Computer Graphics Viewing

What Are Projections?

- Our 3-D scenes are all specified in 3-D world coordinates
- To display these we need to generate a 2-D image - project objects onto a picture plane

So how do we figure out these projections?

Converting From 3-D To 2-D

- Projection is just one part of the process of converting from 3-D world coordinates to a 2D image

Types Of Projections

- There are two broad classes of projection:
- Parallel: Typically used for architectural and engineering drawings
- Perspective: Realistic looking and used in computer graphics

Parallel Projection

Perspective Projection

Types Of Projections (cont...)

- For anyone who did engineering or technical drawing

Planar geometric projections

Parallel Projections

- Some examples of parallel proiections

Orthographic Projection

Isometric Projections

- Isometric projections have been used in computer games from the very early days of the industry up to today

Q*Bert

Sim City

Virtual Magic Kingdom

Perspective Projections

- Perspective projections are much more realistic than parallel proiections
$-$

Perspective Projections

- There are a number of different kinds of perspective views
- The most common are one-point and two point perspectives

Elements Of A Perspective Projection

The Up And Look Vectors

- The look vector indicates the direction in which the camera is pointing
- The up vector determines how the camera is rotated
- For example, is the camera held vertically or horizontally

Contents

- In today's lecture we are going to have a look at:
- Transformations in 3-D
- How do transformations in 3-D work?
- 3-D homogeneous coordinates and matrix based transformations
- Projections
- History
- Geometrical Constructions
- Types of Projection
- Projection in Computer Graphics

3-D Coordinate Spaces

- Remember what we mean by a 3-D coordinate space

Translations In 3-D

- To translate a point in three dimensions by $d x, d y$ and $d z$ simply calculate the new points as follows:

$$
x^{\prime}=x+d x \quad y^{\prime}=y+d y \quad z^{\prime}=z+d z
$$

Scaling In 3-D

- To sale a point in three dimensions by $s x, s y$ and $s z$ simply calculate the new points as follows:
$>x^{\prime}=s x^{*} x$

$$
y^{\prime}=s y^{*} y
$$

$$
z^{\prime}=s z^{*} z
$$

Rotations In 3-D

- When we performed rotations in two dimensions we only had the choice of rotating about the z axis
In the case of three dimensions we have more options
- Rotate about x - pitch
- Rotate about y - yaw
- Rotate about z - roll

Rotations In 3-D (cont...)

The equations for the three kinds of rotations in 3-D are as follows:

Homogeneous Coordinates In 3-D

Similar to the 2-D situation we can use homogeneous coordinates for 3-D transformations - 4 coordinate column vector
All transformations can then be represented as matrices

3D Transformation Matrices

Translation by
$d x, d y, d z$$\left[\begin{array}{cccc}1 & 0 & 0 & d x \\ 0 & 1 & 0 & d y \\ 0 & 0 & 1 & d z \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}s_{x} & 0 & 0 & 0 \\ 0 & s y & 0 & 0 \\ 0 & 0 & s z & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ Scaling by $s x, s y, s z$
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Rotate About X-Axis Rotate About Y-Axis Rotate About Z-Axis

Remember The Big Idea

Summary

- In today's lecture we looked at:
- Transformations in 3-D
- Very similar to those in 2-D
- Projections
- 3-D scenes must be projected onto a 2-D image plane
- Lots of ways to do this
- Parallel projections
- Perspective projections
- The virtual camera

Who's Choosing Graphics?

- A couple of quick questions for you:
- Who is choosing graphics as an option?
- Are there any problems with option timetabling?
- What do you think of the course so far?
- Is it too fast/slow?
- Is it too easy/hard?
- Is there anything in particular you want to cover?

3D Transformations

- Same idea as 2D transformations
- Homogeneous coordinates: (x,y,z,w)
- 4x4 transformation matrices

Translation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

Identity

W=1
Translation

$$
\therefore\left[x^{\prime} y^{\prime} z^{\prime} 1\right]=[x y z z]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
t_{x} & t_{y} & t_{z} & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
x+t_{x} & y+t_{y} & z+t_{z}
\end{array}\right]
$$

(a) Translating point

(b) Translating object

Scaling

Column Vector Representation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

Identity
$\left[\begin{array}{l}\boldsymbol{x}^{\prime} \\ \boldsymbol{y}^{\prime} \\ \boldsymbol{z}^{\prime} \\ \boldsymbol{w}\end{array}\right]=\left[\begin{array}{cccc}\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 & 0 \\ 0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 & 0 \\ 0 & 0 & \boldsymbol{s}_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}\boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{z} \\ \boldsymbol{w}\end{array}\right]$

Scale
Row Vector Representation

$$
\left(X^{\prime} y^{\prime} Z^{\prime} 1\right)=(X, y, z, 1)\left[\begin{array}{cccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 & 0 \\
0 & 0 & \boldsymbol{s}_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

It specifies three coordinates with their own scaling factor.

$$
\left.\begin{array}{rl}
S & =\left[\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\therefore \quad P^{\prime}=P \cdot S \\
{\left[\begin{array}{llll}
x^{\prime} & y^{\prime} & z^{\prime} 1
\end{array}\right]=\left[\begin{array}{lll}
x y & z & 1
\end{array}\right]\left[\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{lll}
X \cdot S_{x} & y \cdot S_{y} & z \cdot S_{z}
\end{array}\right]
\end{array}\right]
$$

Rotation

Column Vector Representation

Rotate around Z axis:
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w\end{array}\right]=\left[\begin{array}{cccc}\cos \Theta & -\sin \Theta & 0 & 0 \\ \sin \Theta & \cos \Theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$

Row Vector Representation

Rotation

Rotate around Y axis:
Column Vector Representation
$\left[\begin{array}{l}\boldsymbol{x}^{\prime} \\ \boldsymbol{y}^{\prime} \\ \boldsymbol{z}^{\prime} \\ \boldsymbol{w}\end{array}\right]=\left[\begin{array}{cccc}\cos \Theta & 0 & \sin \Theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \Theta & 0 & \cos \Theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}\boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{z} \\ \boldsymbol{w}\end{array}\right]$

Row Vector Representation

Rotation

Rotate around X axis:
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \Theta & -\sin \Theta & 0 \\ 0 & \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$

Row Vector Representation

3D PRONFCHIONS

Projection

Representing a three-dimensional object or scene in 2dimensional objects onto the 2-dimensional view plane.
There are 2 types of projections.

>Parallel Projection

>Perspective Projection

Parallel Projection

Parallel projection of an object to the view plane

Parallel Projection preserves relative proportions of objects but does not produce the realistic views

Perspective Projection

Perspective Projection produce the realistic views but does not preserves relative proportions of objects

Orthographic Parallel Projection

Isometric Projection of an object onto a viewing plane

Oblique Parallel Projection

(a)

(b)

Cavalier Projections of the unit cube

Cabinet Projections of the Unit Cube

Types of Perspective Projections

(a)

Coordinate description

(b)

One-point perspective projection
\times axis varishing point

(c)

Two-points perspective projection

Logical Relationship among the various types of projections

Transformation Matrix for general Parallel Projection (on XY plane)

$$
\begin{aligned}
x_{2} & =x_{1}+x_{p} u \\
y_{2} & =y_{1}+y_{p} u \\
z_{2} & =z_{1}+z_{p} u
\end{aligned}
$$

Tr projected point z_{2} is 0 , therefore, the third equation can be written as,

$$
\begin{aligned}
& 0=z_{1}+Z_{p} u \\
& u=\frac{-Z_{1}}{z_{p}}
\end{aligned}
$$

Sibstituting the value of u in first two equations we get,

$$
\begin{aligned}
& x_{2}=x_{1}+x_{p}\left(-z_{1} / z_{p}\right) \quad \text { and } \\
& y_{2}=y_{1}+y_{p}\left(-z_{1} / z_{p}\right)
\end{aligned}
$$

HaMmerme Q

$\left[x_{2} y_{2}\right]=\left[x_{1} y_{1} z_{1}\right]$

$$
\left.-x_{p} / Z_{p} \quad-y_{p} / Z_{p}\right]
$$

or in homogeneous coordinates we have,
ie.

$$
\left.\begin{array}{rl}
{\left[\begin{array}{lll}
x_{2} & y_{2} & z_{2}
\end{array} 1\right.}
\end{array}\right]=\left[\begin{array}{llll}
x_{1} & y_{1} & z_{1} & 1
\end{array}\right]\left[\begin{array}{cccc}
-x_{p} / z_{p} & -y_{p} / z_{p} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Transformation Matrix for general Oblique Projection (on XY plane)

$$
V=\overline{P_{1} P_{2}}=x_{2} I+Y_{2} I-I \mathbb{R}
$$

$$
\mathrm{V}={x_{\mathrm{P}}} I+\mathrm{y}_{\mathrm{p}} J+z_{\mathrm{P}} K
$$

$$
x_{p}=x_{2}=f \cos \theta
$$

$$
y_{P}=y_{2}=f \sin \theta
$$

$$
z_{p}=-1
$$

$$
\operatorname{Par}_{\mathrm{v}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{\mathrm{f} \cos \theta}{l} & \frac{\mathrm{f} \sin \theta}{l} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Transformation Matrix for Perspective Projection (on XY plane)

3D Clipping

The two-difiensioutal concepp of region codes can be extended to three dimensions by considering six sides and 6.bit code instead of four sides and 4.bit code. Like twoddimension, we assigen the bit positions in the regon code foom right to left as
Bit $1=1$, if the end point is to the left of the volume
Bit $2=1$, if the end point is to the right of the volume
Bit $3=1$, if the end point is the below the volume
Bit $4=1$, if the end point is above the volume
Bit $5=1$, it the end point is in front of the volume
Bit $6=1$, if the end point is behind the volume

One-point perspective projection.

Three-Point
 Perspective

HiDdEn SuRfAcE rEmOvAI

Example

Original Pyramid

After Hidden Surface
Removal

cAtEgOrleS oF hIDdEn SuRfAcE rEmOvAl

- oBJECT sPACE mETHOD
- iMAGE sPACE mETHOD

oThErS

- fLOATING hORIZON aLGORITHM
- bINARY sPACE pARTITIONING

bAcK fAcE rEmOvAl mEtHoD

- Back face means the surface of the polygon which in not visible in projection. So we have to remove this surface from projection.
- It is used for identifying back faces of a polyhedron is base on the inside-outside test.
- Back face removal algorithm will be applied on plane polygons.
A point (x, y, z) is inside a polygon surface with plane parameters A, B, C and D if

$$
A x+B y+C z+D<0
$$

- The normal vector N to a polygon surface, which has Cartesian Components ($\mathrm{A}, \mathrm{B}, \mathrm{C}$).
- If V is a vector in the viewing direction from the eye or camera position, then this position is a back face if

$$
\text { V.N }>0
$$

$N=(A, B, C)$

- Figure : Vector V in the viewing direction and a back-face normal vector N of a polyhedron
- If the dot product is positive, we can say that the polygon faces towards the viewer, otherwise it faces away and should be removed.
- In case, if object description has been converted to projection coordinates and our viewing direction is parallel to the viewing Z_{v} axis, then $\mathrm{V}=\left(0,0, \mathrm{Z}_{v}\right)$ and $\mathrm{V} . \mathrm{N}=\mathrm{Z}_{\mathrm{v}} \mathrm{C}$
- To consider the sign of C, the z component of the normal vector N . Now if the Z component is positive, then the polygon faces towards the viewer, if negative it faces away .

Example I

BACK

EYE

DePtH cOmPaRiSiOn

$$
\begin{aligned}
& \text { If } A \text { and } B \text { are } \\
& \text { not on the same } \\
& \text { projection line } \\
& \text { then no point } \\
& \text { hide the other } \\
& \text { point. }
\end{aligned}
$$

```
Frame Buffer
```


| If A and B are | |
| :--- | ---: | :--- |
| on the same | |
| projection line | |
| then in case of | |
| parallel | |
| projection on $x y$ | |
| plane if | $x 1=x 2$ |
| and $y 1=y 2$ then | |
| A and B are on | |
| same plane. If | |
| $Z 1<Z 2$ then | A |
| point hide B. | |

Parallel Projection

Perspective Projection

Z-Buffer (Depth Buffer) Algorithm

Z-Buffer (Depth Buffer) Algorithm

Z-Buffer Algorithm

- Initialize frame buffer to background colour.
- Initialize z-buffer to minimum z value.
- Scan convert each polygon in arbitrary order.
- For each(x, y) pixel, calculate depth ' z ' at that pixel(z(x,y)).
- Compare calculated new depth $z(x, y)$ with value previously stored in z-buffer at that location $z(x, y)$.
- If $z(x, y)>z(x, y)$, then write the new depth value to $z-$ buffer and update frame buffer.
- Otherwise, no action is taken.
- The plane polygon define a surface or plane whose equation can be written as

$$
A x+B y+C z+D=0
$$

Depth value for a surface position (x.y) are calculated from the plane equation for each surface

$$
z=\frac{-A x-B y-D}{C}
$$

$$
\begin{aligned}
& \text { From position }(x, y) \\
& \text { on a scan line, the } \\
& \text { next position across } \\
& \text { the line has } \\
& \text { coordinates (} x+1, y \text {) } \\
& \text { and the position } \\
& \text { immediately below } \\
& \text { on the next line has } \\
& \text { coordinates }(x, y-1)
\end{aligned}
$$

Top Scan Line

Fig: Scan Lines intersecting a polygon surface

Top Scan Line

Fig: Intersecting positions on successive scan line along a Left Polygon edge

Intersecting and cyclically overlapping surfaces that alternately obscure(Unclear) one anther

Intersecting and cyclically overlapping surfaces that alternately obscure(Unclear) one anther

Painter Algorithm (Depth Method)

- Using both image space and object space operations, the depth-sorting method performs the following basic functions:
- Surfaces are sorted in order of decreasing depth.
- Surfaces are scan converted in order, starting with the surface of greatest depth.
Used : Oil Painting ,an artist first paints the background color

tEST -I

Surface A and B with no overlapping in Z direction

Yv

First of all find the overlapping in x axis from the sorted list of polygons according to x value

Surface A and B that do not overlap in x direction

$$
Y_{v}\left\{\begin{array}{c}
\text { tEST -IV } \\
A
\end{array}\right.
$$

If some	plane
overlapping	with
background	plane

$$
X_{v}
$$

Z_{v}

Surface A completely overlaps the background plane B

Z_{v}

Surface A does not hide B

Yv
 Others

B

Xv

Three surfaces entered into the sorted surface list in the order A, B, C should be reordered A, C, B.

Binary Space Portitioning Tree (BSP) Method

View	P1	
FRONT	P2	A , B
BACK	P2	C, D

A region of space is partitioned with two planes P1 and P2.

BSP Tree Representation

aReA-sUbDiViSiOn MeThOd (WoRnOcK's AlGoRiThM)

Initial Viewing Area

Subdivision of Viewing Area

- The relationship between projection each polygon and the area of interest is checked for four possible relationships :
$>$ Surrounding Surface
>Overlapping OR Intersecting Surface
$>$ Inside OR Contained Surface
$>$ Outside OR Disjoint Surface

Case I - Surrounding Surface

Polygon that completely surrounds the screen area is called surrounding surface .

If polygon is surrounding the screen area, color the all pixels of screen area as color of screen.

Case II - Outside or Disjoint Surface

Case III - Contained or Inside Surface

Polygon that is completely inside the screen area.

If polygon in inside the screen area, we scan convert that area and the remaining area of screen will colored with background color.

Case IV - Intersecting or Overlapping Surface

Polygon that intersect the screen area S.

Others

