
RADIATIVE HEAT TRANSFER

Third Edition

Michael F. Modest
University of California Merced

COMPUTER CODES
Last updated February 4, 2013

Academic Press
New York San Francisco London

1

2

This manual/web page contains a listing and brief description of a number of computer programs that
may be helpful to the reader of this book, and that can be downloaded from its dedicated website located at
http://booksite.elsevier.com/9780123869449. Some of the codes are very basic and are entirely intended to aid
the reader with the solution to the problems given at the end of the more basic chapters. Some of the codes
were born out of research, but are basic enough to aid a graduate student with more complicated assignments
or a semester project. And a few programs are so sophisticated in nature that they will be useful only to the
practicing engineer conducting his or her own research. Finally, it is anticipated that the website will be kept
up-to-date and augmented once in a while. Thus, there may be a few additional programs not described in this
appendix.

It is a fact that most engineers have done, and still do, their programming in Fortran, and the author of
this book is no exception. It is also true that computer scientists and most commercial programmers do their
work in C++; more importantly, the younger generation of engineers at many universities across the U.S. are
now also learning C++. Both compiled languages have in recent years been trumped by Matlabr [1], which—
while an interpreted rather than compiled language—has many convenient mathematical and graphical tools.
Since all the programs in this listing were written by the author, either for research purposes or for the
creation of this book, they all started their life in Fortran (older programs as Fortran77, and the later ones as
Fortran90). However, as a gesture toward the C++ and Matlabr communities, the most basic codes have all
been converted to C++ as well as Matlabr, as indicated below by the program suffixes .cpp and .m. If desired,
all other programs are easily converted with freeware translators such as f2c (resulting in somewhat clumsy,
but functional codes). Finally, self-contained programs that have been precompiled for Microsoft Windows
have the suffix .exe.

The programs are listed in order by chapter in which they first appear. More detailed descriptions, some-
times with an example, can be found on the web site. Third-party codes that are also provided at the web site
are listed at the end.

Chapter 1
bbfn.f, bbfn.cpp, bbfn.m
Function bbfn(x) calculates the fractional blackbody emissive power, as defined by equation (1.23), where the
argument is x= nλT with units of µmK.

planck.f, planck.cpp, planck.m, planck.exe
planck is a small stand-alone program that prompts the user for input (temperature and wavelength or
wavenumber), then calculates the spectral blackbody emissive powers Ebλ/T5,Ebη/T3 and the fractional black-
body emissive power f (λT).

Chapters 2 and 3
fresnel.f, fresnel.cpp, fresnel.m
Subroutine fresnel(n,k,th,rhos,rhop,rho) calculates Fresnel reflectances from equation (2.113).
Input: n (= n) and k (= k) are real and imaginary parts of the complex index of refraction, and th (= θ) is the
off-normal angle of incidence (in radians).
Output: rhos (= ρ⊥) and rhop (= ρ‖) are perpendicular and parallel-polarized reflectance, respectively, while
rho (= ρ) is the unpolarized reflectance.

Chapter 3
emdiel.f90, emdiel.cpp, emdiel.m
Function emdiel(n) calculates the unpolarized, spectral, hemispherical emissivity of an optical surface of a
dielectric material from equation (3.82).
Input: n (= n) refractive index of dielectric.

emmet.f90, emmet.cpp, emmet.m
Function emmet(n,k) calculates the unpolarized, spectral, hemispherical emissivity of an optical surface of a
metallic material from equation (3.77).
Input: n (= n) and k (= k) are the real and imaginary parts of the metal’s complex index of refraction.

3

callemdiel.f90, callemdiel.cpp, emmet.m, callemdiel.exe
Program callemdiel is a stand-alone front end for function emdiel, prompting for input (refractive index n)
and returning the unpolarized, spectral, hemispherical as well as normal emissivities.

callemmet.f90, callemmet.cpp, callemmet.m, callemmet.exe
Program callemmet is a stand-alone front end for function emmet, prompting for input (complex index of
refraction n, k) and returning the unpolarized, spectral, hemispherical as well as normal emissivities.

dirreflec.f, dirreflec.cpp, dirreflec.m, dirreflec.exe
Program dirrecflec is a stand-alone front end for subroutine fresnel, calculating reflectivities for various
incidence angles. The user is prompted to input the complex index of refraction, n and k, and the (equal) spacing
of incidence angles ∆θ (in degrees); the program then returns perpendicular polarized, parallel polarized, and
unpolarized reflectivities, as well as unpolarized emissivities.

totem.f90, totem.cpp, totem.m
Program totem is a routine to evaluate the total, directional or hemispherical emittance or absorptance of an
opaque material, based on an array of spectral data, by 10-point Gaussian quadrature.
Input (by changing data in the heading of function emlcl(y)):
N = number of data points for spectral emittance,
nrefr = refractive index of adjoining material (nrefr=1 for vacuum and gases),
T = temperature of material (for total emittance), or of gray irradiating source (for total absorp-

tance), in K,
lambda(N) = N distinct wavelengths in ascending order, for which the spectral emittance is given, in µm,
eps(N) = N corresponding spectral emittances.
Output (printed to screen):
emitt = total directional or hemispherical emittance or absorptance.
Case 1: Total, directional emittance (eps contains spectral, directional values at temperature T):
From equation (3.8)

ε′(T, ŝ) =
1

n2σT4

∫
∞

0
ε′λ(λ,T, ŝ)Ebλ(T) dλ

=

∫ 1

0
ε′λ

(
λ(f),T, ŝ

)
d f , (CC-1)

where, from equation (1.23)

f (nλT) =

∫ λ

0

Ebλdλ
n2σT4 . (CC-2)

In order to write equation (CC-1) in terms of blackbody fraction f , wavelength must be known as a function
of f (for given n and T), i.e., equation (CC-2) must be inverted. The 10 values of (nλT), corresponding to the
10 Gaussian quadrature points fi(nλT) have been precalculated (using function bbfn) and are stored in array
y(i). The total emittance is then calculated by expressing equation (CC-1) in quadrature form, or

ε′(T, ŝ) '
10∑
i=1

ε′λ(λi,T, ŝ)wi, (CC-3)

where
λi = yi/nT, (CC-4)

and the wi are Gaussian quadrature weights. This necessitates that ε′λ must be known at very specific wave-
lengths, that are not ordinarily part of the given array. The “correct” value for ε′λ is evaluated by linear
interpolation between array values, assuming ε′λ = const = eps(1) for λi <lambda(1), and ε′λ = const = eps(N)

for λi >lambda(N).
Case 2: Total, hemispherical emittance (eps contains spectral, hemispherical values at temperature T):

4

From equation (3.10)

ε(T) =
1

n2σT4

∫
∞

0
ελ(λ,T)Ebλ dλ =

∫ 1

0
ελ

(
λ(f),T

)
d f

'

10∑
i=1

ελ(λi,T)wi. (CC-5)

Thus, the calculation is identical to Case 1.
Case 3: Total, directional absorptance (eps contains spectral, directional values at the surface temperature Ts,
irradiation is assumed to come from a gray source at temperature T).
From equations (3.23) and (3.31)

α′(Ts,T, ŝ) =
1

n2σT4

∫
∞

0
ε′λ(λ,T, ŝ)Ebλ(T) dλ

=

∫ 1

0
ε′λ

(
λ(f),Ts

)
d f '

10∑
i=1

ε′λ(λi,Ts)wi, (CC-6)

and the calculation is again identical.
Case 4: Total, hemispherical absorptance (eps contains spectral, hemispherical values at surface temperature
Ts; irradiation is assumed to be gray and diffuse with source temperature T).
Then, from equations (3.27) and (3.31)

α(Ts,T) =
1

n2σT4

∫
∞

0
ελ(λ,Ts)Ebλ(T) dλ

=

∫ 1

0
ελ

(
λ(f),Ts

)
d f '

10∑
i=1

ελ(λi,Ts)wi. (CC-7)

Examples
Two examples have been programmed into totem (or, rather, function emlcl):

1.: The material of Problem 3.1, with a step function in spectral emittance of

ελ =

{
0.5, λ < 5µm,
0.3, λ > 5µm,

and a temperature of T = 500 K. For part a) nrefr=1.0, and for b) nrefr=2.0 (implemented here) This
results in emitt=0.3435 for a) and emitt=0.4296 for b).

2.: Aluminum oxide, as given in Fig. 1-14, discretized into eight equally-spaced values (commented out as
given here). For temperature of T = 500 K and nrefr=1.0 this results in emitt=0.7494.

Chapter 4 and Appendix D
view.f90, view.cpp, view.m
A function to evaluate any of the 51 view factors given in Appendix D.
Input:
NO = view factor number, 1 ≤ NO ≤ 51, as given in Appendix D,
NARG = number of arguments required for view factor,
ARG = vector of order NARG containing the arguments in alphabetical order (Greek characters following

the Roman alphabet).

For example, for view factor 14, we have NO=14, NARG=3 and ARG=(h, l, r). Upon return the function returns Fi− j
(except for the infinitesimal view factors 1–9, in which case dFd1−d2/dX is returned, with dX the nondimensional
dimension of dA2).

5

parlplates.f90, parlplates.cpp, parlplates.m
Contains function PARLPLTF(X1,X2,X3,Y1,Y2,Y3,Z) to evaluate the view factor between two displaced paral-
lel plates, as given by equation (4.42).
Input:
X1 = Dimension x1 as given in adjacent sketch (length units)
X2 = Dimension x2 as given in adjacent sketch (length units)
X3 = Dimension x3 as given in adjacent sketch (length units)
Y1 = Dimension y1 as given in adjacent sketch (length units)
Y2 = Dimension y2 as given in adjacent sketch (length units)
Y3 = Dimension y3 as given in adjacent sketch (length units)
Z = Dimension c as given in adjacent sketch (length units)

y

A1

0 x1 x2
x3

x

y2

y1

y3

A2

c

perpplates.f90, perpplates.cpp, perpplates.m
Contains function PERPPLTF(X1,X2,Y1,Y2,Z1,Z2,Z3) to evaluate the view factor between two displaced per-
pendicular plates, as given by equation (4.41).

Input:
X1 = Dimension x1 as given in adjacent sketch (length units)
X2 = Dimension x2 as given in adjacent sketch (length units)
Y1 = Dimension y1 as given in adjacent sketch (length units)
Y2 = Dimension y2 as given in adjacent sketch (length units)
Z1 = Dimension z1 as given in adjacent sketch (length units)
Z2 = Dimension z2 as given in adjacent sketch (length units)
Z3 = Dimension z3 as given in adjacent sketch (length units)

y

y2

y1

0

x1 x2
x

z3

z2

z1

A2

A1

z

A1

viewfactors.f90, viewfactors.cpp, viewfactors.m, viewfactors.exe
A stand-alone front end to functions view, parlplates and perpplates. The user is prompted to input
configuration number and arguments; the program then returns the requested view factor.

Chapter 5
graydiff.f90, graydiff.cpp, graydiff.m:
Subroutine graydiff provides the solution to equation (5.38) for an enclosure consisting of N gray-diffuse
surfaces. For each surface the area, emittance, external irradiation and either heat flux or temperature must be
specified. In addition, the upper triangle of the view factor matrix must be provided (Fi− j; i = 1,N; j = i,N).
For closed configurations, the diagonal view factors Fi−i are not required, since they can be calculated from the
summation rule. The remaining view factors are calculated from reciprocity. On output, the program provides
all view factors, and temperatures and radiative heat fluxes for all surfaces.
Input:
N = number of surfaces in enclosure
iclsd = closed or open configuration identifier

iclsd= 1: configuration is closed; diagonal Fi−i evaluated from summation rule
iclsd, 1: configuration has openings; Fi−i must be specified

A(N) = vector containing surface areas, [m2]
EPS(N) = vector containing surface emittances
HO(N) = vector containing external irradiation, in [W/m2]
F(N,N) = vector containing view factors; on input only Fi− j with j > i (iclsd=1) or j ≥ i (iclsd, 1) are

required; remainder are calculated
ID(N) = vector containing surface identifier:

ID=0: surface heat flux is specified, in [W/m2]
ID=1: surface temperature is specified, in [K]

PIN(N) = vector containing surface emissive powers (id=1) and fluxes (id=2)

6

Output:
POUT(N) = vector containing unknown surface fluxes (for surfaces with id=1) and emissive powers (for

surfaces with id=0)

graydiffxch.f90, graydiffxch.cpp, graydiffxch.m
Program graydiffxch is a front end for subroutine graydiff, generating the necessary input parameters for a
three-dimensional variation to Example 5.4 (making the four surfaces of finite length `, and introducing front
and back surfaces A5 and A6, both at the same conditions as the left and right sides, i.e., T5 = T6 = 600 K and
ε5 = ε6 = 0.8), primarily view factors calculated by calls to function view. This program may be used as a
starting point for more involved radiative exchange problems.

Chapter 6
graydifspec.f90, graydifspec.cpp, graydifspec.m
Subroutine graydifspec provides the solution to equation (6.23) for an enclosure consisting of N diffusely
emitting surfaces with diffuse and specular reflectance components. For each surface the area, emittance,
external irradiation and either heat flux or temperature must be specified. In addition, the upper triangle
of the view factor matrix must be provided (Fs

i− j; i = 1,N; j = i,N). For closed configurations, the diagonal
view factors Fs

i−i are not required, since they can be calculated from the summation rule. The remaining view
factors are calculated from reciprocity. On output, the program provides all view factors, and temperatures
and radiative heat fluxes for all surfaces.
Input:
N = number of surfaces in enclosure
iclsd = closed or open configuration identifier

iclsd= 1: configuration is closed; diagonal Fs
i−i evaluated from summation rule

iclsd, 1: configuration has openings; Fs
i−i must be specified

A(N) = vector containing surface areas, [m2]
EPS(N) = vector containing surface emittances
RHOs(N) = vector containing surface specular reflectance components
HOs(N) = vector containing external irradiation, in [W/m2]
Fs(N,N) = vector containing view factors; on input only Fs

i− j with j > i (iclsd=1) or j ≥ i (iclsd, 1) are
required; remainder are calculated

ID(N) = vector containing surface identifier:
ID=0: surface heat flux is specified, in [W/m2]
ID=1: surface temperature is specified, in [K]

PIN(N) = vector containing surface emissive powers (id=1) and fluxes (id=2)
Output:
POUT(N) = vector containing unknown surface fluxes (for surfaces with id=1) and emissive powers (for

surfaces with id=0)

grspecxch.f90, grspecxch.cpp, grspecxch.m
Program grspecxch is a front end for subroutine graydifspec, generating the necessary input parameters for
a three-dimensional variation to Example 6.7 (making the four surfaces of finite length `, and introducing front
and back surfaces A5 and A6, both diffusely reflecting at the same conditions as the left and right sides, i.e.,
T5 = T6 = 600 K and ε5 = ε6 = 0.8), primarily view factors calculated by calls to function view. This program
may be used as a starting point for more involved radiative exchange problems.

Chapter 7
semigray.f90, semigray.cpp, semigray.m,
semigraydf.f90, semigraydf.cpp, semigraydf.m
Subroutine semigray provides the solution to equations (7.5) for an enclosure consisting of N diffusely emitting
surfaces with diffuse and specular reflectance components, considering two spectral ranges (one for external
irradiation, one for emission). For each surface the area, emittance and specular reflectance (two values each),
external irradiation and either heat flux or temperature must be specified. In addition, the upper triangle of the
view factor matrix must be provided for both spectral ranges (Fs

i− j; i = 1,N; j = i,N). For closed configurations,

7

the diagonal view factors Fs
i−i are not required, since they can be calculated from the summation rule. The

remaining view factors are calculated from reciprocity. On output, the program provides all view factors, and
temperatures and radiative heat fluxes for all surfaces.
Input:
N = number of surfaces in enclosure
iclsd = closed or open configuration identifier

iclsd= 1: configuration is closed; diagonal Fs
i−i evaluated from summation rule

iclsd, 1: configuration has openings; Fs
i−i must be specified

A(N) = vector containing surface areas, [m2]
EPS(2,N) = vector containing surface emittances for 2 spectral ranges
RHOs(2,N) = vector containing surface specular reflectance components for 2 spectral ranges
HOs(N) = vector containing external irradiation, in [W/m2]
Fs(2,N,N) = vector containing view factors for 2 spectral ranges; on input only Fs

i− j with j > i (iclsd=1) or
j ≥ i (iclsd, 1) are required; remainder are calculated

ID(N) = vector containing surface identifier:
ID=0: surface heat flux is specified, in [W/m2]
ID=1: surface temperature is specified, in [K]

PIN(N) = vector containing surface emissive powers (id=1) and fluxes (id=2)
Output:
POUT(N) = vector containing unknown surface fluxes (for surfaces with id=1) and emissive powers (for

surfaces with id=0)

Subroutine semigraydf is a simplified version of subroutine semigray by assuming all surfaces to be diffuse,
and input is changed by requiring HO(N) and F(N,N) (and no reflectance) instead of RHOs(2,N), HOs(N) and
Fs(2,N,N) (note that diffuse view factors do not depend on reflectance properties).

semigrxch.f90, semigrxch.cpp, semigrxch.m,
semigrxchdf.f90, semigrxchdf.cpp, semigrxchdf.m
Program semigrxch is a front end for subroutine semigray providing the necessary input for Example 7.1,
primarily view factors calculated by calls to function view; similarly, program semigrxchdf is a front end for
subroutine semigraydf. These programs may be used as a starting point for more involved radiative exchange
problems.

bandapp.f90, bandapp.cpp, bandapp.m,
bandappdf.f90, bandappdf.cpp, bandapp.m
Subroutine bandapp provides the solution to equations (7.6) for an enclosure consisting of N diffusely emitting
surfaces with diffuse and specular reflectance components, considering M spectral bands. For each surface
the area, emittance, specular reflectance and external irradiation (one value for each spectral band), and either
heat flux or temperature must be specified. In addition, the upper triangle of the view factor matrix must be
provided for each spectral band (Fs

i− j; i = 1,N; j = i,N). For closed configurations, the diagonal view factors
Fs

i−i are not required, since they can be calculated from the summation rule. The remaining view factors are
calculated from reciprocity. On output, the program provides all view factors, and temperatures and radiative
heat fluxes for all surfaces.
Input:
M = number of spectral bands
N = number of surfaces in enclosure
iclsd = closed or open configuration identifier

iclsd= 1: configuration is closed; diagonal Fs
i−i evaluated from summation rule

iclsd, 1: configuration has openings; Fs
i−i must be specified

A(N) = vector containing surface areas, [m2]
EPS(M,N) = matrix containing surface emittances for M spectral ranges
RHOs(M,N) = matrix containing surface specular reflectance components for M spectral ranges
HOs(M,N) = matrix containing external irradiation for M spectral ranges, in [W/m2]
Fs(M,N,N) = matrix containing view factors for M spectral ranges; on input only Fs

i− j with j > i (iclsd=1)
or j ≥ i (iclsd, 1) are required; remainder are calculated

8

ID(N) = vector containing surface identifier:
ID=0: surface heat flux is specified, in [W/m2]
ID=1: surface temperature is specified, in [K]

q(N) = vector containing known surface fluxes (only for surfaces with id=2)
T(N) = vector containing known surface temperatures (only for surfaces with id=1)
Output:
q(N) = vector containing known surface fluxes (for all surfaces)
T(N) = vector containing known surface temperatures (for all surfaces)

Subroutine bandappdf is a simplified version of subroutine bandapp by assuming all surfaces to be diffuse, and
input is changed by requiring HO(M,N) and F(N,N) (and no reflectance) instead of RHOs(M,N), HOs(M,N) and
Fs(M,N,N) (note that diffuse view factors do not depend on reflectance properties).

bandmxch.f90, bandmxch.cpp, bandmxch.m,
bandmxchdf.f90, bandmxchdf.cpp, bandmxch.m
Program bandmxch is a front end for subroutine bandapp providing the necessary input for Example 7.2,
primarily view factors calculated by calls to function view; similarly, program bandmxchdf is a front end for
subroutine bandappdf. These programs may be used as a starting point for more involved radiative exchange
problems.

Chapter 8
MCintegral.f90

MCintegral is a little program that evaluates the integral
∫ b

a f (x) dx for any specified function by the Monte
Carlo method, as outlined in equation (8.10).
Input:
F(x) = The function to be integrated
a = Lower limit of integration
b = Upper limit of integration
varmax = Maximum relative standard deviation allowed
Output:
no. of bundles = Number of statistical samples taken (with a minimum of 10000 built in)
integral = Best estimate of the value of the desired integral
std dev = Absolute standard deviation for the result
rel.err(%) = Estimated relative error (in %), based on one standard deviation.
The number of statistical bundles is broken up into numsmpls realizations of N samples each. Using these
different realizations, variances are calculated according to equation (8.8), and the relative variance is compared
to stddevmax; if it exceeds it the number of bundles is doubled, the numsmpls realizations are compacted into
half that many, and numsmpls/2 new realizations (with twice as many samples) are generated (giving numsmpls
realizations with twice as many samples as before), etc., until the convergence criterion is met. For example,
F(x)=sin(x), a=0., b=pi/2., and varmax=0.002 results in (the correct answer being 1):
no. of bundles integral std dev rel.err(%)

10000 1.0024E+00 4.8714E-03 0.49

20000 9.9957E-01 2.8855E-03 0.29

40000 1.0001E+00 1.4426E-03 0.14

Chapter 11
voigt.f
Fortran77 subroutine voigt(S,bL,bD,deta,keta) calculates the spectral absorption coefficient for a Voigt-
shaped line based on the fast algorithm by Humlı́c̆ek [2].
Input:
S = is the line intensity S, in cm−2,
bL = is the Lorentz line width bL, in cm−1,
bD = is the Doppler line width bD, in cm−1,
deta = is the spectral distance ∆η away from the line center, at which κη is to be evaluated.

9

Output:
keta = is the spectral absorption coefficient of the Voigt line κη at η = η0±∆η, where η0 is the wavenumber

of the line center.
nbkdistdb.f90
Program nbkdistdb is a Fortran90 code to calculate narrow band k-distributions for a number of temperatures
and a number of wavenumber ranges, for a gas mixture containing CO2, H2O, CH4 and soot. The spectral
absorption coefficient is calculated directly from the HITRAN or HITEMP databases.
Input:
Tmin = minimum temperature for which a k-distribution is to be calculated, in K,
Tmax = maximum temperature for which a k-distribution is to be calculated, in K,
numT = number of different temperatures to be considered; equally spaced between Tmin and Tmax,
P = total pressure of gas mixture, bar,
xmfr(3) = mole fraction vector; xmfr(1)= mole fraction of CO2, xmfr(2)= mole fraction of H2O, xmfr(3)=

mole fraction of CH4,
fvsoot = volume fraction of soot,
nsoot,

ksoot

= complex index of refraction for the soot; its absorption coefficient is assumed linear in wavenum-
ber, using equation (12.112),

wvnm b = minimum wavenumber considered, cm−1,
wvnm e = maximum wavenumber considered, cm−1,
wvnmbuf = line wing influence of spectral lines centered in the wavenumber range wvnmbuf cm−1 below

wvnm b and above wvnm e are considered in the absorption coefficient calculation, cm−1,
wvnmst = wavenumber step (equally spaced) with which the absorption coefficient for the mixture is

calculated from the HITRAN or HITEMP database, cm−1,
kdrnge = wavenumber range for individual k-distributions; wvnm e-wvnm b should be an integer multiple

of kdrnge, in cm−1,
n pwrk = number of different k-bin values considered in the construction of the k-distribution,
pwr = exponent for k-bin values spacing: k-bins are equally spaced in kpwr between kmin (=minimum

k to be considered) and kmax (=maximum absorption coefficient across spectrum).
nq = number of quadrature points for radiative calculations, i.e., the number of RTE evaluations to be

performed before spectral integration (over cumulative k-distribution 1),
iwr = absorption coefficient switch: iwr=0 to make a single complete run, i.e., evaluating κη from

HITRAN or HITEMP (without storing them), followed by generation of k-distributions, irw=1
same, but absorption coefficient is stored for future use, and iwr=2: precalculated absorption
coefficients are read in and k-distributions are generated.

ipl = linear vs. pressure-based absorption coefficient switch:
ipl=0: calculate linear absorption coefficient, in cm−1

ipl=1: calculate pressure-based absorption coefficient (allowed only for single absorbing gas!), in
cm−1 bar−1; if the pressure-based absorption coefficient for a dilute gas is desired, set xmfr=1.d-3
(=0.1%)

ipr = output switch: see under output
Output:

ipr=0: For each of the numkd=wvnm e-wvnm b/kdrnge narrow band ranges only the nq quadrature points,
weights, and k(T, 1) (for all temperatures) are printed: the first line of the output file, called nbkvsgq.dat

by default, contains the first and last wavenumbers of the first narrow band range, followed by nq lines
containing gq (the i-th quadrature point), wq (the i-th quadrature weight), and numTvalues of kq [= k(T j, 1i);
one for each temperature T j]. This is followed by a line containing the first and last wavenumbers of the
second narrow band range, etc.

ipr=1: Besides the output for ipr=0 a second output file is prepared with the complete k-distribution infor-
mation, i.e., for each narrow band and each temperature all n pwrk values of k, f and 1 are printed: the
first line of the output file, called nbkvsg.dat by default, contains the first temperature and first and
last wavenumbers of the first narrow band range, followed by n pwrk-1 lines containing k (the i-th k-bin
value), ff [its k-distribution value f (k)], and gg [its cumulative k-distribution value 1(k)]. This is followed
by a line containing the second temperature and first and last wavenumbers of the first narrow band
range, etc., looping over all temperatures and narrow band ranges.

10

ipr=2: Only the complete k-distribution information is printed, i.e., only output file nbkvsg.dat is generated.

Example:
We consider a set of narrow band k-distributions for a linear absorption coefficient (ipl=0) of pure CO2, for
a mole fraction of 10% (xmfr(3)=(/0.1d0,0.d0,0.d0/)). The absorption coefficient is calculated in this run
(iwr=1), and is stored in file C:\absco\absctmp.dat (for a wavenumber range from 2320 cm−1 to 2380 cm−1,
but also considering lines centered at wavenumbers as low as 2315 cm−1 and as high as 2385 cm−1, wvnmbuf=5.)
with a δη = 0.001 cm−1. We will calculate the k-distributions for 4 temperatures, equally spaced between
Tmin = 300 K and Tmax = 1200 K (numT=4): this results in the 4 temperatures of 300 K, 600 K, 900 K and 1200 K.
Each k-distribution will be over a range of ∆η = 10 cm−1 wavenumbers (kdrnge=10.), i.e., there will be 6
narrow bands. We will use 500 k-bins (n_pwrk=500) with pwr=0.1 (this spreads the k-bins over many orders
of magnitude, but places more and more bins into large magnitudes; see output file). We also set klmin=10−9

(cm−1), i.e., we will consider absorption coefficient contributions as small as 10−9 cm−1. Finally, we set ipr=1
and nq=10, i.e., besides truncated k-distributions ready-made for numerical quadrature, using 10 quadrature
points, we want to also print to file the full k-distributions. The top of the program with input parameters,
therefore, looks like this:
MODULE Key

IMPLICIT NONE

!HITRAN/HITEMP DATABASE

INTEGER :: lu

INTEGER,PARAMETER :: rows=1400000

DOUBLE PRECISION,PARAMETER :: wvnm_b=2320.d0,wvnm_e=2380.d0,wvnmbuf=5.d0,wvnmst=0.001d0

DOUBLE PRECISION :: data(rows,6),wvnm_l=wvnm_b-wvnmbuf,wvnm_r=wvnm_e+wvnmbuf

END MODULE Key

PROGRAM Main

USE Key

! Input parameters

INTEGER,PARAMETER :: numT=4,n_pwrk=500,nq=10,iwr=1,ipl=0,ipr=1

DOUBLE PRECISION,PARAMETER :: P=1.d0,Tmin=300d0,Tmax=1200d0,kdrnge=10.

DOUBLE PRECISION,PARAMETER :: xmfr(3)=(/0.10d0,0.00d0,0.d0/),pwr=0.1d0,klmin=1.d-9

DOUBLE PRECISION,PARAMETER :: fvsoot=0.d-6,nsoot=1.89d0,ksoot=0.92d0

where we have changed the values forwvnm_b, wvnm_e, wvnmst,numT,n_pwrk,iwr, ipr, nq, Tmin, Tmax
and xmfr to fit our needs. Also, in this simulation we have set file names as
! Open output files

IF(ipr<2) OPEN(7,FILE=’nbkvsgqco2.dat’,STATUS=’unknown’)

IF(ipr>0) OPEN(8,FILE=’nbkvsgco2.dat’,STATUS=’unknown’)

! File containing absorption coefficient

IF(iwr>0) OPEN(9,FILE=’C:\absco\absctmp.dat’,STATUS=’unknown’)

i.e., the absorption coefficient as calculated here is placed into c:\absco\absctmp.dat (and can be reused later
by setting iwr=2), while the long k-distribution output (500 values for each temperature and narrow band)
will be put into nbkvsgco2.dat, and the short, quadrature-ready output into nbkvsgqco2.dat. Note that the
header lines for absctmp.dat are formatted such that the absorption coefficient can be plotted from them using
the Tecplot drafting package. The other output files will need some reformatting before they can be used for
plotting.

We will also assume that Numerical Recipes subroutines are available, leaving the following lines un-
changed:
! Selection of g-values for numerical quadrature, using a Numerical Recipes routine

! If Numerical Recipes is not available, set nq=12, comment out the following 8 lines of code,

! and uncomment the 5-line REAL declaration following it

REAL :: gqs(nq),wqs(nq),kq(numt,nq),gq(nq),wq(nq),gaujac,alf=3.,bet=-.6,sum

! Get quadrature coefficients from Numerical recipies

sum=0.

CALL GAUJAC(gqs,wqs,nq,alf,bet)

do iq=1,nq

gq(iq)=0.5*(1.-gqs(iq))

wq(iq)=wqs(iq)/(2.**(alf+bet+1)*gq(iq)**alf*(1.-gq(iq))**bet)

sum=sum+wq(iq)

enddo

! Correction to make sum(wq)=1

wq=wq/sum

! End quadrature coefficients from Numerical recipies

! Selection of precalculated g-values for numerical quadrature, for nq=12,alf=3.,bet=0.

11

! REAL :: kq(numt,nq), &

! gq(nq)=(/ 5.120075E-02,1.170678E-01,2.015873E-01,3.007074E-01,4.095012E-01,5.225285E-01, &

! 6.341280E-01,7.387071E-01,8.310236E-01,9.064499E-01,9.612060E-01,9.925594E-01/),&

! wq(nq)=(/ 5.556622E-02,7.576839E-02,9.258290E-02,1.048306E-01,1.118451E-01,1.132605E-01, &

! 1.090012E-01,9.927844E-02,8.457905E-02,6.563999E-02,4.341329E-02,1.904792E-02/)

This will calculate quadrature points gq and weights wq using Gaussian quadrature of moments (alf=3 sets
3rd order moments). For users without access to Numerical Recipes the gq and wq calculated here have been
put in data statements and may be used instead by following the guidelines above.

The absorption coefficient placed into c:\absco\absctmp.dat has the following form:
variables = "wvn" "absco0300K" "absco0600K" "absco0900K" "absco1200K"

zone i= 60001

2320.00000 0.43878E+00 0.34411E+00 0.33293E+00 0.35420E+00

2320.00100 0.43694E+00 0.34266E+00 0.33335E+00 0.35600E+00

2320.00200 0.43512E+00 0.34125E+00 0.33386E+00 0.35783E+00

2320.00300 0.43333E+00 0.33988E+00 0.33447E+00 0.35968E+00

2320.00400 0.43157E+00 0.33856E+00 0.33516E+00 0.36155E+00

.

.

.

It is formatted for easy plotting using Tecplot, and has 60,001 absorption coefficient values between
2320 cm−1 and 2380 cm−1, spaced 0.001 cm−1 apart.
The output file nbkvsgco2.dat has this form:
T= 300.K, wvnm_lft= 2320.000000cm-1, wvnm_rgt= 2330.000000cm-1

k f g

0.325271D+00 0.615250D-02 0.625249D-02

0.328970D+00 0.262559D-02 0.887808D-02

0.332708D+00 0.209533D-02 0.109734D-01

0.336484D+00 0.188093D-02 0.128543D-01

0.340299D+00 0.183458D-02 0.146889D-01

.

.

.

0.277993D+02 0.340523D-03 0.997833D+00

0.280016D+02 0.402225D-03 0.998235D+00

0.282052D+02 0.521735D-03 0.998757D+00

0.284102D+02 0.124290D-02 0.100000D+01

T= 600.K, wvnm_lft= 2320.000000cm-1, wvnm_rgt= 2330.000000cm-1

k f g

0.187475D+00 0.525121D-02 0.535120D-02

0.189577D+00 0.199556D-02 0.734676D-02

0.191700D+00 0.138701D-02 0.873377D-02

.

.

.

Finally, output file nbkvsgqco2.dat contains quadrature k-values as:
wvnm_lft= 2320.000000cm-1, wvnm_rgt= 2330.000000cm-1

gq wq kq(T1) kq(T2) ...

0.729136D-01 0.813193D-01 0.400407D+00 0.242578D+00 0.183572D+00 0.160547D+00

0.165015D+00 0.108536D+00 0.541222D+00 0.297547D+00 0.226229D+00 0.204381D+00

0.280173D+00 0.128592D+00 0.672925D+00 0.335421D+00 0.278275D+00 0.240816D+00

0.410404D+00 0.139547D+00 0.867542D+00 0.418648D+00 0.336797D+00 0.295848D+00

0.546441D+00 0.140538D+00 0.118950D+01 0.584868D+00 0.422875D+00 0.361822D+00

0.678556D+00 0.131471D+00 0.163219D+01 0.902429D+00 0.560377D+00 0.425924D+00

0.797291D+00 0.112988D+00 0.286678D+01 0.156588D+01 0.795057D+00 0.518610D+00

0.894140D+00 0.864116D-01 0.739453D+01 0.262995D+01 0.130120D+01 0.731875D+00

0.962165D+00 0.536406D-01 0.168294D+02 0.783404D+01 0.286791D+01 0.123165D+01

0.996473D+00 0.169570D-01 0.268487D+02 0.142687D+02 0.658947D+01 0.326066D+01

wvnm_lft= 2330.000000cm-1, wvnm_rgt= 2340.000000cm-1

gq wq kq(T1) kq(T2) ...

0.729136D-01 0.813193D-01 0.716314D+00 0.299593D+00 0.223759D+00 0.171072D+00

0.165015D+00 0.108536D+00 0.788507D+00 0.371208D+00 0.277792D+00 0.221426D+00

0.280173D+00 0.128592D+00 0.943415D+00 0.436240D+00 0.339969D+00 0.280705D+00

.

.

.

12

for each of the 6 narrow bands.
Note that the code has an accuracy-checking mechanism built in: an average narrow band absorption

coefficient is calculated directly through line-by-line integration of the absorption coefficient, equation (11.60),
and is compared with the mean absorption coefficient as calculated from the k-1-distribution. If the discrepancy
exceeds 0.5% a message is printed to the screen, warning that k-bin spacing is too coarse (n_pwrk too small) to
properly resolve the absorption coefficient. For the above example, the choice of n_pwrk=500 results in an error
larger than 0.5% only for 2340–2350 cm−1 narrow band at 300 K (0.52%), as indicated by the warning message.

nbkdistsg.f90
Subroutine nbkdistsg calculates a single narrow band k-distribution from a given set of spectral absorption
coefficients and corresponding wavenumbers.
Input:
Deta = wavenumber range for which a k-distribution is to be calculated, in cm−1,
numk = number of absorption coefficient datapoints, equally spaced in wavenumbers,
n pwrk = number of k-boxes for k-distribution,
pwr = exponent for setting of k-box values; i.e., k-values are chosen in equal steps of kpwr,
nq = number of quadrature points for Gaussian quadrature,
ipr = print switch: ipr=0: prints k and w (Gaussian quadrature weights) vs. 1 only for Gaussian

quadrature points; ipr=1: prints k and w vs. 1 for Gaussian quadrature points, as well as k vs. f
and 1 for all n pwrk k-bins; ipr=2: prints only k vs. f and 1 for all n pwrk k-bins.

A

file named absco.dat containing absorption coefficient data is required: The first line must contain numk and
Deta (in I5,F7.4 format); second through (numk+1)th lines contain wvnm,absco (in e12.4 format).
Output:

nbkvsg.dat: Output file in Tecplot format (if ipr=1 or 2), containing one line giving wavenumber range, then
k, f , 1 for n pwrk k-values.

nbkvsgq.dat: Output file in Tecplot format (if ipr=0 or 1), containing one line giving wavenumber range, then
k,w, 1 for nq Gaussian quadrature points (nq=12 set as default: see discussion on Gaussian quadrature in
nbkdistdb.f90).

nbkdistsg.f90 is a streamlined version of nbkdistdb.f90 and, thus, much of the discussion in the example
for nbkdistdb.f90 pertains here, as well. As provided, nbkdistsg.f90 is embedded in a stand-alone program
called nbkdist sngl.f90, which first calculates the absorption coefficient data for the mixture in Example 11.5,
then calls nbkdistsg.f90 to determine the k-distribution given in Fig. 11-19.

wbmxxx.f, wbmxxxcl.f, wbmxxxcl.exe
Double precision Fortran77 subroutines wbmxxx(T,PSIr,PHIr), where xxx stands for the different gases h20,
co2, ch4, co, no and so2, calculate for a given temperature T the ratios PSIr = Ψ∗(T)/Ψ∗(T0) [from equa-
tions (11.144) and (11.148)] and PHIr = γ/γ0 =

√
T0/TΦ(T)/Φ(T0) [from equation (11.149)], i.e., the functions

shown in Figs. 11-23 through 11-25, for all bands given in Table 11.3 in the order as listed (in order of decreasing
band center wavelengths). For example, a call to wbmch4(1200.,PSIr,PHIr) would produce 4 values each for
PSIr and PHIr, and PSIr(3) would contain the value of Ψ∗(1200K)/Ψ∗(T0) = 1.29540 for the 2.4µm band of
methane, etc. The stand-alone programs wbmxxxcl.f perform the identical calculations, prompting the user
for input (T), and printing PSIr and PHIr to the screen for all bands listed in Table 11.3.

emwbm.f, ftwbm.f, wangwbm.f
Double precision Fortran77 functions to calculate the nondimensional total band absorptance A∗ from the
Edwards and Menard model, Table 11.2 (emwbm(tau,beta)), the Felske and Tien model, equation (11.156)
(ftwbm(tau,beta)), and the Wang model, equation (11.158) (wangwbm(tau,beta)).

wbmodels.f, wbmodels.exe
Stand-alone double precision Fortran77 front end for the functions emwbm, ftwbm and wangwbm; the user is
prompted to input tau (= τ0, optical thickness at band center) and beta (= β, overlap parameter); the nondi-
mensional total band absorptance A∗ is printed to the screen, as calculated from three band models (Edwards
and Menard, Felske and Tien, and Wang models).

wbkvsg.f
Double precision Fortran77 subroutine wbkvsg(beta,kmax,kmin,n,k,g) calculates the κ∗ vs. 1∗ distribution of

13

equation (11.170).
Input:
beta = β, the overlap parameter,
kmax = κ∗max, the maximum κ∗-value to be output,
kmin = κ∗min, the minimum κ∗-value to be output,
n = the number of κ∗ and 1∗ values to be output, [equally spaced in ln(

√
κ∗)],

Output:
k,g = κ∗, 1∗, n values each for κ∗ and 1∗, [equally spaced in ln(

√
κ∗)].

The integral in equation (11.170) is evaluated by first transforming the integration variable from κ∗ to
a = ln(

√
κ∗), or

1∗ =

∫ amax=ln(
√

105)

ln(
√
κ∗)

[
erfc(

√
βsinha) − eβerfc(

√
βcosha)

]
da,

followed by a simple Newton-Cotes integration. Beginning point of the integration is amax and a minimum
step size for the numerical integration is determined and used. However, only values for kmax > κ∗ > kmin for
n values equally spaced in a are output to arrays k and g.
Notes:
(i) Values of kmax > 105 are truncated;
(ii) Program assumes availability of double precision functions derfc, dcosh and dsinh.
As an example we consider the k-distribution of Example 10.9. Writing a small Fortran calling program

program callwbkvsg

integer n,i

real*8 beta,kmax,kmin,k(1000),g(1000),c1,c2,kdim,deta

OPEN(9,FILE=’wbkvsg.dat’,STATUS=’unknown’)

beta=0.211d0

kmax=1.d1

kmin=1.d-3

n=40

c1=54.84*41.2/138.15/100. ! rho-alpha/omega with kappa in cm-1

c2=138.15/2. ! omega/2

WRITE(9,9)

call wbkvsg(beta,kmax,kmin,n,k,g)

DO i=1,n

kdim=c1*k(i)

deta=c2*g(i)

WRITE(9,10) k(i),g(i),kdim,deta

ENDDO

CLOSE(9)

9 FORMAT(’ kstar gstar kdim deta’)

10 FORMAT(3f10.5,f8.2)

stop

end

leads to
kstar gstar kdim deta

10.00000 0.00942 1.63547 0.65

7.89652 0.01448 1.29146 1.00

6.23551 0.02141 1.01980 1.48

4.92388 0.03064 0.80529 2.12

3.88816 0.04264 0.63590 2.95

3.07029 0.05791 0.50214 4.00

2.42446 0.07702 0.39651 5.32

1.91448 0.10058 0.31311 6.95

1.51178 0.12924 0.24725 8.93

1.19378 0.16374 0.19524 11.31

0.94267 0.20484 0.15417 14.15

0.74438 0.25339 0.12174 17.50

0.58780 0.31028 0.09613 21.43

0.46416 0.37645 0.07591 26.00

0.36652 0.45290 0.05994 31.28

0.28943 0.54061 0.04733 37.34

0.22855 0.64057 0.03738 44.25

0.18047 0.75370 0.02952 52.06

0.14251 0.88079 0.02331 60.84

0.11253 1.02244 0.01840 70.62

14

0.08886 1.17894 0.01453 81.44

0.07017 1.35022 0.01148 93.27

0.05541 1.53570 0.00906 106.08

0.04375 1.73426 0.00716 119.79

0.03455 1.94425 0.00565 134.30

0.02728 2.16360 0.00446 149.45

0.02154 2.38997 0.00352 165.09

0.01701 2.62110 0.00278 181.05

0.01343 2.85504 0.00220 197.21

0.01061 3.09039 0.00173 213.47

0.00838 3.32632 0.00137 229.77

0.00661 3.56244 0.00108 246.08

0.00522 3.79859 0.00085 262.39

0.00412 4.03475 0.00067 278.70

0.00326 4.27092 0.00053 295.01

0.00257 4.50708 0.00042 311.33

0.00203 4.74324 0.00033 327.64

0.00160 4.97940 0.00026 343.95

0.00127 5.21557 0.00021 360.27

0.00100 5.45173 0.00016 376.58

totemiss.f
Double precision Fortran77 subroutine totemiss(ph2o,pco2,ptot,Tg,L,epsh2o,epsco2,epstot) calculates
the total emissivity of an isothermal gas mixture, using Leckner’s model, equations (11.177) through (11.181).
Input:
ph2o = pH2O, partial pressure of water vapor, in bar,
pco2 = pCO2 , partial pressure of carbon dioxide, in bar,
ptot = p, total mixture pressure, in bar,
Tg = T1, gas column temperature, in K,
L = L, gas column length, in m,
Output:
epsh2o = εH2O, total emissivity of water vapor in the mixture,
epsco2 = εCO2 , total emissivity of carbon dioxide in the mixture,
epstot = εCO2+H2O, total emissivity of the mixture, considering overlap effects.

totabsor.f
Double precision Fortran77 subroutine totabsor(ph2o,pco2,ptot,Tg,Tw,L,absh2o,absco2,abstot) calcu-
lates the total absorptivity of an isothermal gas mixture, using Leckner’s model, equations (11.177) through
(11.181).
Input:
ph2o = pH2O, partial pressure of water vapor, in bar,
pco2 = pCO2 , partial pressure of carbon dioxide, in bar,
ptot = p, total mixture pressure, in bar,
Tg = T1, gas column temperature, in K,
Tw = Tw, wall (or irradiation source) temperature, in K,
L = L, gas column length, in m,
Output:
absh2o = αH2O, total absorptivity of water vapor in the mixture,
absco2 = αCO2 , total absorptivity of carbon dioxide in the mixture,
abstot = αCO2+H2O, total absorptivity of the mixture, considering overlap effects.
Note: totabsor calls (i.e., requires) subroutine totemiss

Leckner.f, Leckner.exe
Stand-alone frontend fortotemiss(ph2o,pco2,ptot,Tg,L,epsh2o,epsco2,epstot)andtotabsor (ph2o,pco2,ptot,Tg,Tw,L,absh2o,absco2,abstot).
User is prompted to input ph2o, pco2, ptot, Tg, Tw and L (see above), and the corresponding total emissivities
and absorptivities are printed to the screen.

Chapter 12
mmmie.f, mmmiea.f
Fortran77 programs mmmie and mmmiea calculate Mie coefficients (scattering coefficients an and bn, efficiencies

15

Qsca,Qext and Qabs, see Section 12.2 for definitions), and relate them to particle cloud properties (extinction
coefficientβ, absorption coefficientκ, scattering coefficientσs, scattering phase function Φ for specified scattering
angles. In addition, program mmmiea also calculates the asymmetry factor 1, and phase function expansion
coefficients An, as defined in Section 12.3), but at a severe penalty in cpu time.
The input for both programs is the same, and is done via a data file MIE.DAT:
Input:
IDSTF = 1: single particle size; =2: modified gamma distribution
IETA = 1: single wavenumber; =2: wave number spectrum
IPRNT = 1: print only final results; =2: also intermediate integrations
CIR = complex index of refraction
RMIN = minimum particle size in gamma distribution (in µm)
RMAX = maximum particle size in gamma distribution (in µm)
AMG,

BMG,

ALMG,

GAMG

= constants in gamma distribution, equation (12.34), FR(R) = AMG*R**ALMG*DEXP(-BMG*R**GAMG);
units: AMG [cm−3µmALMG+1], ALMG [-], BMG [µm−1], GAMG[-]

NPV = number of particles per unit volume (in particles/cm3)
ETA = wavenumber if single wavenumber is considered (in cm−1)
ETMIN = minimum wavenumber to be considered
ETMAX = maximum wavenumber to be considered
NETA = number of wavenumbers to be considered (equally spaced between ETMIN and ETMAX)
ERRP = maximum error allowed for absorption/scattering coefficients (and also the asymmetry factor for

mmmiea)(in %)
ERRA = maximum absolute error desired for phase function values (mmmie) or expansion coefficients An

(mmmiea) (in 10−digits)
Note: to allow running the program on machines with relatively little RAM, array sizes have been declared
fairly small, limiting calculations to (i) a maximum of 10 different wavenumbers, (ii) relatively small size
parameters (x . 300), and (iii) relatively coarse integration intervals (< 500 nodes). More involved problems
can be calculated by carefully increasing array limits as indicated in the programs.
Example:
The input file MIE.DAT as given in this directory, contains the following data:
2, 1, 2

(1.30149,-0.1620E-05)

1.-10 1.+10,

1.619424-4, 0.740741, 7.6, 1., 74.

10000.

1. .005

stating that a gamma-distribution of particles is to be considered for a single wavenumber, with detailed
output (including intermediate integrations) (first line).
The complex index of refraction of the particles is m = 1.30149 − 0.1620 × 10−05i (second line).
Particle sizes range from 10−10 µm to 10+10 µm (third line).
Gamma-function parameters in equation (12.34) are A = 1.61942410−4,B = 0.740741, γ = 7.6, δ = 1. The number
of particles is given as N(T) = 74/cm3 (this number is really not necessary for a gamma distribution, since it
can be calculated from equation (12.35), and is only read and printed, but not used) (fourth line).
Since only a single wavenumber is considered, the fifth line contains only one number, η = 100000 cm−1.
Finally, the last line specifies to calculate κ, σ and β to an accuracy of 1% or better, and that the values for Φ or
An should be calculated to an absolute accuracy of 0.005.

Running mmmie produces the following self-explanatory output, placed into file MIE.RES:
PARAMETERS FOR PARTICLE DISTRIBUTION/SINGLE WAVENUMBER

**

WAVENUMBER = 0.100E+05 CM-1

MINIMUM PARTICLE RADIUS= 0.100E-09 MICROM

MAXIMUM PARTICLE RADIUS= 0.100E+11 MICROM

REFRACTIVE INDEX = 1.3015-0.0000i

PARTICLE DENSITY = 0.740E+02 PER CM**3

DISTRIBUTION FUNCTION: N(R)=0.16194E-03*R**7.6*EXP(-0.74074E+00*R**1.0)

16

MIE-PARAMETERS ARE CALCULATED FOR 16.00000 < X < 216.00000

INTEGRATION WITH 9 NODES, AND A DX =25.000

ETA (CM-1) 1.000E+04

KAPPA (CM-1) 1.250E-07

SIGMA (CM-1) 3.675E-04

BETA (CM-1) 3.676E-04

PHASE FUNCTION

DEG. PHI

0 4.835E+03

1 1.943E+03

2 2.093E+02

3 5.329E+01

.

.

.

176 2.264E-01

177 1.503E-01

178 2.086E-01

179 3.508E-01

180 1.364E+00

INTEGRATION WITH 17 NODES, AND A DX =12.500

ETA (CM-1) 1.000E+04

KAPPA (CM-1) 9.997E-08

SIGMA (CM-1) 3.667E-04

BETA (CM-1) 3.668E-04

PHASE FUNCTION

DEG. PHI

0 4.634E+03

1 1.851E+03

2 2.304E+02

3 4.943E+01

.

.

.

177 2.428E-01

178 3.551E-01

179 3.691E-01

180 9.224E-01

INTEGRATION WITH 65 NODES, AND A DX = 3.125

ETA (CM-1) 1.000E+04

KAPPA (CM-1) 1.023E-07

SIGMA (CM-1) 3.684E-04

BETA (CM-1) 3.685E-04

PHASE FUNCTION

DEG. PHI

0 4.617E+03

1 1.847E+03

2 2.331E+02

3 6.044E+01

.

.

.

INTEGRATION DID NOT CONVERGE: MAXIMUM ERROR = 0.18%

17

ERROR FOR SIGMA : 0.18%, ERROR FOR BETA : 0.18%

ERROR FOR

PHASE(1): 2.84309

PHASE(2): 2.45336

PHASE(3): 1.56688

PHASE(4): 0.47940

PHASE(5): 0.23725

.

.

.

PHASE(179): 0.03003

PHASE(180): 0.05414

PHASE(181): 0.10000

ETA (CM-1) 1.000E+04

KAPPA (CM-1) 9.785E-08

SIGMA (CM-1) 3.677E-04

BETA (CM-1) 3.678E-04

PHASE FUNCTION

DEG. PHI

0 4.614E+03

1 1.845E+03

2 2.347E+02

3 6.092E+01

4 3.153E+01

5 2.034E+01

6 1.511E+01

7 1.234E+01

8 1.066E+01

9 9.560E+00

.

.

.

170 7.660E-02

171 1.032E-01

172 1.213E-01

173 1.069E-01

174 9.150E-02

175 1.214E-01

176 1.629E-01

177 2.179E-01

178 2.986E-01

179 2.761E-01

180 7.212E-01

Running mmmiea, on the other hand produces the following output, placed into file MIEA.RES:
PARAMETERS FOR PARTICLE DISTRIBUTION/SINGLE WAVENUMBER

**

WAVENUMBER = 0.100E+05 CM-1

MINIMUM PARTICLE RADIUS= 0.100E-09 MICROM

MAXIMUM PARTICLE RADIUS= 0.100E+11 MICROM

REFRACTIVE INDEX = 1.30149-1.62000E-06i

PARTICLE DENSITY = 7.400E+01 PER CM**3

DISTRIBUTION FUNCTION: N(R)=1.61942E-04*R**7.6*EXP(-0.74074E+00*R**1.0)

MIE-PARAMETERS ARE CALCULATED FOR 16.00000 < X < 216.00000

INTEGRATION WITH 9 NODES, AND A DX =25.000

ETA (CM-1) 1.000E+04

KAPPA (CM-1) 1.250E-07

SIGMA (CM-1) 3.675E-04

18

BETA (CM-1) 3.676E-04

GCOS (--) 8.691E-01

A(1) 2.60744

A(2) 4.02359

A(3) 4.85462

A(4) 5.53582

A(5) 6.29942

A(6) 6.88010

A(7) 7.63828

A(8) 8.43823

A(9) 9.15186

.

.

.

A(449) 0.00000

A(450) 0.00000

A(451) 0.00000

A(452) 0.00000

INTEGRATION WITH 33 NODES, AND A DX = 6.250

ETA (CM-1) 1.000E+04

KAPPA (CM-1) 1.015E-07

SIGMA (CM-1) 3.681E-04

BETA (CM-1) 3.682E-04

GCOS (--) 8.716E-01

A(1) 2.52586

A(2) 3.88357

A(3) 4.68158

A(4) 5.32619

A(5) 6.04063

A(6) 6.59512

A(7) 7.31633

A(8) 8.08751

A(9) 8.72379

A(10) 9.58797

.

.

.

A(449) 0.00000

A(450) 0.00000

A(451) 0.00000

A(452) 0.00000

PHASEFUNCTION

DEG. PHI

0 4.260E+03

5 1.758E+01

10 8.615E+00

15 5.157E+00

20 4.088E+00

25 3.059E+00

30 2.206E+00

35 1.287E+00

40 1.089E+00

45 6.978E-01

50 7.122E-01

55 3.592E-01

60 2.251E-01

65 1.581E-01

70 1.343E-01

75 9.730E-02

80 8.906E-02

85 6.900E-02

90 5.605E-02

95 4.968E-02

100 5.518E-02

19

105 5.099E-02

110 4.992E-02

115 5.291E-02

120 5.204E-02

125 8.062E-02

130 5.287E-02

135 2.674E-01

140 2.485E-01

145 1.552E-01

150 1.190E-01

155 1.194E-01

160 1.216E-01

165 1.328E-01

170 1.030E-01

175 1.690E-01

180 9.319E-01

coalash.f90, coalash.exe
This Fortran90 program determines absorption and extinction coefficients κ∗, β∗ for the Rayleigh limit, from the
Buckius and Hwang [3] model, as well as from the Mengüç and Viskanta [4] model. The user is prompted to
input the complex index of refraction n and k as well as the nondimensional size parameter x of the coal/ash
particles; results are then printed to the screen.

Chapter 16
P1sor.f90, P1sor.cpp
Subroutine P1sor provides the solution to equation (16.38) with its boundary condition (16.49) for a two-
dimensional (rectangular or axisymmetric cylinder) enclosure with reflecting walls and an absorbing, emitting,
linear-anisotropically scattering medium.
Input:
II = Number of nodes in x-direction
JJ = Number of nodes in y- or r-direction
KK = 0 for rectangular, KK=1 for cylindrical enclosure
IRE = Radiative equilibrium identifier; IRE=0: no equilibrium; IRE=1: radiative equilibrium
L = Length of enclosure (in cm)
R = Height (rectangle) or radius (cylinder) of enclosure (in cm)
EPSX = Wall emittances, EPSX(1) at X=0, EPSX(2) at X=L
EPSR = Wall emittances, EPSR(1) at Y=0 (for rectangle only), EPSY(2) at Y,r=R
SX = Sources at x-direction walls:

SX(1,j=1,2,...JJ) source at x = 0 for varying y/r-nodes
SX(2,j=1,2,...JJ) source at x = L for varying y/r-nodes
(for a standard, gray application SX = 4σT4, in W/cm2)

SR = Sources at y, r-direction walls:
SR(1,i=1,2,...II) source at y = 0 for varying x-nodes (for rectangle only)
SR(2,i=1,2,...II) source at y, r = R for varying x-nodes
(for a standard, gray application SR = 4σT4, in W/cm2)

KT = Absorption coefficient for all internal nodes (in cm−1)
ST = Scattering coefficient for all internal nodes (in cm−1)
A1 = Linear anisotropy factor for all internal nodes
SS = Sources for all internal nodes (in cm−1)

(for a standard, gray application SS = 4σT4, in W/cm2)
Output:
G = Incident radiation for all internal nodes, (in W/cm2)
QX = Fluxes at x-direction walls:

QX(1,j=1,2,...JJ) flux at x = 0 for varying y/r-nodes
QX(2,j=1,2,...JJ) flux at x = L for varying y/R-nodes
(positive into positive x-direction, in W/cm2)

20

QR = Fluxes at x-direction walls:
QR(1,i=1,2,...II) flux at y = 0 for varying x-nodes (for rectangle only)
QR(2,i=1,2,...II) flux at y, r = R for varying x-nodes
(positive into positive r, y-direction, in W/cm2)

Calculations can be done for a gray medium or, on a spectral basis, for a nongray medium. For a gray
medium the user may either specify a temperature field (IRE=0) by supplying SS= 4n2σT4, or radiative equi-
librium may be invoked (IRE=1), in which case the heat generation term SS= Q̇ ′′′ must be input. Note that
radiative equilibrium is not possible on a spectral level.

Width L is broken up into II equally spaced nodes with spacing ∆x = L/(II − 1); similarly height/radius R
is broken up into JJ equally spaced nodes with spacing ∆r = R/(JJ − 1).

For each of the II×JJ nodes each of the radiative properties (κ = KT, σs = ST, A1 = A1) must be input, as well
as the local radiative source SS (= 4πIb if IRE=0, or = Q̇ ′′′ if IRE=1). In addition, for each surface an emittance
must be specified [ε(x = 0) = EPSX(1), ε(x = L) = EPSX(2); ε(y = 0)= EPSR(1) for rectangular enclosures
only, and ε(rory = R) = EPSR(2)], as well as radiation sources [4πIbw(x = 0) = SX(1), 4πIbw(x = L) = SX(2);
4πIbw(y = 0) = SR(1) for rectangular enclosures only, and 4πIbw(rory = R) = SR(2)]. Insulated boundaries can be
treated by setting the emittance of that surface to zero. One-dimensional problems can be treated by setting two
opposing emittances to zero; for better efficiency the number of nodes in the cross-direction should be set to one.
Thus, EPSR(1) = EPSR(2) = 0 and JJ = 1makes the problem a one-dimensional slab, while EPSX(1) = EPSX(2) = 0

and II = 1 makes a one-dimensional cylinder.
Upon return P1sor provides the solution array G (incident radiation G for all II×JJ nodes), as well as flux

vectors QX (for radiative fluxes at the two surfaces x = 0 and x = L) and QY (radiative fluxes at y = 0 for a
rectangle, and rory = R). The solution is found by successive over-relaxation, with over-relaxation parameter OM,
which is optimized by an implementation of algorithm 9-6.1 given in [5].
Code Details
For a two-dimensional problem equation (16.38) may be rewritten as

−
1
3

1
rk

∂
∂r

(
rk

β∗
∂G
∂r

)
+
∂
∂x

(
1
β∗
∂G
∂x

)
= κ(4πIb − G) temperature specified,

= Q̇ ′′′ radiative equilibrium, (CC-8)

where β∗ = β − A1σs/3; KK = 0 makes it a rectangular enclosure, and KK = 1 makes it an axisymmetric cylinder.
Standard central finite differencing with equal spacing ∆r = R/(JJ − 1) and ∆x = L/(II − 1) and λ = ∆x/∆r
produces an equation for each (internal and boundary) node:

Ai jGi−1, j + Bi jGi+1, j + Ci jGi, j−1 + Di jGi, j+1 − Ei jGi j = −Fi j, (CC-9)

where

Ai j =
β∗i j

β∗i−1/2, j
'

2β∗i j

β∗i−1, j + β∗i j

Bi j =
β∗i j

β∗i+1/2, j
'

2β∗i j

β∗i j + β∗i+1, j

Ci j = λ2
β∗i j

β∗i, j−1/2

(
rj−1/2

rj

)k

' λ2
2β∗i j

β∗i, j−1 + β∗i j

(
1 −

1
2(j − 1)

)
since rj = (j − 1)∆r

Di j = λ2
β∗i j

β∗i, j+1/2

(
rj+1/2

rj

)k

' λ2
2β∗i j

β∗i j + β∗i, j+1

(
1 +

1
2(j − 1)

)
Ei j =

{
3κi jβ∗i j∆x2 + Ai j + Bi j + Ci j + Di j temperature specified,
Ai j + Bi j + Ci j + Di j radiative equilibrium,

Fi j =

 3κi jβ∗i j∆x2SSi j temperature specified (SSi j = 4πIbi j),

3β∗i j∆x2SSi j radiative equilibrium (SSi j = Q̇ ′′′i j).

21

Boundary conditions equation (16.49) are written as, and finite-differenced using artificial nodes (i = 0 at x = 0,
i = II at x = L, j = 0 at r = 0 and j = JJ at r = R)

x = 0 :
∂G
∂x
− bx(1)β∗ [G − SX(1)] = 0 where bx() =

3
2

ε
2 − ε

, SX() = 4πIbw

x = L :
∂G
∂x

+ bx(2)β∗ [G − SX(2)] = 0

r = 0 :
∂G
∂r
− br(1)β∗ [G − SR(1)] = 0 (rectangular enclosure, KK = 0, only)

r = R :
∂G
∂r
− br(2)β∗ [G − SR(2)] = 0

or, with β∗ = BT

x = 0 (i = 1) : Gi−1, j − Gi+1, j + 2bx(1) ∆x BTi j

(
Gi j − SXj(1)

)
= 0

x = L (i = II) : Gi+1, j − Gi−1, j + 2bx(2) ∆x BTi j

(
Gi j − SXj(2)

)
= 0

r = 0 (j = 1) : Gi, j−1 − Gi, j+1 + 2br(1) ∆r BTi j

(
Gi j − SRi(1)

)
= 0 (KK = 0 only)

r = R (j = JJ) : Gi, j+1 − Gi, j−1 + 2br(2) ∆r BTi j

(
Gi j − SRi(2)

)
= 0

Eliminating the artificial nodes between internal node and boundary node equations yields the updated values

i = 1 : A′i j = 0,B′i j = Ai j + Bi j,E′i j = Ei j + 2bx(1) ∆x BTi jAi j

F′i j = Fi j + 2bx(1) ∆x BTi jAi jSXj(1)

i = II : B′i j = 0,A′i j = Ai j + Bi j; E′i j = Ei j + 2bx(2) ∆x BTi jBi j

F′i j = Fi j + 2bx(2) ∆x BTi jBi jSXj(2)

j = 1 : C′i j = 0,D′i j = Ci j + Di j,E′i j = Ei j + 2br(1) ∆r BTi jCi j

F′i j = Fi j + 2br(1) ∆r BTi jCi jSRj(1)

j = JJ : D′i j = 0,C′i j = Ci j + Di j,E′i j = Ei j + 2br(2) ∆r BTi jDi j

F′i j = Fi j + 2br(2) ∆r BTi jDi jSRj(2)

For a cylindrical enclosure (KK = 1) the boundary condition at r = 0 (J = 1) becomes

r = 0, (j = 1) :
∂G
∂r

= 0 or Gi, j−1 = Gi, j+1.

Also, the governing equation (CC-8) becomes indeterminate. Expanding the radial derivative and using De
l’Hopital’s rule, we obtain

lim
r→0

1
r
∂
∂r

(
r
β∗
∂G
∂r

)
=

1
β∗
∂2G
∂r2 −

1
β∗2

∂G
∂r
∂β∗

∂r
+ lim

r→0

1
rβ∗

∂G
∂r

=
2
β∗
∂2G
∂r2

=
4

βi1∆r2 (Gi2 − Gi1)

Thus, for KK = 1 and J = 1

Ci j = 0, Di j = 4λ2

P1-2D.f90, P1-2D.cpp
Program P1-2D is a front end for subroutine P1sor, setting up the problem for a gray medium with spatially
constant radiative properties (dimensions, radiative properties, and sources from known temperatures); may
be used as a starting point for more involved applications. After calling P1sor the program also generates
appropriate output. As given, P1-2D simulates the case of a two-dimensional axisymmetric cylinder (KK=1)

22

of R = 10 cm radius and L = 20 cm length, using JJ=21 nodes in the radial direction and II=41 nodes in the
axial direction (i.e., ∆x = ∆r = 0.5 cm), with a cold (Ti j = TM = 0) gray medium, with constant absorption and
scattering coefficients (κ = σs = 0.1 cm−1,A1 = 0); bounding walls are black and cold except for the face at x = 0,
which is gray (EPSX(1)=0.5) and hot (TX(1)=2000K). Since the temperature field is specified, we have IRE=0.
Running P1-2D we find from screen output that the calculation requires 97 iterations with a residual 2-norm
error of 0.1354 × 10−4.

The output is in file P1-2Dsor.dat, giving:
GENERAL DATA

CYLINDER RADIUS (R-DIR): 10.00

CYLINDER LENGTH (X-DIR): 20.00

TEMPERATURE AT r=R(j=J): 0.00K, EMITTANCE 1.00

TEMPERATURE AT x=0(i=1): 2000.00K, EMITTANCE 0.50

TEMPERATURE AT x=L(i=I): 0.00K, EMITTANCE 1.00

MEDIUM TEMPERATURE TM (K)

\J 1 3 5 7 9 11 13 15 17 19 21

I

1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

7 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

9 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

13 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

17 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

19 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

21 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

23 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

27 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

29 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

31 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

33 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

35 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

37 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

39 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

41 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

INCIDENT RADIATION G (W/SQCM)

\J 1 3 5 7 9 11 13 15 17 19 21

I

1 99.6 99.4 99.0 98.3 97.1 95.5 93.1 89.7 84.7 77.0 64.0

3 76.3 76.2 75.7 75.0 73.7 72.0 69.5 65.9 60.9 53.5 42.7

5 58.3 58.1 57.7 56.9 55.7 54.0 51.6 48.3 43.7 37.6 29.6

7 44.3 44.1 43.7 43.0 41.9 40.3 38.2 35.3 31.5 26.7 20.9

9 33.5 33.4 33.0 32.4 31.4 30.0 28.2 25.8 22.8 19.2 14.9

11 25.3 25.2 24.8 24.3 23.4 22.3 20.8 18.9 16.6 13.8 10.8

13 19.0 18.9 18.6 18.2 17.5 16.5 15.3 13.8 12.1 10.0 7.8

15 14.2 14.2 13.9 13.5 13.0 12.2 11.3 10.2 8.8 7.3 5.7

17 10.6 10.6 10.4 10.1 9.6 9.1 8.3 7.5 6.5 5.3 4.1

19 7.9 7.9 7.7 7.5 7.2 6.7 6.1 5.5 4.7 3.9 3.0

21 5.9 5.9 5.8 5.6 5.3 5.0 4.5 4.0 3.5 2.9 2.2

23 4.4 4.4 4.3 4.1 3.9 3.7 3.3 3.0 2.6 2.1 1.6

25 3.3 3.2 3.2 3.1 2.9 2.7 2.5 2.2 1.9 1.5 1.2

27 2.4 2.4 2.4 2.3 2.1 2.0 1.8 1.6 1.4 1.1 0.9

29 1.8 1.8 1.7 1.7 1.6 1.5 1.3 1.2 1.0 0.8 0.6

31 1.3 1.3 1.3 1.2 1.2 1.1 1.0 0.9 0.7 0.6 0.5

33 1.0 1.0 1.0 0.9 0.9 0.8 0.7 0.6 0.6 0.5 0.3

35 0.7 0.7 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.3 0.3

37 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.2 0.2

39 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.1

41 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1

23

WALL FLUXES AT X=O AND X=L (W/SQCM)

J 1 3 5 7 9 11 13 15 17 19 21

Q 43.9 43.9 44.0 44.1 44.3 44.6 45.0 45.5 46.4 47.6 49.8

Q 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

RADIAL FLUXES TO CYLINDER WALL (W/SQCM)

I QR

1 32.0

2 25.9

3 21.3

.

.

.

Had we defined IRE=1 the same case would be calculated, but for radiative equilibrium with Q̇ ′′′ = 0 (since TM
was set to zero). This results in (now requiring 137 iterations):

GENERAL DATA

CYLINDER RADIUS (R-DIR): 10.00

CYLINDER LENGTH (X-DIR): 20.00

TEMPERATURE AT r=R(j=J): 0.00K, EMITTANCE 1.00

TEMPERATURE AT x=0(i=1): 2000.00K, EMITTANCE 0.50

TEMPERATURE AT x=L(i=I): 0.00K, EMITTANCE 1.00

MEDIUM TEMPERATURE TM (K)

\J 1 3 5 7 9 11 13 15 17 19 21

I

1 1611. 1610. 1606. 1600. 1592. 1579. 1563. 1540. 1510. 1466. 1393.

3 1555. 1554. 1550. 1542. 1532. 1517. 1497. 1470. 1433. 1381. 1302.

5 1499. 1497. 1493. 1484. 1472. 1455. 1432. 1402. 1361. 1306. 1228.

7 1442. 1441. 1435. 1426. 1413. 1394. 1370. 1337. 1295. 1238. 1163.

9 1386. 1384. 1379. 1369. 1355. 1335. 1309. 1276. 1233. 1177. 1105.

11 1331. 1329. 1323. 1313. 1298. 1278. 1251. 1218. 1175. 1121. 1051.

13 1277. 1275. 1268. 1258. 1243. 1223. 1196. 1163. 1121. 1068. 1002.

15 1224. 1222. 1215. 1205. 1190. 1169. 1143. 1110. 1069. 1019. 955.

17 1172. 1170. 1164. 1153. 1138. 1118. 1093. 1061. 1021. 972. 911.

19 1122. 1120. 1114. 1104. 1089. 1069. 1044. 1013. 975. 928. 870.

21 1074. 1072. 1066. 1056. 1041. 1022. 998. 968. 931. 886. 830.

23 1027. 1025. 1019. 1009. 995. 977. 953. 924. 889. 846. 793.

25 982. 980. 974. 965. 951. 933. 911. 883. 849. 807. 757.

27 938. 936. 930. 921. 908. 891. 869. 843. 810. 771. 722.

29 895. 893. 888. 879. 867. 850. 829. 804. 773. 735. 689.

31 853. 852. 847. 838. 826. 810. 790. 766. 736. 700. 656.

33 812. 811. 806. 798. 786. 771. 752. 729. 701. 666. 624.

35 772. 770. 765. 758. 747. 732. 714. 692. 665. 633. 593.

37 730. 729. 725. 717. 707. 693. 676. 655. 630. 599. 561.

39 688. 686. 682. 675. 665. 653. 636. 617. 593. 564. 528.

41 642. 641. 637. 630. 621. 609. 594. 576. 553. 526. 493.

INCIDENT RADIATION G (W/SQCM)

\J 1 3 5 7 9 11 13 15 17 19 21

I

1 152.8 152.4 151.1 148.8 145.5 141.1 135.2 127.6 117.8 104.7 85.5

3 132.7 132.2 130.8 128.4 124.9 120.1 113.9 105.9 95.6 82.4 65.1

5 114.5 114.0 112.5 110.1 106.5 101.7 95.5 87.6 77.9 65.9 51.5

7 98.2 97.7 96.3 93.8 90.3 85.7 79.8 72.5 63.7 53.3 41.5

9 83.8 83.3 81.9 79.6 76.4 72.1 66.7 60.1 52.4 43.6 33.8

11 71.2 70.7 69.5 67.4 64.4 60.5 55.6 49.9 43.2 35.8 27.7

13 60.2 59.9 58.7 56.8 54.1 50.7 46.4 41.5 35.8 29.5 22.8

15 50.8 50.5 49.5 47.8 45.4 42.4 38.7 34.5 29.7 24.4 18.9

17 42.8 42.5 41.6 40.1 38.1 35.5 32.3 28.7 24.6 20.3 15.6

24

19 36.0 35.7 34.9 33.7 31.9 29.6 27.0 23.9 20.5 16.8 13.0

21 30.1 29.9 29.3 28.2 26.7 24.8 22.5 19.9 17.0 14.0 10.8

23 25.2 25.0 24.5 23.5 22.3 20.6 18.7 16.6 14.2 11.6 9.0

25 21.1 20.9 20.4 19.6 18.6 17.2 15.6 13.8 11.8 9.6 7.4

27 17.5 17.4 17.0 16.3 15.4 14.3 13.0 11.4 9.8 8.0 6.2

29 14.6 14.4 14.1 13.6 12.8 11.8 10.7 9.5 8.1 6.6 5.1

31 12.0 11.9 11.7 11.2 10.6 9.8 8.9 7.8 6.7 5.5 4.2

33 9.9 9.8 9.6 9.2 8.7 8.0 7.3 6.4 5.5 4.5 3.4

35 8.0 8.0 7.8 7.5 7.1 6.5 5.9 5.2 4.4 3.6 2.8

37 6.5 6.4 6.2 6.0 5.7 5.2 4.7 4.2 3.6 2.9 2.2

39 5.1 5.0 4.9 4.7 4.4 4.1 3.7 3.3 2.8 2.3 1.8

41 3.8 3.8 3.7 3.6 3.4 3.1 2.8 2.5 2.1 1.7 1.3

WALL FLUXES AT X=O AND X=L (W/SQCM)

J 1 3 5 7 9 11 13 15 17 19 21

Q 35.0 35.1 35.3 35.7 36.2 37.0 37.9 39.2 40.8 43.0 46.2

Q 1.9 1.9 1.9 1.8 1.7 1.6 1.4 1.2 1.1 0.9 0.7

RADIAL FLUXES TO CYLINDER WALL (W/SQCM)

I QR

1 42.7

2 37.0

.

.

.

Finally, if we set IRE=1, EPSR=0 and JJ=1, we obtain the results for a one-dimensional slab at radiative equilib-
rium:

GENERAL DATA

CYLINDER RADIUS (R-DIR): 10.00

CYLINDER LENGTH (X-DIR): 20.00

TEMPERATURE AT r=R(j=J): 0.00K, EMITTANCE 0.00

TEMPERATURE AT x=0(i=1): 2000.00K, EMITTANCE 0.50

TEMPERATURE AT x=L(i=I): 0.00K, EMITTANCE 1.00

MEDIUM TEMPERATURE TM (K)

\J 1

1 1829.

3 1809.

5 1788.

7 1767.

9 1745.

11 1722.

13 1698.

15 1673.

17 1646.

19 1619.

21 1590.

23 1559.

25 1527.

27 1492.

29 1454.

31 1414.

33 1369.

35 1320.

37 1264.

39 1201.

41 1124.

INCIDENT RADIATION G (W/SQCM)

25

\J 1

1 253.7

3 242.8

5 232.0

7 221.1

9 210.2

11 199.3

13 188.4

15 177.5

17 166.7

19 155.8

21 144.9

23 134.1

25 123.2

27 112.3

29 101.5

31 90.6

33 79.7

35 68.9

37 58.0

39 47.1

41 36.2

WALL FLUXES AT X=O AND X=L (W/SQCM)

J 1

Q 18.2

Q 18.1

RADIAL FLUXES TO CYLINDER WALL (W/SQCM)

I QR

1 0.0

2 0.0

.

.

.

Of course, the matrix for this case could have easily been inverted by a tridiagonal matrix solver (instead of
using 181 iterations as done here), or could have been found analytically using Example 15.5 (but for a gray
wall).

Delta.f90:
Program Delta is a stand-alone program to calculate the rotation matrix ∆n

mm′ (α, β, γ) required for the boundary
conditions of higher-order PN-approximations, as given by equations (16.64) through (16.67); here set for
2l = N − 1 = 4 (P5). Results for the case of a backward rotation with −γ(= alpha) = −π/2, −β(= beta) = π/2,
−α(= gamma) = π/2 (a surface at y = const facing toward larger y, with x̄ = x) are calculated and stored in
delta.dat. For incorporation into a general PN-code the stand-alone program can easily be converted into a
subroutine calculating a single or all rotation ∆-values for a given set of angles α, β, γ.

pnbcs.f90:
Program pnbcs is a stand-alone program to calculate the Legendre half-moments pm

n, j and coefficients um
li , v

m
li ,w

m
li ,

which are required for the boundary conditions of higher-order PN-approximations, as given by equations (16.71)
through (16.72). Calculations use the recursion relationships described in [6], Eqs. (27) through (32). As pro-
vided, N = NN = 5, i.e., the pm

n, j,u
m
li , v

m
li and wm

li are calculated up to n = 5 (P5-approximation). Output is directed
to PNbc.dat, containing all the pm

n, j data for Table 16.2 (i.e., normalized by 10−m), and the corresponding u, v,w.
Higher orders may be implemented by changing NN (however, output format would need adjustment beyond
P19).

26

Chapter 19
transPN.f90
Program transPN calculates energy from a pulsed collimated laser source transmitted through an absorbing,
isotropically scattering slab as a function of time, using the P1 and P1/3 methods. Following Example 19.3 the
equations for the P1- and P1/3-approximations for a nonemitting and isotropically scattering, one-dimensional
medium, reduce to

∂G
∂t∗

+
∂q
∂τ

= −(1 − ω)G + ωGc, (CC-10)

3a
∂q
∂t∗

+
∂G
∂τ

= −3q, (CC-11)

where a = 1 for P1 and a = 1/3 for P1/3, and G and q have been normalized as G = Gd/qo and q = qd/qo. These
two equations are subject to the initial and boundary conditions

t∗ = 0 : G(0, τ) = q(0, τ) = 0, (CC-12)
τ = 0 : −2q(t∗, 0) = G(t∗, 0), (CC-13)
τ = τL : +2q(t∗, τL) = G(t∗, τL). (CC-14)

The normalized isotropic scattering source is immediately found from equations (19.25) and (19.18) for a
nonreflecting boundary. For the top-hat profile of Example 19.3 this results in a total nondimensional pulse
energy of t∗p and

Gc(t∗, τ) =
[
H(t∗ − τ) −H∗(t∗ − τ − t∗p)

]
e−τ. (CC-15)

If a clipped Gaussian source is used [7], then

q0(0, t) = q0 [H(t) −H(t − 2tc)] exp

− (
t − tc

tp

)2 , (CC-16)

and the total nondimensional pulse energy is

∞∫
0

q0(0, t)
q0

βcdt =

∞∫
0

[
H(t∗) −H(t∗ − 2t∗c)

]
exp

− (
t∗ − t∗c

t∗p

)2 dt∗

=

2t∗c∫
0

exp

− (
t∗ − t∗c

t∗p

)2 dt∗ =
√
πt∗p erf

(
t∗c
t∗p

)
. (CC-17)

Thus, to run transPN with equal pulse strengths, one must use

t∗p,TH =
√
π erf

 t∗c
t∗pG

 t∗pG '
√
πt∗pG, (CC-18)

the latter assuming tc & 2tpG. For the clipped Gaussian pulse the source term then becomes

Gc(t∗, τ) =
[
H(t∗ − τ) −H(t∗ − 2t∗c − τ)

]
exp

−τ − (
t∗ − t∗c − τ

t∗p

)2 . (CC-19)

The hyperbolic nature of this set of equations becomes obvious, if q is eliminated from them (by differentiating
the first with respect to t∗ and the second with respect to τ), leading to

∂2G
∂t∗2
−

1
3a
∂2G
∂τ2 +

(
1 − ω +

1
a

)
∂G
∂t∗

+
1 − ω

a
G −

ω
a

Gc − ω
∂Gc

∂t∗
= 0, (CC-20)

27

1 2 3 i i + 1 Nx0

∆

 L

τ

τ

∆
t*

t* = - t*
 =

 +

i + ½

n=0
1

2

3

FIGURE 1
Time-space nodal system for transPN.f90.

which has a signal velocity of α = 1/
√

3a (nondimensional in terms of speed of light, c), as already indicated in
the formulation for the Pa methods. Eliminating q also from initial and boundary conditions gives

t∗ = 0 : G(0, τ) =
∂G
∂t∗

(0, τ) = 0, (CC-21)

τ = 0 : 3
(
G(t∗, 0) + a

∂G
∂t∗

(t∗, 0)
)
− 2

∂G
∂τ

(t∗, 0) = 0, (CC-22)

τ = τL : 3
(
G(t∗, 0) + a

∂G
∂t∗

(t∗, 0)
)

+ 2
∂G
∂τ

(t∗, 0) = 0. (CC-23)

This second-order hyperbolic equation is readily solved by the method of characteristics [8] along the char-
acteristic lines τ = ±αt∗. Using subscript notation, i.e., Gx = ∂G/∂τ, etc., equation (CC-20) may be rewritten
as

Gtt − α
2Gxx + (1 − ω)Gt + 3α2

[
Gt + (1 − ω)G − ωG

′

c

]
= 0, (CC-24)

where G′

c = Gc + ∂Gc/∂t∗. Along the two characteristic lines τ = ±αt∗ we have [8]

± αdGt − α
2dGx ±

{
(1 − ω)Gt + 3α2

[
Gt + (1 − ω)G − ωG

′

c

]}
dτ = 0 (CC-25)

and the total differential is
dG = Gtdt∗ + Gxdτ. (CC-26)

We will break up the thickness of the slab, L, into Nx equally-spaced nodes of width ∆x = L/Nx, or
∆τ = τL/Nx. In t∗-τ-space the characteristics then are straight lines as shown in Fig. 1Time-space nodal system
for transPN.f90figure.0.1, with the lines going up to the right corresponding to the upper sign in equation (CC-
25), and the lines going down to the right to the lower sign. As time step ∆τ we take the time it takes to move
along the characteristics from adjacent points (n, i) and (n, i + 1) to their intersection at (n + 1, i + 1/2) as shown
in the figure. During that time the signal moves a distance ±∆x/2, so that

∆t∗ = ∆τ/2α. (CC-27)

We can finite-difference equations (CC-25) and (CC-26) along the characteristics by using dφ = φn
i+1/2
−φn−1

i for
the left-to-right characteristics, and dφ = φn

i+1/2
−φn−1

i+1 for the right-to-left characteristics, where φ stands for any
of the variables τ, G, Gt and Gx. In the finite differencing we distinguish between odd time steps (all nodes,
such as i + 1/2, are internal) and even time steps (all nodes are at integer locations, including two boundary
nodes i = 0 and i = Nx).

28

Odd Time Steps (n odd) All new positions are at i + 1/2 (i = 0, 1...Nx − 1); all old positions are at i (i = 0,Nx − 1)
for the left-to-right characteristics, and at i + 1 (i + 1 = 1,Nx) for the right-to-left characteristics. Thus,

α(Gt,i+1/2 − Gt,i) − α2(Gx,i+1/2 − Gx,i) +

{
(1 − ω)(Gt,i+1/2 + Gt,i)

+ 3α2
[
Gt,i+1/2 + Gt,i + (1 − ω)(Gi+1/2 + Gi) − ω(G

′

c,i+1/2
+ G

′

c,i)
] }∆τ

4
= 0, (CC-28)

where we have used averaged values, φ = 1
2 (φn

i+1/2
+ φn−1

i) for the terms within braces, and have omitted the
time superscripts, since the distinction between new and old is clear. Bringing all unknown quantities at the
new time to the left-hand side we get

BpGt,i+1/2 − C4Gx,i+1/2 + C2Gi+1/2 = −BmGt,i − C4Gx,i − C2Gi + C3(G
′

c,i+1/2
+ G

′

c,i) = E1,

i = 0,Nx − 1, (CC-29)

where

Bp = α + (1 − ω + 3α2)
∆τ
4
, Bm = α − (1 − ω + 3α2)

∆τ
4
,

C2 = 3α2(1 − ω)
∆τ
4
, C3 = 3α2ω

∆τ
4
, C4 = α2. (CC-30)

Similarly, we obtain for the right-to-left characteristics, by switching the signs in equation (CC-25) and replacing
i by i + 1:

BpGt,i+1/2 + C4Gx,i+1/2 + C2Gi+1/2

= −BmGt,i+1 + C4Gx,i+1 − C2Gi+1 + C3(G
′

c,i+1/2
+ G

′

c,i+1) = E2, i = 0,Nx − 1. (CC-31)

We now have two equations in the three unknowns Gt,i+1/2, Gx,i+1/2 and Gi+1/2: one more relation is needed and
will come from equation (CC-26), which may be finite-differenced from the left or from the right as

Gi+1/2 = Gi +
1
2

(Gt,i+1/2 + Gt,i)∆t∗ +
1
2

(Gx,i+1/2 + Gx,i)
∆τ
2
, l→ r

= Gi+1 +
1
2

(Gt,i+1/2 + Gt,i+1)∆t∗ −
1
2

(Gx,i+1/2 + Gx,i+1)
∆τ
2
, r→ l. (CC-32)

For better accuracy, we take the average, or

−
∆t∗

2
Gt,i+1/2 + Gi+1/2 =

1
2

(Gi + Gi+1) +
∆t∗

4
(Gt,i + Gt,i+1) +

∆τ
8

(Gx,i − Gx,i+1) = D2. (CC-33)

Subtracting equation (CC-29) from (CC-31) leads to

Gx,i+1/2 = (E2 − E1)/2C4, i = 0,Nx − 1, (CC-34)

while adding them gives

BpGt,i+1/2 + C2Gi+1/2 =
1
2

(E1 + E2) = D1, (CC-35)

which, together with equation (CC-33) leads to

Gi+1/2 =
D1∆t∗/2 + D2Bp

C2∆t∗/2 + Bp
, Gt,i+1/2 =

D1 − C2D2

C2∆t∗/2 + Bp
, i = 0,Nx − 1.

29

Even Time Steps (n even) Even time steps are a little more difficult to handle, because two of the nodes lie
on the boundaries, and for them the boundary conditions must be invoked. Internal nodes, on the other hand,
are the same as those for odd n, except that nodes are displaced by half a node. Replacing every i by i − 1/2 we
obtain

Gx,i = (E2 − E1)/2C4, Gt,i =
D1 − C2D2

C2∆t∗/2 + Bp
,

Gi =
D1∆t∗/2 + D2Bp

C2∆t∗/2 + Bp
; i = 1,Nx − 1, (CC-36)

where

E1 = −BmGt,i−1/2 − C4Gx,i−1/2 − C2Gi− 1
2

+ C3(G
′

c,i + G
′

c,i−1/2
)

E2 = −BmGt,i+1/2 + C4Gx,i+1/2 − C2Gi+ 1
2

+ C3(G
′

c,i + G
′

c,i+1/2
)

D1 =
1
2

(E1 + E2)

D2 = (Gi−1/2 + Gi+1/2) +
∆t∗

4
(Gt,i−1/2 + Gt,i+1/2) +

∆τ
8

(Gx,i−1/2 − Gx,i+1/2)

At the left boundary, i = 0, equation (CC-29) is not valid and must be replaced by the boundary condition,
slightly rewritten as

Gx,i =
3
2

Gi +
1

2α2 Gt,i. (CC-37)

Sticking this into equation (CC-31) (with i + 1/2 replaced by i) gives

f1Gt,i + f2Gi = E2; f1 = Bp +
C4

2α2 = Bp +
1
2

; f2 = C2 +
3
2

C4. (CC-38)

Also, for the total derivative we can only use the r→ l form, or

Gi = Gi+1/2 +
1
2

(Gt,i + Gt,i+1/2)∆t∗ −
1
2

(Gx,i + Gx,i+1/2)
∆τ
2

, (CC-39)

or, after eliminating Gx,i through equation (CC-37)

f3Gt,i + f4Gi = D2, f3 =
∆τ

8α2 −
∆t∗

2
; f4 = 1 +

3∆τ
8

, (CC-40)

and, thus,

Gi =
f3E2 − f1D2

f3 f2 − f1 f4
; Gt,i =

f2D2 − f4E2

f3 f2 − f1 f4
, (CC-41)

and Gx,i from equation (CC-37).
Similarly, for i = Nx equation (CC-31) is not valid and must be replaced by the boundary at τ = τL, and for

the total derivative the l→ r version must be used, leading to very similar expressions.
Finally, transmissivity and reflectivity of the slab are simply the absolute value of the nondimensional fluxes

at the boundaries, i.e.,

Reflectivity =
∣∣∣q(t∗, 0

∣∣∣ =
1
2

G(t∗, 0)

Transmissivity = q(t∗, τL) + qc(t∗, τL) =
1
2

G(t∗, τL) + Gc(t∗, τL). (CC-42)

Input:
Nx = Number of equally-spaced nodes across slab,
a = Pa-approximation switch: a = 1 for P1-approximation, a = 1/3 for P1/3-approximation,
L = Thickness of slab, in m,
beta = Extinction coefficient β, in m−1,

30

omga = single scattering albedo, ω,
tmax = Maximum t∗max to be considered in calculation,
tps = Total nondimensional pulse energy,
tme = Starting time for calculation; tme = 0 will start top-hat pulse at t∗ = 0, tme = −tps/2 will center

top-hat pulse at t∗ = 0, etc.
tc,tp = Pulse parameters for clipped-Gaussian pulse; note that tp = tps/

√
π results in a total pulse

energy of tps (i.e., the same as for the top-hat pulse).
Output:

For every even time step the program prints out the value for tme = t∗, Transmissivity and Reflectivity as
defined in equation (CC-42). Total pulse energy, total time integrated reflectivity and transmissivity are also
printed out, which — for ω = 1 — gives a check of truncation error and the proper choice for tmax to simulate
the entire pulse.

Example: As an example we will analyze a slab of 1 m width using the P1/3-approximation (a = 1/3), with an
extinction coefficient of β = 5 m−1 (leading to an optical thickness of τL = 5), and a scattering albedo of ω = 1
(or 100%). Thus, we call the output file transP3rd-5-100.dat. We will use a top-hat laser pulse centered at
t = 0, with a nondimensional pulse length of t∗p = 0.3. Finally, we will use a spatial resolution of 200 nodes
and, since it takes the signal 5 nondimensional time units to penetrate the slab and pure scattering will bounce
around the beam for much longer, we choose a maximum t∗ of 80. Thus, the beginning of the program looks as
follows: (i) in the fifth line we have set Nx=200, (ii) under “pulse shape” we have uncommented the 4 ’top-hat’
lines, and (iii) we have fashioned the numbers below ‘Input data’ to fit our needs:

program transPN

! Program to calculate energy transmitted as a function of time

! from a pulsed collimated laser source, through absorbing-scattering slab,

! using P1 and P1/3

IMPLICIT NONE

INTEGER, PARAMETER :: Nx=200

INTEGER :: i,n

DOUBLE PRECISION :: L,tp,tps,beta,omga,tauL,dx,dt,trmsv,reflc,Bp,Bm,tme,tc

DOUBLE PRECISION :: G(0:Nx),Gx(0:Nx),Gt(0:Nx),G5(0:Nx),Gx5(0:Nx),Gt5(0:Nx)

DOUBLE PRECISION :: alf,c1,c2,c3,c4,Gc,Gc5,Gcp,Gcp5,Heav,y,E1,E2,D1,D2,f1,f2,f3,f4

DOUBLE PRECISION :: tmax,a,sumpls,sumtrn,sumref

Heav(y)=FLOAT(INT(1.+.5*y/(abs(y)+1.d-15)))

! ******************* Pulse shape ***********************************

! uncomment only one set of laser data below!!

! the following 4 lines simulate a top hat laser starting at n*dt=0

Gc(n,i)=(Heav(n*dt-i*dx)-Heav(n*dt-i*dx-tps))*exp(-i*dx)

Gc5(n,i)=(Heav(n*dt-(i+.5)*dx)-Heav(n*dt-(i+.5)*dx-tps))*exp(-(i+.5)*dx)

Gcp(n,i)=Gc(n,i)

Gcp5(n,i)=Gc5(n,i)

! the following 6 lines simulate a clipped Gaussian laser centered at n*dt=tc

! Gc(n,i)=exp(-i*dx-((n*dt-i*dx-tc)/tp)**2) &

! *(Heav(n*dt-i*dx)-Heav(n*dt-i*dx-2.*tc))

! Gcp(n,i)=Gc(n,i)*(1.-2.*a*(n*dt-i*dx-tc)/tp**2)

! Gc5(n,i)=exp(-(i+.5)*dx-((n*dt-(i+.5)*dx-tc)/tp)**2) &

! *(Heav(n*dt-(i+.5)*dx)-Heav(n*dt-(i+.5)*dx-2.*tc))

! Gcp5(n,i)=Gc5(n,i)*(1.-2.*a*(n*dt-(i+.5)*dx-tc)/tp**2)

!

! ******************** Output file ***********************************

open(unit=8,file=’transP3rd-5-100.dat’,status=’unknown’)

! **************** Input data **

a=1.d0/3.d0 ! =1 for P1, =1/3 for P1/3 approximation

L=1. ! m

beta=5. ! 1/m

omga=1

tmax=80. ! maximum t* to be considered

! pulse data: make sure to uncomment only 1 starting time "tme"

! pulse width for top-hat laser

tps=0.3 ! total pulse duration = total pulse power

tme=-tps/2. ! non-zero value moves beginning of pulse; -tps/2 centers pulse at 0

! pulse shape for clipped Gaussian laser

tc=0.5

tp=tps/1.77245d0 ! total pulse power/sqrt(pi)

! tme=-tc

31

! **************** End of input data *********************************

This leads to the following results stored in:
VARIABLES = tme,trmsv,reflc

zone

-0.125 0.0000E+00 0.2536E-03

-0.100 0.0000E+00 0.8391E-03

-0.075 0.0000E+00 0.1675E-02

-0.050 0.0000E+00 0.2744E-02

-0.025 0.0000E+00 0.4027E-02

0.000 0.0000E+00 0.5507E-02

0.025 0.0000E+00 0.7167E-02

0.050 0.0000E+00 0.8993E-02

0.075 0.0000E+00 0.1097E-01

0.100 0.0000E+00 0.1308E-01

0.125 0.0000E+00 0.1533E-01

0.150 0.0000E+00 0.1768E-01

0.175 0.0000E+00 0.2012E-01

0.200 0.0000E+00 0.2237E-01

0.225 0.0000E+00 0.2444E-01

0.250 0.0000E+00 0.2632E-01

0.275 0.0000E+00 0.2804E-01

0.300 0.0000E+00 0.2960E-01

0.325 0.0000E+00 0.3103E-01

0.350 0.0000E+00 0.3232E-01

0.375 0.0000E+00 0.3348E-01

0.400 0.0000E+00 0.3453E-01

0.425 0.0000E+00 0.3548E-01

0.450 0.0000E+00 0.3633E-01

0.475 0.0000E+00 0.3708E-01

0.500 0.0000E+00 0.3775E-01

0.525 0.0000E+00 0.3835E-01

0.550 0.0000E+00 0.3887E-01

0.575 0.0000E+00 0.3932E-01

0.600 0.0000E+00 0.3971E-01

0.625 0.0000E+00 0.4004E-01

0.650 0.0000E+00 0.4032E-01

0.675 0.0000E+00 0.4055E-01

0.700 0.0000E+00 0.4074E-01

0.725 0.0000E+00 0.4088E-01

0.750 0.0000E+00 0.4098E-01

0.775 0.0000E+00 0.4105E-01

0.800 0.0000E+00 0.4109E-01

0.825 0.0000E+00 0.4109E-01

0.850 0.0000E+00 0.4107E-01

0.875 0.0000E+00 0.4102E-01

0.900 0.0000E+00 0.4095E-01

0.925 0.0000E+00 0.4086E-01

0.950 0.0000E+00 0.4074E-01

0.975 0.0000E+00 0.4061E-01

1.000 0.0000E+00 0.4046E-01

.

.

4.500 0.0000E+00 0.1518E-01

4.525 0.0000E+00 0.1509E-01

4.550 0.0000E+00 0.1501E-01

4.575 0.0000E+00 0.1492E-01

4.600 0.0000E+00 0.1484E-01

4.625 0.0000E+00 0.1476E-01

4.650 0.0000E+00 0.1468E-01

4.675 0.0000E+00 0.1459E-01

4.700 0.0000E+00 0.1451E-01

4.725 0.0000E+00 0.1443E-01

4.750 0.0000E+00 0.1436E-01

4.775 0.0000E+00 0.1428E-01

4.800 0.0000E+00 0.1420E-01

4.825 0.0000E+00 0.1412E-01

4.850 0.6893E-02 0.1405E-01

4.875 0.7201E-02 0.1397E-01

4.900 0.7507E-02 0.1390E-01

32

4.925 0.7811E-02 0.1382E-01

4.950 0.8114E-02 0.1375E-01

4.975 0.8417E-02 0.1368E-01

5.000 0.8718E-02 0.1361E-01

5.025 0.9019E-02 0.1353E-01

5.050 0.9319E-02 0.1346E-01

5.075 0.9618E-02 0.1339E-01

5.100 0.9917E-02 0.1332E-01

5.125 0.1022E-01 0.1326E-01

5.150 0.1052E-01 0.1319E-01

5.175 0.3921E-02 0.1312E-01

5.200 0.3912E-02 0.1305E-01

5.225 0.3905E-02 0.1299E-01

5.250 0.3899E-02 0.1292E-01

5.275 0.3895E-02 0.1285E-01

5.300 0.3892E-02 0.1279E-01

5.325 0.3891E-02 0.1272E-01

5.350 0.3891E-02 0.1266E-01

5.375 0.3892E-02 0.1260E-01

5.400 0.3893E-02 0.1253E-01

5.425 0.3896E-02 0.1247E-01

5.450 0.3899E-02 0.1241E-01

5.475 0.3904E-02 0.1235E-01

5.500 0.3909E-02 0.1229E-01

.

.

8.000 0.4665E-02 0.8036E-02

8.025 0.4667E-02 0.8006E-02

8.050 0.4669E-02 0.7977E-02

8.075 0.4671E-02 0.7948E-02

8.100 0.4673E-02 0.7919E-02

8.125 0.4674E-02 0.7890E-02

8.150 0.4676E-02 0.7861E-02

8.175 0.4677E-02 0.7833E-02

8.200 0.4679E-02 0.7804E-02

8.225 0.4680E-02 0.7776E-02

8.250 0.4681E-02 0.7748E-02

8.275 0.4682E-02 0.7720E-02

8.300 0.4683E-02 0.7693E-02

8.325 0.4684E-02 0.7665E-02

8.350 0.4685E-02 0.7638E-02

8.375 0.4685E-02 0.7611E-02

8.400 0.4686E-02 0.7584E-02

8.425 0.4686E-02 0.7557E-02

8.450 0.4687E-02 0.7530E-02

8.475 0.4687E-02 0.7504E-02

8.500 0.4687E-02 0.7477E-02

8.525 0.4687E-02 0.7451E-02

8.550 0.4687E-02 0.7425E-02

8.575 0.4687E-02 0.7399E-02

8.600 0.4687E-02 0.7373E-02

8.625 0.4687E-02 0.7348E-02

8.650 0.4686E-02 0.7322E-02

8.675 0.4686E-02 0.7297E-02

8.700 0.4685E-02 0.7272E-02

8.725 0.4685E-02 0.7247E-02

8.750 0.4684E-02 0.7222E-02

8.775 0.4683E-02 0.7197E-02

8.800 0.4682E-02 0.7173E-02

8.825 0.4681E-02 0.7148E-02

8.850 0.4680E-02 0.7124E-02

8.875 0.4679E-02 0.7100E-02

8.900 0.4678E-02 0.7076E-02

8.925 0.4677E-02 0.7052E-02

8.950 0.4675E-02 0.7028E-02

8.975 0.4674E-02 0.7004E-02

9.000 0.4673E-02 0.6981E-02

.

.

33

79.900 0.1443E-04 0.1431E-04

79.925 0.1440E-04 0.1428E-04

79.950 0.1437E-04 0.1425E-04

79.975 0.1434E-04 0.1422E-04

80.000 0.1431E-04 0.1419E-04

80.025 0.1428E-04 0.1416E-04

Total transmission: 8.525E-02

Total reflection: 2.394E-01

Total trans+reflec: 3.246E-01

Total pulse enrg: 3.063E-01

Note that the transmissivity remains 0 until t∗ = 4.85, when the beginning of the pulse has reached the
opposite end by direct travel, and has its maximum at around t∗ ' 8.6 (while the reflectivity peaks around
t∗ ' 0.8. Note that, for the present case of conservative scattering ω = 1, the sum of transmissivity and
reflectivity should equal the total pulse energy, or 0.3 (= t∗p). The departures are due to the relatively coarse
grid and the nonconservative nature of the Pa-approximation.

Chapter 20
fskdist.f90
Program fskdist is a Fortran90 code to calculate full spectrum k-distributions for a number of Planck function
temperatures and a single gas property state (temperature, partial and total pressures), for a gas mixture
containing CO2, H2O, CH4 and soot; weight functions a(T,Tref, 1) are calculated, as well. The spectral absorption
coefficient is either calculated directly from the HITRAN or HITEMP databases, or is supplied by the user.
The user should scan the code for OPEN statements, identifying input (HITRAN/HITEMP and/or absorption
coefficient) and output files.
Input:
Tref = reference temperature (temperature of gas for evaluation of absorption coefficient, and also used

as reference Planck function temperature), in K,
Tmin = minimum temperature for which a k-distribution and weight functions a(T,Tref, 1) are to be

calculated, in K,
Tmax = maximum temperature for which a k-distribution and weight functions a(T,Tref, 1) are to be

calculated, in K,
numT = number of different temperatures to be considered; equally spaced between Tmin and Tmax,
P = total pressure of gas mixture, bar,
xmfr(3) = mole fraction vector; xmfr(1)= mole fraction of CO2, xmfr(2)= mole fraction of H2O, xmfr(3)=

mole fraction of CH4; note that for any xmfr < 10−3 the specie is neglected.
fvsoot = volume fraction of soot,
nsoot,

ksoot

= complex index of refraction for the soot; its absorption coefficient is assumed linear in wavenum-
ber, using

wvnm b = minimum wavenumber considered, cm−1,
wvnm e = maximum wavenumber considered, cm−1,
wvnmst = wavenumber step (equally spaced) with which the absorption coefficient for the mixture is

calculated from the HITRAN or HITEMP database, cm−1,
kdmin = minimum k-value to be considered for k-distribution, cm−1,
kdmax = maximum k-value to be considered for k-distribution (kdmax ≤ 0 sets kdmax=kmax, i.e., the maxi-

mum absorption coefficient found across the spectrum), cm−1; allows for globally fixed k-values
independent of k-distribution (useful for mixing),

n pwrk = number of different k-bin values considered in the construction of the k-distribution,
pwr = exponent for k-bin values spacing: k-bins are equally spaced in kpwr between kdmin and kdmax.
nq = number of quadrature points for radiative calculations, i.e., the number of (k, 1)-pairs desired for

RTE evaluations to be performed before spectral integration (over cumulative k-distribution 1),
iwr = absorption coefficient switch: iwr=0 to make a single complete run, i.e., evaluating κη from

HITRAN or HITEMP (without storing them), followed by generation of k-distributions, iwr=1
same but absorption coefficient is stored for future use, and iwr=2: precalculated absorption
coefficients are read in and k-distributions are generated.

34

ipl = linear vs. pressure-based absorption coefficient switch:
ipl=0: calculate linear absorption coefficient, in cm−1

ipl=1: calculate pressure-based absorption coefficient (allowed only for single absorbing gas!), in
cm−1 bar−1; if the pressure-based absorption coefficient for a dilute gas is desired, set xmfr=1.d-3
(=0.1%)

ipr = output switch: see under output.
Output:
ipr = 1: a single output file is generated containing a header line (formatted for Tecplot), identifying the
variables being printed, and n pwrk data lines, each with 2 × numT + 2 numbers: ki, (numT + 1) × 1(Tj, ki), and
(slightly smoothened) numT × a(Tj,Tref, ki) (including Tref for 1.)
ipr= 2: in addition to the ipr=1 output file, a second file is generated, containing a header identifying variables,
and nq output lines, each with numT+3 numbers: wi, 1i(Tref, ki), ki, and numT smoothened a(Tj,Tref, ki)-values
(averaged over its 1-range).
Example:
We consider the full-spectrum k-distribution for a pressure-based absorption coefficient (ipl=1) of pure H2O,
for a vanishingly small mole fraction (xmfr(3)=(/0.0d0,1.0d-3,0.d0/)). Note that xH2O has been set to
10−3: the code, when accessing HITRAN or HITEMP, will assume a specie not to be present whenever xi <
10−3. The absorption coefficient has been calculated in a previous run (iwr=2), and has been stored in file
absch2o-0p-2000K.dat (for a wavenumber range from 50 cm−1 to 12000 cm−1 with a ∆η = 0.005 cm−1). We
will calculate the k-distributions for 5 temperatures: a reference temperature Tref = T0 = 2000 K (at which
the absorption coefficient has been evaluated) and 4 equally spaced (Planck function) temperatures between
Tmin = 0 K and Tmax = 1500 K (numT=4): this results in the 4 temperatures of 300 K, 500 K, 1000 K and 1500 K
(the first temperature is not 0 K, because temperatures below 300 K are not accepted: any temperature below
it is set to 300 K). We will use 500 k-bins (n_pwrk=500) with pwr=0.1 (this spreads the k-bins over many orders
of magnitude, but places more and more bins into large magnitudes; see output file). We also set kdmin=10−7

(cm−1 bar−1) and kdmax = −20 < 0 (cm−1 bar−1), i.e., we will consider k-values between 10−7 and the maximum
value found among the absorption coefficient values. Finally, we set ipr=2 and nq=12, i.e., besides the general
k-distributions we want to also generate truncated k-distributions ready-made for numerical quadrature, using
12 quadrature points. The top of the program with input parameters, therefore, looks like this:
MODULE Key

IMPLICIT NONE

!HITRAN/HITEMP DATABASE

INTEGER :: lu

INTEGER,PARAMETER :: rows=1400000

DOUBLE PRECISION,PARAMETER :: wvnm_b=50.d0,wvnm_e=12000.d0,wvnmst=0.005d0, &

kdmin=1.d-7,kdmax=-20.d0

DOUBLE PRECISION :: data(rows,6)

END MODULE Key

PROGRAM Main

USE Key

! Input parameters

INTEGER,PARAMETER :: numT=4,n_pwrk=1000,iwr=2,ipl=1,ipr=2,nq=12

DOUBLE PRECISION,PARAMETER :: P=1.d0,Tref=2000d0,Tmin=000d0,Tmax=1500d0

DOUBLE PRECISION,PARAMETER :: xmfr(3)=(/0.0d0,1.0d-3,0.d0/)

DOUBLE PRECISION,PARAMETER :: klmin=1.d-9,pwr=0.1d0

DOUBLE PRECISION,PARAMETER :: fvsoot=0.d-6,nsoot=1.89d0,ksoot=0.92d0

where we have changed the values for wvnm_b, wvnm_e, wvnmst, kdmin, kdmax, numT, n_pwrk, iwr, ipl,
ipr, nq, Tref, Tmin, Tmax, xmfr and pwr to fit our needs. Also, in this simulation we have set file names
as
! Set output file name

character(256), parameter :: kvsgFile=’kvsgh2o-0p-2000K.dat’

character(256), parameter :: kvsgqFile=’kvsgqh2o-0p-2000K.dat’

character(256), parameter :: abscFile=’absch2o-0p-2000K.dat’

! Open output files

OPEN(7,FILE=kvsgFile)

! Header formatted for TECPLOT, for a numT of 4

write(7,6)

6 format(’VARIABLES = k,g0,g1,g2,g3,g4,a1,a2,a3,a4’)

IF(ipr==2) THEN

OPEN(8,FILE=kvsgqFile,STATUS=’unknown’)

! Header formatted for readability, for a numT of 4

write(8,8)

35

ENDIF

8 format(’ wq’,9x,’gq’,9x,’kq’,8x,’aq1’,8x,’aq2’,8x,’aq3’,8x,’aq4’)

! File containing absorption coefficient

IF(iwr>0) OPEN(9,FILE=abscFile,STATUS=’unknown’)

i.e., the previously calculated absorption coefficient is located in absch2o-0p-2000K.dat, while the long k-
distribution output (500 values) will be put into kvsgh2o-0p-2000K.dat, and the short, quadrature-ready
output into kvsgqh2o-0p-2000K.dat. Note that the header lines for the output files are formatted for numT=4
(see the two format statements above): they will need to be rewritten for different values of numT.

We will also assume that Numerical Recipes subroutines are available, leaving the following lines un-
changed:
! Selection of g-values for numerical quadrature, using a Numerical Recipes routine

! If Numerical Recipes is not available, set nq=12, comment out the following 6 lines of code,

! and uncomment the 5-line REAL declaration following it

! Get quadrature coefficients from Numerical Recipes

REAL :: gqs(nq),wqs(nq),kq(nq),aq(numt,nq),gq(nq),wq(nq),gaujac,alf=3.,bet=0.,sum

sum=0.

CALL GAUJAC(gqs,wqs,nq,alf,bet)

do iq=1,nq

gq(iq)=0.5*(1.-gqs(iq))

wq(iq)=wqs(iq)/(2.**(alf+bet+1)*gq(iq)**alf*(1.-gq(iq))**bet)

sum=sum+wq(iq)

enddo

! Correction to make sum(wq)=1

wq=wq/sum

! End quadrature coefficients from Numerical Recipes

! Selection of precalculated g-values for numerical quadrature, for nq=12,alf=3.,bet=0.

! REAL :: kq(nq),aq(numt,nq), &

! gq(nq)=(/ 5.120075E-02,1.170678E-01,2.015873E-01,3.007074E-01,4.095012E-01,5.225285E-01, &

! 6.341280E-01,7.387071E-01,8.310236E-01,9.064499E-01,9.612060E-01,9.925594E-01/),&

! wq(nq)=(/ 5.556622E-02,7.576839E-02,9.258290E-02,1.048306E-01,1.118451E-01,1.132605E-01, &

! 1.090012E-01,9.927844E-02,8.457905E-02,6.563999E-02,4.341329E-02,1.904792E-02/)

This will calculate quadrature points gq and weights wq using Gaussian quadrature of moments (alf=3 sets
3rd order moments). For users without access to Numerical Recipes the gq and wq calculated here have been
put in data statements and may be used instead by following the guidelines above.

The previously calculated absorption coefficient in absch2o-0p-2000K.dat has the following form:
variables = "absco"

zone i= 2390001

50.00000 12000.00000 0.00500

0.51219E-04

0.51323E-04

0.51428E-04

0.51534E-04

0.51642E-04

0.51750E-04

.

.

.
It is formatted for easy plotting using Tecplot, and has 2,390,001 absorption coefficient values between

50 cm−1 and 12000 cm−1, spaced 0.005 cm−1 apart.
The output file kvsgh2o-0p-2000K.dat has this form (with the columns for a3 and a4 omitted to fit on the
page):
VARIABLES = k,g0,g1,g2,g3,g4,a1,a2,a3,a4

1.11334746D-07 7.96747373D-02 5.23869989D-04 2.26395097D-05 1.28391640D-03 2.13171234D-02 5.29826143D-05 2.63832240D-03 1.00906462D-01 4.55777755D-01

1.36266566D-07 8.52815350D-02 5.23869989D-04 2.26735350D-05 1.50824331D-03 2.36291115D-02 1.00848658D-04 4.08710454D-03 1.19960706D-01 4.79094048D-01

1.66115877D-07 9.00036377D-02 5.23869990D-04 2.27003552D-05 1.68726471D-03 2.55265665D-02 2.16767785D-04 7.38497566D-03 1.56250238D-01 5.22293603D-01

2.01726786D-07 9.37613925D-02 5.23869990D-04 2.27194809D-05 1.82135979D-03 2.69993935D-02 4.37361553D-04 1.32407710D-02 2.06442469D-01 5.79223754D-01

2.44067583D-07 1.02974254D-01 5.23934221D-04 8.52859416D-05 5.10437162D-03 3.41894314D-02 8.06580759D-04 2.24516206D-02 2.66272096D-01 6.42366201D-01

2.94246088D-07 1.12533644D-01 5.24022055D-04 1.63032520D-04 8.87822956D-03 4.20105578D-02 1.36144304D-03 3.55584825D-02 3.31229083D-01 7.04508996D-01

3.53526541D-07 1.23839293D-01 5.24099683D-04 2.30932151D-04 1.26253234D-02 5.07848713D-02 2.11775362D-03 5.25013589D-02 3.97103002D-01 7.60165878D-01

4.23348170D-07 1.41672092D-01 5.24204831D-04 3.15420522D-04 1.79307268D-02 6.44793111D-02 3.06402561D-03 7.24871772D-02 4.60296729D-01 8.06256909D-01

5.05345557D-07 1.63682856D-01 6.79267024D-04 4.18076075D-03 3.46648315D-02 8.58464331D-02 4.16735706D-03 9.41999954D-02 5.18053043D-01 8.41979615D-01

6.01370944D-07 1.82498123D-01 7.95460318D-04 6.98729223D-03 4.71695621D-02 1.03117054D-01 5.38432553D-03 1.16228009D-01 5.68674321D-01 8.68168095D-01

7.13518620D-07 1.99342127D-01 8.91344620D-04 9.21172573D-03 5.75711493D-02 1.18257717D-01 6.66353924D-03 1.37375476D-01 6.11507507D-01 8.86483146D-01

8.44151550D-07 2.14065460D-01 9.59688608D-04 1.08096384D-02 6.56348712D-02 1.30896677D-01 7.93423318D-03 1.56618822D-01 6.46421228D-01 8.98637601D-01

9.95930395D-07 2.28639506D-01 1.08555898D-03 1.32219150D-02 7.52270046D-02 1.44043846D-01 9.09287889D-03 1.72823102D-01 6.72970982D-01 9.05811610D-01

1.17184510D-06 2.43521364D-01 1.29626952D-03 1.68374407D-02 8.70200012D-02 1.58100939D-01 1.00091993D-02 1.84611821D-01 6.89951229D-01 9.08452972D-01

1.37524925D-06 2.57984408D-01 1.53627326D-03 2.08886000D-02 9.96127365D-02 1.72243921D-01 1.05612324D-02 1.90674644D-01 6.95893739D-01 9.06568830D-01

1.60989730D-06 2.71057492D-01 1.69859458D-03 2.36947584D-02 1.09121994D-01 1.84158478D-01 1.06844430D-02 1.90389205D-01 6.90296094D-01 9.00338299D-01

1.87998501D-06 2.83372640D-01 1.85241517D-03 2.63590759D-02 1.18246410D-01 1.95447797D-01 1.04050520D-02 1.84318068D-01 6.74688551D-01 8.90640135D-01

2.19019319D-06 2.94707018D-01 1.96152698D-03 2.82804768D-02 1.25440138D-01 2.05304290D-01 9.83672164D-03 1.74204744D-01 6.52715674D-01 8.79138308D-01

36

2.54573496D-06 3.04817787D-01 2.03859256D-03 2.96742175D-02 1.31095187D-01 2.13677119D-01 9.14489155D-03 1.62446894D-01 6.29124161D-01 8.67876894D-01

2.95240684D-06 3.14363969D-01 2.10218069D-03 3.08225009D-02 1.36202937D-01 2.21508242D-01 8.50562312D-03 1.51354772D-01 6.08270704D-01 8.58652439D-01

3.41664389D-06 3.24015430D-01 2.16685257D-03 3.20098365D-02 1.41584254D-01 2.29613988D-01 8.09474616D-03 1.42583906D-01 5.92969114D-01 8.52530310D-01

3.94557900D-06 3.32537431D-01 2.22666684D-03 3.31359103D-02 1.46613815D-01 2.36881980D-01 8.14093680D-03 1.36979489D-01 5.84160699D-01 8.49726486D-01

4.54710684D-06 3.41328215D-01 2.28089386D-03 3.41619508D-02 1.51377700D-01 2.44180400D-01 9.06733490D-03 1.34847804D-01 5.81367038D-01 8.49835656D-01

5.22995258D-06 3.49624273D-01 2.34055944D-03 3.52255005D-02 1.56195879D-01 2.51245912D-01 1.17210749D-02 1.36508281D-01 5.83534641D-01 8.52222591D-01

6.00374561D-06 3.58035652D-01 2.40321007D-03 3.63548190D-02 1.61112578D-01 2.58434724D-01 1.76275522D-02 1.42894888D-01 5.89833169D-01 8.56375019D-01

6.87909880D-06 3.66653849D-01 2.47755172D-03 3.76261434D-02 1.66416406D-01 2.65944430D-01 2.91050097D-02 1.55922207D-01 6.00116335D-01 8.62094495D-01

7.86769331D-06 3.74674767D-01 2.53082128D-03 3.85922339D-02 1.70965183D-01 2.72759681D-01 4.89979201D-02 1.78317154D-01 6.14936243D-01 8.69494644D-01

8.98236949D-06 3.82226610D-01 2.58843812D-03 3.95972865D-02 1.75407365D-01 2.79220074D-01 7.98603097D-02 2.12745245D-01 6.35149421D-01 8.78842614D-01

1.02372242D-05 3.89227742D-01 2.64363067D-03 4.06129729D-02 1.79956200D-01 2.85480820D-01 1.22726326D-01 2.60415217D-01 6.61281164D-01 8.90321322D-01

.

.

.

1.95195872D+03 9.99998942D-01 1.00000000D+00 1.00000000D+00 9.99999851D-01 9.99999312D-01 4.61364475D-09 1.77221960D-04 1.40712612D-01 6.49679776D-01

1.98997421D+03 9.99998962D-01 1.00000000D+00 1.00000000D+00 9.99999854D-01 9.99999326D-01 4.61364475D-09 1.77221960D-04 1.40712612D-01 6.49679776D-01

2.02865475D+03 9.99998983D-01 1.00000000D+00 1.00000000D+00 9.99999857D-01 9.99999339D-01 4.61364475D-09 1.77221960D-04 1.40712612D-01 6.49679776D-01

2.06801066D+03 9.99999004D-01 1.00000000D+00 1.00000000D+00 9.99999860D-01 9.99999353D-01 4.61364475D-09 1.77221960D-04 1.40712612D-01 6.49679776D-01

2.10805239D+03 9.99999026D-01 1.00000000D+00 1.00000000D+00 9.99999863D-01 9.99999367D-01 4.61364474D-09 1.77221960D-04 1.40712612D-01 6.49679776D-01

2.14879055D+03 9.99999048D-01 1.00000000D+00 1.00000000D+00 9.99999866D-01 9.99999381D-01 4.61364474D-09 1.77221960D-04 1.40712612D-01 6.49679776D-01

2.19023589D+03 9.99999070D-01 1.00000000D+00 1.00000000D+00 9.99999869D-01 9.99999396D-01 4.61364473D-09 1.77221960D-04 1.40712612D-01 6.49679776D-01

2.23239930D+03 9.99999093D-01 1.00000000D+00 1.00000000D+00 9.99999872D-01 9.99999411D-01 4.61364469D-09 1.77221959D-04 1.40712612D-01 6.49679776D-01

2.27529180D+03 9.99999116D-01 1.00000000D+00 1.00000000D+00 9.99999876D-01 9.99999426D-01 4.61364458D-09 1.77221957D-04 1.40712612D-01 6.49679775D-01

2.31892460D+03 9.99999140D-01 1.00000000D+00 1.00000000D+00 9.99999879D-01 9.99999441D-01 4.61364431D-09 1.77221951D-04 1.40712610D-01 6.49679773D-01

2.36330903D+03 9.99999164D-01 1.00000000D+00 1.00000000D+00 9.99999882D-01 9.99999457D-01 4.61364375D-09 1.77221940D-04 1.40712607D-01 6.49679768D-01

2.40845656D+03 9.99999188D-01 1.00000000D+00 1.00000000D+00 9.99999886D-01 9.99999472D-01 4.61364270D-09 1.77221919D-04 1.40712602D-01 6.49679760D-01

2.45437885D+03 9.99999213D-01 1.00000000D+00 1.00000000D+00 9.99999889D-01 9.99999489D-01 4.61364091D-09 1.77221882D-04 1.40712592D-01 6.49679745D-01

2.50108769D+03 9.99999238D-01 1.00000000D+00 1.00000000D+00 9.99999893D-01 9.99999505D-01 4.61363821D-09 1.77221827D-04 1.40712578D-01 6.49679723D-01

2.54859502D+03 9.99999264D-01 1.00000000D+00 1.00000000D+00 9.99999896D-01 9.99999522D-01 4.61363456D-09 1.77221753D-04 1.40712558D-01 6.49679694D-01

2.59691297D+03 9.99999290D-01 1.00000000D+00 1.00000000D+00 9.99999900D-01 9.99999539D-01 4.61363017D-09 1.77221664D-04 1.40712535D-01 6.49679658D-01

2.64605380D+03 9.99999328D-01 1.00000000D+00 1.00000000D+00 9.99999905D-01 9.99999564D-01 4.61362544D-09 1.77221568D-04 1.40712509D-01 6.49679619D-01

2.69602995D+03 9.99999375D-01 1.00000000D+00 1.00000000D+00 9.99999912D-01 9.99999594D-01 4.61362089D-09 1.77221476D-04 1.40712485D-01 6.49679582D-01

2.74685401D+03 9.99999422D-01 1.00000000D+00 1.00000000D+00 9.99999919D-01 9.99999625D-01 4.61361698D-09 1.77221396D-04 1.40712464D-01 6.49679551D-01

2.79853875D+03 9.99999471D-01 1.00000000D+00 1.00000000D+00 9.99999926D-01 9.99999656D-01 4.61361398D-09 1.77221335D-04 1.40712448D-01 6.49679526D-01

2.85109710D+03 9.99999520D-01 1.00000000D+00 1.00000000D+00 9.99999932D-01 9.99999688D-01 4.61361191D-09 1.77221293D-04 1.40712437D-01 6.49679509D-01

2.90454215D+03 9.99999570D-01 1.00000000D+00 1.00000000D+00 9.99999939D-01 9.99999720D-01 4.61361065D-09 1.77221268D-04 1.40712430D-01 6.49679499D-01

2.95888719D+03 9.99999620D-01 1.00000000D+00 1.00000000D+00 9.99999947D-01 9.99999753D-01 4.61360995D-09 1.77221254D-04 1.40712427D-01 6.49679493D-01

3.01414566D+03 9.99999672D-01 1.00000000D+00 1.00000000D+00 9.99999954D-01 9.99999787D-01 4.61360961D-09 1.77221247D-04 1.40712425D-01 6.49679491D-01

3.07033118D+03 9.99999724D-01 1.00000000D+00 1.00000000D+00 9.99999961D-01 9.99999821D-01 4.61360946D-09 1.77221244D-04 1.40712424D-01 6.49679489D-01

3.12745754D+03 9.99999778D-01 1.00000000D+00 1.00000000D+00 9.99999969D-01 9.99999856D-01 4.61360940D-09 1.77221242D-04 1.40712424D-01 6.49679489D-01

3.18553874D+03 9.99999832D-01 1.00000000D+00 1.00000000D+00 9.99999976D-01 9.99999891D-01 4.61360938D-09 1.77221242D-04 1.40712423D-01 6.49679489D-01

3.24458892D+03 9.99999887D-01 1.00000000D+00 1.00000000D+00 9.99999984D-01 9.99999927D-01 4.61360937D-09 1.77221242D-04 1.40712423D-01 6.49679489D-01

3.30462243D+03 9.99999943D-01 1.00000000D+00 1.00000000D+00 9.99999992D-01 9.99999963D-01 4.61360937D-09 1.77221242D-04 1.40712423D-01 6.49679489D-01

3.36565380D+03 1.00000000D+00 1.00000000D+00 1.00000000D+00 1.00000000D+00 1.00000000D+00 4.61360937D-09 1.77221242D-04 1.40712423D-01 6.49679489D-01

3.39642078D+03 1.00000000D+00 1.00000000D+00 1.00000000D+00 1.00000000D+00 1.00000000D+00 4.61360937D-09 1.77221242D-04 1.40712423D-01 6.49679489D-01

Finally, output file kvsgqh2o-0p-2000K.dat contains quadrature k-values as:
wq gq kq aq1 aq2 aq3 aq4

5.5566E-02 5.1201E-02 1.0056E-07 1.1349E-04 4.4089E-03 1.2272E-01 4.8243E-01

7.5768E-02 1.1707E-01 3.1802E-07 1.6206E-03 3.9770E-02 3.4270E-01 7.0910E-01

9.2583E-02 2.0159E-01 7.3344E-07 6.8338E-03 1.3182E-01 5.8699E-01 8.7111E-01

1.0483E-01 3.0071E-01 2.4012E-06 9.8831E-03 1.7233E-01 6.4875E-01 8.7864E-01

1.1185E-01 4.0950E-01 1.4519E-05 3.6367E-01 4.8589E-01 7.4587E-01 9.2075E-01

1.1326E-01 5.2253E-01 6.4322E-05 7.4837E-01 9.0208E-01 1.0097E+00 1.0374E+00

1.0900E-01 6.3413E-01 2.1014E-04 9.5075E-01 1.1213E+00 1.1166E+00 1.0833E+00

9.9278E-02 7.3871E-01 6.6275E-04 9.6959E-01 1.2567E+00 1.2799E+00 1.1654E+00

8.4579E-02 8.3102E-01 1.9721E-03 1.3306E+00 1.6521E+00 1.5328E+00 1.2665E+00

6.5640E-02 9.0645E-01 6.1860E-03 3.0111E+00 2.5667E+00 1.8180E+00 1.3507E+00

4.3413E-02 9.6121E-01 2.4663E-02 4.6993E+00 3.4362E+00 2.0650E+00 1.4178E+00

1.9048E-02 9.9256E-01 1.5850E-01 1.4341E+01 6.5090E+00 2.6153E+00 1.5531E+00

Note that the code has an accuracy-checking mechanism built in: if the absorption coefficient is calculated
from the HITRAN/HITEMP databases, the Planck-mean absorption coefficient is calculated directly from the
database’s line intensities,as well as by line-by-line integration of the absorption coefficient, : if the discrepancy
exceeds 0.5% a message is printed to the screen, warning that wvnst is too coarse to properly resolve the
absorption coefficient. The Planck-mean absorption coefficient is also calculated from the k-1-distribution.
Again, if the discrepancy exceeds 0.5% a message is printed to the screen, warning that k-bin spacing is too
coarse (n_pwrk too small) to properly resolve the absorption coefficient. For the above example, the choice of
n_pwrk=500 results in an error of 1.78%, as indicated by the warning message.

fskdco2.f90, fskdh2o.f90
These subroutines determine single values of the cumulative k-distribution for CO2 and H2O, respectively,
using the correlations of of Modest and Mehta [9] and of Modest and Singh [10].
Input for fskdco2.f90:
Tg = Gas temperature, i.e., temperature at which the absorption coefficient is evaluated, (in K)
Tp = Planck function temperature, i.e., temperature at which Ib is evaluated, (in K)
absco = Pressure-based absorption coefficient, (in cm−1 bar−1)
Input for fskdh2o.f90: same as for fskdco2.f90 plus

37

x = Mole fraction of water vapor, (–)
Output for both:
gcal = Cumulative k-distribution for the input conditions, (–).

fskdco2dw.f90, fskdh2odw.f90
These subroutines determine single values of the cumulative k-distribution for CO2 and H2O, respectively,
using the correlations of Denison and Webb [11, 12].
Input for fskdco2dw.f90:
Tg = Gas temperature, i.e., temperature at which the absorption coefficient is evaluated, (in K)
Tp = Planck function temperature, i.e., temperature at which Ib is evaluated, (in K)
Cabs = Molar absorption cross-section, RuT1k/xp, (in m2/mol)
Input for fskdh2odw.f90: same as for fskdco2.f90 plus
x = Mole fraction of water vapor, (–)
Output for both:
gcal = Cumulative k-distribution for the input conditions, (–).

kdistmix.f90:
Subroutine kdistmix finds the cumulative k-distribution for an n-component mixture from a given set of
individual species cumulative k-distributions (narrow band, wide band, or full spectrum), employing mixing
schemes. Three mixing scheme are implemented, namely superposition, multiplication and uncorrelated
mixture (Modest and Riazzi [13]). The mixing model is implemented as an independent module. For n > 2
kdistmix.f90 should be called recursively. To invoke kdistmix, the user should call
use modkdistmix, only : kdistmix
call kdistmix(k1, g1, k2, g2, k, g, mixmodel, mixNop, mixScheme)

Input for subroutine kdistmix:
k1 = A double precision array with k-values for the k-distributions of the first species, (in cm−1)
g1 = A double precision array with 1-values for the k-distributions corresponding to the k-values in

array k1, (–). The size of g1 must be the same as k1.
k2 = A double precision array with k-values for the k-distributions of the second species, (in cm−1).

The size of k2 may be different from k1.
g2 = A double precision array with 1-values for the k-distributions corresponding to the k-values in

array k2, (–). The size of g2 must be the same as k2, but may be different from g1.
k = A double precision array with k-values for the k-distributions of the mixture, (in cm−1). The size

of k may be different from k1 and/or k2.
mixmodel = An optional integer scalar to specify the mixing model. Valid model numbers are 1 for superpo-

sition, 2 for multiplication and 3 for uncorrelated mixture (Modest and Riazzi). If not given, the
uncorrelated mixture model will be used.

mixNop = An optional integer scalar to specify the minimum number of points for internal calculations. If
not given, a value of 256 will be used. This number is only needed for the uncorrelated mixture
model.

mixScheme= An optional integer scalar to specify the integration scheme for the uncorrelated mixture model
and is only used for this model. If not given, a value of 0 for the default integration scheme
will be used. Currently only the integration model is implemented. This number is reserved for
future development.

Output for subroutine kdistmix:
g = A double precision array of rank one with 1-values for the mixed k-distribution corresponding

to the k-values, (–).
Example:
Consider a mixture of CO2 and H2O with mole fraction of 0.2 and 0.2, respectively. The mixture has a to-
tal pressure of 1 bar and temperature of 800K. The Planck function temperature is 1000K. The full-spectrum
k-distribution data are determined from correlation tables. The following program finds the full-spectrum
k-distributions of the mixture using three different mixing models (superposition, multiplication, and uncorre-
lated). The results are compared in the figure below:

38

g

k
(c

m
-1
)

0 0.2 0.4 0.6 0.8 1
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

CO2
H2O
Superposition
Multiplication
Uncorrelated mixture

This example also contains a function kPowerLaw to generate a list of k-values from a power law between
minimum and maximum values.
Input for function kPowerLaw:
kmin = Minimum value (in cm−1).
kmax = Maximum value (in cm−1).
n = Number of k-values desired.
pwr = Exponent for k-value spacing (see also fskdist.f90).
Output for function kPowerLaw:
k = An array of rank one and size n that contains a list of k-values (in cm−1). A sequence ki for

i = 1, . . . ,n from a power law of power p (pwr) with a minimum kmin and a maximum kmax has kp
i

equally distributed values between kp
min and kp

max. A value of 0.1 for the power p is suggested.
program mixTest
use modkdistmix, only : kdistmix
implicit none

! export nb db
real(8),parameter :: P=1.d0,T=800.d0,xCO2=0.2d0,xH2O=0.2d0
real(8),parameter :: Trad=1000.d0
integer :: erflag=0, ik, ib
real(8) :: x, bb1,bb2
integer, parameter :: nop = 128, m=3
real(8),dimension(nop) :: k, gCO2, gH2O, gSup, gMul,gMR
real(8):: kp
real(8), parameter :: kmin=1.d-9, kmax=1.d2
k = kPowerLaw(kmin, kmax, nop, 0.1d0)
gCO2=1.d0;gH2O=1.d0

do ik=1, nop
kp=k(ik)/xCO2
call fskdco2(T, Trad, kp, gCO2(ik))
! k in correlation is pressure based

end do
do ik=1, nop

kp=k(ik)/xH2O
call fskdh2o(T, Trad, kp, xH2O, gH2O(ik))
! k in correlation is pressure based

enddo

call kdistmix(k, gCO2, k, gCO2, k, gSup, 1)
call kdistmix(k, gCO2, k, gCO2, k, gMul, 2)
call kdistmix(k, gCO2, k, gCO2, k, gMR, 3)
open(60, file=’fskgMix.dat’)
do ib = 1, nop
write(60,’(6f12.8)’) k(ib),gCO2(ib), gH2O(ib), gSup(ib), gMul(ib), gMR(ib)
enddo
close (60)

contains
function kPowerLaw (kmin,kmax, n, pwr) result(k)
! function generate a list of k-values between kmin and kmax
! according to power law with power "pwr"

39

integer, parameter :: dp = kind(1.d0)
real(dp), intent(in):: kmin, kmax, pwr
integer, intent(in) :: n
real(dp), dimension(n) :: k
real(dp) :: pwrk_min, pwrk_max, pwrk_step
integer :: i
pwrk_min = kmin**pwr
pwrk_max = kmax**pwr
pwrk_step = (pwrk_max-pwrk_min)/real(n-1, dp)
k = (/(pwrk_min+real(i-1,dp)*pwrk_step, i=1, n)/)
k = k**(1.d0/pwr)
end function kPowerLaw
end program

fskdistmix.f90:
This self-contained Fortran module finds the full spectrum cumulative k-distribution for a CO2–H2O mixture,
employing the correlations of Modest and Mehta [9] and Modest and Singh [10], using one of three mixing
schemes described by equations (20.162) (superposition), (20.163) (multiplication), or (20.167) (uncorrelated
mixture).
To invoke the model, the user calls
use modfskdistmix, only : fskdistmix
call fskdistmix(xCO2, xH2O, Tg, Tp, kq, gq, m, nop,errflag)

Input for subroutine fskdistmix:
xCO2 = CO2 mole fraction, (–).
xH2O = H2O mole fraction, (–).
Tg = Gas temperature (in K).
Tp = Planck function temperature (in K).
m = Integer to specify mixing model. m = 1 for superposition, 2 for multiplication and 3 for uncorre-

lated mixture (Modest and Riazzi)
nop = Integer to specify number of points for internal calculation.
gq = A double precision array for 1-values (quadrature points).
Output for subroutine fskdistmix:
kq = A double precision array of k-values for the quadrature points specified by gq. kq is linear based

and has the same size as gq.
errflag = Error flag. errflag = 0 if no error, errflag = 1 if error is found, such as a wrong model number.

This module also provides a subroutine for quadrature point calculation, generating Gaussian or Chebychev
quadrature self-contained Fortran moduleonts between 0 and 1 and open at both ends. The corresponding
quadrature weights are also calculated.
To invoke the quadrature subroutine, the user calls
use modfskdistmix, only : quadgen2
call quadgen2(Cheb, g, w, nq)

Input for subroutine quadgen2:
Cheb = A logical scalar to switch between Gaussian and Chebychev quadrature schemes. Should be set

to True for Chebychev quadrature, False for Gaussian quadrature.
nop = An integer scalar specifying the number of quadrature points.
Output for subroutine quadgen2:
g = An array of size nop containing quadrature points.
w = An array of size nop containing quadrature weights.
Example:
In this example we consider a gas mixture with a total pressure of 1 bar, temperature of 800K. It contains 20% of
CO2 and 20% of H2O by mole. The following program finds the full-spectrum k-distribution of a this mixture
subject to 1000K Planck function temperature, using correlation tables and compares results between different
mixing models.
program mixTest
use modfskdistmix, only : fskdistmix, quadgen2
implicit none
real(8),parameter :: P=1.d0,T=800.d0,xCO2=0.2d0,xH2O=0.2d0
real(8),parameter :: Trad=1000.d0
integer :: erflag=0, ib
integer, parameter ::nq = 16, nopcorr = 1024
real(8),dimension(nq) :: gq, wq
real(8),dimension(nq) :: kqSup, kqMul, kqMR
call quadgen2(.false., gq,wq, nq)
call fskdistmix(xCO2, xH2O, T, Trad, kqSup, gq, 1,nopcorr, erflag)
call fskdistmix(xCO2, xH2O, T, Trad, kqMul, gq, 2,nopcorr, erflag)
call fskdistmix(xCO2, xH2O, T, Trad, kqMR, gq, 3,nopcorr, erflag)

40

open(60, file=’fskgCorr.dat’)
do ib = 1, nq
write(60,’(5f12.5)’) gq(ib),wq(ib), kqSup(ib), kqMul(ib), kqMR(ib)
enddo
close (60)
end program

The output quadrature 1 points, quadrature weights w, and k-values from three mixing models are listed below:
gq wq k sup k mul k MR

0.07051694 0.13911035 0.00010040 0.00001174 0.00001545

0.20568663 0.13129793 0.00021668 0.00006478 0.00007703

0.33189367 0.12078145 0.00046038 0.00021092 0.00023517

0.44797743 0.11146496 0.00095065 0.00056075 0.00058797

0.55303706 0.09846713 0.00190269 0.00132135 0.00144293

0.64644658 0.08844043 0.00371492 0.00288260 0.00292762

0.72786419 0.07436563 0.00716137 0.00600981 0.00634272

0.79723565 0.06447459 0.01384539 0.01230641 0.01296693

0.85479181 0.05076401 0.02734917 0.02538019 0.02569302

0.90104015 0.04183752 0.05637761 0.05402394 0.05620029

0.93675064 0.02984988 0.12386378 0.12137227 0.12518867

0.96293624 0.02263203 0.29454263 0.29238274 0.30489881

0.98082827 0.01353204 0.76224969 0.76083830 0.76602318

0.99184741 0.00862024 2.17053771 2.16991559 2.16884325

0.99757068 0.00328520 7.21939997 7.21923941 7.21288088

0.99969530 0.00107660 35.31945789 35.31944491 35.28831336

The results are identical to the ones given in the previous example for kdistmix.f90, since k-distributions
in that figure were obtained from the correlations.

Chapter 21
mocacyl.f, rnarray.f
Program mocacyl is a Monte Carlo routine for a nongray, nonisothermal, isotropically scattering medium
confined inside a two-dimensional, axisymmetric cylindrical enclosure bounded by gray, diffusely emitting
and reflecting walls. Temperature and radiative properties are assumed known everywhere inside the enclosure
and along the walls. Requires use of program rnarray to set up random number relationships (locations and
wavenumbers of emission vs. random numbers). Calculates local radiative fluxes to the walls qR

w. mocacyl.f is
supplied in two slightly different versions: mocacyl_std.f uses standard Monte Carlo for absorption, i.e., an
absorption length is picked from equation (21.17) and the bundle is traced until this point is reached (and its
energy is deposited at that point) or to a point on a wall, where it is absorbed (i.e., picking a random number
Rα < α), whichever comes first. In the other version, mocacyl_ep.f, the energy partitioning scheme of Sections
8.7 and 21.7 is employed, i.e., the bundle’s energy is gradually attenuated by absorption along its path, and
by the fraction α, whenever the bundle hits (and is reflected from) a wall, until the bundles energy becomes
negligible. This method is somewhat more expensive per bundle, but should in many instances give converged
results with a lot less bundles. At the present time only mocacyl_std.f also calculates the internal radiative
source −∇ · qR in addition to wall fluxes.
The package consists of the following files:

• the main programs mocacyl_std.f and mocacyl_ep.f ,

• the program preparing random number relationships for medium emission, rnarray.f,

• file mocasub.f, which contains simple versions of subroutine PROPS and function ABSCO, as well as a poor
man’s random number generator called RNUM, all of which the user can (and should) replace,

• a file splines.f for monotonic splines,used by both mocacyl.f and rnarray.f, and

• sample output files datlam.dat and results.dat.

Program rnarray
This program prepares random number relationships for photon emission locations within the cylindrical
medium, using equations (21.9) and (21.11).
Input:
NRP = Number of radial nodes for medium emission random number relationships

41

NZP = Number of axial nodes for medium emission random number relationships
NNP = Number of random numbers for medium emission relationships
RL = Radius of cylinder, (cm)
ZL = Length of cylinder, (cm)
AN = Refractive index of medium (AN=1.0 for gases)
STN = Refractive index of soot
STK = Absorptive index of soot
IGRAY = Gray/nongray medium switch: IGRAY=0 nongray, IGRAY=1 gray (ignoring contribution from

gases; absorption coefficient = PAC)
LU = Logical unit number for output: LU=6 sends output to screen, other (legal) values send output to

file datlam.dat
Output:
File datlam.dat contains random number relationships generated by RNARRAY:
ETOTAL = Total energy emitted (per unit time) by entire volume, in W
PLMCL(I),I=1,NZP = Planck-mean absorption coefficient along centerline, in cm−1

RRA(J),J=1,NNP = Emission radial location as f (random#), in cm
ZR(K,J),K=1,NRP,J=1,NNP = Emission axial location as f (r, random#), in cm
WVE2(K,I,J),K=1,NRP,I=1,NZP,J=1,NRNP1 = Emission wavelength as f (r, z, random#) (IGRAY=0 only),

in µm
These arrays are used by mocacyl.f to determine emission location and wavelength, using single (r), double
(z), and triple (λ) linear interpolation between tabulated values.

Note: this program requires two user-supplied subroutines, SUBROUTINE PROPS and FUNCTION ABSCO.
Subroutine PROPS(R,Z,T,SVF,PCO2,PH2O,PAC,PSC), upon inputting radial position R (in cm) and axial position
Z (in cm), must return local values of T (temperature in K), SVF (soot volume fraction, –), PCO2 (partial pressure of
CO2, in bar), PH2O (partial pressure of H2O, in bar), PAC (nonsoot particle background absorption coefficient, in
cm−1), and PSC (nonsoot particle background scattering coefficient, in cm−1). As provided here, the subroutine
produces a uniform field, i.e., SVF=0., T=1000., PH2O=.1, PCO2=.1, PAC=.01, PSC=0.

Function ABSCO(SVF,PCO2,PH2O,PAC,W,T), upon inputting SVF (soot volume fraction, –), PCO2 (partial pressure
of CO2, in bar), PH2O (partial pressure of H2O, in bar), PAC (nonsoot particle background absorption coefficient,
in cm−1), W (wavelength in µm), and T (temperature in K), must return ABSCO, the absorption coefficient of the
medium (in cm−1). As provided, function ABSCO calculates the gas absorption coefficient from the wide-band
model [with an approximate evaluation of α(T)/α0 in equation (11.144)] assuming strong overlap (β→∞), and
the soot absorption coefficient is calculated from equation (12.123).
Function ABSCO should return ABSCO=PAC if W < 0 (gray medium). Both, PROPS and ABSCO, must contain the
common statement line COMMON RL,ZL,AN,STN,STK,NRR,NZL,NRN.

Program mocacyl
Program mocacyl requires the following input:
NRP = Number of radial nodes for medium emission random number relationships
NZP = Number of axial nodes for medium emission random number relationships
NNP = Number of random numbers for medium emission relationships
NR = Number of radial nodes for surface flux calculations
NZ = Number of axial nodes for surface flux calculations
T3(NZ) = Temperature of liner wall (r = R), (K)
EPS(3) = Surface emittances: EPS(1)=inlet, EPS(2)=exit, EPS(3)=liner
RL = Radius of cylinder, (cm)
ZL = Length of cylinder, (cm)
AN = Refractive index of medium (AN=1.0 for gases)
STN = Refractive index of soot
STK = Absorptive index of soot
NTOTAL = Total number of photon bundles emitted from medium (number of bundles for surface emission

are chosen automatically as function of NTOTAL)
IGRAY = Gray/nongray medium switch: IGRAY=0 nongray, IGRAY=1 gray (ignoring contribution from

gases and soot; absorption coefficient = PAC)
IWALL = Wall emission switch: IWALL=0 only considers medium emission; IWALL=1 also considers surface

emission
LU = Logical unit number for output: LU=6 sends output to screen, other (legal) values send output to

file results.dat

42

File datlam.dat Contains random number relationships generated by rnarray

Note: The program does not check for consistency of datlam.dat, i.e., whether identical input values have
been chosen in both rnarray and mocacyl!

Output:
Upon output relevant input data are displayed, as well as
QW(1,1..NR) = Axial radiative heat flux for NR radial nodes at inlet (W/cm2)
QW(2,1..NR) = Axial radiative heat flux for NR radial nodes at exit (W/cm2)
QW(3,1..NZ) = Radial radiative heat flux for NZ axial nodes at liner (W/cm2)
Note: QW > 0 implies that the flux goes into wall, while for QW < 0 the flux is out of the wall.

Example:
We will use routines PROPS and ABSCO as provided, and also the input data as stated in mocacyl (and similar in
rnarray):
C C GENERAL DATA C C T3=liner temperature (K),

EPS=emittances(inlet,exit,liner), C RL=radius (cm), ZL=length (cm),

AN=refractive index of medium (-), C STN= soot refractive index, STK= soot

absorptive index, C NRR=# radial nodes, NZL=# axial nodes, NRN=# wavelength

nodes C

DATA T3/7*1000./

DATA EPS/1.,1.,.5/

RL=10.

ZL=10.

TW0=1000.

TWL=0.

AN=1.

STN=1.89

STK=0.92

NTOTAL=500000

IGRAY=0

IWALL=1

LU=7

This models an isothermal, cylindrical, nongray medium with temperatures of 1000 K for medium, inlet
and liner, only the exit being cold at 0 K. For the simulation we will use 500,000 bundles for medium emission,
and corresponding numbers for surface emission (such that all bundles carry roughly identical energies).
Executing rnarray produces the required data file datlam.dat and, running mocacyl, the results are contained
in results.dat as:

GENERAL DATA

BURNER RADIUS 10.00 CM

BURNER LENGTH 10.00 CM

EMITTANCES: INLET: 1.00

EXIT: 1.00

LINER: 0.50

REFRACTIVE INDEX 1.00

NUMBER OF BUNDLES: MEDIUM: 500000

INLET: 474561

EXIT: 1

LINER: 474562

WALL TEMPERATURES (DEG.K)

TW0 TWL T3:I= 1 2 3 4 5 6 7

1000. 0. 1000. 1000. 1000. 1000. 1000. 1000. 1000.

PROPERTY VALUES ALONG CENTER LINE:

I Z T FR PCO2 PH2O K-PL ABSC SCAT

CM DEG.K % ATM ATM CM-1 CM-1 CM-1

1 0.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

2 0.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

43

3 1.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

4 1.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

5 2.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

6 2.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

7 3.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

8 3.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

9 4.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

10 4.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

11 5.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

12 5.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

13 6.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

14 6.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

15 7.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

16 7.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

17 8.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

18 8.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

19 9.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

20 9.5 1000. 0.00 0.100 0.100 0.032 0.010 0.000

21 10.0 1000. 0.00 0.100 0.100 0.032 0.010 0.000

RADIAL HEAT FLUXES AT NODES I (W/SQCM)

I Z QWALL

CM W/SQCM

1 0.7 -0.4

2 2.1 -0.4

3 3.6 -0.5

4 5.0 -0.7

5 6.4 -0.8

6 7.9 -1.0

7 9.3 -1.2

AXIAL HEAT FLUXES AT NODES J (W/SQCM)

J 1 2 3 4 5

Q0 -2.4 -2.3 -2.1 -1.9 -1.6

QL 5.9 5.8 5.8 5.6 5.4

Note that the fluxes for the three hot walls are slightly negative (surfaces are losing heat, while the cold exit
surface experiences strong positive heat fluxes. Also note that the code does not provide error estimates, i.e., it
should be run for different values of NTOTAL to get an idea of variances.

FwdMCcs.f90
Program FwdMCcs is a standard forward Monte Carlo code for a narrow collimated, cylindrical beam (centered
at x = y = 0) penetrating through a nonabsorbing, isotropically scattering slab, calculating the flux onto a small,
directionally-selective detector located at x0 < x < x0 +dx, 0 < y < dy, z = L, as shown in Fig. 21-6 and described
in Example 21.3. (FwdMCck1 and FwdMCck2 are forward Monte Carlo codes for the same problem, but also allow
for absorption in the medium; FwdMCck1 uses standard ray tracing, while FwdMCck2 uses energy partitioning;
see Example 21.4.)
Input:
L = thickness of layer, L (m);
sig = scattering coefficient of medium, σs (m−1);
QT = total energy contained in collimated beam, (W);
R = radius of collimated beam, R (m);
x0 = displacement of left end of detector from center of beam, x0 (m);
dx = width of detector in x-direction, (m);
dy = width of detector in y-direction, (m);
thd = opening angle of detector, θmax (degrees);
N = minimum number of photon bundles to be traced for each “sample;”
numsmpl = number of numerical “samples” collected for the determination of a variance;
stddevmax = maximum relative variance allowed for the calculation of qdet, the flux hitting detector,

= σm/qdet from equation (8.8).

44

The values for input parameters are assigned in sequence near the top of the program. As distributed, a 1 m
thick layer with a scattering coefficient of σs = 1m−1 is modeled, for a 10 cm radius beam of 100 W strength. The
(rather large) detector is 10 cm × 10 cm displaced by 20 cm from the center of the beam, and has an acceptance
angle of 10◦. numsmpl= 10 numerical samples will be taken, initially each containing N= 100, 000 bundles, to be
increased (if necessary) until the relative variance falls below stddevmax= 0.05 or 5%.

open(unit=8,file=’fwdmccs.dat’,status=’unknown’)

write(8,1)

write(*,1)

1 format(’no. of bundles q_det variance rel.var.(%)’)

!

L=1. ! m

sig=1. ! 1/m

QT=100. ! W

R=.1 ! m

x0=.2 ! m

dx=0.10 ! m

dy=0.10 ! m

thd=10. ! deg

N=100000

numsmpl=10

stddevmax=0.05

!

The program consists of two major parts. The first is a double loop over numsmpl*N photon bundles, tracing
their paths, as described in Example 21.3. In the second part an average value for the detector irradiation
is determined, as well as its relative standard deviation, based on the numsampl data points. If the relative
standard deviation is too large (stddev>stddevmax) the numsampl samples of qdet (based on N bundles) are
combined into 1/2×numsampl samples (with 2N bundles each), the number of bundles is doubled to 2N , and an
additional 1/2×numsampl samples are obtained (with 2N bundles each). Thus, after going through the bundle-
tracing part one more time, we have again numsmpl samples, but each based on twice as many photon bundles.
This procedure is repeated until the convergence criteria are met.

For the given case that leads to the following output, stored in fwdmccs.dat,
no. of bundles q_det variance rel.var.(%)

1000000 0.3200E-02 0.4899E-03 15.31

2000000 0.3500E-02 0.3944E-03 11.27

4000000 0.3100E-02 0.3055E-03 9.86

8000000 0.2963E-02 0.1468E-03 4.95

i.e., for this large detector 8,000,000 photon bundles are needed to attain a relative variance of less than 5%. If a
smaller detector was chosen, the necessary number of bundles would be roughly inversely proportional to the
detector area!

FwdMCck1.f90
Program FwdMCck1.f90 is identical to FwdMCcs.f90, except that the medium also absorbs radiation (besides
isotropically scattering it). Therefore, the input is:
Input:
L = thickness of layer, L (m);
sig = scattering coefficient of medium, σs (m−1);
kap = absorption coefficient of medium, κ (m−1);
QT = total energy contained in collimated beam, (W);
R = radius of collimated beam, R (m);
x0 = displacement of left end of detector from center of beam, x0 (m);
dx = width of detector in x-direction, (m);
dy = width of detector in y-direction, (m);
thd = opening angle of detector, θmax (degrees);
N = minimum number of photon bundles to be traced for each “sample;”
numsmpl = number of numerical “samples” collected for the determination of a variance;
stddevmax = maximum relative variance allowed for the calculation of qdet, the flux hitting detector,

= σm/qdet from equation (8.8).
As distributed, a 1m thick layer with a scattering coefficient of 1m−1 and an absorption coefficient of

κ = 1m−1 is modeled, for a 10 cm radius beam of 100 W strength. The (rather large) detector is 10 cm × 10 cm
displaced by 20 cm from the center of the beam, and has an acceptance angle of 10◦. numsmpl= 10 numerical

45

samples will be taken, initially each containing N = 100, 000 bundles, to be increased (if necessary) until the
relative variance falls below stddevmax = 0.05 or 5%:

open(unit=8,file=’fwdmck1.dat’,status=’unknown’)

write(8,1)

write(*,1)

1 format(’no. of bundles q_det variance rel.var.(%)’)

!

L=1. ! m

sig=1. ! 1/m

kap=1. ! 1/m

QT=100. ! W

R=.1 ! m

x0=.2 ! m

dx=0.10 ! m

dy=0.10 ! m

thd=10. ! deg

N=100000

numsmpl=10

stddevmax=0.05

!

For the given case that leads to the following output, stored in fwdmck1.dat:
no. of bundles q_det variance rel.var.(%)

1000000 0.1100E-02 0.2333E-03 21.21

2000000 0.7500E-03 0.2007E-03 26.76

4000000 0.6500E-03 0.1067E-03 16.42

8000000 0.6875E-03 0.7512E-04 10.93

16000000 0.6438E-03 0.4375E-04 6.80

32000000 0.6781E-03 0.4396E-04 6.48

64000000 0.6766E-03 0.3424E-04 5.06

128000000 0.7102E-03 0.3011E-04 4.24

i.e., 128,000,000 photon bundles are required, or – making allowance for the slightly different variance –
about 10 times as many as for the purely scattering medium. Clearly, with a minimum optical thickness
of
√

12 + 0.22 = 1.02 many photon bundles, that would otherwise be scattered toward the detector, become
absorbed first.

FwdMCck2.f90
Program FwdMCck2.f90 is identical to FwdMCck1.f90, except that energy partitioning is employed, i.e., photon
bundles are emitted and have paths identical to the simulation in FwdMCcs.f90, but the bundles’ strengths are
attenuated exponentially along their way according to Beer’s law. Input is identical to FwdMCck1.f90, as are
the as-distributed input parameters. However, the output (stored in fwdmck2.dat) now looks like this:
no. of bundles q_det variance rel.var.(%)

1000000 0.9003E-03 0.1610E-03 17.89

2000000 0.9382E-03 0.1109E-03 11.82

4000000 0.8160E-03 0.8774E-04 10.75

8000000 0.7927E-03 0.3710E-04 4.68

i.e., FwdMCck2.f90 converges at he same rate as the no-absorption case FwdMCcs.f90, demonstrating the power
of the energy partitioning approach.

FwdMCps.f90
Program FwdMCps is a standard forward Monte Carlo code for radiative energy emitted by a point source
penetrating through a nonabsorbing, isotropically scattering slab, calculating the flux onto a small, directionally-
selective detector. It is a variation of FwdMCcs.f90, considering a purely scattering slab, but replacing the
collimated beam by an internal point source at x = 0, y = 0, z = zps. Thus, the simulation is almost identical
to that of FwdMCcs.f90, except that all photon bundles are now emitted from a single point, but into random
directions. The input is also identical to FwdMCcs.f90, with R replaced by zps:
Input:
L = thickness of layer, L (m);
sig = scattering coefficient of medium, σs (m−1);
QT = total energy contained in point source, (W);
zps = z-coordinate of point source, (m);
x0 = displacement of left end of detector from point source, x0 (m);
dx = width of detector in x-direction, (m);

46

dy = width of detector in y-direction, (m);
thd = opening angle of detector, θmax (degrees);
N = minimum number of photon bundles to be traced for each “sample;”
numsmpl = number of numerical “samples” collected for the determination of a variance;
stddevmax = maximum relative variance allowed for the calculation of qdet, the flux hitting detector,

= σm/qdet from equation (8.8).
The as-delivered case also is the same as for FwdMCcs.f90, with the 10 cm-radius beam replaced by a points

source at zps = 0.5(m). Thus, the input section reads:
open(unit=8,file=’fwdmcps.dat’,status=’unknown’)

write(8,1)

write(*,1)

1 format(’no. of bundles q_det variance rel.var.(%)’)

!

L=1. ! m

sig=1. ! 1/m

QT=100. ! W

zps=.1 ! m

x0=.2 ! m

dx=0.10 ! m

dy=0.10 ! m

thd=10. ! deg

N=100000

numsmpl=10

stddevmax=0.05

!

The resulting output, stored in fwdmcps.dat, is:
no. of bundles q_det variance rel.var.(%)

1000000 0.5000E-02 0.7303E-03 14.61

2000000 0.4550E-02 0.4561E-03 10.02

4000000 0.4800E-02 0.3958E-03 8.25

8000000 0.4850E-02 0.3226E-03 6.65

16000000 0.4850E-02 0.2143E-03 4.42

RevMCcs.f90
This program is a reverse or backward Monte Carlo implementation of the problem solved by FwdMCcs.f90, i.e.,
a narrow collimated beam hitting a purely scattering slab, and scattered toward a small, directionally-selective
detector. Input and output are identical to FwdMCcs, except that the default minimum number of photon
bundles is much smaller, here set to N=1000.

Again, the program consists of two parts, a double loop tracing over numsmpl×N photon bundles, and a
module calculating detector power and its standard deviation. Tracing follows the rules of equation (21.84),
and the detector flux from equation (21.79) (with ε

′

λ = 1 for the black detector). The coding is self-explanatory
except when, between two scattering events, the bundle starts and ends outside the collimated beam column,
x2 + y2 = r2 > R2. There are four different possibilities, as illustrated in the sketch below:

()x ,yi i

ca
se

(1
)

ca
se

(3
)

ca
se

(2
)

ca
se

(4
)

R

Öd

()x ,yi i

()x ,yi i

()x ,yi i

()x ,ye e

()x ,ye e

()x ,ye e

()x ,ye e

(0,0)

1. The path of the bundle misses the beam altogether,

2. the path intercepts the beam, but the bundle is moving away from the beam,

47

3. the path intercepts the beam and moves toward it, but is scattered anew before reaching it, and finally

4. the bundles path intersects the beam.

These four possibilities are tested by calculating the partial distances l1 and l2 (lpart) from the starting point
(projected into the x-y-plane) (xi, yi) toward (xe, ye) (the final point) to where the path enters and exits the beam.
Thus, using the x- and y-components of the vector equation

ri + lŝ = R

leads to
xi + lsx = xc,

yi + lsy = yc,

where (xc, yc) is a point on the outer limit of the collimated beam, r = R. Squaring and adding the latter two
equations gives

x2
i + y2

i + 2(xisx + yisy)l + (s2
x + s2

y)l2 = R2

or

l1,2 =
−b ±

√
d

c
,

where

a = x2
i + y2

i − R2

b = xisx + yisy

c = s2
x + s2

y

d = b2
− ac.

Thus the above four scenarios correspond to

1. If d < 0 the roots are complex, i.e., there is no intersection,

2. If l1 < 0 the bundle moves away from beam

3. If l1 < lσ the bundle is scattered again before reaching the beam, and

4. otherwise both intercepts are calculated to determine Iλn.

After the tracing of photon bundles is completed, average values and standard deviations are calculated as
in the forward Monte Carlo codes, e.g., FwdMCcs. Using the as-supplied input (same as for FwdMCcs, but with
N=1000) leads to the output, stored in revmccs.dat:
no. of bundles q_det variance rel.var.(%)

10000 0.2882E-02 0.1192E-03 4.14

Thus, a better variance is achieved with only 10,000 bundles, as opposed to the 8,000,000 bundles used in the
forward simulation (and this ratio would become correspondingly more extreme for smaller detector areas and
acceptance angles).

RevMCck1.f90, RevMCck2.f90
These programs are backward Monte Carlo Implementations of FwdMCck1 and FwdMCck2, respectively, as also
discussed in Example 21.4. They have identical inputs (except the much lower minimum number of photon
bundles, here set to N=1000 as default); and their outputs also follow the format of their counterparts. Ray
tracing for RevMCck1 is the same as for RevMCcs, except for the slight modification demanded by equation (21.85).
If energy partitioning is used, attenuation along the entire path length of the photon bundle must be considered,
as explained in the last equation of Example 21.4. For the as-supplied cases the output from RevMCck1, stored
in revmck1.dat, is:
no. of bundles q_det variance rel.var.(%)

10000 0.7261E-03 0.5045E-04 6.95

20000 0.7540E-03 0.3091E-04 4.10

48

i.e., 20,000 bundles are required (as opposed to 128,000,000 used by FwdMCck1). For RevMCck2 the output, stored
in revmck2.dat, is:
no. of bundles q_det variance rel.var.(%)

10000 0.7623E-03 0.3061E-04 4.02

i.e., 10,000 bundles are required (as opposed to 8,000,000 used in FwdMCck2, or 20,000 used in RevMCck1).

RevMCps.f90
This program is the backward Monte Carlo equivalent of FwdMCps, with identical input and output format
(again, with the exception of a much smaller base line value for the number of bundles). In the backward
Monte Carlo simulation, the detector flux again consists of a direct and a scattered component. In the code
it is assumed that the direct component is zero, this time because all direct radiation hits the detector at an
angle larger than the acceptance angle (this could, of course, be easily changed). As for collimated irradiation
backward Monte Carlo also becomes inefficient if the radiation source comes from a very small surface or
volume. The trick is again to break up intensity into a direct component (intensity coming directly from
the source without scattering or wall reflections), and a multiply-scattered and reflected part, as given by
Modest [14] and briefly described here. Again, we let Id satisfy the radiative transfer equation without the
inscattering term, or,

ŝ · ∇Id(r, ŝ) = Sd(r, ŝ) − β(r)Id(r, ŝ),

which has the simple solution

Id(r, ŝ) =

∫
Sd(r′, ŝ) exp

[
−

∫
r→r′

(κ + σs) ds′
]

ds, (CC-43)

where the main integral is along a straight path from the boundary of the medium to point r in the direction of
ŝ. For example, if there is only a simple point source at r0 with total strength Q0, emitting isotropically across a
tiny volume δV, equation (CC-43) becomes

Id(r, ŝ) =
Q0

4π|r0 − r|2
exp

[
−

∫
r0→r

(κ + σs) ds′
]
δ(ŝ − ŝ0), (CC-44)

where ŝ is a unit vector pointing from r0 toward r, and use has been made of the fact that

δV = δA δs = δΩ0|r0 − r|2 δs,

where δΩ0 is the solid angle, with which δV is seen from r. Equation (CC-44) can be used to calculate the
direct contribution of Q0 hitting a detector, and it can be used to determine the source term for the RTE of the
scattered radiation as

S1(r, ŝ) =
σs(r)
4π

∫
4π

Id(r, ŝ′)Φ(r, ŝ′, ŝ) dΩ′

=
σs(r)Q0

16π2|r0 − r|2
exp

[
−

∫
r0→r

(κ + σs)ds′
]
Φ(r, ŝ0, ŝ). (CC-45)

The rest of the solution proceeds as before, with In(ri,− ŝi) found from equations (CC-45Chapter 21equation.0.0.45)
and (21.82) as

In (ri,−ŝi) =
σsQ
16π2

∑
j

∫
lσ, j

e−σs |r0−r|

|r0 − r|2
dl′, (CC-46)

where the lσ, j are the straight paths the bundle travels between scattering events. Equation (CC-46Chapter 21equation.0.0.46)
must be integrated numerically, and this can be done using a simple Newton-Cotes scheme. Alternatively, the
integral can be obtained statistically from

In (ri,−ŝi) =
σsQ
16π2

∑
j

lσ, j
Nint

Nint∑
k=1

e−σs |r0−rk |

|r0 − rk|
2 ,

where the rk are Nint random locations chosen uniformly along path lσ, j. This was implemented in RevMCps.f90,
choosing Nint (= numint) to be inversely proportional to the distance of the integration point from the source
(or proportional to its relative importance). Results for detector flux for the as-supplied case (same as for
FwdMCps.f90) are stored in revmcps.dat as:

49

no. of bundles q_det variance rel.var.(%)

10000 0.4614E-02 0.1057E-03 2.29

i.e., with only 10,000 bundles we achieved a much better variance then by using 16,000,000 bundles in
FwdMCps.f90.

RevMCps.f90
The backward Monte Carlo equivalent of FwdMCps.
The documentation for this routine is not available.

Software Packages
MONT3D
This code, developed at Colorado State University by Burns et al. [15–19], calculates radiative exchange fac-
tors for complicated, three-dimensional geometries by the Monte Carlo method, as given by equations (8.15)
and (8.21). Diffuse and specular view factors may be calculated as special cases. We provide here only
a link to the Colorado State University web site, where documentation and codes are kept up-to-date:
http://www.colostate.edu/˜pburns/monte.html

VIEW3D
This code, developed at National Institute of Standards and Technology (NIST) by Walton [20], calculates
radiative view factors with obstructions by adaptive integration. The package, as posted here, consists of 4
files:

1. The official NIST publication (NISTIR-6925.pdf),
2. A compressed file containing the program executables, help files, etc. (v3d32exe.zip),
3. A compressed file containing the program documentation (V3D32doc.zip), and
4. A compressed file containing sample data files (IEA22dat.zip).

For problems with and/or feedback for this package please address them directly to the author, George Walton
(gwalton@mailserver.nist.gov).

RADCAL
This code, developed at NIST by Grosshandler [21,22] is a narrow band database for combustion gas properties,
using tabulated values and theoretical approximations. The package consist of two files:

1. A user manual (NIST Technical Note TN 1402.pdf), and
2. a compressed file containing the program Fortran file and sample input and output files (RADCAL.zip).

For problems with and/or feedback for this package please address them directly to the author, William
Grosshandler (wgrosshandler@nist.gov).

EM2C
This package contains a number of Fortran codes, developed at the Ecole Centrale de Paris by Soufiani and
Taine [23], calculating statistical narrow band properties as well as narrow band k-distributions for CO2 and
H2O, using the HITRAN92 database together with some proprietary French high-temperature extensions. The
entire package is provided in the form of a compressed file containing the program Fortran files, data files and
documentation (em2c.zip). For problems with and/or feedback for this package please address them directly
to the authors, Anouar Soufiani (soufiani@em2c.ecp.fr) and/or Jean Taine (taine@em2c.ecp.fr).

NBKDIR
still under development
This package contains a number of Fortran codes, developed at the Pennsylvania State University and the
University of California at Merced by the author and his students/postdocs A. Wang, G. Pal, and J. Cai, for the
assembly of full spectrum k-distributions from a narrow band k-distributions database. At the time of printing
NBKDIR contained data for five species (CO2,H2O,CO,CH4,C2H4), as well as nongray soot, for temperatures up
to 3000 K and pressures up to 80 bar. Spectroscopic data are taken from the HITEMP 2010 (CO2,H2O,CO) [24]
and HITRAN 2008 (CH4,C2H4) [25].

50

FVM2D
This Fortran77 code, developed at the University of Minnesota and Nanyang Technological University by Chai
and colleagues [26–28], calculates radiative transfer in participating media using the finite-volume method
of Chapter 17 for a two-dimensional, rectangular enclosure with reflecting walls and an absorbing, emitting,
anisotropically scattering medium. For each surface the emittance and blackbody intensities must be specified;
for the medium spatial distributions of radiation properties and blackbody intensities must be input. Calculated
are internal incident radiation (G) and wall flux (q) fields. Can be used for gray problems or on a spectral basis.
The package consists of two files:

1. A user manual (RAT.pdf), and
2. a compressed file containing the program Fortran files (RATcode.zip).

Four modules are needed to run FVM2D. These are PARAM.FOR, COMMON.FOR, RATmain.FOR and ADAPT.FOR. In this
nomenclature, RATmain.FOR and ADAPT.FOR are the invariant part and the adaptation portion of the program,
respectively. COMMON.FOR contains all the common block related variables, while PARAM.FOR contains the
parameters for the program. These files are all contained in RATcode.zip, providing the 6 different versions of
ADAPT.FOR corresponding to the 6 examples described in the manual. The manual as given is preliminary, i.e.,
two more examples dealing with irregular geometry and non-gray media, respectively, will be added at a later
time.
For problems with and/or feedback for this package please address them directly to the author, John (Chee
Kiong) Chai (MCKChai@ntu.edu.sg).

References
1. MathWorks MATLAB website, http://www.mathworks.com/products/matlab/.
2. Humlı́c̆ek, J.: “Optimized computation of the Voigt and complex probability functions,” Journal of Quantitative Spectroscopy and

Radiative Transfer, vol. 27, p. 437, 1982.
3. Buckius, R. O., and D. C. Hwang: “Radiation properties for polydispersions: Application to coal,” ASME Journal of Heat Transfer,

vol. 102, pp. 99–103, 1980.
4. Mengüç, M. P., and R. Viskanta: “On the radiative properties of polydispersions: A simplified approach,” Combustion Science and

Technology, vol. 44, pp. 143–159, 1985.
5. Hageman, L. A., and D. Young: Applied Iterative Methods, Academic Press, 1981.
6. Modest, M. F.: “Further developments of the elliptic PN-approximation formulation and its boundary conditions,” Numerical Heat

Transfer – Part B: Fundamentals, vol. 62, no. 2–3, pp. 181–202, 2012.
7. Wu, C. Y., and N. R. Ou: “Differential approximations for transient radiative transfer through a participating medium exposed to

collimated irradiation,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 73, pp. 111–120, 2002.
8. Ferziger, J. H.: Numerical Methods for Engineering Application, 2nd ed., John Wiley & Sons, New York, 1981.
9. Modest, M. F., and R. S. Mehta: “Full spectrum k-distribution correlations for CO2 from the CDSD-1000 spectroscopic databank,”

International Journal of Heat and Mass Transfer, vol. 47, pp. 2487–2491, 2004.
10. Modest, M. F., and V. Singh: “Engineering correlations for full spectrum k-distribution of H2O from the HITEMP spectroscopic

databank,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 93, pp. 263–271, 2005.
11. Denison, M. K., and B. W. Webb: “An absorption-line blackbody distribution function for efficient calculation of total gas radiative

transfer,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 50, pp. 499–510, 1993.
12. Denison, M. K., and B. W. Webb: “Development and application of an absorption line blackbody distribution function for CO2,”

International Journal of Heat and Mass Transfer, vol. 38, pp. 1813–1821, 1995.
13. Modest, M. F., and R. J. Riazzi: “Assembly of full-spectrum k-distributions from a narrow-band database; effects of mixing

gases, gases and nongray absorbing particles, and mixtures with nongray scatterers in nongray enclosures,” Journal of Quantitative
Spectroscopy and Radiative Transfer, vol. 90, no. 2, pp. 169–189, 2005.

14. Modest, M. F.: “Backward Monte Carlo simulations in radiative heat transfer,” ASME Journal of Heat Transfer, vol. 125, no. 1, pp.
57–62, 2003.

15. Burns, P. J.: “MONTE–a two-dimensional radiative exchange factor code,” Technical report, Colorado State University, Fort Collins,
1983.

16. Maltby, J. D.: “Three-dimensional simulation of radiative heat transfer by the Monte Carlo method,” M.S. thesis, Colorado State
University, Fort Collins, CO, 1987.

17. Burns, P. J., and J. D. Maltby: “Large-scale surface to surface transport for photons and electrons via Monte Carlo,” Computing
Systems in Engineering, vol. 1, no. 1, pp. 75–99, 1990.

18. Maltby, J. D., and P. J. Burns: “Performance, accuracy and convergence in a three-dimensional Monte Carlo radiative heat transfer
simulation,” Numerical Heat Transfer – Part B: Fundamentals, vol. 16, pp. 191–209, 1991.

19. Zeeb, C. N., P. J. Burns, K. Branner, and J. S. Dolaghan: “User’s manual for Mont3d – Version 2.4,” Colorado State University, Fort
Collins, CO, 1999.

20. Walton, G. N.: “Calculation of obstructed view factors by adaptive integration,” Technical Report NISTIR–6925, National Institute
of Standards and Technology (NIST), Gaithersburg, MD, 2002.

21. Grosshandler, W. L.: “Radiative transfer in nonhomogeneous gases: A simplified approach,” International Journal of Heat and Mass
Transfer, vol. 23, pp. 1447–1457, 1980.

51

22. Grosshandler, W. L.: “RADCAL: a narrow-band model for radiation calculations in a combustion environment,” Technical Report
NIST Technical Note 1402, National Institute of Standards and Technology, 1993.

23. Soufiani, A., and J. Taine: “High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and
CO, and correlated-k model for H2O and CO2,” International Journal of Heat and Mass Transfer, vol. 40, no. 4, pp. 987–991, 1997.

24. Rothman, L. S., I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Ten-
nyson: “HITEMP, the high-temperature molecular spectroscopic database,” Journal of Quantitative Spectroscopy and Radiative Transfer,
vol. 111, no. 15, pp. 2139–2150, 2010.

25. Rothman, L. S., I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion,
K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner,
N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V.
Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung,
S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera: “The HITRAN 2008 molecular spectroscopic database,”
Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 110, pp. 533–572, 2009.

26. Chai, J. C., H. S. Lee, and S. V. Patankar: “Finite volume method for radiation heat transfer,” Journal of Thermophysics and Heat
Transfer, vol. 8, no. 3, pp. 419–425, 1994.

27. Chai, J. C., H. S. Lee, and S. V. Patankar: “Treatment of irregular geometries using a Cartesian coordinates finite-volume radiation
heat transfer procedure,” Numerical Heat Transfer – Part B: Fundamentals, vol. 26, pp. 225–235, 1994.

28. Chai, J. C., G. Parthasarathy, H. S. Lee, and S. V. Patankar: “Finite volume method radiative heat transfer procedure for irregular
geometries,” Journal of Thermophysics and Heat Transfer, vol. 9, no. 3, pp. 410–415, 1995.

	Chapter 1
	Chapters 2 and 3
	Chapter 3
	Chapter 4 and Appendix D
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 11
	Chapter 12
	Chapter 16
	Chapter 19
	Chapter 20
	Chapter 21
	Software Packages
	References

