of y on x. ‘b’ is called the regression
coefficient of y on x and is usually denoted by byx.
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Hence eqn. (91) can be rewritten as

 y – y b x xyx= −( )

where x yand  are mean values while

 byx = 
n xy x y

n x x

Σ Σ Σ
Σ Σ

−
−2 2( )

In equation (88), shifting the origin to ( , )x y , we get

Σ(x – x )(y – y ) = a Σ(x – x ) + b(x – x )2

⇒ nr σxσy = a(0) + bnσx
2

∵ Σ

Σ

Σ

( )

( )

( )( )

x x

n
x x

x x y y
n

r

x

x y

− =

− =

− − =

0
1 2 2σ

σ σ
and

⇒ b = r 
σ
σ

y

x

Hence regression coefficient byx can also be defined as

 byx = r 
σ
σ

y

x

where r is the coefficient of correlation, σx and σy are the standard deviations
of x and y series respectively.

7.51.2 Line of Regression of x on y

Proceeding in the same way as 7.16.1, we can derive the regression line of x on
y as

x – x  = bxy(y – y )

where bxy is the regression coefficient of x on y and is given by

 bxy = 
n xy x y
n y y

Σ Σ Σ
Σ Σ

−
−2 2( )

or  bxy = r 
σ
σ

x

y

where the terms have their usual meanings.
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If r = 0, the two lines of regression become y = y  and x = x  which are two
straight lines parallel to x and y axes respectively and passing through
their means y  and x . They are mutually perpendicular. If r = ± 1, the two
lines of regression will coincide.

7.52 USE OF REGRESSION ANALYSIS

(i) In the field of Business, this tool of statistical analysis is widely used.
Businessmen are interested in predicting future production, consumption,
investment, prices, profits and sales etc.

(ii) In the field of economic planning and sociological studies, projections of
population, birth rates, death rates and other similar variables are of great
use.

7.53 COMPARISON OF CORRELATION AND REGRESSION ANALYSIS

Both the correlation and regression analysis helps us in studying the relation-
ship between two variables yet they differ in their approach and objectives.

(i) Correlation studies are meant for studying the covariation of the two
variables. They tell us whether the variables under study move in the same
direction or in reverse directions. The degree of their covariation is also
reflected in the correlation co-efficient but the correlation study does not
provide the nature of relationship. It does not tell us about the relative
movement in the variables and we cannot predict the value of one variable
corresponding to the value of other variable. This is possible through
regression analysis.

(ii) Regression presumes one variable as a cause and the other as its effect.
The independent variable is supposed to be affecting the dependent variable
and as such we can estimate the values of the dependent variable by
projecting the relationship between them. However, correlation between
two series is not necessarily a cause-effect relationship.

(iii) Coefficient of correlation cannot exceed unity but one of the regression
coefficients can have a value higher than unity but the product of two
regression coefficients can never exceed unity.

NOTE
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7.54 PROPERTIES OF REGRESSION CO-EFFICIENTS

Property I. Correlation co-efficient is the geometric mean between the
regression co-efficients.

Proof. The co-efficients of regression are 
r ry

x

x

y

σ
σ

σ
σ

and .

Geometric mean between them = 
r r

ry

x

x

y

σ
σ

σ
σ

× = 2  = r = co-efficient of

correlation.
Property II. If one of the regression co-efficients is greater than unity,
the other must be less than unity.

Proof. The two regression co-efficients are byx = 
r

b
ry

x
xy

x

y

σ
σ

σ
σ

and = .

Let  byx > 1, then 
1

1
byx

< (92)

Since  byx. bxy = r2 ≤ 1 (∵ – 1 ≤ r ≤ 1)

∴ bxy ≤ 
1

1
byx

< . | using (92)

Similarly, if  bxy > 1, then byx < 1.

Property III. Arithmetic mean of regression co-efficients is greater
than the correlation co-efficient.

Proof. We have to prove that

 
b byx xy+

2
 > r

or r ry

x

x

y

σ
σ

σ
σ

+  > 2r

or σx
2 + σy

2 > 2σxσy

or (σx – σy)
2 > 0 which is true.

Property IV. Regression co-efficients are independent of the origin
but not of scale.

Proof. Let u = 
x a

h
v

y b
k

–
, = −

, where a, b, h and k are constants

      byx = 
r

r
k
h

k
h

r k
h

by

x

v

u

v

u
vu

σ
σ

σ
σ

σ
σ

= =
F

HG
I

KJ
=.
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Similarly,  bxy = 
h
k

 buv.

Thus, byx and bxy are both independent of a and b but not of h and k.

Property V. The correlation co-efficient and the two regression co-
efficients have same sign.

Proof. Regression co-efficient of y on x = byx = r 
σ
σ

y

x

Regression co-efficient of x on y = bxy = r σ
σ

x

y

Since σx and σy are both positive; byx, bxy and r have same sign.

7.55 ANGLE BETWEEN TWO LINES OF REGRESSION

If θ is the acute angle between the two regression lines in the case of two variables
x and y, show that

tan θ = 
1 r

r

2
x y

x
2

y
2

−
+

.
σ σ

σ σ
, where r, σx, σy have their usual meanings.

Explain the significance of the formula when r = 0 and r = ± 1.

Proof. Equations to the lines of regression of y on x and x on y are

     y y
r

x xy

x
− = −

σ
σ

( ) and x x
r

y yx

y
− = −

σ
σ

( )

Their slopes are  m1 = 
r y

x

σ
σ

   and  m2 = 
σ
σ

y

xr
.

∴   tan θ = ± 
m m

m m
r

ry

x

y

x

y

x

2 1

2 1
2

2

1
1

−
+

= ±
−

+

σ
σ

σ
σ

σ
σ

    = ± 
1 12 2

2 2

2

2 2
−

+
= ± −

+
r

r
r

r
y

x

x

x y

x y

x y

. . .
σ
σ

σ
σ σ

σ σ

σ σ

Since r2 ≤ 1 and σx, σy are positive.

∴ +ve sign gives the acute angle between the lines.
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Hence  tan θ = 
1 2

2 2
−

+
r

r
x y

x y

.
σ σ

σ σ

when r = 0, θ = 
π
2

 ∴ The two lines of regression are perpendicular to each

other.
Hence the estimated value of y is the same for all values of x and vice-

versa.

When r = ± 1, tan θ = 0 so that θ = 0 or π

Hence the lines of regression coincide and there is perfect correlation
between the two variates x and y.

7.56 ALGORITHM FOR LINEAR REGRESSION

1. Read n

2. sum x ← 0

3. sum xsq ← 0

4. sum y ← 0

5. sum xy ← 0

6. for i = 1 to n do

7. Read x,y

8. sum x ← sum x + x

9. sum xsq ← sum xsq + x2

10. sum y ← sum y + y

11. sum xy ← sum xy + x × y

end for

12. denom ← n × sum x sq - sum x × sum x

13. a ← (sum y × sum x sq - sum x × sum xy)/denom

14. b ← (n × sum xy - sum x × sum y)/denom

15. Write b,a

16. Stop
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7.57 PROGRAM  TO  IMPLEMENT  LEAST  SQUARE  FIT  OF  A

REGRESSION  LINE  OF  Y  ON  X

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

int data,i;

float x[10],y[10],xy[10],x2[10],z;

float sum1=0.0,sum2=0.0,sum3=0.0,sum4=0.0;

clrscr();

printf("Enter the number of data points:");

scanf("%d",&data);

printf("Enter the value of x: \n");

for(i=0;i<data;i++)

{

printf("Value of x%d:",i+1);

scanf("%f",&x[i]);

}

printf{"\nEnter the value of f(x):\n"};

for(i=0;i<data;i++)

{

printf("Value of f(x%d):",i+1);

scanf("%f",&y[i]);

}

for(i=0;i<data;i++)

}

xy[i]=x[i]*y[i];

x2[i]=x[i]*x[i];

sum1 +=xy[i];

sum2 +=x2[i];

sum3 +=x[i];

sum4 +=y[i];

}
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sum3 =sum3/2;

sum4 =sum4/2;

//printf("%.2f %.2f %.2f", %.2f" sum1,sum2,sum3,sum4);

sum1=(sum1/sum2);

z=(sum1*sum3)-sum4;

printf("\n\nThe REGRESSION LINE OF Y on X is:\n");

printf("\t\t\t y=%.2f *x - (%.2f)",sum1,z);

getch(1);

}

7.58 PROGRAM  TO  IMPLEMENT  LEAST  SQUARE  FIT  OF  A

REGRESSION  LINE  OF  X  ON  Y

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

int data,i;

float x[10],y[10],xy[10],y2[10],z;

float sumx=0.0,sumy=0.0,sumxy=0.0,sumy2=0.0;

clrscr();

printf("Enter the number of data points: ");

scanf("%d",&data);

printf("Enter the value of x: \n");

for(i=0;i<data;i++)

{

printf("Value of x%d: ",i+1);

scanf("%f",&x[i]);

}

printf("\nEnter the value of f(x): \n");

for(i=0;i<data; i++)

{

printf("Value of f(x%d):", i+1);

scanf("%f",&y[i]);

}
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for(i=0;i<data;i++)

{

xy[i]=x[i]*y[i];

y2[i]=y[i]*y[i];

sumxy +=xy[i];

sumy2 +=y2[i];

sumx +=x[i];

sumy +=y[i];

}

sumx =sumx/2;

sumy =sumy/2;

sumxy=(sumxy/sumy2);

z=(sumxy*sumy)-sumx;

printf("\n\nThe REGRESSION LINE OF X on Y is:\n");

printf("\t\t\t x = %.2f *y - (%.2f)",sumxy, z);

getch();

}

EXAMPLES

Example 1. If the regression coefficients are 0.8 and 0.2, what would be the
value of coefficient of correlation?
Sol. We know that,

 r2 = byx . bxy = 0.8 × 0.2 = 0.16

Since r has the same sign as both the regression coefficients byx and bxy

Hence r = 0.16  = 0.4.

Example 2. Calculate linear regression coefficients from the following:

x → 1 2 3 4 5 6 7 8

y → 3 7 10 12 14 17 20 24

Sol. Linear regression coefficients are given by

 byx = 
n xy x y
n x x

Σ Σ Σ
Σ Σ

−
−2 2( )

and  bxy = 
n xy x y

n y y

Σ Σ Σ
Σ Σ

−
−2 2( )
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Let us prepare the following table:

x y x2 y2 xy

1 3 1 9 3

2 7 4 49 14

3 10 9 100 30

4 12 16 144 48

5 14 25 196 70

6 17 36 289 102

7 20 49 400 140

8 24 64 576 192

Σx = 36 Σy = 107 Σx2 = 204 Σy2 = 1763 Σxy = 599

Here n = 8

∴  byx = 
( ) ( )

( ) ( )

8 599 36 107

8 204 36 2
× − ×

× −
 = 

4792 3852
1632 1296

940
336

−
−

=  = 2.7976

and  bxy = 
( ) ( )
( ) ( )
8 599 36 107
8 1763 107

940
26552

× − ×
× −

=  = 0.3540

Example 3. The following table gives age (x) in years of cars and annual
maintenance cost (y) in hundred rupees:

x: 1 3 5 7 9

y: 15 18 21 23 22

Estimate the maintenance cost for a 4 year old car after finding the regression
equation.
Sol.

x y xy x2

1 15 15 1

3 18 54 9

5 21 105 25

7 23 161 49

9 22 198 81

Σx = 25 Σy = 99 Σxy = 533 Σx2 = 165
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Here, n = 5

 x
x

n
= =Σ 25

5
 = 5

y
y

n
= =Σ 99

5
 = 19.8

∴ byx = 
n xy x y

n x x

Σ Σ Σ
Σ Σ

−
−

= × − ×
× −2 2 2

5 533 25 99

5 165 25( )

( ) ( )

( ) ( )
 = 0.95

Regression line of y on x is given by

y y b x xyx− = −( )

⇒  y – 19.8 = 0.95 (x – 5)

⇒ y = 0.95x + 15.05

When x = 4 years, y = (0.95 × 4) + 15.05

= 18.85 hundred rupees = Rs. 1885.

Example 4. In a partially destroyed laboratory record of an analysis of a
correlation data, the following results only are eligible:

Variance of x = 9

Regression equations: 8x – 10y + 66 = 0, 40x – 18y = 214.

What were (a) the mean values of x and y (b) the standard deviation of y
and the co-efficient of correlation between x and y.

Sol. (a) Since both lines of regression pass through the point ( , )x y
therefore, we have

    8 10 66 0x y− + = (93)

40 18 214 0x y− − = (94)

Multiplying (93) by 5, 40 50 330 0x y− + = (95)

Subtracting (95) from (94), 32 544 0y − =

∴    y  = 17

∴ From (93),    8x  – 170 + 66 = 0

or 8 x  = 104  ∴ x  = 13

Hence   x  = 13, y  = 17

(b) Variance of x = σx
2 = 9 (given)

∴      σx = 3
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The equations of lines of regression can be written as

y = .8x + 6.6 and x = .45y + 5.35

∴ The regression co-efficient of y on x is 
r y

x

σ
σ

 = .8 (96)

The regression co-efficient of x on y is 
r x

y

σ
σ  = .45 (97)

Multiplying (96) and (97), r2 = .8 × .45 = .36 ∴ r = 0.6

(+ve sign with square root is taken because regression co-efficients are
+ve).

From (96),  σy = 
.8 .8 3

0.6
σ x

r
=

×
 = 4.

Example 5. The  regression  lines of y on x and x on y are respectively y = ax + b,
x = cy + d. Show that

σ
σ

y

x

a
c

= , x
bc d
1 ac

and y
ad b
1 ac

= +
−

= +
−

.

Sol. The regression line of y on x is

    y = ax + b (98)

∴  byx = a

The regression line of x on y is

    x = cy + d (99)

∴  bxy = c

We know that,  byx = r 
σ
σ

y

x

(100)

and   bxy = r 
σ
σ

x

y
(101)

Dividing eqn. (100) by (101), we get

b

b
yx

xy

y

x

=
σ

σ

2

2
⇒

a
c

a
c

y

x

y

x
= ⇒ =

σ

σ

σ
σ

2

2

Since both the regression lines pass through the point ( , )x y  therefore,

   y ax b= + and x cy d= +

⇒      ax y b− = − (102)

      x cy d− = (103)
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Multiplying equation (103) by a and then subtracting from (102), we get

 (ac – 1) y ad b= − − ⇒ y
ad b

ac
= +

−1

Similarly, we get    x
bc d

ac
= +

−1
.

Example 6. For two random variables, x and y with the same mean, the two
regression equations are

    y = ax + b and x = αy + β

Show that     
b 1 a

1β α
= −

−
.

Find also the common mean.

Sol. Here,  byx = a, bxy = α

Let the common mean be m, then regression lines are

       y – m = a (x – m)

⇒     y = ax + m (1 – a) (104)

and        x – m = α(y – m)

⇒     x = αy + m (1 – α) (105)

Comparing (104) and (105) with the given equations.

    b = m (1 – a), β = m (1 – α)

∴  
b a
β α

= −
−

1
1

Again  m = 
b

a1 1−
=

−
β

α

Since regression lines pass through ( , )x y

∴    x y= +α β

and    y ax b= +  will hold.

⇒   m = am + b

  m = αm + β
⇒     am + b = αm + β

⇒   m = 
β

α
−
−

b
a

.
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Example 7. Obtain the line of regression of y on x for the data given below:

x: 1.53 1.78 2.60 2.95 3.42

y: 33.50 36.30 40.00 45.80 53.50.

Sol. The line of regression of y on x is given by

 y – y b x xyx= −( ) (106)

where byx is the coefficient of regression given by

 byx = 
n xy x y
n x x

Σ Σ Σ
Σ Σ

−
−2 2( )

Now we form the table as,

x y x2 xy

1.53 33.50 2.3409 51.255

1.78 36.30 2.1684 64.614

2.60 40.00 6.76 104

2.95 45.80 8.7025 135.11

3.42 53.50 11.6964 182.97

Σx = 12.28 Σy = 209.1 Σx2 = 32.6682 Σxy = 537.949

Here, n = 5

 byx = 
( ) ( )

( ) ( )
5 537.949 12.28 209.1

5 32.6682 12.28
121.997
12.5432

× − ×
× −

=  = 9.726

Also,  mean x
x

n
= =Σ 12.28

5
 = 2.456

and  y
y

n
= =

Σ 2091.
5

 = 41.82

∴ From (106), we get

 y – 41.82 = 9.726(x – 2.456) = 9.726x – 23.887

y = 17.932 + 9.726x

which is the required line of regression of y on x.
Example 8. For 10 observations on price (x) and supply (y), the following data
were obtained (in appropriate units):

 Σx = 130, Σy = 220, Σx2 = 2288, Σy2 = 5506 and Σxy = 3467

Obtain the two lines of regression and estimate the supply when the price is
16 units.
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Sol. Here,  n = 10, x
x

n
= Σ

 = 13 and y
y

n
= Σ

 = 22

Regression coefficient of y on x is

             byx = 
n xy x y

n x x

Σ Σ Σ
Σ Σ

−
−2 2( )

 = 
( ) ( )

( ) ( )

10 3467 130 220

10 2288 130 2
× − ×

× −

         = 
34670 28600
22880 16900

6070
5980

−
−

=  = 1.015

∴ Regression line of y on x is

 y – y b x xyx= −( )

  y – 22 = 1.015(x – 13)

⇒ y = 1.015x + 8.805

Regression coefficient of x on y is

 bxy = 
n xy x y

n y y

Σ Σ Σ
Σ Σ

−
−2 2( )

= 
( ) ( )

( ) ( )
10 3467 130 220

10 5506 220
6070
66602

× − ×
× −

=  = 0.9114

Regression line of x on y is

 x – x b y yxy= −( )

 x – 13 = 0.9114(y – 22)

 x = 0.9114y – 7.0508

Since we are to estimate supply (y) when price (x) is given therefore we are
to use regression line of y on x here.

When x = 16 units,

y = 1.015(16) + 8.805 = 25.045 units.

Example 9. The following results were obtained from records of age (x) and
systolic blood pressure (y) of a group of 10 men:

x y

Mean 53 142

Variance 130 165

and Σ(x – x )(y – y ) = 1220

Find the approximate regression equation and use it to estimate the blood
pressure of a man whose age is 45.
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Sol. Given:

Mean x  = 53

Mean   y  = 142

Variance σx
2 = 130

Variance σy
2 = 165

Number of men,  n = 10

  Σ(x – x )(y – y ) = 1220

∴ Coefficient of correlation,

r = 
Σ( )( )x x y y

n x y

− −
σ σ

 = 
1220

10 130 165×
 = 

122
146 458.

 = 0.83.

Since we are to estimate blood pressure (y) of a 45 years old man, we will
find regression line of y on x.

Regression coefficient byx = r 
σ
σ

y

x
= ×0 83

165
130

.  = 0.935.

Regression line of y on x is given by

y – y b x xyx= −( )

⇒ y – 142 = 0.935(x – 53) = 0.935x – 49.555

⇒ y = 0.935x + 92.445

when x = 45,
y = (0.935 × 45) + 92.445 = 134.52.

Hence the required blood pressure = 134.52.
Example 10. The following results were obtained from scores in Applied
Mechanics and Engineering Mathematics in an examination:

Applied Mechanics (x) Engineering Mathematics (y)

Mean 47.5 39.5

Standard Deviation 16.8 10.8

r = 0.95.

Find both the regression equations. Also estimate the value of y for x = 30.

Sol. x  = 47.5, y  = 39.5

σx = 16.8, σy = 10.8 and r = 0.95.
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Regression coefficients are

 byx = r 
σ
σ

y

x
= ×0 95

10 8
16 8

.
.
.

 = 0.6107

and  bxy = r 
σ
σ

x

y
= ×0 95

16 8
10 8

.
.
.

 = 1.477.

Regression line of  y on x is

y – y b x xyx= −( )

⇒  y – 39.5 = 0.6107 (x – 47.5) = 0.6107x – 29.008

y = 0.6107x + 10.49 (107)

Regression line of x on y is

 x – x b y yxy= −( )

⇒  x – 47.5 = 1.477 (y – 39.5)

⇒  x – 47.5 = 1.477y – 58.3415

x = 1.477y – 10.8415

Putting x = 30 in equation (107), we get

y = (0.6107)(30) + 10.49 = 18.321 + 10.49 = 28.81.

Example 11. From the following data. Find the most likely value of y when
x = 24:

y x

Mean 985.8 18.1

S.D. 36.4 2.0

r = 0.58.

Sol. Given: y  = 985.8, x  = 18.1, σy = 36.4, σx = 2, r = 0.58

Regression coefficient,

 byx = r 
σ
σ

y

x
 = (0.58) 

36 4
2
.

 = 10.556.

Regression line of y on x is

y – y  = byx(x – x )

⇒  y – 985.8 = 10.556(x – 18.1)

 y – 985.8 = 10.556x – 191.06



STATISTICAL COMPUTATION    633

⇒ y = 10.556x + 794.73
when x = 24,

y = (10.556 × 24) + 794.73
 y = 1048 (approximately).

Example 12. The equations of two regression lines, obtained in a correlation
analysis of 60 observations are:

5x = 6y + 24 and 1000y = 768x – 3608.

What is the correlation coefficient? Show that the ratio of coefficient of

variability of x to that of y is 
5
24

. What is the ratio of variances of x and y?

Sol. Regression line of x on y is
5x = 6y + 24

x = 
6
5

24
5

y +

∴  bxy = 
6
5

(108)

Regression line of y on x is

 1000y = 768x – 3608

     y = 0.768x – 3.608

∴    byx = 0.768 (109)

From (108), r 
σ
σ

x

y
= 6

5
(110)

From (109), r 
σ
σ

y

x
 = 0.768 (111)

Multiplying equations (110) and (111), we get

 r2 = 0.9216 ⇒ r = 0.96 (112)

Dividing (111) by (110), we get

  
σ
σ

x

y

2

2
6

5 0 768
=

× .
 = 1.5625.

Taking the square root, we get

σ
σ

x

y
= =125

5
4

. (113)
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Since the regression lines pass through the point (x y, ), we have

 5 6x y=  + 24

1000 y x= 768  – 3608.

Solving the above equations for x  and y , we get

 x = 6, y  = 1.

Coefficient of variability of  x = 
σx

x
,

Coefficient of variability of  y = 
σ y

y .

∴ Required ratio = 
σ

σ
x

yx
y×  = 

y
x

x

y

σ
σ

F

H
G
I

K
J  = 

1
6

5
4

×  = 
5

24
. | using (113)

Example 13. The following data regarding the heights (y) and weights (x) of
100 college students are given:

Σx = 15000,  Σx2 = 2272500,  Σy = 6800,  Σy2  = 463025 and Σxy = 1022250.

Find the equation of the regression line of height on weight.

Sol.  x
x

n
= =Σ 15000

100
 = 150

 y
y

n
= =Σ 6800

100
 = 68

Regression coefficient of y on x,

 byx = 
n xy x y
n x x

Σ Σ Σ
Σ Σ

−
−2 2( )

 = 
( ) ( )

( ) ( )
100 1022250 15000 6800

100 2272500 15000 2
× − ×

× −

= 
102225000 102000000
227250000 225000000

−
−

= 
225000
2250000

 = 0.1

Regression line of height (y) on weight (x) is given by

 y – y b x xyx= −( )

⇒ y – 68 = 0.1(x – 150)

⇒ y = 0.1x – 15 + 68

⇒ y = 0.1x + 53.
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Example 14. Find the coefficient of correlation when the two regression
equations are

 X = – 0.2Y + 4.2

 Y = – 0.8X + 8.4.

Sol. We have the regression lines

 X = – 0.2Y + 4.2 (114)

 Y = – 0.8X + 8.4. (115)

Let us assume that eqn. (114) is the regression line of X on Y and eqn. (115)
is the regression line of Y on X then,

Regression coefficient of X on Y is

bXY = – 0.2

Regression coefficient of Y on X is

bYX = – 0.8

Since bXY and bYX are of the same sign and bXYbYX = 0.16 (< 1) hence our
assumption is correct.

We know that

 bXY bYX = r2 | where r is the correlation coefficient

⇒ (– 0.2)(– 0.8) = r2

⇒  r2 = 0.16

⇒ r = – 0.4.   | Since r, σx and σy have the same sign

Example 15. A panel of two judges, A and B, graded seven TV serial
performances by awarding scores independently as shown in the following table:

Performance 1 2 3 4 5 6 7

Scores by A 46 42 44 40 43 41 45

Scores by B 40 38 36 35 39 37 41

The eighth TV performance, which judge B could not attend, was awarded
37 scores by judge A. If judge B had also been present, how many scores would
be expected to have been awarded by him to the eighth TV performance?

Use regression analysis to answer this question.

Sol. Let the scores awarded by judge A be denoted by x and the scores awarded
by judge B be denoted by y.
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Here, n = 7;    x
x

n
= = + + + + + +Σ 46 42 44 40 43 41 45

7
 = 43

  y
y

n
= = + + + + + +Σ 40 38 36 35 39 37 41

7
 = 38

Let us form the table as

x y xy x2

46 40 1840 2116

42 38 1596 1764

44 36 1584 1936

40 35 1400 1600

43 39 1677 1849

41 37 1517 1681

45 41 1845 2025

Σx = 301 Σy = 266 Σxy = 11459 Σx2 = 12971

Regression coefficient,

 byx = 
n xy x y
n x x

Σ Σ Σ
Σ Σ

−
−2 2( )

 = 
( ) ( )

( ) ( )
7 11459 301 266

7 12971 301 2
× − ×

× −

= 
80213 80066
90797 90601

147
196

−
−

=  = 0.75

Regression line of y on x is given by

y – y b x xyx= −( )

y – 38 = 0.75(x – 43)

⇒ y = 0.75x + 5.75

when x = 37,
y = 0.75(37) + 5.75 = 33.5 marks

Hence, if judge B had also been present, 33.5 scores would be expected to
have been awarded to the eighth T.V. performance.

ASSIGNMENT 7.5

1. Find the regression line of y on x from the following data:

x: 1 2 3 4 5

y: 2 5 3 8 7
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2. In a study between the amount of rainfall and the quantity of air pollution removed the
following data were collected:

Daily rainfall: 4.3 4.5 5.9 5.6 6.1 5.2 3.8 2.1
(in .01 cm)

Pollution removed: 12.6 12.1 11.6 11.8 11.4 11.8 13.2 14.1
(mg/m3)

Find the regression line of y on x.

3. If  F  is  the  pull required to lift a load W by means of a pulley block, fit a linear law of
the form F = mW + c connecting F and W, using the data

W: 50 70 100 120

F: 12 15 21 25

where F and W are in kg wt. Compute F when W = 150 kg wt.

4. The two regression equations of the variables x and y are x = 19.13 – 0.87 y and
y = 11.64 – 0.50 x. Find (i) mean of x’s (ii) mean of y’s and (iii) correlation coefficient
between x and y.

5. Two random variables have the regression lines with equations 3x + 2y = 26 and 6x +
y = 31. Find the mean values and the correlation coefficient between x and y.

6. In a partially destroyed laboratory data, only the equations giving the two lines of re-
gression of y on x and x on y are available and are respectively

7x – 16y + 9 = 0

  5y – 4x – 3 = 0

Calculate the coefficient of correlation, x  and y .

7. A simply supported beam carries a concentrated load P (kg) at its mid-point. The follow-
ing table gives maximum deflection y (cm) corresponding to various values of P:

P: 100 120 140 160 180 200

y: 0.45 0.55 0.60 0.70 0.80 0.85

Find a law of the form y = a + bP.

Also find the value of maximum deflection when P = 150 kg.

8. If a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 are the equations of the regression lines of y on
x and x on y respectively, prove that

a1b2 ≤ a2b1

given that the constants a1, a2, b1, b2 are either all positive or all negative.

9. The regression equations calculated from a given set of observations for two random
variables are

x = – 0.4y + 6.4 and y = – 0.6x + 4.6

Calculate (i) x (ii) y (iii) r.
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10. The following regression equations were obtained from a correlation table:
y = 0.516x + 33.73

x = 0.512y + 32.52

Find the value of (i) r (ii) x (iii) y .

11. Find the regression line of y on x for the following data:

x: 1 3 4 6 8 9 11 14

y: 1 2 4 4 5 7 8 9.

12. Given N = 50, Mean of y = 44

Variance of x is 
9

16
 of the variance of y.

Regression equation of x on y is 3y – 5x = – 180
Find (i) Mean of x (ii) Coefficient of correlation between x and y.

13. For an army personnel of strength 25, the regression of weight of kidneys (y) on weight
of heart (x), both measured in ounces is

y – 0.399x – 6.934 = 0

and the regression of weight of heart on weight of kidney is x – 1.212y + 2.461 = 0.
Find the correlation coefficient between x and y and their mean values. Can you find out
the standard deviation of x and y as well?

14. A panel of judges A and B graded 7 debators and independently awarded the following
scores:

Debator: 1 2 3 4 5 6 7

Scores by A: 40 34 28 30 44 38 31

Scores by B: 32 39 26 30 38 34 28

An eighth debator was awarded 36 scores by judge A while judge B was not present. If
judge B were also present, how many scores would you expect him to award to the
eighth debator assuming that the same degree of relationship exists in their judgement.

15. The following results were obtained in the analysis of data on yield of dry bark in ounces
(y) and age in years (x) of 200 cinchona plants:

x y

Average: 9.2 16.5

Standard deviation: 2.1 4.2

Correlation coefficient = 0.84

Construct the two lines of regression and estimate the yield of dry bark of a plant of age
8 years.

16. Given that x = 4y + 5 and y = kx + 4 are the lines of regression of x on y and y on x
respectively. Show that 0 ≤ 4k ≤ 1.

If k = 
1

16
, find x , y  and coefficient of correlation between x and y.
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17. The means of a bivariate frequency distribution are at (3, 4) and r = 0.4. The line of
regression of y on x is parallel to the line y = x. Find the two lines of regression and
estimate value of x when y = 1.

18. Assuming that we conduct an experiment with 8 fields planted with corn, four fields
having no nitrogen fertilizer and four fields having 80 kgs of nitrogen fertilizer. The
resulting corn yields are shown in table in bushels per acre:

Field: 1 2 3 4 5 6 7 8

Nitrogen (kgs) x: 0 0 0 0 80 80 80 80

Corn yield y: 120 360 60 180 1280 1120 1120 760
(acre)

(a) Compute a linear regression equation of y on x.

(b) Predict corn yield for a field treated with 60 kgs of fertilizer.

19. Find both the lines of regression of following data:

x: 5.60 5.65 5.70 5.81 5.85

y: 5.80 5.70 5.80 5.79 6.01

20. Obtain regression line of x on y for the given data:

x: 1 2 3 4 5 6

y: 5.0 8.1 10.6 13.1 16.2 20.0

7.59 POLYNOMIAL FIT: NON-LINEAR REGRESSION

Let y = a + bx + cx2

be  a  second  degree  parabolic  curve  of  regression  of  y  on x to be fitted for
the data (xi, yi), i = 1, 2, ......, n.

Residual at x = xi is

 Ei = yi – f(xi) = yi – a – bxi – cxi
2

Now, let  U = 
i

n

i
i

n

= =
∑ ∑=

1

2

1

E (yi – a – bxi – cxi
2)2

By principle of Least squares, U should be minimum for the best values of
a, b and c.

For this,
∂
∂
U
a

 = 0, 
∂
∂
U
b

 = 0 and 
∂
∂
U
c

 = 0

  
∂
∂
U
a

 = 0 ⇒ 2
1i

n

=
∑ (yi – a – bxi – cxi

2) (– 1) = 0

⇒ Σy = na + bΣx + cΣx2 (116)
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∂
∂
U
b

 = 0 ⇒ 2
1i

n

=
∑ (yi – a – bxi – cxi

2) (– xi) = 0

⇒ Σxy = aΣx + bΣx2 + cΣx3 (117)

 
∂
∂
U
c

 = 0 ⇒ 2
1i

n

=
∑ (yi – a – bxi – cxi

2) (– xi
2) = 0

⇒ Σx2y = aΣx2 + bΣx3 + cΣx4 (118)

Equations (116), (117) and (118) are the normal equations for fitting a second
degree parabolic curve of regression of y on x. Here n is the number of pairs of
values of x and y.

EXAMPLES

Example 1. (a) Fit a second degree parabola to the following data:

x: 0.0 1.0 2.0

y: 1.0 6.0 17.0

(b) Fit a second degree curve of regression of y on x to the following data:

x: 1.0 2.0 3.0 4.0

y: 6.0 11.0 18.0 27

(c) Fit a second degree parabola in the following data:

x: 0.0 1.0 2.0 3.0 4.0

y: 1.0 4.0 10.0 17.0 30.0

Sol. The equation of second degree parabola is given by

y = a + bx + cx2 (119)

Normal equations are

Σy = ma + bΣx + cΣx2 (120)

  Σxy = aΣx + bΣx2 + cΣx3 (121)

and  Σx2y = aΣx2 + bΣx3 + cΣx4 (122)
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(a) Here m = 3

The table is as follows:

x y x2 x3 x4 xy x2y

0 1 0 0 0 0 0

1 6 1 1 1 6 6

2 17 4 8 16 34 68

Total 24 5 9 17 40 74

Substituting in eqns. (120), (121) and (122), we get

24 = 3a + 3b + 5c (123)

40 = 3a + 5b + 9c (124)

74 = 5a + 9b + 17c (125)

Solving eqns. (123), (124) and (125), we get

a = 1, b = 2, c = 3

Hence the required second degree parabola is

y = 1 + 2x + 3x2

(b) Here m = 4

The table is as follows:

x y x2 x3 x4 xy x2y

1 6 1 1 1 6 6

2 11 4 8 16 22 44

3 18 9 27 81 54 162

4 27 16 64 256 108 432

Σx = 10 Σy = 62 Σx2 = 30 Σx3 = 100 Σx4 = 354 Σxy = 190 Σx2y = 644

Substituting values in eqns. (120), (121) and (122), we get

62 = 4a + 10b + 30c (126)

190 = 10a + 30b + 100c (127)

644 = 30a + 100b + 354c (128)

Solving equations (126), (127) and (128), we get

a = 3, b = 2, c = 1
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Hence the required second degree parabola is

y = 3 + 2x + x2

(c) Here m = 5

The table is as follows:

x y x2 x3 x4 xy x2y

0.0 1.0 0 0 0 0 0

1.0 4.0 1 1 1 4 4

2.0 10.0 4 8 16 20 40

3.0 17.0 9 27 81 51 153

4.0 30.0 16 64 256 120 480

Σx = 10 Σy = 62 Σx2 = 30 Σx3 = 100 Σx4 = 354 Σxy = 195 Σx2y = 677

Substituting values in eqns. (120), (121) and (122), we get

62 = 5a + 10b + 30c (129)

195 = 10a + 30b + 100c (130)

677 = 30a + 100b + 354c (131)

Solving eqns. (129), (130) and (131), we get

a = 1.2, b = 1.1 and c = 1.5

Hence the required second degree parabola is

y = 1.2 + 1.1x + 1.5x2

Example 2. Fit a parabola y = ax2 + bx + c in least square sense to the data

x: 10 12 15 23 20

y: 14 17 23 25 21.

Sol. The normal equations to the curve are

and

Σ Σ Σ
Σ Σ Σ Σ

Σ Σ Σ Σ

y a x b x c
xy a x b x c x

x y a x b x c x

= + +
= + +
= + +

U

V
|

W
|

2

3 2

2 4 3 2

5
(132)
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The values of Σx, Σx2,...... etc., are calculated by means of the following
table:

x y x2 x3 x4 xy x2y

10 14 100 1000 10000 140 1400
12 17 144 1728 20736 204 2448
15 23 225 3375 50625 345 5175
23 25 529  12167 279841 575  13225
20 21 400 8000 160000 420 8400

Σx = 80 Σy = 100 Σx2 = 1398 Σx3 = 26270 Σx4 = 521202 Σxy = 1684 Σx2y = 30648

Substituting the obtained values from the table in normal equation (132),
we have

100 = 1398a + 80b + 5c

1684 = 26270a + 1398b + 80c

 30648 = 521202a + 26270b + 1398c

On solving,  a = – 0.07, b = 3.03, c = – 8.89

∴ The required equation is

  y = – 0.07x2 + 3.03x – 8.89.

Example 3. Fit a parabolic curve of regression of y on x to the following data:

x: 1.0 1.5 2.0 2.5 3.0 3.5 4.0

y: 1.1 1.3 1.6 2.0 2.7 3.4 4.1

Sol. Here  m = 7 (odd)

Let u = 
x − 2.5

0.5
 = 2x – 5 and v = y

The results in tabular form are:

x y u v u2 uv u2v u3 u4

1.0 1.1 – 3 1.1 9 – 3.3 9.9 – 27 81
1.5 1.3 – 2 1.3 4 – 2.6 5.2 – 8 16
2.0 1.6 – 1 1.6 1 – 1.6 1.6 – 1 1
2.5 2.0 0 2.0 0 0 0 0 0
3.0 2.7 1 2.7 1 2.7 2.7 1 1
3.5 3.4 2 3.4 4 6.8 13.6 8 16
4.0 4.1 3 4.1 9 12.3 36.9 27 81

Total 0 16.2 28 14.3 69.9 0 196
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Let the curve to be fitted be v = a + bu + cu2 so that the normal equations
are

Σv = 7a + bΣu + cΣu2

Σuv = aΣu + bΣu2 + cΣu3

and Σu2v = aΣu2 + bΣu3 + cΣu4

⇒ 16.2 = 7a + 28c, 14.3 = 28b, 69.9 = 28a + 196c

Solving, we get   a = 2.07, b = 0.511, c = 0.061

Hence the curve of fit is

v = 2.07 + 0.511u + 0.061u2

⇒ y = 2.07 + 0.511 (2x – 5) + 0.061 (2x – 5)2

= 1.04 – 0.193x + 0.243x2.

Example 4. Fit a second degree parabola to the following data by the Least
Squares Method:

x: 1929 1930 1931 1932 1933 1934 1935 1936 1937

y: 352 356 357 358 360 361 361 360 359.

Sol. Here m = g (odd)

∴ Let  x0 = 1933, h = 1, y0 = 357

then u = 
x − 1933

1
 = x – 1933

 v = y – 357

and the equation y = a + bx + cx2 is transformed to

 v = a′ + b′u + c′u2

x u y v uv u2 u2v u3 u4

1929 – 4 352 – 5 20 16 – 80 – 64 256
1930 – 3 356 – 1 3 9 – 9 – 27 81
1931 – 2 357 0 0 4 0 – 8 16
1932 – 1 358 1 – 1 1 1 – 1 1
1933 0 360 3 0 0 0 0 0
1934 1 361 4 4 1 4 1 1
1935 2 361 4 8 4 16 8 16
1936 3 360 3 9 9 27 27 81
1937 4 359 2 8 16 32 64 256

Total Σu = 0 Σv = 11 Σuv = 51 Σu2 = 60 Σu2v = – 9 Σu3 = 0 Σu4 = 708
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Putting the above values in normal equations, we get

11 = 9a′ + 60c′, 51 = 60b′, – 9 = 60a′ + 708c′

⇒  a′ = 3, b′ = 0.85, c′ = – 0.27.

Fitted parabola in u and v is given by

 v = 3 + 0.85 u – 0.27 u2

Putting  u = x – 1933 and v = y – 357

y – 357 = 3 + 0.85 (x – 1933) – .27 (x – 1933)2

⇒ y = – 0.27x2 + 1044.67x – 1010135.08

which is the required equation.
Example 5. Fit a second degree parabola to the following data by Least Squares
Method:

x: 1 2 3 4 5

y: 1090 1220 1390 1625 1915

Sol. Here m = 5 (odd)

Let  u = x – 3, v = y – 1220

x y u v u2 u2v uv u3 u4

1 1090 – 2 – 130 4 – 520 260 – 8 16

2 1220 – 1 0 1 0 0 – 1 1

3 1390 0 170 0 0 0 0 0

4 1625 1 405 1 405 405 1 1

5 1915 2 695 4 2780 1390 8 16

Total Σu = 0 Σv = 1140 Σu2 = 10 Σu2v = 2665 Σuv = 2055 Σu3 = 0 Σu4 = 34

Putting these values in normal equations, we get

     1140 = 5a′ + 10c′, 2055 = 10b′, 2655 = 10a′ + 34c′

⇒  a′ = 173, b′ = 205.5, c′ = 27.5

∴  v = 173 + 205.5u + 27.5u2 (133)

Put  u = x – 3 and v = y – 1220

From (133),   y – 1220 = 173 + 205.5 (x – 3) + 27.5 (x – 3)2

⇒      y = 27.5x2 + 40.5x + 1024.
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Example 6. Fit a second degree parabola to the following data taking y as
dependent variable:

x 1 2 3 4 5 6 7 8 9

y 2 6 7 8 10 11 11 10 9

Sol. Normal equations to fit a second degree parabola of the form
     y = a + bx + cx2 are

and

Σ Σ Σ
Σ Σ Σ Σ

Σ Σ Σ Σ

y ma b x c x
xy a x b x c x

x y a x b x c x

= + +
= + +
= + +

U

V
|

W
|

2

2 3

2 2 3 4

(134)

Here, m = 9

x y x2 x3 x4 xy x2y

1 2 1 1 1 2 2

2 6 4 8 16 12 24

3 7 9 27 81 21 63

4 8 16   64 256 32 128

5 10 25 125 625 50 250

6 11 36 216 1296 66 396

7 11 49 343 2401 77 539

8 10 64 512 4096 80 640

9 9 81 729 6561 81 729

Σx = 45 Σy = 74 Σx2 = 285 Σx3 = 2025 Σx4 = 15333 Σxy = 421 Σx2y = 2771

Putting in (134), we get

   74 = 9a + 45b + 285c

 421 = 45a + 285b + 2025c

2771 = 285a + 2025b + 15333c

Solving the above equations, we get

a = – 1, b = 3.55, c = – 0.27

Hence the required equation of second degree parabola is

          y = – 1 + 3.55x – 0.27x2.

Example 7. Employ the method of least squares to fit a parabola y = a + bx + cx2

in the following data:

(x, y): (– 1, 2), (0, 0), (0, 1), (1, 2)
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Sol. Normal equations to the parabola y = a + bx + cx2 are

  Σy = ma + bΣx + cΣx2 (135)

Σxy = aΣx + bΣx2 + cΣx3 (136)

and Σx2y = aΣx2 + bΣx3 + cΣx4 (137)

Here m = 4

The table is as follows:

x y x2 x3 x4 xy x2y

– 1 2 1 – 1 1 – 2 2

0 0 0 0 0 0 0

0 1 0 0 0 0 0

1 2 1 1 1 2 2

Σx = 0 Σy = 5 Σx2 = 2 Σx3 = 0 Σx4 = 2 Σxy = 0 Σx2y = 4

Substituting these values in equations (135), (136) and (137); we get

5 = 4a + 2c (138)

0 = 2b (139)

and 4 = 2a + 2c (140)

Solving (138), (139) and (140), we get

a = 0.5, b = 0 and c = 1.5

Hence the required second degree parabola is

y = 0.5 + 1.5x2

7.59.1 Algorithm of Second Degree Parabolic Curve Fitting

1. Input n

2. For i=0,3

3. For j=0,4

4. u(i,j)=0

5. Next j

6. Next i

7. u(0,0)=n

8. For i=0,n

9. Input x,y
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10. x2=x*x

11. u(0,1)+=x

12. u(0,2)+=x2

13. u(1,2)+=x*x2

14. u(2,2)+=x2*x2

15. u(0,3)+=y

16. u(1,3)+=x*y

17. u(2,3)+=x2*y

18. Next i

19. u(1,1)=u(0,2)

20. u(2,1)=u(1,2)

21. u(1,0)=u(0,1)

22. u(2,0)=u(1,1)

23. For j=0,3

24. For i=0,3

25. If i!=j then

goto step 26

ELSE

goto step 24

26. y=u(i,j)/u(j,j)

27. For k=0,4

28. u(i,k)-=u(j,k)*p

29. Next k

30. Next i

31. Next j

32. a=u(0,3)/u(0,0)

33. b=u(1,3)/u(1,1)

34. c=u(2,3)/u(2,2)

35. Print a,b,c

36. Stop
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7.59.2 Flow-Chart of Second Degree Parabolic Curve Fitting

START

Input n

For i = 0, 3
For j = 0, 4

u(i, j) = 0

u(0, 0) = n

For i = 0, n

Input x, y

x2 = x*x
u(0, 1) + = x

u(0, 2) + = x2
u(1, 2) + = x*x2

u(2, 2) + = x2*x2
u(0, 3) + = y

u(1, 3) + = x*y
u(2, 3) + = x2*y

u(1, 1) = u(0, 2)
u(2, 1) = u(1, 2)
u(1, 0) = u(0, 1)
u(2, 0) = u(1, 1)

A
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A

For j = 0, 3
For i = 0, 3

For k = 0, 4

u(i, k) – = u(j, k)*p

a = u(0, 3)/u(0, 0)
b = u(1, 3)/u(1, 1)
c = u(2, 3)/u(2, 2)

STOP

If
i ! = j

y = u(i, j)/u(j, j)

Print a, b, c

Yes

No

7.59.3 Program in ‘C’ for Second Degree Parabolic Curve Fitting

Notations used in the Program
(i) n is the number of data points.

(ii) x is the data point value of x.
(iii) y is the data point of y.
(iv) u is the two dimensional array of augmented matrix.

#include<stdio.h>

main()

{

int i,j,k,n;
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float u[3][4], x,y,x2,p,a,b,c;

printf("\nEnter the value of data set n:");

scanf("%d",&n);

for(i=0; i<3; i++)

for(j=0; j<4; j++)

u[i][j]=0;

u[0][0]=n;

printf("\nEnter the value of x & y:\n");

for(i=0; i<n; i++)

{

scanf("%f%f", &x, &y);

x2=x*x;

u[0][1]+=x;

u[0][2]+=x2;

u[1][2]+=x*x2;

u[2][2]+=x2*x2;

u[0][3]+=y;

u[1][3]+=x*y;

u[2][3]+=x2*y;

}

u[1][1]=u[0][2];

u[2][1]=u[1][2];

u[1][0]=u[0][1];

u[2][0]=u[1][1];

/* Finding the value of a,b,c */

for (j=0;j<3;j++)

for (i=0;i<3;i++)

if(i!=j)

{

p=u[i][j]/u[j][j];

for(k=0;k;k++)

u[i][k]-=u[j][k]*p;

}

a=u[0][3]/u[0][0];

b=u[1][3]/u[1][1];
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c=u[2][3]/u[2][2];

printf("\na=%f b=%f c=%f ", a,b,c);

printf("\n\nEquation of parabola is: y=a+bx+cx^2 \n");

printf("\ny=%f+(%f)x+(%f)x^2",a,b,c);

return;

}

7.59.4 Output

Enter the value of data set n: 5

Enter the value of x & y:

1 10.9

2 12.2

3 13.9

4 16.3

5 19.2

a=10.239998 b=0.398574 c=0.278571

Equation of parabola is: y = a+bx+cx^2

y=10.239998+(0.398574)x+(0.278571)x^2

7.60 MULTIPLE LINEAR REGRESSION

Now we proceed to discuss the case where the dependent variable is a function
of two or more linear or non-linear independent variables. Consider such a
linear function as

     y = a + bx + cz
The sum of the squares of residual is

    U = ( )y a bx czi i i
i

n

− − −
=
∑

2

1

Differentiating U partially with respect to a, b, c; we get

∂
∂
U
a

 = 0 ⇒ 2
1

( )y a bx czi i i
i

n

− − −
=
∑  (– 1) = 0

∂
∂
U
b

 = 0 ⇒ 2
1

( )y a bx czi i i
i

n

− − −
=
∑  (– xi) = 0
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and
∂
∂
U
c

 = 0 ⇒ 2
1

( )y a bx czi i i
i

n

− − −
=
∑  (– zi) = 0

which on simplification and omitting the suffix i, yields.

  ∑y = ma + b∑x + c∑z

∑xy = a∑x + b∑x2 + c∑xz

∑yz = a∑z + b∑xz + c∑z2

Solving the above three equations, we get values of a, b and c. Consequently,
we get the linear function y = a + bx + cz called regression plane.

Example. Obtain a regression plane by using multiple linear regression to fit
the data given below:

x: 1 2 3 4

z: 0 1 2 3

y: 12 18 24 30

Sol. Let y = a + bx + cz be the required regression plane where a, b, c are the
constants to be determined by following equations:

Σy = ma + bΣx + cΣz

Σyx = aΣx + bΣx2 + cΣzx

and Σyz = aΣz + bΣzx + cΣz2

Here m = 4

x z y x2 z2 yx zx yz

1 0 12 1 0 12 0 0

2 1 18 4 1 36 2 18

3 2 24 9 4 72 6 48

4 3 30 16 9 120 12 90

Σx = 10 Σz = 6 Σy = 84 Σx2 = 30 Σz2 = 14 Σyx = 240 Σzx = 20 Σyz = 156

Substitution yields, 84 = 4a + 10b + 6c

240 = 10a + 30b + 20c

and 156 = 6a + 20b + 14c

Solving, we get a = 10, b = 2, c = 4

Hence the required regression plane is

y = 10 + 2x + 4z.
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ASSIGNMENT 7.6

1. Fit a second degree parabola to the following data taking x as the independent variable:

x: 0 1 2 3 4

y: 1 5 10 22 38

2. Fit a second degree parabola to the following data by Least Squares Method:

x: 0 1 2 3 4

y: 1 1.8 1.3 2.5 6.3

3. The profit of a certain company in Xth year of its life are given by:

x: 1 2 3 4 5

y: 1250 1400 1650 1950 2300

Taking u = x – 3 and v = 
y − 1650

50
, show that the parabola of second degree of v on u is

v + 0.086 = 5.3 u + 0.643u2 and deduce that the parabola of second degree of y on x is

y = 1144 + 72x + 32.15x2.

4. The following table gives the results of the measurements of train resistances, V is the
velocity in miles per hour, R is the resistance in pounds per ton:

V: 20 40 60 80 100 120

R: 5.5 9.1 14.9 22.8 33.3 46

If R is related to V by the relation R = a + bV + cV2; find a, b and c by using the Method
of Least Squares.

5. Determine the constants  a, b, and c by the Method of Least Squares such that
 y = ax2 + bx + c fits the following data:

x: 2 4 6 8 10

y: 4.01 11.08 30.12 81.89 222.62

7.61 STATISTICAL QUALITY CONTROL

A quality control system performs inspection, testing and analysis to ensure
that the quality of the products produced is as per the laid down quality
standards. It is called “Statistical Quality Control” when statistical
techniques are employed to control, improve and maintain quality or to solve
quality problems. Building an information system to satisfy the concept of
prevention and control and improving upon product quality requires statistical
thinking.
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Statistical quality control (S.Q.C.) is systematic as compared to guess-work
of haphazard process inspection and the mathematical statistical approach
neutralizes personal bias and uncovers poor judgement. S.Q.C. consists of three
general activities:

(1) Systematic collection and graphic recording of accurate data
(2) Analyzing the data
(3) Practical engineering or management action if the information obtained

indicates significant deviations from the specified limits.
Modern techniques of statistical quality control and acceptance sampling

have an important part to play in the improvement of quality, enhancement of
productivity, creation of consumer confidence, and development of industrial
economy of the country.

The following statistical tools are generally used for the above purposes:

(i) Frequency distribution. Frequency distribution is a tabulation of
the number of times a given quality characteristic occurs within the
samples. Graphic representation of frequency distribution will show:
(a) Average quality
(b) Spread of quality
(c) Comparison with specific requirements
(d) Process capability.

(ii) Control chart. Control chart is a graphical representation of quality
characteristics, which indicates whether the process is under control
or not.

(iii) Acceptance sampling.  Acceptance  sampling  is the process of
evaluating a portion of the product/material in a lot for the purpose of
accepting or rejecting the lot on the basis of conforming to a quality
specification.

It reduces the time and cost of inspection and exerts more effective
pressure on quality improvement than it is possible by 100% inspection.

It is used when assurance is desired for the quality of materials/products
either produced or received.

(iv) Analysis of data. Analysis of data includes analysis of tolerances,
correlation, analysis of variance, analysis for engineering design,
problem solving technique to eliminate cause to troubles. Statistical
methods can be used in arriving at proper specification limits of product,
in designing the product, in purchase of raw-material, semi-finished
and finished products, manufacturing processes, inspection, packaging,
sales, and also after sales service.
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7.62 ADVANTAGES OF STATISTICAL QUALITY CONTROL

1. Efficiency. The use of statistical quality control ensures rapid and efficient
inspection at a minimum cost. It eliminates the need of 100% inspection of
finished products because the acceptance sampling in statistial quality
control exerts more effective pressure for quality improvement.

2. Reduction of scrap. Statistial quality control uncovers the cause of
excessive variability in manufactured products forecasting trouble before
rejections occur and reducing the amount of spoiled work.

3. Easy detection of faults. In statistical quality control, after plotting the

control  charts (X , R, P, C, U) etc., when the points fall above the upper
control limits or below the lower control limit, an indication of deterioration
in quality is given. Necessary corrective action may then be taken
immediately.

4. Adherence to specifications. So long as a statistical quality control
continues, specifications can be accurately predicted for the future by which
it is possible to assess whether the production processes are capable of
producing the products with the given set of specifications.

5. Increases output and reduces wasted machine and man hours.

6. Efficient utilization of personnel, machines and materials results
in higher productivity.

7. Creates quality awareness in employees. However, it should be noted
that statistical quality control is not a panacea for assuring product quality.

8. Provides a common language that may be used by designers, production
personnel, and inspectors in arriving at a rational solution of mutual
problems.

9. Points out when and where 100% inspection, sorting or screening
is required.

10. Eliminates bottlenecks in the process of manufacturing.

It simply furnishes ‘perspective facts’ upon which intelligent management
and engineering action can be based. Without such action, the method is
ineffective.

Even the application of standard procedures is very dangerous without
adequate study of the process.
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7.63 REASONS FOR VARIATIONS IN THE QUALITY OF A PRODUCT

Two extremely similar things are rarely obtained in nature. This fact holds
good for production processes as well. No production process is good enough to
produce all items or products exactly alike. The variations are due to two main
reasons:

(i) Chance or random causes. Variations due to chance causes are inevitable
in any process or product. They are difficult to trace and to control even
under the best conditions of production.
These variations may be due to some inherent characteristic of the process
or machine which functions at random.
If the variations are due to chance factors alone, the observations will follow
a “normal curve.” The knowledge of the behaviour of chance variation is
the foundation on which control chart analysis rests. The conditions which
produce these variations are accordingly said to be “under control.” On
the other hand, if the variations in the data do not conform to a pattern
that might reasonably be produced by chance causes, then in this case,
conditions producing the variations are said to be “out of control” as it
may be concluded that one or more assignable causes are at work.

(ii) Assignable causes. The variations due to assignable causes possess greater
magnitude as compared to those due to chance causes and can be easily
traced or detected. The power of the shewhart control chart lies in its ability
to separate out these assignable causes of quality variations, for example,
in length thickness, weight, or diameter of a component.
The variations due to assignable causes may be because of following factors:
(i) Differences among machines

(ii) Differences among workers
(iii) Differences among materials
(iv) Differences in each of these factors over time
(v) Differences in their relationship to one another.

These variations may also be caused due to change in working conditions,
mistake on the part of the operator, etc.

7.64 TECHNIQUES OF STATISTICAL QUALITY CONTROL

To control the quality characteristics of the product, there are two main
techniques:

1. Process Control. Process control is a process of monitoring and measuring
variability in the performance of a process or a machine through the
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interpretation of statistical techniques and it is employed to manage in-
process quality. This technique ensures the production of requisite standard
product and makes use of control charts.

2. Product control. This technique is concerned with the inspection of already
produced goods to ascertain whether they are fit to be dispatched or not.
To achieve the objectives, product control makes use of sampling inspection
plans.

7.65 CONTROL CHART

A control chart is a graphical representation of the collected information. It
detects the variation in processing and warns if there is any departure from
the specified tolerance limits. In other words, control charts is a device which
specifies the state of statistical control or is a device for attaining quality control
or is a device to judge whether the statistical control has been attained.

The control limits on the chart are so placed as to disclose the presence or
absence of the assignable causes of quality variation which makes the diagnosis
possible and brings substantial improvements in product quality and reduction
of spoilage and rework.

Moreover, by identifying chance variations, the control chart tells when to
leave the process alone and thus prevents unnecessarily frequent adjustments
that tend to increase the variability of the process rather than to decrease it.

There are many types of control charts designed for different control
situations. Most commonly used control charts are:

(i) Control charts for variables. These are useful to measure quality
characteristics and to control fully automatic process. It includes X
and R-charts and charts for X  and σ.

(ii) Control charts for attributes. These include P-chart for fraction
defective. A fraction defective control chart discloses erratic fluctuations
in the quality of inspection which may result in improvement in
inspection practice and inspection standards.

It also includes C-chart for number of defects per unit.

7.66 OBJECTIVES OF CONTROL CHARTS

Control charts are based on statistical techniques.

1. X  and R or X  and σ charts are used in combination for control process.
X -chart shows the variation in the averages of samples. It is the most
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commonly used variables chart. R-chart shows the uniformity or consistency
of the process, i.e., it shows the variations in the ranges of samples. It is a
chart for measure of spread. σ-chart shows the variation of process.

2. To determine whether a given process can meet the existing specifications
without a fundamental change in the production line or to tell whether the
process is in control and if so, at what dispersion.

3. To secure information to be used in establishing or changing production
procedures.

4. To secure information when it is necessary to widen the tolerances.
5. To provide a basis for current decisions or acceptance or rejection of

manufactured or purchased product.
6. To secure information to be used in establishing or changing inspection

procedure or acceptance procedure or both.

7.67  CONSTRUCTION OF CONTROL CHARTS FOR VARIABLES

First of all, a random sample of size n is taken during a manufacturing process
over a period of time and quality measurements x1, x2, ......, xn are noted

Sample mean x  = 
x x x

n n
xn

i
i

n
1 2

1

1+ + +
=

=
∑

......

Sample range R = xmax. – xmin.

If the process is found stable, k consecutive samples are selected and for

each sample, x  and R are calculated. Then we find x  and R  as

x
x x x

k k
xk

i
i

k

=
+ + +

=
=
∑

1 2

1

1......

and R  = 
R R R

R1 2

1

1+ + +
=

=
∑

...... k
i

i

k

k k

For X -chart

    Central line = x , when tolerance limits are not given
, when tolerance limits are givenμ

U
V
W

where  μ = 
1
2

 [LCL + UCL]

LCL is lower control limit and UCL is upper control limit

Now, LCL (for X -chart) = x − A R2 and UCL (for X -chart) = x + A R2

are set.
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A2 depends on sample size n and can be found from the following table:

Sample 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
size (n)

A2 1.88 1.02 0.73 0.58 0.48 0.42 0.37 0.34 0.31 0.29 0.27 0.25 0.24 0.22 0.21 0.20 0.19 0.19 0.18

For R-chart Central line (CL) = R

Now,  LCL (for R-chart) = D3R UCL (for R-chart) = D4R  are set.

where D3 and D4 depend on sample size and are found from the following table:

Sample size (n) D3 D4 d2

2 0 3.27 1.13

3 0 2.57 1.69

4 0 2.28 2.06

5 0 2.11 2.33

6 0 2.00 2.53

7 0.08 1.92 2.70

8 0.14 1.86 2.85

9 0.18 1.82 2.97

10 0.22 1.78 3.08

11 0.26 1.74 3.17

12 0.28 1.72 3.26

13 0.31 1.69 3.34

14 0.33 1.67 3.41

15 0.35 1.65 3.47

16 0.36 1.64 3.53

17 0.38 1.62 3.59

18 0.39 1.61 3.64

19 0.40 1.60 3.69

20 0.41 1.59 3.74

To compute upper and lower process tolerance limits for the values of x, we
have

LTL = x
d

−
3

2

R
UTL = x

d
+

3

2

R

where d2 is found from the above table.

Moreover, The process capability is given by 6σ = 6
2

R
d

 where σ is standard

deviation.
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While plotting the X -chart the central line on the X  chart should be drawn

as a solid horizontal line at X . The upper and lower control limits for X  chart
should be drawn as dotted horizontal lines at the computed values.

Similarly, for R-chart, the central line should be drawn as a solid horizontal

line at R . The upper control limit should be drawn as dotted horizontal line at
the computed value of UCLR. If the subgroup size is 7 or more, the lower control
limit should be drawn as dotted horizontal line at LCLR. However, if the
subgroup size is ≤ 6, the lower control limit for R is zero.

Plot the averages of subgroups in X -chart, in the order collected and ranges

in R-chart which should be below the X -chart so that the subgroups correspond
to one-another in both the charts. Points outside the control limits are indicated

with cross (×) on X -chart and the points outside the limits on R chart by a
circle ( • ).

7.68 CONTROL CHARTS FOR ATTRIBUTES

The following control charts will be discussed here
(i) P chart (ii) np chart

(iii) C chart (iv) u chart.

As an alternative to X  and R chart and as a substitute when characteristic
is measured only by attribute, a control chart based on fraction defective p is
used, called P-chart.

p = 
Number of defective articles found in any inspection

Total number of articles actually inspected .

(i) Control limits (3σ limits) on P-chart. We know that for binomial
distribution, the mean value of total number of defectives in a sample n is

np and standard deviation is npq  or np p( )1 − .

∴ Mean value of fraction defective is p and standard deviation

σp = 1
1

1
n

np p
p p

n
( )

( )
− =

−

∴ CL = p

The upper and lower limits for P-chart are,

UCLP = p + 3σp = p + 3
p p

n
( )1 −
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and  LCLP = p – 3σp = p – 3 p p
n

( )1 − .

Due to the lower inspection and maintenance costs of P-charts, they usually
have a greater area of economical applications.

(ii) Control limits for np chart. Whenever subgroup size is variable, P-chart
is used but if it is constant, the chart for actual number of defectives called
np chart is used.

 CL = n p  where p  = ∑
∑

np
n

     UCLnp = n p  + 3σnp = n p  + 3 np p( )1 − (where σnp = nσp)

and       LCLnp = n p  – 3 np p( )1 − .

In case of X  and R chart, it may not be necessary to draw lines connecting
the points which represent the successive subgroups. But incase of P-chart,
a line connecting the points is usually helpful in interpretation of the chart.
Such a line assists in the interpretation of trends.

(iii) Control limits for C chart

(a) Difference between a defect and defective
An item is called defective if it fails to conform to the specifications
in any of the characteristics. Each characteristic that does not meet
the specifications is a defect. An item is defective if it contains atleast
one defect. The np chart applies to the number of defectives in
subgroups of constant size while C chart applies to the number of
defects in a subgroup of constant size.

(b) Basis for control limits on C chart
Control limits on C chart are based on Poisson distribution.
Hence two conditions must be satisfied. The first condition specifies
that the area of opportunity for occurrence of defects should be
fairly constant from period to period. Second condition specifies
that opportunities for defects are large while the chances of a defect
occurring in any one spot are small.

(c) Calculation of control limits on C chart
Standard deviation

         σc = C
Thus 3σ limits on a C chart are

  UCLc = C + 3 C  and LCLc = C 3 C−

NOTE
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and central line CL = C

where         C  = 
Number of defects in all samples

Total number of samples
.

(iv) u chart. When the subgroup size varies from sample to sample, it is
necessary to use u charts. The control limits on u chart will however vary.
If c is total number of defects found in any sample and n is number of
inspection units in a sample,

u
n

= =C Number of defects in a sample
Number of units in a sample

The larger the number of units in a sample, the narrower the limits.
Formulae for control limits on u chart are:

UCLu = u
u
n

+ 3 ; LCLu = u
u
n

− 3  and central line CL = u .

EXAMPLES

Example 1. The  following  are  the  mean  lengths and ranges of lengths of a
finished product from 10 samples each of size 5. The specification limits for

length are 200 ± 5 cm. Construct X  and R-chart and examine whether the
process is under control and state your recommendations.

Sample
number 1 2 3 4 5 6 7 8 9 10

Mean ( X ) 201 198 202 200 203 204 199 196 199 201

Range (R) 5 0 7 3 3 7 2 8 5 6

Assume for n = 5, A2 = 0.58, D4 = 2.11 and D3 = 0.

Sol. (i) Control limits for X  chart:

Central limit    CL = 200
∵ Tolerance / specification limits are given

= 200∴ μ

 UCL A R = + A R2 2x x= + μ

LCL A R = A R2 2x x= − −μ

where   R
R R R1 2 10=

+ + +
=

......
10

46
10

 = 4.6

Then,        UCLX = 200 + (0.58 × 4.6) = 202.668
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  LCLX  = 200 – (0.58 × 4.6) = 197.332.

(ii) Control limits for R chart.

Central limit    CL = R  = 4.6

UCLR = D4R  = 2.11 × 4.6 = 9.706

LCLR = D3R  = 0 × 4.6 = 0

The X  and R-charts are drawn below:

×

×

×

1 2 3 4 5 6 7 8 9 10
190

195

200

205

LCL = 197.332

UCL = 202.668

CL = 200

Sample number

S
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e

m
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n
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0
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R
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ge
(R
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R-Chart
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It is noted that all points lie within the control limits on the R chart. Hence
the process variability is under control. But in X-chart, points corresponding to
sample number 5, 6, and 8 lie outside the control limits. Therefore the process
is not in statistical control. The process should be halted and it is
recommended to check for any assignable causes. Fluctuation will remain until
these causes, if found, are removed.
Example 2. A drilling machine bores holes with a mean diameter of 0.5230 cm
and a standard deviation of 0.0032 cm. Calculate the 2-sigma and 3-sigma
upper and lower control limits for means of sample of 4.

Sol. Mean diameter  x  = 0.5230 cm
 S.D. σ = 0.0032 cm

n = 4
(i) 2-sigma limits are as follows:

 CL = x  = 0.5230 cm

   UCL = x
n

+ = + ×2 0 5230 2
0 0032

4

σ
.

.
  = 0.5262 cm

  LCL = x
n

− = − ×2 0 5230 2
0 0032

4

σ
.

.
 = 0.5198 cm.

(ii) 3-sigma limits are as follows:

CL = x  = 0.5230 cm

UCL = x
n

+ = + ×3 0 5230 3
0 0032

4

σ
.

.
 = 0.5278 cm

 LCL = x
n

− = − ×3 0 5230 3
0 0032

4

σ
.

.
 = 0.5182 cm.

Example 3. In a blade manufacturing factory, 1000 blades are examined daily.
Draw the np chart for the following table and examine whether the process is
under control?

Date: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of
defective blades: 9 10 12 8 7 15 10 12 10 8 7 13 14 15 16

Sol.  Here,  n = 1000

∑np = total number of defectives = 166

∑n = total number inspected = 1000 × 15

∴  p
np
n

= ∑

∑

=
×

166
1000 15

 = 0.011
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∴    n p  = 1000 × 0.011 = 11

Control limits are CL = n p  = 11

 UCLnp = np np p+ −3 1( )  = 11 + 3 11 1 0 011( . )−  = 20.894

 LCLnp = np np p− − = − −3 1 11 3 11 1 0 011( ) ( . )  = 1.106

The np chart is drawn in the figure. Since all the points lie within the
control limits, the process is under control.

1 3 5 7 9 11 13 15
0

5

10

15

20

25

UCL = 20.894

LCL = 1.106

Sample number
( -chart)np

N
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iv
e
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ad

es

Example 4. In a manufacturing process, the number of defectives found in the
inspection of 20 lots of 100 samples is given below:

Lot number Number of defectives Lot number Number of defectives

1 5 11 7

2 4 12 6

3 3 13 3

4 5 14 5

5 4 15 4

6 6 16 2

7 9 17 8

8 15 18 7

9 11 19 6

10 6 20 4
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(i) Determine the control limits of p-chart and state whether the process is
in control.

(ii) Determine the new value of mean fraction defective if some points are
out of control. Compute the corresponding control limits and state
whether the process is still in control or not.

(iii) Determine the sample size when a quality limit not worse than 9% is
desirable and a 10% bad product will not be permitted more than three
times in thousand.

Sol. (i)  p = =
×

Total number of defectives
Total number of items inspected

120
20 100

 = 0.06

    UCLP = p
p p

n
+

−
= +

−
3

1
0 06 3

0 06 1 0 06
100

( )
.

. ( . )
 = 0.13095

     LCLP = p
p p

n
−

−
= −

−
3

1
0 06 3

0 06 1 0 06
100

( )
.

. ( . )
 = – 0.01095

Since the fraction defective cannot be (–) ve

∴      LCLP = 0

After observing the values of defectives in the given example, it is clear

that only 8th lot having fraction defective 
15

100
 = 0.15 will go above UCLP.

(ii) After eliminating the 8th lot,

Revised value of p = −
×

120 15
100 19

 = 0.056

Revised control limits will be

UCLP = 0.056 + 3 0 056 1 0 056
100

. ( . )−  = 0.125

LCLP = 0.056 – 3 0 056 1 0 056
100

. ( . )−  = – 0.013 i.e., zero.

It is clear that all the points are within control limits.

∴    Revised quality level p  = 0.056
(iii) Since a probability that a defective more than a 9% defective quality

will not be permitted, is more than 3 times in a thousand (0.3%) in corresponding
3σ limits:

∴   p  + 3p = 0.09
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0.056 + 3 0 056 1 0 056. ( . )−
n

 = 0.09 ⇒
0 056 0 034

3
. .×

=
0.944

n

Squaring,     
0 056 0 034

3

2. .× = F
HG

I
KJ

0.944
n

 = (0.01133)2

    n = 
0 056 0 944

0 01133 0 01133
. .

. .
×
×

 = 333.

Example 5. A control chart for defects per unit u uses probability limits
corresponding to probabilities of 0.975 and 0.025. The central line on the control
chart is at u  = 2.0. The limits vary with the value of n. Determine the correct
position of these upper and lower control limits when n = 5. (Assume σ = 1.96)

Sol. UCLu = u
u
n

+ = +σ 2
2
5

1.96  = 3.239

 LCLu = 2 – 1.96 2
5

 = 0.761.

Example 6. Determine the control limits for X  and R charts if ∑ X  = 357.50,
∑R = 9.90, number of subgroups = 20. It is given that A2 = 0.18, D3 = 0.41, D4 =
1.59 and d2 = 3.736. Also find the process capability.

Sol. X =
X

N
∑ = 357 50

20
.  = 17.875

 R =
R

N
∑ = 9 90

20
.

 = 0.495

  UCL X A RX 2= +  = 17.875 + (0.18 × 0.495) = 17.9641

   LCL X A RX 2= −  = 17.875 – (0.18 × 0.495) = 17.7859

    UCLR = D4R  = 1.59 × 0.495 = 0.78705

     LCLR = D3R  = 0.41 × 0.495 = 0.20295

 σ = 
R
d2

0 495
3 735

=
.
.

 = 0.13253

∴ Process capability = 6σ = 6 × 0.13253 = 0.79518.
Example 7. If the average fraction defective of a large sample of a product is
0.1537, Calculate the control limits given that sub-group size is 2000.
Sol. Average fraction defective

 p  = 0.1537
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Sub-group size is 2000

∴ n = 2000

Central line  CL = n p  = 2000 × 0.1537 = 307.4

UCLnp = n p  + 3σnp = np np p+ −3 1( )

= 307.4 + 3 307 4 1 0 1537. ( . )−  = 307.4 + 48.38774204

= 355.787742

and    LCLnp = np np p− −3 1( )  = 307.4 – 48.38774204

= 259.012258

ASSIGNMENT 7.7

1. A company manufactures screws to a nominal diameter 0.500 ± 0.030 cm. Five samples
were taken randomly from the manufactured lots and 3 measurements were taken on
each sample at different lengths. Following are the readings:

Sample number Measurement per sample x(in cm)

1 2 3

1 0.488 0.489 0.505

2 0.494 0.495 0.499

3 0.498 0.515 0.487

4 0.492 0.509 0.514

5 0.490 0.508 0.499

Calculate the control limits of X  and R charts. Draw X  and R charts and examine
whether the process is in statistical control?
[Take A2 = 1.02, D4 = 2.57, D3 = 0 for n = 3]

2. The average percentage of defectives in 27 samples of size 1500 each was found to be
13.7%. Construct P-chart for this situation. Explain how the control chart can be used to
control quality.

[Hint: p  = 0.137]

3. The number of customer complaints received daily by an organization is given below:

Day: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Complaints: 2 3 0 1 9 2 0 0 4 2 0 7 0 2 4

Does it mean that the number of complaints is under statistical control? Establish a
control scheme for the future.
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4. It was found that when a manufacturing process is under control, the average number
of defectives per sample batch of 10 is 1.2. What limits would you set in a quality control
chart based on the examination of defectives in sample batches of 10?

[Hint: p  = 0.12, n p  = 1.2]

5. The following data shows the value of sample mean X  and range R for 10 samples of

size 5 each. Calculate the values for central line and control limits for X -chart and R
chart and determine whether the process is under control.

Sample number:1 2 3 4 5 6 7 8 9 10

Mean X : 11.2 11.8 10.8 11.6 11 9.6 10.4 9.6 10.6 10

Range R: 7 4 8 5 7 4 8 4 7 9

Assume for n = 5, A2 = 0.577, D3 = 0 and D4 = 2.115.

6. What are statistical quality control techniques? Discuss the objectives and advantages
of statistical quality control.

7. The following table shows the number of missing rivets observed at the time of inspection
of 12 aircrafts. Find the control limits for the number of defects chart and comment on
the state of control.

Air craft number: 1 2 3 4 5 6 7 8 9 10 11 12

Number of
missing rivets: 7 15 13 18 10 14 13 10 20 11 22 15
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8.1 POPULATION OR UNIVERSE

A n aggregate of objects (animate or inanimate) under study is called
population or universe. It is thus a collection of individuals or of
their attributes (qualities) or of results of operations which can be

numerically specified.
A universe containing a finite number of individuals or members is called

a finite inverse. For example, the universe of the weights of students in a
particular class.

A universe with infinite number of members is known as an infinite
universe. For example, the universe of pressures at various points in the
atmosphere.

In some cases, we may be even ignorant whether or not a particular universe
is infinite, for example, the universe of stars.

The universe of concrete objects is an existent universe. The collection of
all possible ways in which a specified event  can happen is called a hypothetical
universe. The universe of heads and tails obtained by tossing a coin an infinite
number of times (provided that it does not wear out) is a hypothetical one.
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8.2 SAMPLING

The statistician is often confronted with the problem of discussing a universe
of which he cannot examine every member, i.e., of which complete enumeration
is impracticable. For example, if we want to have an idea of the average per
capita income of the people of a country, enumeration of every earning individual
in the country is a very difficult task. Naturally, the question arises: What can
be said about a universe of which we can examine only a limited number of
members? This question is the origin of the Theory of Sampling.

A finite subset of a universe is called a sample. A sample is thus a small
portion of the universe. The number of individuals in a sample is called the
sample size. The process of selecting a sample from a universe is called
sampling.

The theory of sampling is a study of relationship existing between a
population and samples drawn from the population. The fundamental object of
sampling is to get as much information as possible of the whole universe by
examining only a part of it. An attempt is thus made through sampling to give
the maximum information about the parent universe with the minimum effort.

Sampling is quite often used in our day-to-day practical life. For example,
in a shop we assess the quality of sugar, rice, or any other commodity by taking
only a handful of it from the bag and then decide whether to purchase it or not.
A housewife normally tests the cooked products to find if they are properly
cooked and contain the proper quantity of salt or sugar, by taking a spoonful of
it.

8.3 PARAMETERS OF STATISTICS

The statistical constants of the population such as mean, the variance, etc. are
known as the parameters. The statistical concepts of the sample from the
members of the sample to estimate the parameters of the population from which
the sample has been drawn is known as statistic.

Population mean and variance are denoted by μ and σ2, while those of the
samples are given by x , s2.

8.4 STANDARD ERROR

The standard deviation of the sampling distribution of a statistic is known as
the standard error (S.E.). It plays an important role in the theory of large
samples and it forms a basis of the testing of hypothesis. If t is any statistic, for
large sample.
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z = 
t t

t
− E

S E
( )

. ( )
 is normally distributed with mean 0 and variance unity.

For large sample, the standard errors of some of the well known statistic
are listed below:
n—sample size; σ2—population variance; s2—sample variance; p—population
proportion ; Q = 1 – p; n1, n2—are sizes of two independent random samples.

Number Statistic Standard error

1. x σ/ n

2. s σ2 2/ n

3. Difference of two sample means x x1 2−
σ σ1

2

1

2
2

2n n
+

4. Difference of two sample standard deviation s1 – s2

σ σ1
2

1

2
2

22 2n n
+

5. Difference of two sample proportions p1 – p2

P Q P Q1 1

1

2 2

2n n
+

6. Observed sample proportion p PQ/n

8.5 TEST OF SIGNIFICANCE

An important aspect of the sampling theory is to study the test of significance
which will enable us to decide, on the basis of the results of the sample, whether
(i) the deviation between the observed sample statistic and the hypothetical

parameter value or

(ii) the deviation between two sample statistics is significant or might be
attributed due to chance or the fluctuations of the sampling.

For applying the tests of significance, we first set up a hypothesis which is
a definite statement about the population parameter called Null hypothesis
denoted by H0.

Any hypothesis which is complementary to the null hypothesis (H0) is called
an Alternative hypothesis denoted by H1.
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For example, if we want to test the null hypothesis that the population has
a specified mean μ0, then we have

H0: μ = μ0

Alternative hypothesis will be

(i) H1: μ ≠ μ0 (μ > μ0 or μ < μ0) (two tailed alternative hypothesis).

(ii) H1: μ > μ0 (right tailed alternative hypothesis (or) single tailed).

(iii) H1: μ < μ0 (left tailed alternative hypothesis (or) single tailed).

Hence alternative hypothesis helps to know whether the test is two tailed
test or one tailed test.

8.6 CRITICAL REGION

A region corresponding to a statistic  t, in the sample space S which amounts to
rejection of the null hypothesis H0 is called as critical region or region of
rejection. The region of the sample space S which amounts to the acceptance
of H0 is called acceptance region.

8.7 LEVEL OF SIGNIFICANCE

The probability of the value of the variate falling in the critical region is known
as level of significance. The probability α that a random value of the statistic t
belongs to the critical region is known as the level of significance.

P(t ∈ ω| H0) = α

i.e., the level of significance is the size of the type I error or the maximum
producer’s risk.

8.8 ERRORS IN SAMPLING

The main aim of the sampling theory is to draw a valid conclusion about the
population parameters on the basis of the sample results. In doing this we may
commit the following two types of errors:

Type I Error. When H0 is true, we may reject it.

P(Reject H0 when it is true) = P(Reject H0/H0) = α
α is called the size of the type I error also referred to as producer’s risk.
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Type II Error. When H0 is wrong we may accept it P(Accept H0 when it is
wrong) = P(Accept H0/H1) = β . β is called the size of the type II error, also
referred to as consumer’s risk.

The values of the test statistic which separates the critical region and
acceptance region are called the critical values or significant values.
This value is dependent on (i) the level of significance used and (ii) the
alternative hypothesis, whether it is one-tailed or two-tailed.

For larger samples corresponding to the statistic t, the variable z = 
t t

t
− E

S.E
( )
( )

is normally distributed with mean 0 and variance 1. The value of z given above
under the null hypothesis is known as test statistic.

The critical value of zα of the test statistic at level of significance α for a
two-tailed test is given by

p(| z | > zα) = α (1)

i.e., zα is the value of z so that the total area of the critical region on both tails
is α. Since the normal curve is symmetrical, from equation (1), we get

p(z > zα) + p(z < – zα) = α; i.e., 2p(z > zα) = α; p(z > zα) = α/2

i.e., the area of each tail is α/2.

Lower critical
value

z = – z
�

Level of significance (Two tailed test)
�

Rejection
region ( /2)�

Upper critical
value

Rejection
region ( /2)�

z = 0 z = z
�

z = 0

Right tailed test

Acceptance
region Rejection

region
( )�

z = z
�

Left tailed test
Acceptance

region

z = – z
�

z = 0

Rejection
region

( )�

The critical value zα is that value such that the area to the right of zα is
α/2 and the area to the left of – zα is α/2.

In the case of the one-tailed test,

p(z > zα) = α if it is right-tailed; p(z < – zα) = α if it is left-tailed.

NOTE
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The critical value of z for a single-tailed test (right or left) at level of
significance α is same as the critical value of z for two-tailed test at level of
significance 2α.

Using the equation, also using the normal tables, the critical value of z at
different levels of significance (α) for both single tailed and two tailed test are
calculated and listed below. The equations are

p(| z | > zα) = α; p(z > zα) = α; p(z < – zα) = α

Level of significance

1% (0.01) 5% (0.05) 10% (0.1)

Two tailed test | zα | = 2.58 | z | = 1.966 | z | = 0.645

Right tailed      zα = 2.33     zα = 1.645      zα = 1.28

Left tailed       zα = – 2.33     zα = – 1.645       zα = – 1.28

8.9 STEPS IN TESTING OF STATISTICAL HYPOTHESIS

Step 1. Null hypothesis. Set up H0 in clear terms.
Step 2. Alternative hypothesis. Set up H1, so that we could decide whether

we should use one tailed test or two tailed test.
Step 3. Level of significance. Select the appropriate level of significance

in advance depending on the reliability of the estimates.

Step 4. Test statistic. Compute the test statistic z = 
t t

t
− E

S.E
( )
( )

 under the null
hypothesis.

Step 5. Conclusion. Compare the computed value of z with the critical value
zα at level of significance (α).
If | z | > zα, we reject H0 and conclude that there is significant
difference. If | z | < zα, we accept H0 and conclude that there is no
significant difference.

8.10 TEST OF SIGNIFICANCE FOR LARGE SAMPLES

If the sample size n > 30, the sample is taken as large sample. For such sample
we apply normal test, as Binomial, Poisson, chi square, etc. are closely
approximated by normal distributions assuming the population as normal.

Under large sample test, the following are the important tests to test the
significance:

1. Testing of significance for single proportion.

2. Testing of significance for difference of proportions.
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3. Testing of significance for single mean.

4. Testing of significance for difference of means.

5. Testing of significance for difference of standard deviations.

8.10.1 Testing of Significance for Single Proportion

This test is used to find the significant difference between proportion of the
sample and the population. Let X be the number of successes in n independent
trials with constant probability P of success for each trial.

E(X) = nP; V(X) = nPQ; Q = 1 – P = Probability of failure.

Let  p = X/n called the observed proportion of success.

E(p) = E(X/n) = 
1
n

xE( ) = 
np
n

 = p; E(p) = p

V(p) = V(X/n) = 
1
2n

V(X) = 
1( )PQ

n
 = PQ/n

S.E.(p) =
PQ
n

; z = 
p p

p
p p

n

− = −E
S.E. PQ

( )
( ) /

 ~ N(0, 1)

This z is called test statistic which is used to test the significant difference
of sample and population proportion.

1. The probable limit for the observed proportion of successes are p±
zα PQ/n , where zα is the significant value at level of significance α..

2. If p is not known, the limits for the proportion in the population are

p± zα pq n/ , q = 1 – p.

3. If α is not given, we can take safely 3σ limits.

Hence, the confidence limits for observed proportion p are p ± 3
PQ
n

.

The confidence limits for the population proportion p are p ± 
pq
n

.

EXAMPLES

Example 1. A coin was tossed 400 times and the head turned up 216 times.
Test the hypothesis that the coin is unbiased.

Sol. H0: The coin is unbiased i.e., P = 0.5.

H1: The coin is not unbiased (biased); P ≠ 0.5

NOTE
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Here n = 400; X = Number of success = 216

p = proportion of success in the sample 
X
n

 = 
216
400

 = 0.54.

Population proportion = 0.5 = P; Q = 1 – P = 1 – 0.5 = 0.5.

Under H0, test statistic z = 
p

n

− P

PQ/

  | z | = 0 54 0 5
0 5 0 5

400

. .
. .

−
×

 = 1.6

we use a two-tailed test.

Conclusion. Since | z | = 1.6 < 1.96

i.e., | z | < zα, zα is the significant value of z at 5% level of significance.

i.e., the coin is unbiased is P = 0.5.

Example 2. A manufacturer claims that only 4% of his products supplied by
him are defective. A random sample of 600 products contained 36 defectives.
Test the claim of the manufacturer.
Sol. (i) P = observed proportion of success.

i.e., P = proportion of defective in the sample = 
36
600

 = 0.06

p = proportion of defectives in the population = 0.04

    H0: p = 0.04 is true.

i.e., the claim of the manufacturer is accepted.

H1: (i) P ≠ 0.04 (two tailed test)

(ii) If we want to reject, only if p > 0.04 then (right tailed).

Under H0, z = 
p

n

−
=

−
×

P

PQ/

0 06 0 04

0 04 0 96
600

. .

. .
 = 2.5.

Conclusion. Since | z | = 2.5 > 1.96, we reject the hypothesis H0 at 5%
level of significance two tailed.

If H1 is taken as p > 0.04 we apply right tailed test.

| z | = 2.5 > 1.645 (zα) we reject the null hypothesis here also.

In both cases, manufacturer’s claim is not acceptable.



TESTING OF HYPOTHESIS    679

Example 3. A machine is producing bolts a certain fraction of which are
defective. A random sample of 400 is taken from a large batch and is found to
contain 30 defective bolts. Does this indicate that the proportion of defectives is
larger than that claimed by the manufacturer if the manufacturer claims that
only 5% of his product are defective? Find 95% confidence limits of the proportion
of defective bolts in batch.
Sol. Null hypothesis H0: The manufacturer claim is accepted i.e.,

P = 
5

100
 = 0.05

Q = 1 – P = 1 – 0.05 = 0.95

Alternative hypothesis. p > 0.05 (Right tailed test).

p = observed proportion of sample = 
30

400
 = 0.075

Under H0, the test statistic

z = 
p

n

− P

PQ/
∴ z = 

0 075 0 05

0 05 0 95
400

. .

. .

−
×

 = 2.2941.

Conclusion. The tabulated value of z at 5% level of significance for the
right-tailed test is

  zα = 1.645. Since | z | = 2.2941 > 1.645,

H0 is rejected at 5% level of significance. i.e., the proportion of defective is
larger than the manufacturer claim.

To find 95% confidence limits of the proportion.

It is given by p ± zα PQ/n

0.05 ± 1.96 
0 05 0 95

400
. .×

 = 0.05 ± 0.02135 = 0.07136, 0.02865

Hence 95% confidence limits for the proportion of defective bolts are
(0.07136, 0.02865).
Example 4. A bag contains defective articles, the exact number of which is not
known. A sample of 100 from the bag gives 10 defective articles. Find the limits
for the proportion of defective articles in the bag.

Sol. Here p = proportion of defective articles = 
10

100
 = 0.1;

q = 1 – p = 1 – 0.1 = 0.9

Since the confidence limit is not given, we assume it is 95%. ∴ level of
significance is 5% zα = 1.96.
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Also the proportion of population P is not given. To get the confidence limit,
we use P and it is given by

P ± zα pq n/  = 0.1 ± 1.96 
0 1 0 9

100
. .×

  = 0.1 ± 0.0588 = 0.1588, 0.0412.

Hence 95% confidence limits for defective articles in the bag are (0.1588,
0.0412).

ASSIGNMENT 8.1

1. A sample of 600 persons selected at random from a large city shows that the percentage
of males in the sample is 53. It is believed that the ratio of males to the total population
in the city is 0.5. Test whether the belief is confirmed by the observation.

2. In a city a sample of 1000 people was taken and 540 of them are vegetarian and the rest
are non-vegetarian. Can we say that both habits of eating (vegetarian or non-vegetarian)
are equally popular in the city at (i) 1% level of significance (ii) 5% level of significance?

3. 325 men out of 600 men chosen from a big city were found to be smokers. Does this
information support the conclusion that the majority of men in the city are smokers?

4. A random sample of 500 bolts was taken from a large consignment and 65 were found to
be defective. Find the percentage of defective bolts in the consignment.

5. In a hospital 475 female and 525 male babies were born in a week. Do these figures
confirm the hypothesis that males and females are born in equal number?

6. 400 apples are taken at random from a large basket and 40 are found to be bad. Estimate
the proportion of bad apples in the basket and assign limits within which the percentage
most probably lies.

8.10.2 Testing of Significance for Difference of Proportions

Consider two samples X1 and X2 of sizes n1 and n2, respectively, taken from
two different populations. Test the significance of the difference between the
sample proportion p1 and p2. The test statistic under the null hypothesis H0,
that there is no significant difference between the two sample proportion, we
have

 z = p p

n n

1 2

1 2

1 1

−

+
F

HG
I

KJ
PQ

, where P = 
n p n p

n n
1 1 2 2

1 2

+
+

and Q = 1 – P.
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EXAMPLES

Example 1. Before an increase in excise duty on tea, 800 people out of a sample
of 1000 persons were found to be tea drinkers. After an increase in the duty, 800
persons were known to be tea drinkers in a sample of 1200 people. Do you think
that there has been a significant decrease in the consumption of tea after the
increase in the excise duty?

Sol. Here   n1 = 800, n2 = 1200

   p1 =
X1

1

800
1000

4
5n

= = ; p2 = 
X2

2

800
1200

2
3n

= =

  P = 
p n p n

n n
1 1 2 2

1 2

+
+

 = 
X X1 2

1 2

+
+n n

 =
800 800

1000 1200
8
11

+
+

= ; Q = 
3
11

Null hypothesis H0: p1 = p2, i.e., there is no significant difference in the
consumption of tea before and after increase of excise duty.

H1: p1 > p2 (right-tailed test)

The test statistic

z = 
p p

n n

1 2

1 2

1 1

−

+
F

HG
I

KJ
PQ

 = 
0 8 0 6666

8
11

3
11

1
1000

1
1200

. .−

× +F
HG

I
KJ

 = 6.842.

Conclusion. Since the calculated value of | z | > 1.645 also | z | > 2.33,
both the significant values of z at 5% and 1% level of significance. Hence H0 is
rejected, i.e., there is a significant decrease in the consumption of tea due to
increase in excise duty.
Example 2. A machine produced 16 defective articles in a batch of 500. After
overhauling it produced 3 defectives in a batch of 100. Has the machine
improved?

Sol. p1 = 
16

500
 = 0.032; n1 = 500 p2 = 

3
100

 = 0.03; n2 = 100

Null hypothesis H0: The machine has not improved due to overhauling,
p1 = p2.

H1: p1 > p2 (right-tailed)

∴ P = 
p n p n

n n
1 1 2 2

1 2

19
600

+
+

=  ~=  0.032
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Under H0, the test statistic

z = 
p p

n n

1 2

1 2

1 1

0 032 0 03

0 032 0 968
1

500
1

100

−

+
F

HG
I

KJ

= −

+F
HG

I
KJPQ

. .

( . )( . )

 = 0.104.

Conclusion. The calculated value of | z | < 1.645, the significant value of
z at 5% level of significance, H0 is accepted, i.e., the machine has not improved
due to overhauling.
Example 3. In two large populations, there are 30% and 25%, respectively, of
fair haired people. Is this difference likely to be hidden in samples of 1200 and
900, respectively, from the two populations.

Sol. p1 = proportion of fair haired people in the first population = 30% = 0.3;
p2 = 25% = 0.25; Q1 = 0.7; Q2 = 0.75.

H0: Sample proportions are equal, i.e., the difference in population
proportions is likely to be hidden in sampling.

H1: p1 ≠ p2

z = 
P P

P Q P Q2 2

1 2

1 1

1 2

03 0 25

03 07
1200

0 25 075
900

−

+
= −

× + ×
n n

. .

. . . .
 = 2.5376.

Conclusion. Since | z | > 1.96, the significant value of z at 5% level of
significance, H0 is rejected. However | z | < 2.58, the significant value of z at
1% level of significance, H0 is accepted. At 5% level, these samples will reveal
the difference in the population proportions.
Example 4. 500 articles from a factory are examined and found to be 2%
defective. 800 similar articles from a second factory are found to have only 1.5%
defective. Can it reasonably be concluded that the product of the first factory
are inferior to those of second?

Sol. n1 = 500, n2 = 800

p1 = proportion of defective from first factory = 2% = 0.02

p2 = proportion of defective from second factory = 1.5% = 0.015

H0: There is no significant difference between the two products, i.e., the
products do not differ in quality.

H1: p1 < p2 (one tailed test)

Under H0, z = p p

n n

1 2

2

1

−

+
F

HG
I

KJ
PQ

1

1
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P = 
n p n p

n n
1 1 2 2

1 2

0 02 500 0 015 800
500 800

+
+

= +
+

. ( ) ( . )( )
 = 0.01692;

Q = 1 – P = 0.9830

 z = 
0 02 0 015

0 01692 0 983
1

500
1

800

. .

. .

−

× +F
HG

I
KJ

 = 0.68

Conclusion. As | z | < 1.645, the significant value of z at 5% level of
significance, H0 is accepted i.e., the products do not differ in quality.

ASSIGNMENT 8.2

1. A random sample of 400 men and 600 women were asked whether they would like to
have a school near their residence. 200 men and 325 women were in favor of the proposal.
Test the hypothesis that the proportion of men and women in favor of the proposal are
the same at 5% level of significance.

2. In a town A, there were 956 births, of which 52.5% were males while in towns A and B
combined, this proportion in total of 1406 births was 0.496. Is there any significant
difference in the proportion of male births in the two towns?

3. In a referendum submitted to the student body at a university, 850 men and 560 women
voted. 500 men and 320 women voted yes. Does this indicate a significant difference of
opinion between men and women on this matter at 1% level?

4. A manufacturing firm claims that its brand A product outsells its brand B product by
8%. If it is found that 42 out of a sample of 200 persons prefer brand A and 18 out of
another sample of 100 persons prefer brand B. Test whether the 8% difference is a valid
claim.

8.10.3 Testing of Significance for Single Mean

To test whether the difference between sample mean and population mean is
significant or not.

Let X1, X2, ......, Xn be a random sample of size n from a large population X1,
X2, ......, XN of size N with mean μ and variance σ2. ∴ the standard error of

mean of a random sample of size n from a population with variance σ2 is σ/ n .

To test whether the given sample of size n has been drawn from a population
with mean μ, i.e. to test whether the difference between the sample mean and
the population mean is significant. Under the null hypothesis, there is no
difference between the sample mean and population mean.

The test statistic is z = 
x

n

− μ
σ/

, where σ is the standard deviation of the

population.
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If σ is not known, we use the test statistic z = 
X − μ
s n/

, where s is the standard

deviation of the sample.

If the level of significance is a and zα is the critical value

– zα < | z | = 
x

n
− μ

σ/
 < zα.

The limits of the population mean μ are given by

x z
n

x z
n

− < < +α α
σ μ σ .

At 5% level of significance, 95% confidence limits are

x 1.96
n

x 1.96
n

− < < +σ μ σ

At 1% level of significance, 99% confidence limits are

x
n

x
n

− < < +2 58 2 58. .
σ μ σ

.

These limits are called confidence limits or fiducial limits.

EXAMPLES

Example 1. A normal population has a mean of 6.8 and standard deviation of
1.5. A sample of 400 members gave a mean of 6.75. Is the difference significant?
Sol. H0: There is no significant difference between x  and μ.

H1: There is significant difference between x  and μ.

Given μ = 6.8, σ = 1.5, x  = 6.75 and n = 400

    | z | = x
n

− = −μ
σ/

. .
/

6 75 6 8
9001.5

 = | – 0.67 | = 0.67

Conclusion. As the calculated value of | z | < zα = 1.96 at 5% level of
significance, H0 is accepted, i.e., there is no significant difference between x
and μ.

Example 2. A random sample of 900 members has a mean 3.4 cms. Can it be
reasonably regarded as a sample from a large population of mean 3.2 cms and
standard deviation 2.3 cms?

Sol. Here n = 900, x  = 3.4, μ = 3.2, σ = 2.3

NOTE
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H0: Assume that the sample is drawn from a large population with mean 3.2
and standard deviation = 2.3

H1: μ ≠ 3.25 (Apply two-tailed test)

Under H0; z = 
x

n

− = −μ
σ/

. .

. /

3 4 3 2

2 3 900
 = 0.261.

Conclusion. As the calculated value of | z | = 0.261 < 1.96, the significant
value of z at 5% level of significance, H0 is accepted, i.e., the sample is drawn
from the population with mean 3.2 and standard deviation = 2.3.
Example 3. The mean weight obtained from a random sample of size 100 is 64
gms. The standard deviation of the weight distribution of the population is 3
gms. Test the statement that the mean weight of the population is 67 gms at 5%
level of significance. Also set up 99% confidence limits of the mean weight of the
population.

Sol. Here n = 100, μ = 67, x  = 64, σ = 3

H0: There is no significant difference between sample and population mean.

i.e., μ = 67, the sample is drawn from the population with μ = 67.

H1:    μ ≠ 67 (Two-tailed test).

Under H0, z = 
x

n
− = −μ

σ/ /
64 67
3 100

 = – 10 ∴ | z | = 10.

Conclusion. Since the calculated value of | z | > 1.96, the significant
value of z at 5% level of significance, H0 is rejected, i.e., the sample is not
drawn from the population with mean 67.

To find 99% confidence limits, given by

x  ± 2.58 σ/ n  = 64 ± 2.58(3/ 100 ) = 64.774, 63.226.

Example 4. The average score in mathematics of a sample of 100 students was
51 with a standard deviation of 6 points. Could this have been a random sample
from a population with average scores 50?

Sol. Here n = 100, x  = 51, s = 6, μ = 50; σ is unknown.

H0: The sample is drawn from a population with mean 50, μ = 50

H1: μ ≠ 50

Under H0, z = 
x

s n

− = − =μ
/ /

51 50

6 100

10
6

 = 1.6666.

Conclusion. Since | z | = 1.666 < 1.96, zα the significant value of z at 5%
level of significance, H0 is accepted, i.e., the sample is drawn from the population
with mean 50.
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ASSIGNMENT 8.3

1. A sample of 1000 students from a university was taken and their average weight was
found to be 112 pounds with a standard deviation of 20 pounds. Could the mean weight
of students in the population be 120 pounds?

2. A sample of 400 male students is found to have a mean height of 160 cms. Can it be
reasonably regarded as a sample from a large population with mean height 162.5 cms
and standard deviation 4.5 cms?

3. A random sample of 200 measurements from a large population gave a mean value of 50
and a standard deviation of 9. Determine 95% confidence interval for the mean of popu-
lation.

4. The guaranteed average life of certain type of bulbs is 1000 hours with a standard de-
viation of 125 hours. It is decided to sample the output so as to ensure that 90% of the
bulbs do not fall short of the guaranteed average by more than 2.5%. What must be the
minimum size of the sample?

5. The heights of college students in a city are normally distributed with standard devia-
tion 6 cms. A sample of 1000 students has mean height 158 cms. Test the hypothesis
that the mean height of college students in the city is 160 cms.

8.10.4 Test of Significance for Difference of Means of Two Large Samples

Let x1 be the mean of a sample of size n1 from a population with mean μ1, and
variance σ1

2. Let x2  be the mean of an independent sample of size n2 from
another population with mean μ2 and variance σ2

2. The test statistic is given

by z = 
x x

n n

1 2

1
2

1

2
2

2

−

+σ σ
.

Under the null hypothesis that the samples are drawn from the same
population where σ1 = σ2 = σ, i.e., μ1 = μ2 the test statistic is given by

z = 
x x

n n

1 2

1 2

1 1

−

+σ
.

1. If σ1, σ2 are not known and σ1 ≠ σ2 the test statistic in this case is

z = 
x x

s s
n n

1 2

1
2

2
2

1 2

−

+
+

.

NOTE
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2. If σ is not known and σ1 = σ2. We use σ2 = 
n s n s

n n
1 1

2
2 2

2

1 2

+
+

 to calculate σ;

 z = 
x x

n s n s
n n

1
n

1
n

1 2

1 1
2

2 2
2

1 2 1 2

−

+
+

+
F

HG
I

KJ

.

EXAMPLES

Example 1. The average income of persons was 210 with a standard deviation
of 10 in a sample of 100 people. For another sample of 150 people, the average
income was 220 with a standard deviation of 12. The standard deviation of
incomes of the people of the city was 11. Test whether there is any significant
difference between the average incomes of the localities.

Sol. Here n1 = 100, n2 = 150, x1  = 210, x2  = 220, s1 = 10, s2 = 12.

Null hypothesis. The difference is not significant, i.e., there is no difference
between the incomes of the localities.

  H0: x x1 2= , H1: x1 ≠ x2

Under H0,       z = 
x x

s
n

s
n

1 2

1
2

1

2
2

2

2 2

210 220

10
100

12
150

−

+

= −

+

 = – 7.1428 ∴ | z | = 7.1428.

Conclusion. As the calculated value of | z | > 1.96, the significant value
of z at 5% level of significance, H0 is rejected i.e., there is significant difference
between the average incomes of the localities.

Example 2. Intelligence tests were given to two groups of boys and girls.

Mean Standard deviation Size

Girls 75 8 60

Boys 73 10 100

Examine if the difference between mean scores is significant.
Sol. Null hypothesis H0: There is no significant difference between mean
scores, i.e., x1  = x2 .

H1: x1  ≠ x2

Under the null hypothesis  z = 
x x

s
n

s
n

1 2

1
2

1

2
2

2

2 2

75 73

8
60

10
100

−

+

= −

+

 = 1.3912.
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Conclusion. As the calculated value of | z | < 1.96, the significant value
of z at 5% level of significance, H0 is accepted i.e., there is no significant difference
between mean scores.

ASSIGNMENT 8.4

1. Intelligence tests on two groups of boys and girls gave the following results. Examine if
the difference is significant.

Mean Standard Deviation Size

Girls 70 10  70

Boys 75 11 100

2. Two random samples of 1000 and 2000 farms gave an average yield of 2000 kg and 2050
kg, respectively. The variance of wheat farms in the country may be taken as 100 kg.
Examine whether the two samples differ significantly in yield.

3. A sample of heights of 6400 soldiers has a mean of 67.85 inches and a standard devia-
tion of 2.56 inches. While another sample of heights of 1600 sailors has a mean of 68.55
inches with standard deviation of 2.52 inches. Do the data indicate that sailors are, on
the average, taller than soldiers?

4. In a survey of buying habits, 400 women shoppers are chosen at random in supermarket
A. Their average weekly food expenditure is 250 with a standard deviation of 40. For
500 women shoppers chosen at supermarket B, the average weekly food expenditure is
220 with a standard deviation of 45. Test at 1% level of significance whether the aver-
age food expenditures of the two groups are equal.

5. A random sample of 200 measurements from a large population gave a mean value of 50
and standard deviation of 9. Determine the 95% confidence interval for the mean of the
population.

6. The means of two large samples of 1000 and 2000 members are 168.75 cms and 170 cms,
respectively. Can the samples be regarded as drawn from the same population of stand-
ard deviation 6.25 cms?

8.10.5 Test of Significance for the Difference of Standard Deviations

If s1 and s2 are the standard deviations of two independent samples, then under
the null hypothesis H0: σ1 = σ2, i.e., the sample standard deviations don’t differ
significantly, the statistic
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z = 
s s

n n

1 2

1
2

1

2
2

22 2

−

+σ σ
, where σ1 and σ2 are population standard deviations.

When population standard deviations are not known, then z = 
s s

s
n

s
n

1 2

1
2

1

2
2

22 2

−

+

.

EXAMPLE

Example. Random samples drawn from two countries gave the following data
relating to the heights of adult males:

Country A Country B

Mean height (in inches) 67.42 67.25

Standard deviation 2.58 2.50

Number in samples 1000 1200

(i) Is the difference between the means significant?

(ii) Is the difference between the standard deviations significant?

Sol. Given: n1 = 1000, n2 = 1200, x1  = 67.42; x2  = 67.25, s1 = 2.58, s2 = 2.50

Since the samples size are large we can take σ1 = s1 = 2.58; σ2 = s2 = 2.50.

(i) Null hypothesis: H0 = μ1 = μ2 i.e., sample means do not differ
significantly.

Alternative hypothesis: H1: μ1 ≠ μ2 (two tailed test)

z = 
x x

s
n

s
n

1 2

1
2

1

2
2

2

2 2

67 42 67 25

2 58
1000

2 50
1200

−

+

= −

+

. .

( . ) ( . )
 = 1.56.

Since | z | < 1.96 we accept the null hypothesis at 5% level of significance.

(ii) We set up the null hypothesis.

H0: σ1 = σ2 i.e., the sample standard deviations do not differ significantly.

Alternative hypothesis: H1 = σ1 ≠ σ2 (two tailed)
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∴ The test statistic is given by

z = 
s s

n n

s s

s
n

s
n

1 2

1
2

1

2
2

2

1 2

1
2

1

2
2

22 2 2 2

−

+

= −

+σ σ

(∵ σ1 = s1, σ2 = s2 for large samples)

= 
2 58 2 50

2 58
2 1000

2 50
2 1200

0 08
6 6564
2000

6 25
2400

2 2

. .

( . ) ( . )

.
. .

−

×
×

×

=
+

 = 1.0387.

Since | z | < 1.96 we accept the null hypothesis at 5% level of significance.

ASSIGNMENT 8.5

1. The mean yield of two sets of plots and their variability are as given. Examine
(i) whether the difference in the mean yield of the two sets of plots is significant.

(ii) whether the difference in the variability in yields is significant.

Set of 40 plots Set of 60 plots

Mean yield per plot 1258 lb 1243 lb

Standard deviation per plot 34 28

2. The yield of wheat in a random sample of 1000 farms in a certain area has a standard
deviation of 192 kg. Another random sample of 1000 farms gives a standard deviation of
224 kg. Are the standard deviation significantly different ?

8.11 TEST OF SIGNIFICANCE OF SMALL SAMPLES

When the size of the sample is less than 30, then the sample is called small
sample. For such sample it will not be possible for us to assume that the random
sampling distribution of a statistic is approximately normal and the values
given by the sample data are sufficiently close to the population values and
can be used in their place for the calculation of the standard error of the estimate.
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t-TEST

8.12 STUDENT’S t-DISTRIBUTION

This t-distribution is used when sample size is ≤ 30 and the population standard
deviation is unknown.

t-statistic is defined as t = 
x

s n

− μ
/

 ~ t(n – 1 d. f) d.f–degrees of freedom

where s = Σ( )X X−
−

2

1n
.

8.12.1 The t-Table

The t-table given at the end is the probability integral of t-distribution. The
t-distribution has different values for each degrees of freedom and when the
degrees of freedom are infinitely large, the t-distribution is equivalent to normal
distribution and the probabilities shown in the normal distribution tables are
applicable.

8.12.2 Applications of t-Distribution

Some of the applications of t-distribution are given below:

1. To test if the sample mean ( )X  differs significantly from the hypothetical

value μ of the population mean.
2. To test the significance between two sample means.
3. To test the significance of observed partial and multiple correlation coeffi-

cients.

8.12.3 Critical Value of t

The critical value or significant value of t at level of significance α degrees of
freedom γ for two tailed test is given by

P[| t | > tγ (α)] = α

P[| t | ≤ tγ (α)] = 1 – α

The significant value of t at level of significance α for a single tailed test can
be determined from those of two-tailed test by referring to the values at 2α.
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8.13 TEST I: t-TEST OF SIGNIFICANCE OF THE MEAN OF A RANDOM

SAMPLE

To test whether the mean of a sample drawn from a normal population deviates
significantly from a stated value when variance of the population is unknown.

H0: There is no significant difference between the sample mean x  and the
population mean μ, i.e., we use the statistic

 t = 
X − μ
s n/

where X  is mean of the sample.

 s2 = 1
1

1

2

n
i

n

i−
−

=
∑ ( )X X  with degrees of freedom (n – 1).

At a given level of significance α1 and degrees of freedom (n – 1). We refer
to t-table tα (two-tailed or one-tailed). If calculated t value is such that | t | < tα
the null hypothesis is accepted. | t | > tα, H0 is rejected.

8.13.1 Fiducial Limits of Population Mean

If tα is the table of t at level of significance α at (n – 1) degrees of freedom.

X − μ
s n/

 < tα for acceptance of H0.

 x  – tα s/ n  < μ < x  + tα s/ n

95% confidence limits (level of significance 5%) are X  ± t0.05 s n/ .

99% confidence limits (level of significance 1%) are X  ± t0.01 s n/ .

Instead of calculating s, we calculate S for the sample.

Since s2 = 
1

1
1

2

n
i

n

i−
−

=
∑ ( )X X

∴ S2 = 
1

1

2

n
i

n

i
=
∑ −( )X X . | ∵ (n – 1)s2 = nS2

NOTE
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EXAMPLES

Example 1. A random sample of size 16 has 53 as mean. The sum of squares of
the derivation from mean is 135. Can this sample be regarded as taken from the
population having 56 as mean? Obtain 95% and 99% confidence limits of the
mean of the population.
Sol. H0: There is no significant difference between the sample mean and
hypothetical population mean.

H0: μ = 56;     H1: μ ≠ 56     (Two-tailed test)

t: 
X − μ
s n/

 ~ t(n – 1 difference)

Given:   X  = 53, μ = 56, n = 16, Σ(X X)− 2 = 135

s = Σ( )X X−
−

=
2

1
135
15n

 = 3; t = 
53 56

3 16

−
/

 = – 4

    | t | = 4 . d.fv. = 16 – 1 = 15.

Conclusion. t0.05 = 1.753.

Since | t | = 4 > t0.05 = 1.753, the calculated value of t is more than the table
value. The hypothesis is rejected. Hence, the sample mean has not come from
a population having 56 as mean.

95% confidence limits of the population mean

= X ± = ±s

n
t0.05 53

3

16
 (1.725) = 51.706; 54.293

99% confidence limits of the population mean

= X ± = ±s

n
t0 01 53

3

16
. , (2.602) = 51.048; 54.951.

Example 2. The lifetime of electric bulbs for a random sample of 10 from a
large consignment gave the following data:

Item 1 2 3 4 5 6 7 8 9 10

Life in ‘000’ hrs. 4.2 4.6 3.9 4.1 5.2 3.8 3.9 4.3 4.4 5.6

Can we accept the hypothesis that the average lifetime of a bulb is 4000 hrs?
Sol. H0: There is no significant difference in the sample mean and population
mean. i.e., μ = 4000 hrs.
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Applying the t-test:  t = 
X − μ
s n/

 ~ t(10 – 1 difference)

X 4.2 4.6 3.9 4.1 5.2 3.8 3.9 4.3 4.4 5.6

X – X – 0.2 0.2 – 0.5 – 0.3 0.8 – 0.6 – 0.5 – 0.1 0 1.2

( )X X− 2 0.04 0.04 0.25 0.09 0.64 0.36 0.25 0.01 0 1.44

X  = 
ΣX
n

= 44
10

 = 4.4 Σ(X X)2−  = 3.12

s = Σ(X X)2−
−

=
n 1

3 12
9
.  = 0.589; t = 4 4 4

0 589
10

.
.

−  = 2.123

For γ = 9, t0.05 = 2.26.

Conclusion. Since the calculated value of t is less than table t0.05. ∴ The
hypothesis μ = 4000 hrs is accepted, i.e., the average lifetime of bulbs could be
4000 hrs.
Example 3. A sample of 20 items has mean 42 units and standard deviation 5
units. Test the hypothesis that it is a random sample from a normal population
with mean 45 units.
Sol. H0: There is no significant difference between the sample mean and the
population mean. i.e.,  μ = 45 units

H1: μ ≠ 45 (Two tailed test)

Given: n = 20, X  = 42, S = 5; γ = 19 difference

 s2 = 
n

n −
=

−
L

N
M

O

Q
P1

20
20 1

2S (5)2 = 26.31 ∴ s = 5.129

Applying t-test   t = 
X − = −μ
s n/ . /

42 45
5 129 20

 = – 2.615; | t | = 2.615

The tabulated value of t at 5% level for 19 d.f. is t0.05 = 2.09.

Conclusion. Since | t | > t0.05, the hypothesis H0 is rejected, i.e., there is
significant difference between the sample mean and population mean.
i.e., the sample could not have come from this population.
Example 4. The 9 items of a sample have the following values 45, 47, 50, 52,
48, 47, 49, 53, 51. Does the mean of these values differ significantly from the
assumed mean 47.5?
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Sol. H0: μ = 47.5

i.e., there is no significant difference between the sample and population mean.

H1: μ ≠ 47.5 (two tailed test); Given: n = 9, μ = 47.5

X 45 47 50 52 48 47 49 53 51

X  – X – 4.1 – 2.1 0.9 2.9 – 1.1 – 2.1 – 0.1 3.9 1.9

( )X X− 2 16.81 4.41 0.81 8.41 1.21 4.41 0.01 15.21 3.61

X  = 
Σx
n

=
442

9
 = 49.11; Σ(X X)2−  = 54.89; s2 = 

Σ( )
( )
X X−

−

2

1n
 = 6.86

∴   s = 2.619

Applying t-test t = 
X − = −μ
s n/

. .
. /

49 1 47 5
2 619 8

 = 
( )

.
1.6 8
2 619

 = 1.7279

  t0.05 = 2.31 for γ = 8.

Conclusion. Since | t | < t0.05, the hypothesis is accepted i.e., there is no
significant difference between their mean.

ASSIGNMENT 8.6

1. Ten individuals are chosen at random from a normal population of students and their
scores found to be 63, 63, 66, 67, 68, 69, 70, 70, 71, 71. In the light of these data discuss
the suggestion that mean score of the population of students is 66.

2. The following values gives the lengths of 12 samples of Egyptian cotton taken from a
consignment: 48, 46, 49, 46, 52, 45, 43, 47, 47, 46, 45, 50. Test if the mean length of the
consignment can be taken as 46.

3. A sample of 18 items has a mean 24 units and standard deviation 3 units. Test the
hypothesis that it is a random sample from a normal population with mean 27 units.

4. A filling machine is expected to fill 5 kg of powder into bags. A sample of 10 bags gave
the following weights: 4.7, 4.9, 5.0, 5.1, 5.4, 5.2, 4.6, 5.1, 4.6, and 4.7. Test whether the
machine is working properly.

8.14 TEST II: t-TEST FOR DIFFERENCE OF MEANS OF TWO SMALL

SAMPLES (FROM A NORMAL POPULATION)

This test is used to test whether the two samples x1, x2, ......, xn1
, y1, y2, ......,

yn2
of sizes n1, n2 have been drawn from two normal populations with mean μ1
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and μ2 respectively, under the assumption that the population variance are
equal. (σ1 = σ2 = σ).

H0: The samples have been drawn from the normal population with means
μ1 and μ2, i.e., H0: μ1 ≠ μ2.

Let X , Y  be their means of the two samples.

Under this H0 the test of statistic t is given by

      t = 
(X Y)−

+s
n n
1 1

1 2

 ~ t(n1 + n2 – 2 difference)

1. If the two sample’s standard deviations s1, s2 are given, then we have

     s2 = n s n s
n n 2
1 1

2
2 2

2

1 2

+
+ −

.

2. If n1 = n2 = n, t = 
X Y

s s
n 1

1
2

2
2

−

+
−

 can be used as a test statistic.

3. If the pairs of values are in some way associated (correlated) we can’t use
the test statistic as given in Note 2. In this case, we find the differences of

the associated pairs of values and apply for single mean i.e., t = 
X

s/ n

− μ

with degrees of freedom n – 1.

The test statistic is

t = 
d

s n/

or t = 
d

s n/ − 1
, where d  is the mean of paired difference.

i.e.,         di = xi – yi

       di = X Y− , where (xi, yi) are the paired data i = 1, 2, ......, n.

NOTE
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EXAMPLES

Example 1. Two samples of sodium vapor bulbs were tested for length of life
and the following results were obtained:

Size Sample mean Sample S.D.

Type I 8 1234 hrs 36 hrs

Type II 7 1036 hrs 40 hrs

Is the difference in the means significant to generalize that Type I is superior
to Type II regarding length of life?

Sol.  H0: μ1 = μ2 i.e., two types of bulbs have same lifetime.

   H1: μ1 > μ2 i.e., type I is superior to Type II.

s2 = 
n s n s
n n
1 1

2
2 2

2

1 2

2 2

2
8 36 7 40

8 7 2
+

+ −
= +

+ −
( ) ( )

 = 1659.076

∴  s = 40.7317

The t-statistic  t = 
X X1 2

1 2

1 1

−

+s
n n

 = 
1234 1036

40 7317
1
8

1
7

−

+.

   = 18.1480 ~ t(n1 + n2 – 2 difference)

t0.05 at difference 13 is 1.77 (one tailed test).
Conclusion. Since calculated | t | > t0.05, H0 is rejected, i.e. H1 is accepted.
∴ Type I is definitely superior to Type II.

where X  = 
i

n
i

in=
∑

1

1 X
, Y  =

j

n
j

n=
∑

1 2

2 Y
; s2 = 

1
21 2

2 2

n n i j+ −
− + −[ ( ) ( ) ]Σ X X Y Y

is an unbiased estimate of the population variance σ2.
t follows t-distribution with n1 + n2 – 2 degrees of freedom.

Example 2. Samples of sizes 10 and 14 were taken from two normal populations
with standard deviation 3.5 and 5.2. The sample means were found to be 20.3
and 18.6. Test whether the means of the two populations are the same at 5%
level.

Sol.      H0: μ1 = μ2 i.e., the means of the two populations are the same.

   H1 : μ1 ≠ μ2.
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Given X  = 20.3, X 2  = 18.6; n1 = 10, n2 = 14, s1 = 3.5, s2 = 5.2

 s2 = 
n s n s
n n
1 1

2
2 2

2

1 2

2 2

2
10 3 5 14 5 2

10 14 2
+

+ −
= +

+ −
( . ) ( . )

 = 22.775 ∴ s = 4.772

 t = 
X X

1
1

1

−

+
= −

+
F

HG
I

KJ

2

2

1

20 3 18 6

1
10

1
14

4 772s
n n

. .

.

 = 0.8604

The value of t at 5% level for 22 difference is t0.05 = 2.0739.

Conclusion. Since | t | = 0.8604 < t0.05 the hypothesis is accepted, i.e.,
there is no significant difference between their means.
Example 3. The height of 6 randomly chosen sailors in inches is 63, 65, 68, 69,
71, and 72. Those of 9 randomly chosen soldiers are 61, 62, 65, 66, 69, 70, 71,
72, and 73. Test whether the sailors are, on average, taller than soldiers.

Sol. Let X1 and X2 be the two samples denoting the heights of sailors and
soldiers.

Given the sample size n1 = 6, n2 = 9, H0: μ1 = μ2,

i.e., the means of both populations are the same.

H1: μ1 > μ2 (one tailed test)

Calculation of two sample means:

X1 63 65 68 69 71 72

X1 – X1 – 5 – 3 0 1 3 4

(X X )1 1
2− 25 9 0 1 9 16

X1 = 
ΣX1

n1
 = 68; Σ(X X )1 1

2−  = 60

X2 61 62 65 66 69 70 71 72 73

X2 – X2 – 6.66 – 5.66 – 2.66 1.66 1.34 2.34 3.34 4.34 5.34

(X X )2 2
2− 44.36 32.035 7.0756 2.7556 1.7956 5.4756 11.1556 18.8356 28.5156

    X 2  = 
ΣX2

n2
 = 67.66; Σ(X X )2 2

2−  = 152.0002
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   s2 = 
1

21 2
1 1

2 2

n n+ −
− + −[ ( ) ( ) ]Σ ΣX X X X2 2

= 
1

6 9 2+ − [60 + 152.0002] = 16.3077 ∴ s = 4.038

Under H0,  t = 
X X1 2

1 2

1 1
68 67 666

4 0382
1
6

1
9

−

+
= −

+s
n n

.

.

= 0.3031 ~ t(n1 + n2 – 2 difference)
The value of t at 10% level of significance (∵ the test is one-tailed) for 13

difference is 1.77.

Conclusion. Since | t | = 0.3031 < t0.05 = 1.77, the hypothesis H0 is accepted.

There is no significan difference between their average.
The sailors are not, on average, taller than the soldiers.

Example 4. A certain stimulus administered to each of 12 patients resulted in
the following increase in blood pressure: 5, 2, 8, – 1, 3, 0, – 2, 1, 5, 0, 4, 6. Can it
be concluded that the stimulus will in general be accompanied by an increase
in blood pressure?
Sol. To test whether the mean increase in blood pressure of all patients to
whom the stimulus is administered will be positive, we have to assume that
this population is normal with mean μ and standard deviation σ which are
unknown.

H0: μ = 0; H1: μ1 > 0
The test statistic under H0

    t = 
d

s n/ − 1
 ~ t(n – 1 degrees of freedom)

 d  = 
5 2 8 1 3 0 6 2 1 5 0 4

12
+ + + − + + + + − + + + +( ) ( )

 = 2.583

   s2 = 
Σd

n
d

2
2 1

12
− =  [52 + 22 + 82 + (– 1)2 + 32 + 02 + 62

+ (– 2)2 + 12 + 52 + 02 + 42] – (2.583)2

= 8.744 ∴ s = 2.9571

 t = 
d

s n/

.

. /

.
.−

=
−

=
1

2583

2 9571 12 1

2583 11
2 9571

= 2.897 ~ t(n – 1 difference)
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Conclusion. The tabulated value of t0.05 at 11 difference is 2.2.

∵ | t | > t0.05, H0 is rejected.

i.e., the stimulus does not increase the blood pressure. The stimulus in general
will be accompanied by an increase in blood pressure.
Example 5. Memory capacity of 9 students was tested before and after a course
of meditation for a month. State whether the course was effective or not from
the data below (in same units):

Before 10 15 9 3 7 12 16 17 4

After 12 17 8 5 6 11 18 20 3

Sol. Since the data are correlated and concerned with the same set of students
we use paired t-test.

H0: Training was not effective μ1 = μ2

H1: μ1 ≠ μ2 (Two-tailed test).

Before training (X) After training (Y) d = X – Y d2

10 12 – 2 4

15 17 – 2 4

9 8 1 1

3 5 – 2 4

7 6 1 1

12 11 1 1

16 18 – 2 4

17 20 – 3 9

4 3 1 1

Σd = – 7 Σd2 = 29

 d  = 
Σd
n

= − 7
9

 = – 0.7778; s2 = 
Σd

n
d

2
2 29

9
− =( )  – (– 0.7778)2 = 2.617

         t = 
d

s n/

.

. /

.
.−

= − = − ×
1

0 7778

2 6172 8

0 7778 8
1 6177

 = – 1.359

The tabulated value of t0.05 at 8 difference is 2.31.

Conclusion. Since | t | = 1.359 < t0.05, H0 is accepted, training was not
effective in improving performance.
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Example 6. The following figures refer to observations in live independent
samples:

Sample I 25 30 28 34 24 20 13 32 22 38

Sample II 40 34 22 20 31 40 30 23 36 17

Analyse whether the samples have been drawn from the populations of equal
means.
Sol. H0: The two samples have been drawn from the population of equal means,
i.e., there is no significant difference between their means

i.e., μ1 = μ2

H1: μ1 ≠ μ2 (Two tailed test)

Given n1 = Sample I size = 10 ; n2 = Sample II size = 10

To calculate the two sample mean and sum of squares of deviation from
mean. Let X1 be the Sample I and X2 be the Sample II.

X1 25 30 28 34 24 20 13 32 22 38

X1 – X1 – 1.6 3.4 1.4 7.4 – 2.6 – 6.6 – 13.6 5.4 4.6 11.4

(X X )1 1
2− 2.56 11.56 1.96 54.76 6.76 43.56 184.96 29.16 21.16 129.96

X2 40 34 22 20 31 40 30 23 36 17

X2 – X2 10.7 4.7 – 7.3 – 9.3 1.7 10.7 0.7 – 6.3 6.7 – 12.3

(X X )2 2
2− 114.49 22.09 53.29 86.49 2.89 114.49 0.49 39.67 44.89 151.29

 X 1 = 
i

n=
∑

1

10
1

1

X
 = 26.6 X2  = 

i
n=

∑ =
1

10
2

2

293
10

X
 = 29.3

Σ( )X X1 1
2−  = 486.4 Σ( )X X2 2

2−  = 630.08

   s2 = 
1

21 2
1 1

2
2 2

2

n n+ −
− + −[ ( ) ( ) ]Σ ΣX X X X

= 
1

10 10 2+ −
 [486.4 + 630.08] = 62.026

∴  s = 7.875
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Under H0 the test statistic is given by

 t = 
X X1 2−

+
= −

+s
n n
1 1

26 6 29 3

7 875
1

10
1

101 2

. .

.

 = – 0.7666 ~ t(n1 + n2 – 2 difference)

 | t | = 0.7666.

Conclusion. The tabulated value of t at 5% level of significance for 18
difference is 2.1. Since the calculated value | t | = 0.7666 < t0.05, H0 is accepted.

There is no significant difference between their means.
The two samples have been drawn from the populations of equal means.

ASSIGNMENT 8.7

1. The mean life of 10 electric motors was found to be 1450 hrs with a standard deviation
of 423 hrs. A second sample of 17 motors chosen from a different batch showed a mean
life of 1280 hrs with a standard deviation of 398 hrs. Is there a significant difference
between means of the two samples ?

2. The scores obtained by a group of 9 regular course students and another group of 11
part time course students in a test are given below:

Regular: 56 62 63 54 60 51  67 69 58

Part time: 62 70 71 62 60  56 75 64 72 68 66

Examine whether the scores obtained by regular students and part time students differ
significantly at 5% and 1% level of significance.

3. A group of 10 boys fed on diet A and another group of 8 boys fed on a different diet B
recorded the following increase in weight (kgs):

Diet A: 5 6 8 1 12 4 3  9 6 10

Diet B: 2 3 6 8 10 1 2  8

Does it show the superiority of diet A over the diet B?

4. Two independent samples of sizes 7 and 9 have the following values:

Sample A: 10 12 10 13 14  11 10

Sample B: 10 13 15 12 10  14 11 12 11

Test whether the difference between the means is significant.

5. To compare the prices of a certain product in two cities, 10 shops were visited at random
in each city. The price was noted below:

City 1: 61 63 56 63 56 63  59 56 44 61

City 2: 55 54 47 59 51 61  57 54 64 58

Test whether the average prices can be said to be the same in two cities.
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6. The average number of articles produced by two machines per day are 200 and 250 with
standard deviation 20 and 25 respectively on the basis of records of 25 days production.
Are both  machines equally efficient at 5% level of significance?

8.15 SNEDECOR’S VARIANCE RATIO TEST OR F-TEST

In testing the significance of the difference of two means of two samples, we
assumed that the two samples came from the same population or populations
with equal variance. The object of the F-test is to discover whether two
independent estimates of population variance differ significantly or whether
the two samples may be regarded as drawn from the normal populations having
the same variance. Hence before applying the t-test for the significance of the
difference of two means, we have to test for the equality of population variance
by using  the F-test.

Let n1 and n2 be the sizes of two samples with variance s1
2 and s2

2. The

estimate of the population variance based on these samples is s1
2 = 

n s
n

1 1
2

1 1−  and

s
n s
n2

2 2 2
2

2 1
=

−
. The degrees of freedom of these estimates are ν1 = n1 – 1,

ν2 = n2 – 1.

To test whether these estimates, s1
2 and s2

2, are significantly different or if
the samples may be regarded as drawn from the same population or from two
populations with same variance σ2, we set-up the null hypothesis

H0: σ1
2 = σ2

2 = σ2,
i.e., the independent estimates of the common population do not differ
significantly.

To carry out the test of significance of the difference of the variances we

calculate the test statistic F = 
s

s
1
2

2
2 , the Numerator is greater than the

Denominator, i.e., s1
2 > s2

2.

Conclusion. If the calculated value of F exceeds F0.05 for (n1 – 1), (n2 – 1)
degrees of freedom given in the table, we conclude that the ratio is significant
at 5% level.

We conclude that the sample could have come from two normal population
with same variance.

The assumptions on which the F-test is based are:
1. The populations for each sample must be normally distributed.
2. The samples must be random and independent.
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3. The ratio of σ1
2 to σ2

2 should be equal to 1 or greater than 1. That is why
we take the larger variance in the Numerator of the ratio.

Applications. F-test is used to test
(i) whether two independent samples have been drawn from the normal

populations with the same variance σ2.
(ii) Whether the two independent estimates of the population variance are

homogeneous or not.

EXAMPLES

Example 1. Two random samples drawn from 2 normal populations are as
follows:

A 17 27 18 25 27 29 13 17

B 16 16 20 27 26 25 21

Test whether the samples are drawn from the same normal population.
Sol. To test if two independent samples have been drawn from the same
population we have to test (i) equality of the means by applying the t-test and
(ii) equality of population variance by applying F-test.

Since the t-test assumes that the sample variances are equal, we shall first
apply the F-test.

F-test. 1. Null hypothesis H0: σ1
2 = σ2

2 i.e., the population variance do
not differ significantly.

Alternative hypothesis. H1: σ1
2 ≠ σ2

2

Test statistic: F = 
s

s
1
2

2
2 , (if s1

2 > s2
2)

Computations for s1
2 and s2

2

X1 X1 – X1 (X X )1 1
2− X2  X2 – X2 (X X )2 2

2−

17 – 4.625 21.39 16 – 2.714 7.365

27 5.735 28.89 16 – 2.714 7.365

18 – 3.625 13.14 20 1.286 1.653

25 3.375 11.39 27 8.286 68.657

27 5.735 28.89 26 7.286 53.085

29 7.735 54.39 25 6.286 39.513

13 – 8.625 74.39 21 2.286 5.226

17 – 4.625 21.39
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X 1  = 21.625; n1 = 8; Σ(X X )1 1
2−  = 253.87

X 2 = 18.714; n2 = 7; Σ(X X )2 2
2−  = 182.859

s1
2 = 

Σ( ) .X X1 1
2

1 1
253 87

7
−
−

=
n

 = 36.267;

s2
2 = 

Σ( ) .X X2 2
2

2 1
182 859

6
−
−

=
n

 = 30.47

  F = 
s

s
1
2

2
2

36 267
30 47

= .
.

 = 1.190.

Conclusion. The table value of F for ν1 = 7 and ν2 = 6 degrees of freedom
at 5% level is 4.21. The calculated value of F is less than the tabulated value of
F. ∴ H0 is accepted. Hence we conclude that the variability in two populations
is same.

t-test: Null hypothesis. H0: μ1 = μ2 i.e., the population means are equal.

Alternative hypothesis. H1: μ1 ≠ μ2

Test of statistic

s2 = 
Σ Σ( ) ( ) . .X X X X1 1

2
2 2

2

1 2 2
253 87 182 859

8 7 2
− + −

+ −
= +

+ −n n
 = 33.594

∴      s = 5.796

  t = X X 21.6251 2

1 2

1 1

18 714

5 796 1
8

1
7

−

+
= −

+s
n n

.

.

 = 0.9704 ~ t(n1 + n2 – 2) difference

Conclusion. The tabulated value of t at 5% level of significance for 13
difference is 2.16.

The calculated value of t is less than the tabulated value. H0 is accepted,
i.e., there is no significant difference between the population mean. i.e.,
μ1 = μ2. ∴ We conclude that the two samples have been drawn from the
same normal population.
Example 2. Two independent sample of sizes 7 and 6 had the following values:

Sample A 28 30 32 33 31 29 34

Sample B 29 30 30 24 27 28

Examine whether the samples have been drawn from normal populations
having the same variance.
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Sol. H0: The variance are equal. i.e., σ1
2 = σ2

2

i.e., the samples have been drawn from normal populations with same variance.
H1: σ1

2 ≠ σ2
2

Under null hypothesis, the test statistic F = 
s

s
1
2

2
2 (s1

2 > s2
2)

Computations for s1
2 and s2

2

X1 X1 – X1 (X X )1 1
2− X2 X2 – X2 (X X )2 2

2−

28 – 3 9 29 1 1

30 – 1 1 30 2 4

32 1 1 30 2 4

33 2 4 24 – 4 16

31 0 0 27 – 1 1

29 – 2 4 28 0 0

34 3 9

28 26

 X 1  = 31,    n1 = 7; Σ(X X )1 1
2−  = 28

 X2 = 28,  n2 = 6; Σ(X X )2 2
2−  = 26

 s1
2 = 

Σ( )X X1 1
2

1 1
28
6

−
−

=
n

 = 4.666;   s2
2 = 

Σ( )X X

2

2 2
2

1
26
5

−
−

=
n

 = 5.2

   F = 
s

s
2

2

1
2

5 2
4 666

= .
.

 = 1.1158. (∵ s2
2 > s1

2)

Conclusion. The tabulated value of F at ν1 = 6 – 1 and ν2 = 7 – 1 difference
for 5% level of significance is 4.39. Since the tabulated value of F is less than
the calculated value, H0 is accepted, i.e., there is no significant difference
between the variance. The samples have been drawn from the normal population
with same variance.
Example 3. The two random samples reveal the following data:

Sample number Size Mean Variance

I 16 440 40

II 25 460 42

Test whether the samples come from the same normal population.
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Sol. A normal population has two parameters namely the mean μ and the
variance σ2. To test whether the two independent samples have been drawn
from the same normal population, we have to test
(i) the equality of means (ii) the equality of variance.

Since the t-test assumes that the sample variance are equal, we first apply
F-test.

F-test: Null hypothesis. σ1
2 = σ2

2

The population variance do not differ significantly.

Alternative hypothesis. σ1
2 ≠ σ2

2

Under the null hypothesis the test statistic is given by F = 
s

s
1
2

2
2

, (s1
2 > s2

2)

Given: n1 = 16, n2 = 25; s1
2 = 40, s2

2 = 42

∴   F = 
s

s

n s
n

n s
n

1
2

2
2

1 1
2

1

2 2
2

2

1

1

=
−

−

 = 
16 40

15
24

25 42
× ×

×
 = 0.9752.

Conclusion. The calculated value of F is 0.9752. The tabulated value of
F at 16 – 1, 25 – 1 difference for 5% level of significance is 2.11.

Since the calculated value is less than that of the tabulated value, H0 is
accepted, the population variance are equal.

t-test: Null hypothesis. H0: μ1 = μ2 i.e., the population means are equal.

Alternative hypothesis. H1: μ1 ≠ μ2

Given: n1 = 16, n2 = 25, X 1  = 440, X 2  = 460

 s2 = 
n s n s
n n
1 1

2
2 2

2

1 2 2
16 40 25 42

16 25 2
+

+ −
= × + ×

+ −
 = 43.333

∴  s = 6.582

 t = 
X X1 2−

+
= −

+s
n n
1 1

440 460

6 582 1
16

1
251 2

.

= – 9.490 for (n1 + n2 – 2) difference

Conclusion. The calculated value of | t | is 9.490. The tabulated value of
t at 39 difference for 5% level of significance is 1.96.
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Since the calculated value is greater than the tabulated value, H0 is rejected,
i.e., there is significant difference between means. i.e., μ1 ≠ μ2.

Since there is significant difference between means, and no significant
difference between variance, we conclude that the samples do not come from
the same normal population.

ASSIGNMENT 8.8

1. From the following two sample values, find out whether they have come from the same
population:

Sample 1 17 27 18 25 27 29 27 23 17

Sample 2 16 16 20 16 20 17 15 21

2. The daily wages in Rupees of skilled workers in two cities are as follows:

Size of sample of workers Standard deviation of wages in the sample

City A 16 25

City B 13 32

3. The standard deviation calculated from two random samples of sizes 9 and 13 are 2.1
and 1.8 respectively. Can the samples be regarded as drawn from normal populations
with the same standard deviation?

4. Two independent samples of size 8 and 9 had the following values of the variables:

Sample I 20 30 23 25 21 22 23 24

Sample II 30 31 32 34 35 29 28 27 26

Do the estimates of the population variance differ significantly?

8.16 CHI-SQUARE (χ2

) TEST

When a coin is tossed 200 times, the theoretical considerations lead us to expect
100 heads  and  100  tails.  But  in  practice,  these  results  are  rarely  achieved.
The quantity χ2 (a Greek letter, pronounced as chi-square) describes the
magnitude of discrepancy between theory and observation. If χ = 0, the observed
and expected frequencies completely coincide. The greater the discrepancy
between the observed and expected frequencies, the greater is the value of χ2.
Thus χ2 affords a measure of the correspondence between theory and
observation.
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If Oi (i = 1, 2, ......, n) is a set of observed (experimental) frequencies and Ei
(i = 1, 2, ......, n) is the corresponding set of expected (theoretical or hypothetical)
frequencies, then, χ2 is defined as

χ2 = 
i

n
i i

i=
∑

−L

N
M
M

O

Q
P
P1

2( )O E
E

where ΣOi = ΣEi = N (total frequency) and degrees of freedom (difference)

= (n – 1).

 (i) If χ2 = 0, the observed and theoretical frequencies agree exactly.

(ii) If χ2 > 0 they do not agree exactly.

8.16.1 Degrees of Freedom

While comparing the calculated value of χ2 with the table value, we have to
determine the degrees of freedom.

If we have to choose any four numbers whose sum is 50, we can exercise
our independent choice for any three numbers only, the fourth being 50 minus
the total of the three numbers selected. Thus, though we were to choose any
four numbers, our choice was reduced to three because of one condition imposed.
There was only one restraint on our freedom and our degrees of freedom were
4 – 1 = 3. If two restrictions are imposed, our freedom to choose will be further
curtailed and degrees of freedom will be 4 – 2 = 2.

In general, the number of degrees of freedom is the total number of
observations less the number of independent constraints imposed on the
observations. Degrees of freedom (difference) are usually denoted by ν (the
letter ‘nu’ of the Greek alphabet).

Thus, ν = n – k, where k is the number of independent constraints in a set
of data of n observations.

(i) For a p × q contingency table (p columns and q rows), ν = (p – 1) (q – 1)

(ii) In the case of a contingency table, the expected frequency of any class

     = 
Total of rows in which it occurs Total of columns in which it occurs

Total number of observations
×

8.16.2 Applications

χ2 test is one of the simplest and the most general test known. It is applicable
to a very large number of problems in practice which can be summed up under
the following heads:

NOTE

NOTE
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(i) as a test of goodness of fit.
(ii) as a test of independence of attributes.

(iii) as a test of homogeneity of independent estimates of the population variance.
(iv) as a test of the hypothetical value of the population variance s2.
(v) as a list to the homogeneity of independent estimates of the population

correlation coefficient.

8.16.3 Conditions for Applying χχχχχ2 Test

Following are the conditions which should be satisfied before χ2 test can be
applied:
(a) N, the total number of frequencies should be large. It is difficult to say

what constitutes largeness, but as an arbitrary figure, we may say that N
should be atleast 50, however small the number of cells.

(b) No theoretical cell-frequency should be small. Here again, it is difficult to
say what constitutes smallness, but 5 should be regarded as the very
minimum and 10 is better. If small theoretical frequencies occur (i.e., < 10),
the difficulty is overcome by grouping two or more classes together before
calculating (O – E). It is important to remember that the number of
degrees of freedom is determined with the number of classes after
regrouping.

(c) The constraints on the cell frequencies, if any, should be linear.

If any one of the theoretical frequency is less than 5, then we apply a corrected
given by F Yates, which is usually known as ‘Yates correction for continuity’,
we add 0.5 to the cell frequency which is less than 5 and adjust the remaining
cell frequency suitably so that the marginal total is not changed.

8.17 THE χ2

 DISTRIBUTION

For large sample sizes, the sampling distribution of χ2 can be closely
approximated by a continuous curve known as the chi-square distribution. The
probability function of χ2 distribution is given by

f(χ2) = c(χ2)(ν/2–1) e x− 2 2/

where e = 2.71828, ν = number of degrees of freedom; c = a constant depending
only on ν.

Symbolically, the degrees of freedom are denoted by the symbol ν or by
difference and are obtained by the rule ν = n – k, where k refers to the number
of independent constraints.

NOTE
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In general, when we fit a binomial distribution the number of degrees of
freedom is one less than the number of classes; when we fit a Poisson distribution
the degrees of freedom are 2 less than the number of classes, because we use
the total frequency and the arithmetic mean to get the parameter of the Poisson
distribution. When we fit a normal curve the number of degrees of freedom are
3 less than the number of classes, because in this fitting we use the total
frequency, mean and standard deviation.

If the data is given in a series of “n” numbers then degrees of freedom

= n – 1.

In the case of Binomial distribution difference = n – 1

In the case of Poisson distribution difference = n – 2

In the case of Normal distribution difference = n – 3.

8.18 χ2

 TEST AS A TEST OF GOODNESS OF FIT

χ2 test enables us to ascertain how well the theoretical distributions such as
Binomial, Poisson or Normal etc. fit empirical distributions, i.e., distributions
obtained from sample data. If the calculated value of χ2 is less than the
table value at a specified level (generally 5%) of significance, the fit is
considered to be good, i.e., the divergence between actual and expected
frequencies is attributed to fluctuations of simple sampling. If the calculated
value of χ2 is greater than the table value, the fit is considered to be poor.

EXAMPLES

Example 1. The following table gives the number of accidents that took place
in an industry during various days of the week. Test if accidents are uniformly
distributed over the week.

Day Mon Tue Wed Thu Fri Sat

Number of accidents 14 18 12 11 15 14

Sol. Null hypothesis H0: The accidents are uniformly distributed over the
week.

Under this H0, the expected frequencies of the accidents on each of these

days = 
84
6

 = 14
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Observed frequency Oi 14 18 12 11 15 14

Expected frequency Ei 14 14 14 14 14 14

(Oi – Ei)
2 0 16 4 9 1 0

 χ2 = 
Σ( )O E

E
i i

i

−
=

2 30
14

 = 2.1428.

Conclusion. Table value of χ2 at 5% level for (6 – 1 = 5 d.f.) is 11.09.

Since the calculated value of χ2 is less than the tabulated value, H0 is
accepted, the accidents are uniformly distributed over the week.

Example 2. A die is thrown 270 times and the results of these throws are given
below:

Number appeared on the die 1 2 3 4 5 6

Frequency 40 32 29 59 57 59

Test whether the die is biased or not.

Sol. Null hypothesis H0: Die is unbiased.

Under this H0, the expected frequencies for each digit is 
276
6

 = 46.

To find the value of χ2

Oi 40 32 29 59 57 59

Ei 46 46 46 46 46 46

(Oi – Ei)
2 36 196 289 169 121 169

 χ2 = 
Σ( )O E

E
i i

i

−
=

2 980
46

 = 21.30.

Conclusion. Tabulated value of χ2 at 5% level of significance for (6 – 1 = 5)
d.f. is 11.09. Since the calculated value of χ2 = 21.30 > 11.07 the tabulated
value, H0 is rejected.
i.e., die is not unbiased or die is biased.
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Example 3. The following table shows the distribution of digits in numbers
chosen at random from a telephone directory:

Digits 0 1 2 3 4 5 6 7 8 9

Frequency 1026 1107 997 966 1075 933 1107 972 964 853

Test whether the digits may be taken to occur equally frequently in the
directory.
Sol. Null hypothesis H0: The digits taken in the directory occur equally
frequently.

i.e., there is no significant difference between the observed and expected
frequency.

Under H0, the expected frequency is given by = 
10 000

10
,

 = 1000

To find the value of χ2

Oi 1026 1107 997 996 1075 1107 933 972 964 853

Ei 1000 1000 1000 1000 1000 1000 1107 1000 1000 1000

(Oi – Ei)
2 676 11449 9 1156 5625 11449 4489 784 1296 21609

χ2 = 
Σ( )O E

E
i i

i

− =
2 58542

1000
 = 58.542.

Conclusion. The tabulated value of χ2 at 5% level of significance for 9
difference is 16.919. Since the calculated value of χ2 is greater than the tabulated
value, H0 is rejected.

There is significant difference between the observed and theoretical
frequency.

The digits taken in the directory do not occur equally frequently.

Example 4. Records taken of the number of male and female births in 800
families having four children are as follows:

Number of male births 0 1 2 3 4

Number of female births 4 3 2 1 0

Number of families 32 178 290 236 94

Test whether the data are consistent with the hypothesis that the Binomial
law holds and the chance of male birth is equal to that of female birth, namely
p = q = 1/2.
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Sol. H0: The data are consistent with the hypothesis of equal probability for
male and female births, i.e., p = q = 1/2.

We use Binomial distribution to calculate theoretical frequency given by:

 N(r) = N × P(X = r)

where N is the total frequency. N(r) is the number of families with r male
children:

 P(X = r) = nCrp
rqn–r

where p and q are probability of male and female births, n is the number of
children.

N(0) = Number of families with 0 male children = 800 × 4C0 
1
2

4
F
HG
I
KJ

        = 800 × 1 × 
1

24  = 50

N(1) = 800 × 4C1 
1
2

1
2

1 3
F
HG
I
KJ
F
HG
I
KJ

 = 200; N(2) = 800 × 4C2 
1
2

1
2

2 2
F
HG
I
KJ
F
HG
I
KJ

 = 300

N(3) = 800 × 4C3 
1
2

1
2

1 3
F
HG
I
KJ
F
HG
I
KJ

 = 200; N(4) = 800 × 4C4 
1
2

1
2

0 4
F
HG
I
KJ
F
HG
I
KJ

 = 50

Observed frequency Oi 32 178 290 236 94

Expected frequency Ei 50 200 300 200 50

(Oi – Ei)
2 324 484 100 1296 1936

(O E )
E

i i
2

i

−
6.48 2.42 0.333 6.48 38.72

χ2 = 
Σ( )O E

E
i i

i

− 2

 = 54.433.

Conclusion. Table value of χ2 at 5% level of significance for 5 – 1 = 4
difference is 9.49.

Since the calculated value of χ2 is greater than the tabulated value, H0 is
rejected.
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The data are not consistent with the hypothesis that the Binomial law
holds and that the chance of a male birth is not equal to that of a female birth.

Since the fitting is Binomial, the degrees of freedom
ν = n – 1 i.e., ν = 5 – 1 = 4.

Example 5. Verify whether Poisson distribution can be assumed from the data
given below:

Number of defects 0 1 2 3 4 5

Frequency 6 13 13 8 4 3

Sol. H0: Poisson fit is a good fit to the data.

Mean of the given distribution = 
Σ
Σ
f x
f
i i

i
=

94
47

 = 2

To fit a Poisson distribution we require m. Parameter m = x  = 2.

By Poisson distribution the frequency of r success is

 N(r) = N × e–m . 
m
r

r

!
, N is the total frequency.

N(0) = 47 × e–2 . 
( )

!
2
0

0

 = 6.36 ≈ 6; N(1) = 47 × e–2 . 
( )

!
2
1

1

 = 12.72 ≈ 13

N(2) = 47 × e–2 . 
( )

!
2
2

2

 = 12.72 ≈ 13; N(3) = 47 × e–2 . 
( )

!
2
3

3

 = 8.48 ≈ 9

N(4) = 47 × e–2 . 
( )

!
2
4

4

 = 4.24 ≈ 4; N(5) = 47 × e–2 . 
( )

!
2
5

5

 = 1.696 ≈ 2.

X 0 1 2 3 4 5

Oi 6 13 13 8 4 3

Ei 6.36 12.72 12.72 8.48 4.24 1.696

(O E )
E

i i
2

i

−
0.2037 0.00616 0.00616 0.02716 0.0135 1.0026

χ2 = 
Σ( )O E

E
i i

i

− 2

 = 1.2864.

NOTE
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Conclusion. The calculated value of χ2 is 1.2864. Tabulated value of χ2 at
5% level of significance for γ = 6 – 2 = 4 d.f. is 9.49. Since the calculated value of
χ2 is less than that of tabulated value. H0 is accepted i.e., Poisson distribution
provides a good fit to the data.
Example 6. The theory predicts the proportion of beans in the four groups, G1,
G2, G3, G4 should be in the ratio 9: 3: 3: 1. In an experiment with 1600 beans the
numbers in the four groups were 882, 313, 287 and 118. Does the experimental
result support the theory.
Sol. H0: The experimental result support the theory. i.e., there is no significant
difference between the observed and theoretical frequency under H0, the
theoretical frequency can be calculated as follows:

 E(G1) = 
1600 9

16
×

 = 900; E(G2) = 
1600 3

16
×

 = 300;

 E(G3) = 
1600 3

16
×

 = 300; E(G4) = 
1600 1

16
×

 = 100

To calculate the value of χ2.

Observed frequency Oi 882 313 287 118

Expected frequency Ei 900 300 300 100

(O E )
E

i i
2

i

−
0.36 0.5633 0.5633 3.24

χ2 = Σ( )O E
E

i i

i

− 2
 = 4.7266.

Conclusion. The table value of χ2 at 5% level of significance for 3 difference
is 7.815. Since the calculated value of χ2 is less than that of the tabulated
value. Hence H0 is accepted and the experimental results support the theory.

ASSIGNMENT 8.9

1. The following table gives the frequency of occupance of the digits 0, 1, ......, 9 in the last
place in four logarithm of numbers 10–99. Examine if there is any peculiarity.

Digits: 0 1 2 3 4 5 6 7 8 9

Frequency: 6 16 15 10 12 12 3 2 9 5

2. The sales in a supermarket during a week are given below. Test the hypothesis that the
sales do not depend on the day of the week, using a significant level of 0.05.

Days: Mon Tues Wed Thurs Fri Sat

Sales: 65 54 60 56 71 84
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3. A survey of 320 families with 5 children each revealed the following information:

Number of boys: 5 4 3 2 1 0

Number of girls: 0 1 2 3 4 5

Number of families: 14 56 110 88 40 12

Is this result consistent with the hypothesis that male and female births are equally
probable?

4. 4 coins were tossed at a time and this operation is repeated 160 times. It is found that 4
heads occur 6 times, 3 heads occur 43 times, 2 heads occur 69 times, one head occurs 34
times. Discuss whether the coin may be regarded as unbiased?

5. Fit a Poisson distribution to the following data and best the goodness of fit:

x: 0 1 2 3 4

f : 109 65 22 3 1

6. In the accounting department of bank, 100 accounts are selected at random and esti-
mated for errors. The following results were obtained:

Number of errors: 0 1 2 3 4 5 6

Number of accounts: 35 40 19 2 0 2 2

Does this information verify that the errors are distributed according to the Poisson
probability law?

7. In a sample analysis of examination results of 500 students, it was found that 180
students failed, 170 secured a third class, 90 secured a second class and the rest, a first
class. Do these figures support the general belief that the above categories are in the
ratio 4:3:2:1, respectively?

8. What is χ2–test?
A die is thrown 90 times with the following results:

Face: 1 2 3 4 5 6 Total

Frequency: 10 12 16 14 18 20 90

Use χ2-test to test whether these data are consistent with the hypothesis that die is
unbiased.

Given χ2
0.05 = 11.07 for 5 degrees of freedom.

9. A survey of 320 families with 5 children shows the following distribution:

Number of boys 5 boys 4 boys 3 boys 2 boys 1 boy 0 boy Total
& girls: & 0 girl & 1 girl & 2 girls & 3 girls & 4 girls & 5 girls

Number of
families: 18 56 110 88 40 8 320

Given that values of χ2 for 5 degrees of freedom are 11.1 and 15.1 at 0.05 and 0.01
significance level respectively, test the hypothesis that male and female births are equally
probable.
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8.19 χ2

 TEST AS A TEST OF INDEPENDENCE

With the help of χ2 test, we can find whether or not two attributes are associated.
We take the null hypothesis that there is no association between the attributes
under study, i.e., we assume that the two attributes are independent. If
the calculated value of χ2 is less than the table value at a specified level
(generally 5%) of significance, the hypothesis holds good, i.e., the attributes
are independent and do not bear any association. On the other hand, if the
calculated value of χ2 is greater than the table value at a specified level of
significance, we say that the results of the experiment do not support the
hypothesis. In other words, the attributes are associated. Thus a very useful
application of χ2 test is to investigate the relationship between trials or attributes
which can be classified into two or more categories.

The sample data set out into two-way table, called contingency table.
Let us consider two attributes A and B divided into r classes A1, A2, A3,

......, Ar , and B divided into s classes B1, B2, B3, ......, Bs. If (Ai), (Bj) represents
the number of persons possessing the attributes Ai, Bj respectively, (i = 1, 2,
......, r, j = 1, 2, ......, s) and (Ai Bj) represent the number of persons possessing

attributes Ai and Bj. Also we have 
i

r

i
j

s

j
= =
∑ ∑=

1 1

A B  = N where N is the total

frequency. The contingency table for r × s is given below:

A A1 A2 A3 ...Ar Total

B

B1 (A1B1) (A2B1) (A3B1) ......(ArB1) B1

B2 (A1B2) (A2B2) (A3B2) ......(ArB2) B2

B3 (A1B3) (A2B3) (A3B3) ......(ArB3) B3

...... ...... ...... ...... ...... ......

...... ...... ...... ...... ...... ......

Bs (A1Bs) (A2Bs) (A3Bs) ......(ArBs) (Bs)

Total (A1) (A2) (A3) ......(Ar) N

H0: Both the attributes are independent. i.e., A and B are independent
under the null hypothesis, we calculate the expected frequency as follows:

P(Ai) = Probability that a person possesses the attribute

Ai = 
( )A
N

i  i = 1, 2, ......, r

   P(Bj) = Probability that a person possesses the attribute Bj = 
( )B

N
j
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P(AiBj) = Probability that a person possesses both attributes Ai and Bj

  = 
( )A B

N
i j

If (AiBj)0 is the expected number of persons possessing both the attributes
Ai and Bj

(AiBj)0 = NP(AiBj) = NP(Ai)(Bj)

= N 
( ) ( ) ( )( )A

N

B

N

A B

N
i j i j= (∵ A and B are independent)

Hence  χ2 = 
i

r

j

s
i j i j

i j= =
∑ ∑

−L

N
M
M

O

Q
P
P1 1

0
2

0

[( ) ( ) ]

( )

A B A B

A B

which is distributed as a χ2 variate with (r – 1)(s – 1) degrees of freedom.

1. For a 2 × 2 contingency table where the frequencies are 
a b
c d
/
/

, χ2 can be

calculated from independent frequencies as

χ2 = (a b c d)(ad bc)
(a b)(c d)(b d)(a c)

2+ + + −
+ + + +

.

2. If the contingency table is not 2 × 2, then the formula for calculating χ2

as given in Note 1, can’t be used. Hence, we have another formula for

calculating the expected frequency (AiBj)0 = 
(A )(B )

N
i j  i.e., expected

frequency in each cell is = 
Product of column total and row total

whole total
.

3. If   
a b
c d
|
|

 is the 2 × 2 contingency table with two attributes, Q = 
ad bc
ad bc

−
+  is

called the coefficient of association. If the attributes are independent

then 
a
b

c
d

= .

4. Yates’s Correction. In a 2 × 2 table, if the frequencies of a cell is small,
we make Yates’s correction to make χ2 continuous.

Decrease by 
1
2

 those cell frequencies which are greater than expected

frequencies, and increase by 
1
2

 those which are less than expectation.

This will not affect the marginal columns. This correction is known as
Yates’s correction to continuity.

NOTE
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After Yates’s correction χ2 = 
N bc ad

1
2

N

(a c)(b d)(c d)(a b)

2

− −F
HG

I
KJ

+ + + +
  when ad – bc < 0

      χ2 = 
N ad bc

1
2

N

(a c)(b d)(c d)(a b)

2

− −F
HG

I
KJ

+ + + +
when ad – bc > 0.

EXAMPLES

Example 1. What are the expected frequencies of 2 × 2 contingency tables given
below:

a b 2 10
(i) (ii)

c d 6 6

Sol. Observed frequencies Expected frequencies

 (i) a b a + b
( )( )a c a b
a b c d

+ +
+ + +

( )( )b d a b
a b c d

+ +
+ + +

c d c + d

a + c b + d a + b + c + d = N
( )( )a c c d
a b c d

+ +
+ + +

( )( )b d c d
a b c d

+ +
+ + +

Observed frequencies Expected frequencies

(ii) 2 10 12
8 12

24
×

 = 4
16 12

24
×

 = 8

6 6 12

8 16 24
8 12

24
×

 = 4
16 12

24
×

 = 8

Example 2. From the following table regarding the color of eyes of father and
son test if the color of son’s eye is associated with that of the father.

Eye color of son

Light Not light

Eye color of father Light 471 51

Not light 148 230

→
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Sol. Null hypothesis H0: The color of son’s eye is not associated with that of
the father, i.e., they are independent.

Under H0, we calculate the expected frequency in each cell as

= 
Product of column total and row total

Whole total

Expected frequencies are:

Eye color
of son Light Not light Total

Eye color
of father

Light
619 522

900
×

 = 359.02
289 522

900
×

 = 167.62 522

Not light
619 378

900
×

 = 259.98
289 378

900
×

 = 121.38 378

Total 619 289 900

χ2 = 
(471 359.02)

359.02
(51 167.62)

167.62
(148 259.98)

259.98
(230 121.38)

121.38

2 2 2 2− + − + − + −

 = 261.498.
Conclusion. Tabulated value of χ2 at 5% level for 1 difference is 3.841.
Since the calculated value of χ2 > tabulated value of χ2, H0 is rejected. They

are dependent, i.e., the color of son’s eye is associated with that of the father.
Example 3. The following table gives the number of good and bad parts
produced by each of the three shifts in a factory:

Good parts Bad parts Total

Day shift 960 40 1000

Evening shift 940 50 990

Night shift 950 45 995

Total 2850 135 2985

Test whether or not the production of bad parts is independent of the shift
on which they were produced.
Sol. Null hypothesis H0: The production of bad parts is independent of the
shift on which they were produced.

The two attributes, production and shifts are independent.
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Under H0, χ2 = 
i j

i j i j

i j= =
∑ ∑

−L

N
M
M

O

Q
P
P1

2

1

3
0

2

0

[( ) ( )]

( )

A B A B

A B

Calculation of expected frequencies

Let A and B be the two attributes namely production and shifts. A is divided
into two classes A1, A2 and B is divided into three classes B1, B2, B3.

 (A1B1)0 = 
( )( ) ( ) ( )A B

N
1 2 2850 1000

2985
= ×

 = 954.77;

 (A1B2)0 = 
( )( ) ( ) ( )A B

N
1 2 2850 990

2985
= ×

 = 945.226

 (A1B3)0 = 
( )( ) ( ) ( )A B

N
1 3 2850 995

2985
=

×
 = 950;

 (A2B1)0 = 
( )( ) ( ) ( )A B

N
2 1 135 1000

2985
= ×

 = 45.27

 (A2B2)0 = 
( )( ) ( ) ( )A B

N
2 2 135 990

2985
= ×

 = 44.773;

 (A2B3)0 = 
( )( ) ( ) ( )A B

N
2 3 135 995

2985
=

×
 = 45.

To calculate the value of χ2

Class Oi Ei (Oi – Ei)
2 (Oi – Ei)

2/Ei

(A1B1) 960 954.77 27.3529 0.02864

(A1B2) 940 945.226 27.3110 0.02889

(A1B3) 950 950 0 0

(A2B1) 40 45.27 27.7729 0.61349

(A2B2) 50 44.773 27.3215 0.61022

(A2B3) 45 45 0 0

1.28126

Conclusion. The tabulated value of χ2 at 5% level of significance for 2
degrees of freedom (r – 1)(s – 1) is 5.991. Since the calculated value of χ2 is less
than the tabulated value, we accept H0, i.e., the production of bad parts is
independent of the shift on which they were produced.
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ASSIGNMENT 8.10

1. In a locality 100 persons were randomly selected and asked about their educational
achievements. The results are given below:

Education

Middle High school College

Sex Male 10 15 25

Female 25 10 15

Based on this information can you say the education depends on sex.
2. The following data is collected on two characters:

Smokers Non smokers

Literate 83 57

Illiterate 45 68

Based on this information can you say that there is no relation between habit of smok-
ing and literacy.

3. In an experiment on the immunisation of goats from anthrax, the following results were
obtained. Derive your inferences on the efficiency of the vaccine.

Died anthrax Survived

Inoculated with vaccine 2 10

Not inoculated 6 6
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TABLE 1: Significant values tv (ααααα) of t-distribution (Two Tail Areas)
[| t | > tv(α)] = α

difference Probability (Level of significance)

(ν) 0.50 0.10 0.05 0.02 0.01 0.001

1 1.00 6.31 12.71 31.82 63.66 636.62
2 0.82 0.92 4.30 6.97 6.93 31.60
3 0.77 2.32 3.18 4.54 5.84 12.94
4 0.74 2.13 2.78 3.75 4.60 8.61
5 0.73 2.02 2.57 3.37 4.03 6.86

6 0.72 1.94 2.45 3.14 3.71 5.96
7 0.71 1.90 2.37 3.00 3.50 5.41
8 0.71 1.80 2.31 2.90 3.36 5.04
9 0.70 1.83 2.26 2.82 3.25 4.78

10 0.70 1.81 2.23 2.76 3.17 4.59

11 0.70 1.80 2.20 2.72 3.11 4.44
12 0.70 1.78 2.18 2.68 3.06 4.32
13 0.69 1.77 2.16 2.65 3.01 4.22
14 0.69 1.76 2.15 2.62 2.98 4.14
15 0.69 1.75 2.13 2.60 2.95 4.07

16 0.69 1.75 2.12 2.58 2.92 4.02
17 0.69 1.74 2.11 2.57 2.90 3.97
18 0.69 1.73 2.10 2.55 2.88 3.92
19 0.69 1.73 2.09 2.54 2.86 3.88
20 0.69 1.73 2.09 2.53 2.85 3.85

21 0.69 1.72 2.08 2.52 2.83 3.83
22 0.69 1.72 2.07 2.51 2.82 3.79
23 0.69 1.71 2.07 2.50 2.81 3.77
24 0.69 1.71 2.06 2.49 2.80 3.75
25 0.68 1.71 2.06 2.49 2.79 3.73

26 0.68 1.71 2.06 2.48 2.78 3.71
27 0.68 1.70 2.05 2.47 2.77 3.69
28 0.68 1.70 2.05 2.47 2.76 3.67
29 0.68 1.70 2.05 2.46 2.76 3.66
30 0.68 1.70 2.04 2.46 2.75 3.65

∞ 0.67 1.65 1.96 2.33 2.58 3.29
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TABLE 3: CHI-SQUARE DISTRIBUTION
Significant Values χ2 (α) of Chi-Square Distribution Right Tail Areas for

Given Probability α, P = Pr (χ2 > χ2 (α)) = α And ν Degrees of Freedom
(difference)

Degrees Probability (Level of significance)
of
freedom

(ν) 0 = .99 0.95 0.50 0.10 0.05 0.02 0.01

1 .000157 .00393 .455 2.706 3.841 5.214 6.635
2 .0201 .103 1.386 4.605 5.991 7.824 9.210
3 .115 .352 2.366 6.251 7.815 9.837 11.341
4 .297 .711 3.357 7.779 9.488 11.668 13.277
5 .554 1.145 4.351 9.236 11.070 13.388 15.086
6 .872 2.635 5.348 10.645 12.592 15.033 16.812
7 .1.239 2.167 6.346 12.017 14.067 16.622 18.475
8 3.646 2.733 7.344 13.362 15.507 18.168 20.090
9 2.088 3.325 8.343 14.684 16.919 19.679 21.669
10 2.558 3.940 9.340 15.987 18.307 21.161 23.209

11 3.053 4.575 10.341 17.275 19.675 22.618 24.725
12 3.571 5.226 11.340 18.549 21.026 24.054 26.217
13 4.107 5.892 12.340 19.812 22.362 25.472 27.688
14 4.660 6.571 13.339 21.064 23.685 26.873 29.141
15 4.229 7.261 14.339 22.307 24.996 28.259 30.578
16 5.812 7.962 15.338 23.542 26.296 29.633 32.000
17 6.408 8.672 15.338 24.769 27.587 30.995 33.409
18 7.015 9.390 17.338 25.989 28.869 32.346 34.805
19 7.633 10.117 18.338 27.204 30.144 33.687 36.191
20 8.260 10.851 19.337 28.412 31.410 35.020 37.566

21 8.897 11.591 20.337 29.615 32.671 36.343 38.932
22 9.542 12.338 21.337 30.813 33.924 37.659 40.289
23 10.196 13.091 22.337 32.007 35.172 38.968 41.638
24 10.856 13.848 23.337 32.196 36.415 40.270 42.980
25 11.524 14.611 24.337 34.382 37.65 41.566 44.314
26 12.198 15.379 25.336 35.363 38.885 41.856 45.642
27 12.879 16.151 26.336 36.741 40.113 41.140 46.963
28 13.565 16.928 27.336 37.916 41.337 45.419 48.278
29 14.256 17.708 28.336 39.087 42.557 46.693 49.588
30 14.933 18.493 29.336 40.256 43.773 47.962 50.892

For degrees of freedom (ν) greater than 30, the quantity 2 2 12χ ν− −
may be used as a normal variate with unit variance.

NOTE
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ASSIGNMENT 1.1

5. printf (“the given value is %f”, 22.23);
7. x = 10.0

Sum = 1 + 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

+ + + + + + + .

19. 3

ASSIGNMENT 2.1

1. 3.264, 35.47, 4986000, 0.7004, 0.0003222, 1.658, 30.06, 0.8594, 3.142.

3. 0.0005 5. 48.21, 2.37, 52.28, 2.38, 2.38, 81.26
7. (i) 0.004, 0.0015772 (ii) 0.006, 0.0023659

9. (34.5588, 35.9694)
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ASSIGNMENT 2.2

3. 0.00355, 0.0089 5. 12
7. q = 3.43636, er = 0.020857

ASSIGNMENT 2.3

1. .4485 E 8
7. .1010 E 1, .1012 E 1; correct value = .1012034 E 1
9.   (i) x = – .3217 E 2, y = .1666 E 2; yes

 (ii) x = – .2352 E 2, y = .1250 E 2.
11. .168 × 103.

ASSIGNMENT 3.1

1.  (i) x: – 4 – 3 – 2 – 1 0 1 2 3 4
f(x): 1.0625 .125 – .75 – 1.5 – 2 – 2 – 1 2 9

Roots lie in (– 3, – 2) and (2, 3).

(ii) 1.7281 in interval (1, 2).
3. 0.111 5. 2.02875625

7. 4.712389 9. 2.374

11. .56714333

13. (i) – 2.1048 (ii) 2.621 (iii) .682 (iv) .657, 1.834
15. .322 17. 0.39188
19. 2.94282
21. (i) (– 3, – 2) (ii) Root lies in the interval (– 2.5, – 2.25)

ASSIGNMENT 3.2

1. 0.0912 3. (i) 2.9353 (ii) – .420365 (iii) 1.83928
(iv) – .682327803 (v) 2.690647448 (vi) 2.594313016

5. 5.4772 7. 0.10260
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ASSIGNMENT 3.3

1. 2.942821 3. 1.875
7. (i) 1.860, .2541 (ii) 1.69562

(iii) 1.2134 (iv) 2.7473
13. – 1.25115 and 0.55000

ASSIGNMENT 3.4

3. 0.5177573637

ASSIGNMENT 3.5

1. x2 – 2.40402 + 3.0927 3. x2 + 1.94184x + 1.95685

ASSIGNMENT 3.6

1. (i) 1.324 (ii) 1.839286755
3. (i) 2.279 (ii) 3.20056 (iii) .76759

ASSIGNMENT 3.7

1. 5.12487, 1.63668, 0.23845

ASSIGNMENT 3.8

1. (i) 2.7698 (ii) 2.231 (iii) 3.107

ASSIGNMENT 3.9

1. 1.856
3. (i) 2.094568 (ii) 2.279
5. (i) 0.511 (ii) 0.657 (iii) 2.908

(iv) – 2.533 (v) 1.171 (vi) .739
(vii) 1.896 (viii) 1.756 (ix) 4.4934
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9. 4.9324 11. 1.442
13. (a) 5.099 (b) 5.384 (c) 5.916

15. p = 
5
9

, q = 
5
9

, r = – 
1
9

; Third order

17. Roots lie in (0, 1) and (1, 2); 0.100336, 1.679631
19. 0.298 21. – 0.5081

ASSIGNMENT 3.10

1. (iii) Newton-Raphson method since it deals with multiple roots as well.

ASSIGNMENT 3.11

1. (i) 2, 1, 1 (ii) 2.556, 2.861, 0.8203 (iii) 1.3247, – .6624 ± .5622i

ASSIGNMENT 3.12

1. .56704980
3. 1, 0, 1.0, 0.5, .66666, .75000, .666666, .666666, .69230769

ASSIGNMENT 4.1

1. 239, 371 9. (i) 3x2 – 3x + 1 (ii) 6x

ASSIGNMENT 4.2

1. 16.1, 2x is not a polynomial 3. 0.4147
5. 27, 125

ASSIGNMENT 4.3

1. 244
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ASSIGNMENT 4.4

1. 15.6993 nautical miles 3. 43.704
5. 0.23589625 7. 51
9. (a) 27  (b) 27 11. 0.1205

ASSIGNMENT 4.5

1. 0.3057 3. 15.47996
5. 421.875 7. 0.783172
9. 219 11. 6.36, 11.02

ASSIGNMENT 4.6

1. 19.407426 3. 2290.0017
5. .046

ASSIGNMENT 4.7

1. 22898 3. 1.2662
5. 0.70696

ASSIGNMENT 4.8

1. 0.9391002 3. 0.19573
5. 0.32495

ASSIGNMENT 4.9

1. 0.496798 3. 7957.1407
5. 1.904082 7. 3250.875
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ASSIGNMENT 4.10

1. 3.3756 3. 4913, 5052, 5185, 5315
5. 3250.875 7. 14.620947
9. 19523.5, 215914

11. 3.7084096, 3.7325079, 3.7563005, 3.7797956
13. 1.904082 15. 6.7531

ASSIGNMENT 4.11

1. 37.8, 73; 2x is not a polynomial 3. (i) 100.99999 (ii) 25
5. 0.64942084 7. 1294.8437
9. x4 – 3x3 + 5x2 – 6 11. 12.45

13. 53 17. 2.4786
19. x5 – 9x4 + 18x3 – x2 + 9x – 18

ASSIGNMENT 4.12

1. 810 3. 521
5. 328 7. (x – 1)3 + 2(x – 1)2 + 4(x – 1) + 11

9.
1

2 1
1

2
1

2 1( ) ( )x x x−
+

−
−

+
11. 2.49136 13. 10.

ASSIGNMENT 4.13

1. f(x) = 2x4 – x2 + x + 1, 
11
8

, 
3
8

. 3.
1
2

(5x3 – 3x5).

5. 0.86742375.
7. (1 + 3x) (1 – x)2 + (2 – x)ex2; 1.644; 1.859.
9. 1.02470. 11. 0.993252.

13.   (i) 29.556 x3 – 85.793 x2 + 97.696 x – 34.07; 19.19125.
(ii) Same polynomial as in (i).

15.   (i) 0.0068 x5 + 0.002 x4 – 0.1671 x3 – 0.0002 x2 + x; 0.6816.
(ii) x3 – 6x2 – 5x + 4; 0.125, – 13.625.
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ASSIGNMENT 5.1

1. 3.946, – 3.545, 2.727, – 1.703 3. – 27.9, 117.67
5. (i) 0.5005, – 0.2732  (ii) 0.4473, – 0.1583 (iii) 0.4662, – 0.2043
7. 0.9848 9. 18, 18

11. 232.869 13. 0.10848
17. 0.0018 19. (a) – 52.4 (b) – 0.01908.

ASSIGNMENT 5.2

1. 0.69325; 0.0001 3. 1.8278

5. (i) 1.82765512 (ii) 1.82784789 7. 177.483

9. 0.83865 11. 1.61

13. 1.1615 15. 30.87 m/sec

17. (i) 591.85333 (ii) 591.855 19. 0.693255; 0.0001078

21. 1.0101996 23. (i) 0.6827 (ii) 0.658596

25. 1.14 27. 0.52359895

29. 1.019286497.

ASSIGNMENT 5.3

1. (i) 0.01138 (ii) 0.00083 3. 3.1428
5. 0.0490291.

ASSIGNMENT 6.1

1. .019984, .0200 3. 0.0214
5. 0.7432, 0.7439 9. y(0.1) = 3.005, y(0.2) = 3.020.

ASSIGNMENT 6.2

1. y(0.2) = 1.0199, y(0.5) = 1.1223
3. y(.02) = 1.0202, y(.04) = 1.0408, y(.06) = 1.0619
5.   y(.1) = 1.222,     y(.2) = 1.375,     y(.3) = 1.573
7. 1.0526, 1.1104 9. 1.76393

11. y(.01) = 1.01, y(.02) = 1.0201.
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ASSIGNMENT 6.3

1. 2.2052, 2.4214

3. y(x) = 1
2 2

5
8

10954
2 3

4+ − + −x
x x

x ; .

5. y(0.1) = 2.0845, z(0.1) = 0.5867
y(0.2) = 2.1366338,  z(0.2) = 0.1549693.

ASSIGNMENT 6.4

1. 1.11034 3. y(1.2) = 2.4921, y(1.4) = 3.2320
5. y(0.5) = 1.375, y(1.0) = 1.6030 7. y(1.1) = 1.8955, y(1.2) = 2.5041.
9. y(0.1) = 1.1168873, y(0.2) = 1.2773914, y(0.3) = 1.50412

11. (i) 1.1749, (ii) y(0.6) = 0.61035, y (0.8) = 0.84899
13. y(1.2) = 0.246326, y(1.4) = 0.622751489
15. y(0.1) = 1.118057, y(0.2) = 1.291457, y(0.3) = 1.584057
17. y(0.2) = 1.195999, y(0.4) = 1.375269.

ASSIGNMENT 6.5

1. y4
(3) = y(0.8) = 1.218 3. 2.0444

5. y(0.3) = 1.0150
7. y(0.5) = 1.3571, y(1) = 1.5837, y(1.5) = 1.7555, y(2) = 1.8957
9. y(0.4) = 1.538, y(0.5) = 1.751 11. y(0.8) = 2.3164, y(1.0) = 2.3780

13. y(0.1) = 0.60475.

ASSIGNMENT 6.6

1. y(0.4) = 2.2089, y(0.5) = 3.20798
3. y(1.4) = 0.9996
5. 1.1107, 1.2459, 1.4111, 1.61287.
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ASSIGNMENT 7.1

1. y = 2.4333 + 0.4x 3. y = – 4 + 6x
5. y = 54.35 + 0.5184x° 7. y = – 1.6071429x + 8.6428571
9. P = 2.2759 + 0.1879 W.

ASSIGNMENT 7.2

1. y = e0.5x 3. y = 4.642 e0.46x

5. y = 99.86 (1.2)x 7. y = 2.978 x0.5143

9. y = 0.509x2 – 
2 04.

x
11. y = 13.0065 + 

6.7512 4.4738
x x

− 2

13. xy = 16.18x + 40.78 15. pv1.42 = 0.99.

ASSIGNMENT 7.3

1. x = 2.5, y = 0.7 3. x = 2.47, y = 3.55, z = 1.92
5.   (i) x = 1.54, y = 1.27, z = – 1.08

 (ii)  x = 1.16, y = – .76, z = 2.8
(iii) x = 6.9, y = 3.6, z = 4.14.

ASSIGNMENT 7.4

1.
1
2

7
4

1
2

1
4

T T T T0 1 2 3( ) ( ) ( ) ( )x x x x+ − +

3. 2x + 2x2 7.
15
16

1
2

− x

9.
191
192

1
2

2− x

11. M1 = 8, M2 = – 14

F(x) = − + − +11 45 40 18
3

3 2x x x ; F(1.5) = 7.375
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13. M1 = − 18
5

, M2 = 
12
5

For 1 ≤ x ≤ 2, F(x) = − + − −3 9 5
5

3 2x x x

For 2 ≤ x ≤ 3, F(x) = 5 39 95 69
5

3 2x x x− + −

For 3 ≤ x ≤ 4, F(x) = − + − +2 24 94 120
5

3 2x x x

15. α = 1, β = 3

17. For 0 ≤ x ≤ 
1
3

, F(x) = 0.63x3 – 0.82x + 1

For 
1
3

2
3

≤ ≤x , F(x) = – 0.45x3 + 1.08x2 – 1.18x + 1.0

For 
2
3

 ≤ x ≤ 1, F(x) = – 0.18x3 + 0.54x2 – 0.8x + 0.96

       I = 0.695

ASSIGNMENT 7.5

1. y = 1.3x + 1.1

3. F = 0.18793W + 2.27595; F = 30.4654 kg wt.

5. x  = 4, y  = 7, r = – 0.5

7. y = 0.04765 + 0.004071 P; y = 0.6583 cm

9.  x  = 6, y  = 1, r = – 0.48989 11. 7x – 11y + 6 = 0

13. r = 0.70, x  = 11.5086, y  = 11.5261, no

15. y = 1.68x + 1.044, x = 0.42y + 2.27; y = 14.484

17. y = x + 1; x = 0.16y + 2.36; x = 2.52

19. Regression line of y on x: y = 0.74306 x + 1.56821

Regression line of x on y:   x = 0.63602 y + 2.0204.
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ASSIGNMENT 7.6

1. y = 1.43 + 0.24x + 2.21x2

5. a = 5.358035714, b = – 38.89492857, c = 67.56.

ASSIGNMENT 7.7

1. CLX  = 0.4988, UCLX  = 0.5172, LCLX  = 0.4804, CLR = 0.018, UCLR = 0.0463,

LCLR = 0. The process is in control.
3. CLC = 2.4, UCLC = 7.05, LCLC = 0, the process is not under control

5. CLX  = 10.66, UCLX  = 14.295, LCLX  = 7.025, CLR = 0.3, UCLR = 13.32,

LCLR = 0 ; The process is under control
7. UCLC = 25.23, LCLC = 2.77. The process is in control.

ASSIGNMENT 8.1

1. H0 rejected at 5% level 3. H0 rejected at 5% level
5. H0 accepted at 5% level.

ASSIGNMENT 8.2

1. H0: Accepted 3. H0: Accepted.

ASSIGNMENT 8.3

1. H0 is rejected 3. 48.8 and 51.2
5. H0 rejected both at 1% to 5% level of significance.

ASSIGNMENT 8.4

1. Significant difference 3. Highly significant
5. 48.75, 51.25.
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ASSIGNMENT 8.5

1. z = 2.315, Difference significant at 5% level; z = 1.31, Difference not
significant at 5% level.

ASSIGNMENT 8.6

1. accepted 3. rejected.

ASSIGNMENT 8.7

1. accepted 3. accepted
5. accepted.

ASSIGNMENT 8.8

1. rejected 3. accepted.

ASSIGNMENT 8.9

1. no 3. accepted
5. Poisson law fits the data 7. yes.
9. Accepted at 1% level of significance and rejected at 5% level of significance.

ASSIGNMENT 8.10

1. No 3. Not effective.



1. Attempt any FOUR parts of the following:
(a) Define the term ‘absolute error’. Given that

a = 10.00 ± 0.05, b = 0.0356 ± 0.0002
 c = 15300 ± 100,   d = 62000 ± 500

Find the maximum value of the absolute error in
(i) a + b + c + d (ii) a + 5c – d (iii) d3

(b) Use the series

loge 
1
1

+F
HG

I
KJ

x
x–

 = 2 x
x x+ + +

F

HG
I

KJ
3 5

3 5
......

to compute  the value of loge (1.2) correct to seven decimal places and find the
number of terms retained.

(c) Explain underflow and overflow conditions of error with suitable examples
in floating point’s addition and subtraction.

(d) Explain the Bisection method to calculate the roots of an equation. Write an
algorithm and implement it in ‘C’.

(e) Using the method of false position, find the root of equation x6 – x4 – x3 – 1 = 0
up to four decimal places.
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(f) Determine p, q, and r so that the order of the iterative method

xn+1 = pxn + 
qa
x

ra
xn n

2

2

5+

for a1/3 becomes as high as possible.
2. Attempt any FOUR parts of the following:

(a) Prove that the nth differences of a polynomial of nth degree are constant and
all higher order differences are zero when the values of the independent
variable are at equal interval.

(b) Find the missing terms in the following table:

x 1 2 3 4 5 6 7 8

f (x) 1 8 ? 64 ? 216 343 512

(c) Find the number of students from the following data who secured scores not
more than 45:

Scores range 30–40 40–50 50–60 60–70 70–80

Number of students 35 48 70 40 22

(d) State and prove Stirling’s formula.
(e) By means of Lagrange’s formula, prove that

y1 = y3 – 0.3 (y5 – y–3) + 0.2 (y–3 – y–5)

(f) Prove that the nth divided differences of a polynomial of nth degree are
constant.

3. Attempt any TWO parts of the following:
(a) y is a function of x satisfying the equation xy″ + ay′ + (x – b) y = 0 where a and

b are integers. Find the values of constants a and b if y is given by the following
table:

x 0.8 1 1.2 1.4 1.6 1.8 2 2.2

y 1.73036 1.95532 2.19756 2.45693 2.73309 3.02549 2.3333 3.65563

(b) Find, from the following table, the area bounded by the curve and the x-axis
from x = 7.47 to x = 7.52.

x 7.47 7.48 7.49 7.50 7.51 7.52

f(x) 1.93 1.95 1.98 2.01 2.03 2.06
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(c) Derive Simpson’s 
1
3
F
HG
I
KJ

rd

 rule from Newton-Cote’s quadrature formula. Give

its algorithm and write a program in ‘C’ to implement.
4. Attempt any TWO parts of the following:

(a) Obtain y for x = 0.25, 0.5 and 1.0 correct to three decimal places using Picard’s
method, given the differential equation

dy
dx

x

y
=

+

2

2 1

with the initial condition y = 0 when x = 0.
(b) Use Runge-Kutta method to approximate y when x = 1.4 given that y = 2 at x

= 1 and 
dy
dx

 = xy taking h = 0.2.

(c) Explain Predictor-Corrector methods. Write the algorithm of Milne’s
Predictor-corrector method and also give a code in ‘C’ to implement.

5. Attempt any FOUR parts of the following:
(a) Write a short note on Frequency charts.
(b) Find the least square line for the data points:

(– 1, 10), (0, 9), (1, 7), (2, 5), (3, 4), (4, 3), (5, 0) and (6, – 1).

(c) Find the most plausible values of x and y from the following equations:

3x + y = 4.95,  x + y = 3.00, 2x – y = 0.5, x + 3y = 7.25.

(d) Prove that the regression coefficients are independent of the origin but not of
scale.

(e) The average percentage of defectives in 27 samples of size 1500 each was
found to be 13.7%. Construct p-chart for this situation. Explain how the control
chart can be used to control quality.

(f) Fit a curve of the type xy = ax + b to the following data:

x 1 3 5 7 9 10

y 36 29 28 26 24 15





� Included on the CD-ROM are simulations, figures from the text, third party
software, and other files related to topics in numerical methods and
statistics.

� See the “README” files for any specific information/system requirements
related to each file folder, but most files will run on Windows 2000 or higher
and Linux.
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A

Absolute error, 37

Acceptance sampling, 655

Adams-Moulton (or Adams-Bashforth)
formula, 537

Adams-Moulton corrector formula, 539

Adams-Moulton predictor formula, 538

Advantages of statistical quality control, 656

Advantages/Features of ‘C’ language, 7

Algebraic and transcendental equations, 77

Algorithm for linear regression, 621

Algorithm of Euler’s method, 493

Algorithm of Milne’s predictor-corrector
method, 528

Algorithm of modified Euler’s method, 497

Algorithm of Runge-Kutta method, 516

Algorithm of second degree parabolic curve
fitting, 647

Algorithm of Simpson’s 1/3rd rule, 437

Algorithm of Simpson’s 3/8th rule, 433

Algorithm of trapezoidal rule, 429

Algorithmic errors, 31

Alternative hypothesis, 673

Analysis of data, 655

Angle between two lines of regression, 620

Applications of t-distribution, 691

Approximations, 601

Area diagrams, 555

Argument, 202

Arrays, 18

Assembler, 6

Assumptions for interpolation, 200

Asymptotic error constant, 80

Averaging operator μ, 205

B

Backward difference operator, 203

Backward differences, 203

INDEX
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Curve of regression, 614

Curve-Fitting by sum of exponentials, 588

D

Debugging, 80

Decision making instructions in “C”, 14

Degrees of freedom, 709

Detection of errors by use of difference tables,
234

Differences of a polynomial, 207

Discrete variables, 548

Divided differences, 361

E

Error formula, 42

Error in a series approximation, 56

Error in Lagrange’s interpolation formula, 357

Errors in numerical computations, 43

Errors in numerical differentiation, 422

Errors in polynomial interpolation, 200

Errors in sampling, 674

Escape sequences, 12

Euler-Maclaurin’s Formula, 461

Euler’s formula, 493

Euler’s method, 492

Euler’s modified method, 493

Evaluation of principal value integrals, 466

Expression of rational function as a sum of
partial fractions, 359

Extrapolation, 199

F

Factorial notation, 225

Fibonacci numbers, 27

Bell shaped curve, 553

Bessel’s interpolation formula, 312

Bisection (or Bolzano) method, 77

Boole’s rule, 426

C

‘C’ constants, 8

“C instructions”, 10

“C” variables, 9

χ2 test as a test of goodness of fit, 711

χ2 test as a test of independence, 718

Carl Runge, 513

Cartograms, 555

Central difference operator, 204

Central differences, 204

Chebyshev formula of third order, 175

Chebyshev polynomial approximation, 605

Chi-square (χ2) test, 708

Class frequency, 549

Comparison of correlation and regression
analysis, 618

Comparison of iterative methods, 189

Computational errors, 31

Conditions for applying χ2 test, 710

Confidence limits or fiducial limits, 684

Continuous variables, 548

Control chart, 655, 658

Control charts for attributes, 661

Convergence of a sequence, 81

Convergence of iteration method, 96

Convergence of regula-falsi method, 130

Critical region, 674

Critical value of t, 691

Cubic spline interpolation, 594

Cumulative frequency, 549

Cumulative frequency curve or the ogive, 553

Curve fitting, 556
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Finite differences, 202

Finite inverse, 671

First order Runge-Kutta method, 514

Floating point representation of numbers, 61

Flow-chart for trapezoidal rule, 430

Flow-chart of Euler’s method, 494

Flow-chart of Milne’s predictor-corrector
method, 529

Flow-chart of modified  Euler’s method, 498

Flow-chart of Runge-Kutta method, 517

Flow-chart of second degree parabolic curve
fitting, 649

Flow-chart of Simpson’s 1/3rd rule, 438

Flow-chart of Simpson’s 3/8th rule, 434

Forward difference operator, 202

Forward differences, 202

Fourth order Runge-Kutta method, 515

Frequency charts, 548

Frequency curve, 552

Frequency distributions, 548, 655

Frequency polygon, 552

Fundamental operator, 205

G

Gauss’s backward difference formula, 289

Gauss’s forward difference formula, 278

Gaussian quadrature formula, 463

Graeffe’s root-squaring method, 190

Grouped frequency distribution, 549

H

Hermite’s interpolating polynomial, 381

Hermite’s interpolation formula, 381, 382

Horner’s method, 156

Hypothetical universe, 671

I

Initial-value and boundary-value problems,
480

Interpolating polynomial, 200

Interpolation by unevenly spaced points, 338

Inverse interpolation, 360

Inverse problems, 46

Iteration method, 94

J

J-shaped curve, 554

L

Lagrange’s interpolation formula, 339

Lanczos economization of power series, 606

Laplace-Everett’s formula, 327

Legendre and chebyshev polynomials, 601

Lin-bairstow’s method, 135

Linear regression, 614

Lines of regression, 614

Loop control structure, 17

Lower limit, 549

M

Machine computation, 71

Machine epsilon, 34

Maclaurin’s expansion, 61

Marching methods, 481

Mathematical preliminaries, 60

Maxima and minima of a tabulated function,
402
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Mean value theorem for derivatives, 61

Merits and demerits of Lagrange’s formula,
365

Method for complex root, 135

Method of false position, 113

Method of linear interpolation, 113

Method of separation of symbols, 234

Methods for multiple roots, 182

Milne’s corrector formula, 527

Milne’s method, 525

Milne’s predictor (extrapolation) formula, 526

Modified Euler’s method, 496

Muller’s method, 141

N

Natural spline, 597

Newton-Cote’s quadrature formula, 423

Newton-Raphson method, 158

Newton-Raphson’s extended formula, 175

Newton’s divided difference interpolation
formula, 363

Newton’s Gregory backward interpolation
formula, 262

Newton’s Gregory forward interpolation
formula, 243

Newton’s iterative formulae, 163

Non-periodic spline, 597

Normalized floating point, 62

np chart, 662

Numerical evaluation of singular integrals,
465

Numerical solution of ordinary differential
equations, 479

O

One-step predictor-corrector method, 497

Order of convergence, 80

Orthogonal properties, 603

Osculating interpolation formula, 381

P

P chart, 661

Periodic spline, 597

Picard, 481

Picard’s method of successive approximations,
481

Predictor-corrector methods, 525

Principle of least squares, 556

Prisms and cubes, 555

Procedual errors or numerical errors, 35

Program to implement trapezoidal method,
431

Program  to implement simpson’s 3/8th
method, 435

Program in ‘C’ for second degree parabolic
curve fitting, 650

Program of Euler’s method, 495

Program of Milne’s method, 530

Program of modified Euler’s method, 499

Program of Runge-Kutta method, 517

Program to implement least square fit of a
regression, 622, 623

Program to implement Simpson’s 1/3rd
method, 439

Program writing, 80

Properties of chebyshev polynomials, 605

Properties of divided differences, 362

Properties of regression co-efficients, 619

Q

Quotient-difference method, 152



INDEX    753

R

Ramanujan’s method, 195

Region of rejection, 674

Regression analysis, 614

Regression equation, 614

Regression plane, 653

Regula-Falsi method, 113

Residuals, 557

Rolle’s theorem, 60

Runge-Kutta methods, 513

S

Scatter or dot diagram, 556

Secant method, 132

Second order formula, 161

Second order Runge-Kutta method, 514

Significant values χ2 (α) of Chi-square
distribution, 727

Significant values tv (α) of t-distribution, 724

Simpson’s one-third rule, 425

Simplson’s three-eighth rule, 426

Snedecor’s variance ratio test or F-test, 703

Special values of Chebyshev polynomials, 603

Spline function, 594

Spline interpolation, 594

Stability in the solution of ordinary
differential equations, 542

Statistical quality control, 654

Stirling’s formula, 301

Student’s t-distribution, 691

Successive approximation method, 94

T

t-statistic, 691

Taylor’s method, 506

Taylor’s series for a function of one variable,
61

Taylor’s series for a function of two variables,
61

Test of significance, 673

Test of significance for large samples, 676

Test of significance of small samples, 690

Test statistic, 675

Testing of hypothesis, 671

The χ2 distribution, 710

The t-table, 691

Third order Runge-Kutta method, 515

Trapezoidal rule, 424

Two point rule, 466

Type I error, 674

Type II error, 675

Types of frequency curves, 553

U

u-chart, 661

U-shaped curve, 554

Use of regression analysis, 618

V

Values of F for F-distributions, 725

W

Weddle’s rule, 427

Wilhelm Kutta, 513

Y

Yates’s correction, 719
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