
Computer Experiments

Designs



Differences between physical and computer 
experiments

Recall

1. The code is deterministic.  There is no random error 
(measurement error).  As a result, no replication is 
needed.  Uncertainty is only due to a lack of 
knowledge about the true nature of the relationship 
between the inputs and the outputs.  The code is a sort 
of “black box.”



2. Because we know the code, we know all the factors 
that affect the output.  Thus, techniques such as 
randomization and blocking are not needed, because 
there is no need to control for the effects of factors that 
affect the response but have not been included among 
the experimental factors.



Notation

Recall

The code produces r deterministic outputs y1(x), y2(x), 
…, yr(x) that depend on a set of input variables

(For purposes of design, I will usually assume r = 1)

x = (x1, x2, . . . , xd)
!



We assume the input variables are restricted to some 
subset

We will assume that our design consists of n points

X ⊂ "
d

x1, · · · ,xn



Some important features designs for computer 
experiments should have

1. No replication.

(But note.  Occasionally the producer of the code 
modifies it without telling the statistician.  Replication 
can be useful for verifying that the code has not 
changed.



2.  The design should cover the set of possible input 
values, X, reasonably well.

The rationale for this is that we often don’t know the 
nature of the functional relationship between the inputs 
and the outputs.  

Is it very smooth and slowly varying?  

Where are interesting features (optima, regions where 
the gradient is very steep) located?  Lacking such 
knowledge, they are likely to be anywhere in X.



Note:  Many popular “classical” designs used in 
response surface methodology,  such as central 
composite designs and fractional factorial designs, do 
not spread points out evenly over X.  Instead they tend 
to place points at the boundary of X (corners, 
midpoints of faces).  As a consequence, they may not 
be suitable for computer experiments, unless we know 
that a second order response surface will provide a 
very good approximation to the output.



3. Designs will usually take relatively few 
observations.  Thus, we seek classes of designs that do 
not require many observations.



Some strategies for selecting a design

For simplicity, I assume that X is rectangular of the 
form

In many of the examples, I will make things even 
simpler by assuming X is the d-dimensional unit cube

                                     X = [0, 1]d

X = [a1, b1] × [a2, b2] × · · · × [ad, bd]



Sampling based designs

People typically interpret “covering the set of possible 
input values, X, well” as implying that designs should 
spread points evenly over X.   From basic sampling 
theory, two simple strategies are:



1. Select a random sample of n points

from X.  Denote the i-th point as

xi = (xi1, xi2, . . . , xid)
!

x1, · · · ,xn



2. Select a stratified sample of n points in X.



3. Select a Latin hypercube sample (LHS) of n points 
in X.



Constructing a Latin hypercube sample (LHS)

Divide the range of each interval [aj, bj] into n 
subintervals of equal length. Randomly select a 
value from each of these subintervals.  Let xij be the 
value selected for sub-interval i (1 ≤ i ≤ n).  

Note: It is not uncommon to take the xij to be the 
center of the interval rather than a randomly 
selected point in the interval.



Form the n×d array

                x11     x12             …                   x1d
          x21     x22             …                   x2d
                                      .
                                      .
                                      .
          xn1     xn2             …                   xnd



Randomly permute each column, using independent 
permutations for each.  The n rows of the resulting 
array define the points that are our Latin hypercube 
sample.



Roughly speaking, a Latin hypercube sample 
divides each dimension of X into n intervals.  n 
points in X are selected with the property that when 
projected onto any dimension, exactly one point is 
in each of the intervals for that dimension.



Example of a 5 point LHS

For simplicity, assume X = [0, 1]d.

Divide each  [0, 1] into the 5 subintervals [0, 0.2), [0.2, 
0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0].  

For simplicity, lets use the center of each subinterval.



Form the 5×2 array

                                   0.1     0.1
                                   0.3     0.3
                                   0.5     0.5
                                   0.7     0.7
                                   0.9     0.9

                           



Randomly permute each column.  One possible result 
is the array

                                    0.5   0.9
                                    0.7   0.3
                                    0.3   0.1
                                    0.1   0.5
                                    0.9   0.7



The resulting 5 point LHS.  



You can generate LHS’s using JMP.

1. Under the DOE menu, select Space Filling Design.

2. Add the appropriate number of factors and specify 
their range (Values).  Click Continue.

3. Select the Sample Size.  Click on Latin Hypercube.



Initial space filling design screen.



Selecting a space filling design



The resulting design



Plot of points
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Not all LHS’s look uniformly spread out over X.  Here 
is a less than ideal 5 point LHS.



Properties of LHS’s

McKay, Beckman, and Conover (1979) introduced 
Latin hypercube sampling and subsequently other 
authors (for example, Stein 1987 and Owen 1992) have 
explored their properties.  Roughly speaking, suppose 
we want to find the mean of some known function 
G(y(x)) over X.  Then the sample mean of G(y(x)) 
computed from a Latin hypercube sample usually has 
smaller variance than the sample mean computed from 
a simple random sample.



Problem:  In the computer experiment setting we are 
considering we are usually not interested in estimating 
the mean of some G(y(x)) over X.  More typically we 
are interested in predicting y(x) at previously 
unobserved inputs.



Some comments

1. When projected onto any dimension, the points in a 
Latin hypercube sample are spread evenly over that 
dimension.  If G(y(x)) is approximately additive, then 
uniformity in each dimension is intuitively appealing.  
This, coupled with the fact that they are relatively easy 
to generate, appears to account for their popularity in 
practice.



2. There are lots of variations and generalizations of 
Latin hypercube sampling, including cascading Latin 
hypercubes, selecting from the class of all Latin 
hypercubes of size n the one with some additional 
optimal property, orthogonal arrays (generalize Latin 
hypercubes to designs with uniform projections onto 
higher dimensional subspaces).



Distance based designs

1. Minimax or Maximin Designs (see Johnson, 
Moore, and Ylvisaker (1990) or Koehler and Owen 
(1996)).

A collection of n points in X is a minimax design if 
it is a collection of n points in X with the property 
that the maximum distance between this set of  n 
points and all other points in X is minimized. 



A collection of n points in X is a maximin design if the 
minimum distance between any pair of these n points 
is maximized.



Minimax designs are difficult to generate because 
distances from all other points in X (containing 
infinitely many points) must be evaluated.  Very little 
in the way of software for generating these designs 
exists.



Maximin designs are relatively easy to generate.  You 
can generate these on JMP.

1. Under the DOE menu, select Space Filling Design.

2. Add the appropriate number of factors and specify 
their range (Values).  Click Continue.

3. Select the Sample Size.  Click on Sphere Packing.



Initial screen



Selecting a 5 point maximin design. 



The resulting design



A plot of the points in the design.
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Properties of mimimax and maximin designs

Minimax designs might be considered appealing for 
the following reason.  Suppose we fit a model that 
interpolates the data (the best linear unbiased predictor  
of a stationary Gaussian process model has this 
property).  Suppose that the discrepancy between our 
fitted model and the model generated by the computer 
code increases in a fixed monotonic way as the 
distance from a point in our design increases.  Then 
minimax designs have a minimax property, namely 
they minimize the maximum (over X) absolute 
difference between our fitted model and the model 
generated by the compute code.



Johnson, Moore, and Ylvisaker (1990) have shown that 
maximin designs have a sort of D-optimality property 
under certain conditions.  These conditions assume that 
a certain stationary Gaussian process model is fit to the 
data and that the prior correlation between points is 
extremely weak.  In fact, D-optimality is in the limit as 
this correlation goes to 0 (so that the model looks 
something like the standard linear model with i.i.d. 
errors).



Note:  The LHS’s generated by JMP are actually 
maximin LHS’s.  By this, I mean that from among all 
possible LHS’s, JMP picks the one that is maximin.  
By so doing, JMP eliminates “poor” LHS’s and 
guarantees that it generates an LHS that spreads points 
out reasonably evenly.

Compared to other software that generates LHS’s and 
maximin designs, JMP performs quite well.



2. Uniform designs.

Uniform designs are a collection of points that 
minimize some measure of discrepancy (departure 
or distance from a uniform distribution) and are 
discussed in Fan, Lin, Winker, Zhang (2000).  



To  be more specific, let

                           D = {x1, x2, …, xn}

denote an n point design.  Let

where I is the indicator function and the inequality 
is with respect to componentwise ordering of 
vectors in d-dimensional Euclidean space.

Fn(x) =
1

n

n∑

i=1

I[xi ≤ x]



The Lp discrepancy of D is defined to be  

where F(x) is the uniform distribution on X.

In the limit as p goes to infinity, this is called the star 
discrepancy or just the discrepancy of D. 

(∫
X

|Fn(x) − F (x)|p dx)
1

p

)



You can generate uniform designs (with respect to the 
star discrepancy) on JMP.

1. Under the DOE menu, select Space Filling Design.

2. Add the appropriate number of factors and specify 
their range (Values).  Click Continue.

3. Select the Sample Size.  Click on Uniform.



Initial screen



Selecting a 5 point uniform design. 



The resulting design



A plot of the points in the design.
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Properties of uniform designs

Suppose we want to find the mean of some known 
function G(y(x)) over X.  Than the sample mean of 
G(y(x)) computed from a uniform design minimizes 
a certain bound (the Koksma-Hlawka inequality - 
see Niederreiter 1992 for details) on the absolute 
error from the true mean.



Problem:  In the computer experiment setting we are 
considering we are not interested in estimating the 
mean of some G(y(x)) over X.



Designs based on formal criteria

A number of “optimality” criteria have been proposed 
for designs for computer experiments.  

Suppose  

is our statistical predictor of y(x) computed from 
some design D = {x1, x2, …, xn}.  Let 

denote the mean squared error of our predictor.  

ŷD(x)

MSE[ŷD(x)]



1. The integrated mean squared error (IMSE) for 
design D is proportional to 

where w(x) is some weight function on X.  A design 
D* that minimizes this over the class of all possible 
n point designs on X is said to be IMSE-optimal. 

Sacks, Schiller, and Welch (1989) discuss these 
designs.

∫
X

MSE[ŷD(x)]w(x)dx



2. The maximum mean squared error (MMSE) for a 
design D is proportional to

A design D* that minimizes MMSE over the class 
of all possible n point designs on X is said to be 
MMSE-optimal.

Sacks and Schiller (1988) discuss these designs.

max
x∈X

MSE[ŷD(x)]



Problem:  For statistical models such as stationary 
Gaussian process models using the best linear unbiased 
predictor as our statistical predictor (to be discussed 
later), one needs to know the correlation parameters to 
compute these designs.  Generally these parameters are 
unknown and must be estimated from data.  



As a consequence, these and other criterion-based 
designs (for example, D-optimality) are not often used 
in computer experiments because they depend on 
unknown parameters.



Designs from Monte Carlo methods

The Monte Carlo method literature includes a variety 
of designs that are space-filling and useful for Monte 
carlo integration.  Designs include scrambled nets,  
lattice designs, and sequential designs.



The problem with these designs is that there is little 
software available to generate these design.



Of these, perhaps the most useful are so-called Sobol 
sequences.  These are space-filling designs with the 
property that a design with sample size n is obtained 
from the design of sample size n–1 by adding a point 
to the design.  Most space filling designs do not have 
this property (for example, a 5 point LHS is not 
obtained by adding a point to a 4 point LHS).



Code exists for generating these sequences.  

1. Apparently R code exists for Sobol sequences - see 
the Web site

www.maths.lth.se/help/R/.R/library/fOptions/html/D1-LowDiscrepancy.html

2. There is also C++ code available - see the Web site

www.cosy.sbg.ac.at/~rschuer/hintlib/

3. I also found a link to software at

/www.broda.co.uk/software.htm



5 point Sobol in two dimensions
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6 point Sobol in two dimensions
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7 point Sobol in two dimensions
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Some practical advice

1. Use a space-filling design.  Our experience (based 
on several simulations) is that there is not much 
difference between space-filling designs.  However, 
designs that are decidedly non space-filling do not 
perform well.



2.  There are no analytical results on sample size.  A 
popular rule of thumb is to take about 10 observations 
per dimension.  Thus, a d dimensional problem would 
require 10d observations.  We have found that fewer 
observations per dimension often suffices (say, 5 per 
dimension) unless one knows in advance that the 
output function is quite variable over the range of the 
inputs.



3.  Sequential designs are useful if analysis can 
proceed sequentially and the computer code is slow.  
At each stage, while you wait for the code to generate 
the next output, you can carry out a preliminary 
analysis and decide if the results are sufficiently 
accurate. 



Now, on to modeling


