
Computer Experiments

Designs

Differences between physical and computer
experiments

Recall

1. The code is deterministic. There is no random error
(measurement error). As a result, no replication is
needed. Uncertainty is only due to a lack of
knowledge about the true nature of the relationship
between the inputs and the outputs. The code is a sort
of “black box.”

2. Because we know the code, we know all the factors
that affect the output. Thus, techniques such as
randomization and blocking are not needed, because
there is no need to control for the effects of factors that
affect the response but have not been included among
the experimental factors.

Notation

Recall

The code produces r deterministic outputs y1(x), y2(x),
…, yr(x) that depend on a set of input variables

(For purposes of design, I will usually assume r = 1)

x = (x1, x2, . . . , xd)
!

We assume the input variables are restricted to some
subset

We will assume that our design consists of n points

X ⊂ "
d

x1, · · · ,xn

Some important features designs for computer
experiments should have

1. No replication.

(But note. Occasionally the producer of the code
modifies it without telling the statistician. Replication
can be useful for verifying that the code has not
changed.

2. The design should cover the set of possible input
values, X, reasonably well.

The rationale for this is that we often don’t know the
nature of the functional relationship between the inputs
and the outputs.

Is it very smooth and slowly varying?

Where are interesting features (optima, regions where
the gradient is very steep) located? Lacking such
knowledge, they are likely to be anywhere in X.

Note: Many popular “classical” designs used in
response surface methodology, such as central
composite designs and fractional factorial designs, do
not spread points out evenly over X. Instead they tend
to place points at the boundary of X (corners,
midpoints of faces). As a consequence, they may not
be suitable for computer experiments, unless we know
that a second order response surface will provide a
very good approximation to the output.

3. Designs will usually take relatively few
observations. Thus, we seek classes of designs that do
not require many observations.

Some strategies for selecting a design

For simplicity, I assume that X is rectangular of the
form

In many of the examples, I will make things even
simpler by assuming X is the d-dimensional unit cube

 X = [0, 1]d

X = [a1, b1] × [a2, b2] × · · · × [ad, bd]

Sampling based designs

People typically interpret “covering the set of possible
input values, X, well” as implying that designs should
spread points evenly over X. From basic sampling
theory, two simple strategies are:

1. Select a random sample of n points

from X. Denote the i-th point as

xi = (xi1, xi2, . . . , xid)
!

x1, · · · ,xn

2. Select a stratified sample of n points in X.

3. Select a Latin hypercube sample (LHS) of n points
in X.

Constructing a Latin hypercube sample (LHS)

Divide the range of each interval [aj, bj] into n
subintervals of equal length. Randomly select a
value from each of these subintervals. Let xij be the
value selected for sub-interval i (1 ≤ i ≤ n).

Note: It is not uncommon to take the xij to be the
center of the interval rather than a randomly
selected point in the interval.

Form the n×d array

 x11 x12 … x1d
 x21 x22 … x2d
 .
 .
 .
 xn1 xn2 … xnd

Randomly permute each column, using independent
permutations for each. The n rows of the resulting
array define the points that are our Latin hypercube
sample.

Roughly speaking, a Latin hypercube sample
divides each dimension of X into n intervals. n
points in X are selected with the property that when
projected onto any dimension, exactly one point is
in each of the intervals for that dimension.

Example of a 5 point LHS

For simplicity, assume X = [0, 1]d.

Divide each [0, 1] into the 5 subintervals [0, 0.2), [0.2,
0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0].

For simplicity, lets use the center of each subinterval.

Form the 5×2 array

 0.1 0.1
 0.3 0.3
 0.5 0.5
 0.7 0.7
 0.9 0.9

Randomly permute each column. One possible result
is the array

 0.5 0.9
 0.7 0.3
 0.3 0.1
 0.1 0.5
 0.9 0.7

The resulting 5 point LHS.

You can generate LHS’s using JMP.

1. Under the DOE menu, select Space Filling Design.

2. Add the appropriate number of factors and specify
their range (Values). Click Continue.

3. Select the Sample Size. Click on Latin Hypercube.

Initial space filling design screen.

Selecting a space filling design

The resulting design

Plot of points

-0.25

0

0.25

0.5

0.75

1

1.25

X
2

-0.25 0 .25 .5 .75 1 1.25

X1

Not all LHS’s look uniformly spread out over X. Here
is a less than ideal 5 point LHS.

Properties of LHS’s

McKay, Beckman, and Conover (1979) introduced
Latin hypercube sampling and subsequently other
authors (for example, Stein 1987 and Owen 1992) have
explored their properties. Roughly speaking, suppose
we want to find the mean of some known function
G(y(x)) over X. Then the sample mean of G(y(x))
computed from a Latin hypercube sample usually has
smaller variance than the sample mean computed from
a simple random sample.

Problem: In the computer experiment setting we are
considering we are usually not interested in estimating
the mean of some G(y(x)) over X. More typically we
are interested in predicting y(x) at previously
unobserved inputs.

Some comments

1. When projected onto any dimension, the points in a
Latin hypercube sample are spread evenly over that
dimension. If G(y(x)) is approximately additive, then
uniformity in each dimension is intuitively appealing.
This, coupled with the fact that they are relatively easy
to generate, appears to account for their popularity in
practice.

2. There are lots of variations and generalizations of
Latin hypercube sampling, including cascading Latin
hypercubes, selecting from the class of all Latin
hypercubes of size n the one with some additional
optimal property, orthogonal arrays (generalize Latin
hypercubes to designs with uniform projections onto
higher dimensional subspaces).

Distance based designs

1. Minimax or Maximin Designs (see Johnson,
Moore, and Ylvisaker (1990) or Koehler and Owen
(1996)).

A collection of n points in X is a minimax design if
it is a collection of n points in X with the property
that the maximum distance between this set of n
points and all other points in X is minimized.

A collection of n points in X is a maximin design if the
minimum distance between any pair of these n points
is maximized.

Minimax designs are difficult to generate because
distances from all other points in X (containing
infinitely many points) must be evaluated. Very little
in the way of software for generating these designs
exists.

Maximin designs are relatively easy to generate. You
can generate these on JMP.

1. Under the DOE menu, select Space Filling Design.

2. Add the appropriate number of factors and specify
their range (Values). Click Continue.

3. Select the Sample Size. Click on Sphere Packing.

Initial screen

Selecting a 5 point maximin design.

The resulting design

A plot of the points in the design.

-0.25

0

0.25

0.5

0.75

1

1.25

X
2

-0.25 0 .25 .5 .75 1 1.25

X1

Properties of mimimax and maximin designs

Minimax designs might be considered appealing for
the following reason. Suppose we fit a model that
interpolates the data (the best linear unbiased predictor
of a stationary Gaussian process model has this
property). Suppose that the discrepancy between our
fitted model and the model generated by the computer
code increases in a fixed monotonic way as the
distance from a point in our design increases. Then
minimax designs have a minimax property, namely
they minimize the maximum (over X) absolute
difference between our fitted model and the model
generated by the compute code.

Johnson, Moore, and Ylvisaker (1990) have shown that
maximin designs have a sort of D-optimality property
under certain conditions. These conditions assume that
a certain stationary Gaussian process model is fit to the
data and that the prior correlation between points is
extremely weak. In fact, D-optimality is in the limit as
this correlation goes to 0 (so that the model looks
something like the standard linear model with i.i.d.
errors).

Note: The LHS’s generated by JMP are actually
maximin LHS’s. By this, I mean that from among all
possible LHS’s, JMP picks the one that is maximin.
By so doing, JMP eliminates “poor” LHS’s and
guarantees that it generates an LHS that spreads points
out reasonably evenly.

Compared to other software that generates LHS’s and
maximin designs, JMP performs quite well.

2. Uniform designs.

Uniform designs are a collection of points that
minimize some measure of discrepancy (departure
or distance from a uniform distribution) and are
discussed in Fan, Lin, Winker, Zhang (2000).

To be more specific, let

 D = {x1, x2, …, xn}

denote an n point design. Let

where I is the indicator function and the inequality
is with respect to componentwise ordering of
vectors in d-dimensional Euclidean space.

Fn(x) =
1

n

n∑

i=1

I[xi ≤ x]

The Lp discrepancy of D is defined to be

where F(x) is the uniform distribution on X.

In the limit as p goes to infinity, this is called the star
discrepancy or just the discrepancy of D.

(∫
X

|Fn(x) − F (x)|p dx)
1

p

)

You can generate uniform designs (with respect to the
star discrepancy) on JMP.

1. Under the DOE menu, select Space Filling Design.

2. Add the appropriate number of factors and specify
their range (Values). Click Continue.

3. Select the Sample Size. Click on Uniform.

Initial screen

Selecting a 5 point uniform design.

The resulting design

A plot of the points in the design.

0

0.25

0.5

0.75

1

X
2

0 .25 .5 .75 1

X1

Properties of uniform designs

Suppose we want to find the mean of some known
function G(y(x)) over X. Than the sample mean of
G(y(x)) computed from a uniform design minimizes
a certain bound (the Koksma-Hlawka inequality -
see Niederreiter 1992 for details) on the absolute
error from the true mean.

Problem: In the computer experiment setting we are
considering we are not interested in estimating the
mean of some G(y(x)) over X.

Designs based on formal criteria

A number of “optimality” criteria have been proposed
for designs for computer experiments.

Suppose

is our statistical predictor of y(x) computed from
some design D = {x1, x2, …, xn}. Let

denote the mean squared error of our predictor.

ŷD(x)

MSE[ŷD(x)]

1. The integrated mean squared error (IMSE) for
design D is proportional to

where w(x) is some weight function on X. A design
D* that minimizes this over the class of all possible
n point designs on X is said to be IMSE-optimal.

Sacks, Schiller, and Welch (1989) discuss these
designs.

∫
X

MSE[ŷD(x)]w(x)dx

2. The maximum mean squared error (MMSE) for a
design D is proportional to

A design D* that minimizes MMSE over the class
of all possible n point designs on X is said to be
MMSE-optimal.

Sacks and Schiller (1988) discuss these designs.

max
x∈X

MSE[ŷD(x)]

Problem: For statistical models such as stationary
Gaussian process models using the best linear unbiased
predictor as our statistical predictor (to be discussed
later), one needs to know the correlation parameters to
compute these designs. Generally these parameters are
unknown and must be estimated from data.

As a consequence, these and other criterion-based
designs (for example, D-optimality) are not often used
in computer experiments because they depend on
unknown parameters.

Designs from Monte Carlo methods

The Monte Carlo method literature includes a variety
of designs that are space-filling and useful for Monte
carlo integration. Designs include scrambled nets,
lattice designs, and sequential designs.

The problem with these designs is that there is little
software available to generate these design.

Of these, perhaps the most useful are so-called Sobol
sequences. These are space-filling designs with the
property that a design with sample size n is obtained
from the design of sample size n–1 by adding a point
to the design. Most space filling designs do not have
this property (for example, a 5 point LHS is not
obtained by adding a point to a 4 point LHS).

Code exists for generating these sequences.

1. Apparently R code exists for Sobol sequences - see
the Web site

www.maths.lth.se/help/R/.R/library/fOptions/html/D1-LowDiscrepancy.html

2. There is also C++ code available - see the Web site

www.cosy.sbg.ac.at/~rschuer/hintlib/

3. I also found a link to software at

/www.broda.co.uk/software.htm

5 point Sobol in two dimensions

0.2

0.4

0.6

0.8

1

X
2

.2 .4 .6 .8 1

X1

6 point Sobol in two dimensions

0

0.25

0.5

0.75

1

X
2

.2 .4 .6 .8 1

X1

7 point Sobol in two dimensions

0

0.25

0.5

0.75

1

X
2

0 .25 .5 .75 1

X1

Some practical advice

1. Use a space-filling design. Our experience (based
on several simulations) is that there is not much
difference between space-filling designs. However,
designs that are decidedly non space-filling do not
perform well.

2. There are no analytical results on sample size. A
popular rule of thumb is to take about 10 observations
per dimension. Thus, a d dimensional problem would
require 10d observations. We have found that fewer
observations per dimension often suffices (say, 5 per
dimension) unless one knows in advance that the
output function is quite variable over the range of the
inputs.

3. Sequential designs are useful if analysis can
proceed sequentially and the computer code is slow.
At each stage, while you wait for the code to generate
the next output, you can carry out a preliminary
analysis and decide if the results are sufficiently
accurate.

Now, on to modeling

