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(15A05402) COMPUTER ORGANIZATION 
C311_1: Explain the organization of computer, different instruction formats and addressing modes. 

C311_2: Explain the functional units of the processor such as register file and ALU 

C311_3: Explain the concepts of memory and I/O devices and virtual memory effectively 

C311_4: Describe memory hierarchy and modes of data transfer. 

C311_5: Implement the algorithm for exploring the pipelling and basic characteristics of multiplexing 

 

UNIT-I: Computer types, Functional units, basic operational concepts, Bus structures, Data types, 

Software: Languages and Translators, oaders, Linkers, Operating systems. Memory locations – 

addresses and encoding of information – main memory operations– Instruction formats and instruction 

sequences – Addressing modes and instructions –Simple input programming – pushdown stacks – 

subroutines. 

 

UNIT-II: Register transfer Language, Register transfer, Bus and Memory Transfers, Arithmetic Micro 

operations, Logic Micro operations, shift Micro operations, Arithmetic Logic Shift Unit. Stack 

organization, instruction formats, Addressing modes, Data transfer and manipulation, Execution of a 

complete instruction, Sequencing of control signals, Program Control. 

 

UNIT-III: Control Memory, address Sequencing, Micro Program Example, Design of Control Unit. 

Addition and Subtraction, Multiplication Algorithms, Division Algorithms, Floating Point Arithmetic 

Operations, Decimal Arithmetic Unit, Decimal Arithmetic Operations. 

 

UNIT-IV: Peripheral Devices, Input-Output Interface, Asynchronous Data Transfer, Modes of 

Transfer, Priority Interrupt, Direct Memory Access (DMA), Input-Output Processor (IOP), Serial 

Communication.  Memory hierarchy, main memory, auxiliary memory, Associative memory, Cache 

memory, Virtual memory, Memory management hardware. 

 

UNIT-V: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline 

Vector Processing, Array Processors. Characteristics of Multiprocessors, Interconnection Structures, 

Interprocessor Arbitration, Inter-processor Communication and Synchronization, Cache Coherence. 

 

Text Books: 
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2. William Stallings,“Computer organization and programming”, Prentice Hall of India(PHI) Seventh 

Edition, Pearson Education(PE) Third edition, 2006. 

 

Reference Books: 

1. Carl Hamacher, ZvonksVranesic, SafwatZaky, “Computer Organization” 5thEdition, McGraw Hill, 

2002. 

2. Andrew S.Tanenbaum, “Structured Computer Organization”, 4th Edition PHI/Pearson 

3. John L.Hennessy and David A.Patterson, “Computer Architecture a quantitative approach”, Fourth 

Edition Elsevier 

4. joseph D.Dumas II, “Computer Architecture: Fundamentals and Principals of ComputerDesign”, BS 

Publication. 
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UNIT – 1 

BASIC STRUCTURE OF COMPUTERS 

 
1.1. COMPUTER TYPES 
 

A computer can be defined as a  fast  electronic  calculating machine that  accepts  

the (data) digitized input information process it as per the list of internally  stored  

instructions and  produces  the  resulting information. 

 
List of instructions are called programs & internal storage is called computer 

memory. 

 
The different types of computers are 

1. Personal computers: - This is the most common type found in homes, schools, 

Business offices etc., It is the most common type of desk top computers with 

processing and storage units along with various input and output devices. 

2. Note book computers: - These are compact and portable versions of PC 

3. Work stations: - These have high  resolution  input/output  (I/O)  graphics  

capability, but  with  same dimensions  as  that of  desktop computer. These  are used 

in  engineering  applications of interactive design  work. 

4. Enterprise systems: - These are used for business data processing in medium to  

large corporations that require much more computing power and storage capacity  

than work stations. Internet associated with servers have become a dominant 

worldwide source of all types of   information. 

5. Super computers: - These are used  for  large  scale  numerical  calculations  

required in the  applications like weather forecasting   etc., 

 1.2 FUNCTIONAL UNIT 

A computer consists of five functionally independent main parts input, memory, 

arithmetic logic unit (ALU), and output and control unit. 



[Computer Organization] 
 

[Dept of CSE,VEMU] Page 2  

Input 

Output 

ALU 

 
Control Unit 

 
 

  

 

 
 
 
 

Fig a: Functional units of computer 

Input device accepts the coded information as source program i.e. high level 

language. This is either stored in the memory or immediately used by the processor to 

perform the desired operations. The program stored in the memory determines  the  

processing steps. Basically the computer converts one  source  program  to  an  object 

program. i.e. into  machine language. 

 
Finally the results are sent to the outside  world  through  output  device.  All  of 
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these actions are coordinated by the control   unit. 

 
Input unit: - 

The source program/high level language program/coded information/simply data 

is fed to a computer through input devices keyboard is a most common type. Whenever a 

key is pressed, one corresponding word or number is translated into its equivalent binary 

code over a cable & fed either to memory or processor.  

 
Joysticks, trackballs, mouse, scanners etc are other input devices. 

 
Memory unit: - 

Its function into store programs and data. It is basically to two types 
1. Primary memory 

2. Secondary memory 

 
1. Primary memory: -  Is the one exclusively associated with the processor and operates     

at the electronics speeds programs must be stored in this memory while they are being 

executed.  The  memory  contains  a  large  number  of  semiconductors  storage  cells.  Each 
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capable of storing one bit of information. These are processed in a group of  fixed  site 

called word. 

 
To provide easy access to a word in memory, a distinct address is associated with 

each word location. Addresses are numbers that identify memory location. 

Number of bits in each word is called  word  length  of  the  computer. Programs 

must reside in the memory during execution. Instructions and data can be written into the 

memory or read out under the control of    processor. 

Memory in which any location can be reached in  a  short  and  fixed  amount  of  

time after specifying its address is called random-access    memory  (RAM). 

The time required to access one word in called memory  access  time.  Memory 

which is only readable by the   user and contents of which can’t be altered is called read    

only  memory (ROM)  it contains operating system. 
Caches are the small fast RAM units, which are coupled  with the processor  and  are 

aften contained on the same IC chip to achieve high performance. Although primary storage 

is essential it tends to be   expensive. 

 

2. Secondary memory: - Is used where large amounts of data & programs have  to  be 

stored, particularly  information that  is accessed  infrequently. 

Examples: - Magnetic disks & tapes, optical disks (ie CD-ROM’s), floppies etc., 
Arithmetic logic unit (ALU):- 

Most of the computer operators are executed in ALU of  the  processor  like  

addition, subtraction, division, multiplication, etc. the operands are brought into the ALU 

from memory and  stored  in  high  speed  storage  elements  called  register. Then according 

to the instructions the operation is performed in the required sequence. 

The control and the ALU are many times faster than other devices connected to a 

computer system. This enables a single processor to control a number of external  devices 

such as key boards, displays, magnetic and optical disks, sensors and other mechanical 

controllers. 

 
Output unit:- 

These actually are the counterparts of input unit. Its basic function is to send the 

processed results to the outside   world. 

 
Examples:- Printer, speakers, monitor etc. 
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Control unit:- 

It effectively is the nerve center that sends signals to other units and senses their 

states. The actual timing signals that govern the transfer of data between input unit, 

processor, memory   and  output unit are generated by the control   unit. 

 

1.3. BASIC OPERATIONAL CONCEPTS 

 
To perform a given task an appropriate program consisting of a list of instructions is stored 

in the memory. Individual instructions are brought from the memory into the processor, 

which executes the specified operations. Data to be stored are also stored in the memory. 

 
Examples: - Add LOCA, R0 

 
This instruction adds the operand at memory location LOCA, to operand in register 

R0 & places the sum into register. This instruction requires the performance of several steps, 

1. First the instruction is fetched from the memory into the processor. 

2. The operand at LOCA is fetched and added to the contents of R0 

3. Finally the resulting sum is stored in the register R0 

 

The preceding add instruction combines a memory access operation with an ALU 

Operations. In some other type of computers, these two types of operations are performed 

by separate instructions for performance reasons.  

Load LOCA, R1 

Add   R1, R0 

Transfers between the memory and the processor are started by  sending  the  address 

of the memory location to be accessed to the memory unit and issuing  the  appropriate 

control signals. The data are then transferred to or from the memory. 

 

 
 



Dept of  CSE,VEMU Page 4 

[Computer Organization] 
 

 

n- GPRs 

MAR MDR  
CONTROL 

PC 

ALU 

IR 

 
 

 

 

 
 

 

 
 

  R0  

R1 

… 

… 
… 

… 

 
 

 

 

 

 
 

Fig b: Connections between the processor and the memory 

 
The fig shows how memory & the processor can be connected. In addition to the 

ALU & the control circuitry, the processor contains a number of registers used for several 

different purposes. 

The instruction register (IR):- Holds  the  instructions  that  is  currently  being  executed. 

Its output is available for the control circuits which generates  the  timing  signals  that  

control the various processing elements in one  execution of    instruction. 

The program counter PC:- 

This is another specialized register that keeps track of execution of a program. It 

contains the memory address of the next instruction to be fetched and executed.  

 
Besides IR and PC, there are n-general purpose registers R0 through Rn-1. 

 
MEMORY 
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The other two registers which facilitate communication with memory are: - 

1. MAR – (Memory Address Register):- It holds the address of the location to be 

accessed. 

2. MDR – (Memory Data Register):- It contains the data to be written into or read 

out of the address location. 

 
Operating steps are 

1. Programs reside in the memory & usually get these through the I/P unit. 

2. Execution of the program starts when the PC is set to point at the first instruction 

of the program. 

3. Contents of PC are transferred to MAR and a Read Control Signal is sent to the 

memory. 

4. After the time required to access the memory elapses, the address word is read out 

of the memory and loaded into the MDR. 

5. Now contents of MDR are transferred to the IR & now the instruction is ready to 

be decoded and executed. 

6. If the instruction involves an operation by the ALU, it is necessary to obtain the 

required operands. 

7. An operand in the memory is fetched by sending its address to MAR & Initiating 

a read cycle. 

8. When the operand has been read from the memory to the MDR, it  is transferred  

from MDR to the  ALU. 

9. After one or two such repeated cycles,  the  ALU  can  perform  the  desired  

operation. 

10. If the result of this operation is to be stored in the memory, the result is  sent  to  

MDR. 

11. Address of location where the result is stored is sent to MAR & a write cycle is 

initiated. 

12. The contents of PC are incremented so that PC points to the next instruction that 

is to be executed. 

Normal execution of a program may be preempted  (temporarily  interrupted)  if  

some devices require urgent servicing, to do this one device raises an Interrupt signal. 

An interrupt is a request signal from an I/O device  for service  by the  processor.  

The processor provides the requested  service  by  executing  an  appropriate  interrupt  

service routine. 

The Diversion may change the internal stage of the processor its state  must  be  

saved  in  the  memory  location  before  interruption. When  the  interrupt-routine  service  is 

completed the state of the processor is restored so that the interrupted program  may  

continue. 
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1.4 BUS STRUCTURE 
The simplest and most common way of interconnecting various parts of the 

computer. To achieve a reasonable speed  of operation,  a  computer must  be organized  so 

that all its units can handle  one  full word of data at a  given time.A  group of lines that   

serve as a connecting port for several devices is called a bus. 

 
In addition to the lines that carry the data, the bus must have lines for address and 

control purpose. Simplest way to interconnect is to use the single bus as shown 

 

 
 

 

 

Fig c: Single bus structure 

 
Since the bus can be used for only  one transfer at a time, only two units  can  

actively use the bus at any given time. Bus control lines are used to  arbitrate  multiple 

requests for use of one  bus. 

 
Single bus structure is 

 
 Low cost 

 Very flexible for attaching peripheral devices 

 
Multiple bus structure certainly increases, the performance but also increases the 

cost significantly. 

INPUT MEMORY PROCESSOR OUTPUT 
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Cache 

Memory 

 

All the interconnected devices are not of same speed & time, leads to a bit of a 

problem. This is solved by using cache registers (ie buffer registers). These buffers are 

electronic registers of small capacity when compared to the main  memory  but  of 

comparable speed. 

 
The instructions from the processor at once are loaded into these buffers and then 

the complete transfer of data at a fast rate will take place. 

 

 1.5 PERFORMANCE 

 
The most important  measure of the performance  of a computer is how quickly it  

can execute programs. The speed with which a computer executes program  is affected by 

the design of its hardware. For best  performance, it  is necessary to  design  the  compiles, 

the machine instruction set, and the hardware in a coordinated way. 

 
The total time required to execute the program is elapsed time is a measure of the 

performance of the entire computer system. It is affected by the  speed  of  the  processor,  

the disk and the printer. The time needed to execute a instruction is called the processor  

time. 

 
Just as the elapsed time for the execution of a program depends on all units in a 

computer system, the processor time depends  on the hardware involved  in  the execution    

of individual machine instructions. This hardware comprises  the  processor  and  the  

memory which are usually connected by the bus as shown in the fig c. 

 

 

 

 
 

The pertinent parts of the fig. c are repeated in fig. d which includes the cache 

memory as part of the processor   unit. 

Bus 

Fig d: The processor cache 

Main 

Memory 

 
Processor 
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Let us examine the flow of program  instructions  and  data  between the  memory 

and the processor. At the start of execution, all program instructions and the required data   

are stored in the main memory. As the  execution  proceeds,  instructions  are  fetched  one  

by one over the bus into the processor, and a copy is placed in the cache later if the same 

instruction or data item is needed a second time, it is read directly from the cache. 

 
The processor and  relatively small cache memory can be  fabricated on  a single     

IC chip. The internal speed of performing  the  basic  steps  of  instruction  processing  on 

chip is very high and is  considerably faster than  the  speed  at which the  instruction and  

data can be fetched from the main memory. A program will be executed faster if the 

movement of instructions and data between the main memory and the processor is  

minimized, which is achieved by using the   cache. 

 
For example:- Suppose a number of instructions are executed  repeatedly  over  a  short  

period of time as happens in a program loop. If these  instructions  are  available  in  the 

cache, they can be fetched quickly during the period of repeated use. The same applies to    

the data that are used  repeatedly. 

 

 

 
 

 

Application software 

  Programs designed to perform specific tasks that are transparent to the 

user  

System software 

 Programs that support the execution and development of other programs 

  

Two major types 

  Operating systems 

  Translation systems 

1.1.8 Application Software 

 Application software is the software that has made using computers 

indispensable and popular 

Common application software 
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 Word processors 

 Desktop publishing programs 

 Spreadsheets 

 Presentation managers 

 Drawing programs 

 

 

1.1.9 Operating System 

Examples  

 Windows®, UNIX®, Mac OS X® 

 Controls and manages the computing resources 

 Important services that an operating system provides 

 File system 

 Directories, folders, files 

 Commands that allow for manipulation of the file system 

 Sort, delete, copy 

 Ability to perform input and output on a variety of devices 

 Management of the running systems 

 

1.2. CPU Organization 

1.2.1 CPU Structure and Function Processor Organization 

 Things a CPU must do: 

- Fetch Instructions 

- Interpret Instructions 

- Fetch Data 

- Process Data 

- Write Data 
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 A small amount of internal memory, called the registers, is needed by the 

CPU to fulfil these  requirements 
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1.7 NUMBER REPRESENTATION 

We obviously need to represent both positive and negative numbers. Three systems are 

used for representing such numbers : 

• Sign-and-magnitude 

• 1’s-complement 

• 2’s-complement 

In all three systems, the leftmost bit is 0 for positive numbers and 1 for negative numbers.  

Fig 2.1 illustrates all three representations using 4-bit numbers. Positive values have  

identical representations in al systems, but negative values  have different  representations.   

In the sign-and-magnitude systems, negative values are represented by changing the most 

significant bit (b3 in figure 2.1) from 0 to 1 in the B vector of the corresponding positive 

value.  For  example,  +5  is  represented  by  0101,  and  -5  is  represented  by  1101.  In 1’s-

complement representation, negative values are  obtained  by  complementing  each  bit  of 

the corresponding positive number. Thus, the representation for -3 is obtained by 

complementing each bit in the vector 0011 to yield 1100. clearly, the same operation, bit 

complementing, is done in converting a negative number to the  corresponding  positive 

value. Converting either way is referred to as forming the 1’s-complement of a  given 

number. Finally, in the 2’s-complement  system, forming the 2’s-complement of a number    

is done by subtracting that number from   2n. 
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Hence, the 2’s complement of a number is obtained by adding 1 to the 1’s complement 

of that number. 

 
Addition of Positive numbers:- 

Consider adding two 1-bit numbers. The  results  are  shown  in  figure  2.2.  Note 

that the sum of 1 and 1 requires the 2-bit vector 10 to represent the value  2. We say that      

the sum is 0 and the carry-out is 1. In order to add multiple-bit numbers, we use a method 

analogous to that used for manual computation with decimal numbers. We add bit pairs 

starting from the low-order (right) and of the bit vectors, propagating carries toward the high-

order  (left) end. 

 

0 

+ 0 

 1 

+ 0 

 0 

+ 1 

 1 

+ 1 

0  1  1  1 0 
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Carry-out 

Figure 2.2 Addition of 1-bit numbers. 

 
 Memory locations and addresses 
 

Number and character operands, as well as instructions, are stored in the memory    

of a computer. The memory consists of many millions of storage cells, each of which can 

store a bit of information having the value  0  or  1. Because a single bit represents a very 

small amount of information,  bits  are seldom handled individually. The usual approach  is  

to deal with them in groups of fixed size. For this purpose,  the  memory is  organized  so  

that a group of n bits can be stored or retrieved in a single, basic operation. Each group of      

n bits is referred to as a word of information, and n  is  called  the  word  length.  The  

memory of a computer can be schematically represented  as  a  collection  of  words  as  

shown in figure  (a). 

 
Modern computers have word lengths that typically range  from  16  to  64  bits. If 

the word length of a computer is 32 bits, a single word can store a 32-bit 2’s complement 

number or four ASCII characters, each occupying 8 bits. A unit of 8 bits is called a byte.
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First word 

Accessing the memory to store or retrieve a single item of  information,  either  a word or a 

byte, requires distinct names or addresses for  each  item  location.  It  is  customary to use 

numbers from 0 through 2K-1, for some suitable values of k, as  the addresses of successive 

locations in the memory. The 2k addresses constitute the address  space of the computer, and 

the memory can have up to 2k  addressable  locations. 24-bit address generates an address space 

of 224 (16,777,216) locations. A 32-bit address creates     an address space of 232 or 4G (4 giga)   

locations. 

 
BYTE ADDRESSABILITY:- 

We now have three basic information quantities to deal with: the  bit, byte  and  

word. A byte is  always  8 bits, but the  word length typically ranges from  16 to 64  bits.   

The most practical assignment is to have successive addresses refer to successive byte 

 
Fig a Memory words 

 

n bits 

 

(a) A signed integer 
 
 
 

 
 

Sign bit: b31 = 0 for positive numbers 

b32 = 1 for negative numbers 

 
… 

… 

… 

 
… 

… 

… 

Second word 

i-th word 

Last word 

b31 b30 ……. b1 b0 

32 bits 
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(b) Four characters 
 
 

8 bits 8 bits 8 bits 8 bits 

ASCII ASCII ASCII ASCII 

Character Character character character 

 

Locations in the memory. This is the assignment used in most modern computers, and is 

the one we will normally use in this book. The term byte-addressable memory is use for 

this assignment. Byte locations have addresses 0,1,2, …. Thus, if the word length of the 

machine is 32 bits, successive words are located at addresses 0,4,8,…., with each word 

consisting of four bytes. 

 
BIG-ENDIAN AND LITTLE-ENDIAN ASIGNMENTS:- 

There are two ways that byte addresses can be assigned across words, as shown 

in fig b. The name big-endian is used when lower byte addresses are used for the more 

significant bytes (the leftmost bytes) of the word. The name little-endian is used for the 

opposite ordering, where the lower byte addresses are used for the less significant bytes 

(the rightmost bytes) of the word. 

 
In addition to specifying the address ordering of bytes within a word, it is also 

necessary to specify the labeling of bits within a byte or a word. The same ordering is 

also used for labeling bits within a byte, that is, b7, b6, …., b0, from left to right. 

Word 

Address Byte address Byte address 

 

0 

 
4 

 

 
 

 

 
 

 

 
 

 

 
2k-4 

0 

 
4 

 

 
 

 

 
 

 

 
 

 

 
2k-4 

 

 
 

3 2 1 0 

7 6 5 4 

 
  

…. 
  

 ….   

 ….   

 
 

2k-1 

 
 

2k-2 

 
 

2k-3 

 
 

2k-4 

    
    

 

0 1 2 3 

4 5 6 7 

 
  

…. 

  

 ….   

 ….   

 
 

2k-4 

 
 

2k-3 

 
 

2k-2 

 
 

2k-1 
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(a) Big-endian assignment (b) Little-endian assignment 
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WORD ALIGNMENT:- 

In the case of a 32-bit word length, natural word boundaries occur at addresses 0,    

4, 8, …,  as  shown  in  above  fig. We say  that the word  locations have  aligned addresses . 

in general, words are said to be aligned in memory if they begin at a byte address that is a 

multiple of the number of bytes in a word. The memory of bytes in a word is a power of 

2. Hence, if the word length is 16 (2 bytes), aligned words  begin  at  byte  addresses  

0,2,4,…, and for a word length of 64 (23 bytes), aligned words begin at bytes addresses 

0,8,16 …. 

 
There is no fundamental reason why words cannot begin at an arbitrary  byte  

address. In that case, words are said to  have  unaligned  addresses.  While  the  most  

common case is to use aligned addresses, some  computers  allow  the  use  of  unaligned 

word addresses. 

ACCESSING NUMBERS, CHARACTERS, AND CHARACTER STRINGS:- 

A number usually occupies one word. It can be accessed in the memory by 

specifying its word address. Similarly, individual characters can be accessed by their byte 

address. 

 
In many applications, it is necessary to  handle  character  strings  of  variable  

length. The beginning of the string is indicated by giving the  address  of  the  byte  

containing its first character.  Successive  byte  locations  contain  successive  characters  of 

the string. There are two ways to indicate the length of the string. A  special  control  

character  with the meaning “end of string” can  be  used as  the last character in the  string,  

or a separate memory word location or processor register can contain a number indicating   

the length of the string in  bytes. 

 

 Memory operations 

Both program instructions and data operands are stored  in  the  memory.  To  

execute an instruction, the processor control circuits must cause the word (or words) 

containing the instruction to  be transferred  from  the memory to the processor. Operands  

and results must also be moved between the memory and the processor. Thus, two basic 

operations involving the memory are needed, namely,  Load (or Read or Fetch) and Store    

(or Write). 

 
The load operation transfers a copy of the contents of a specific memory location     

to the processor. The memory contents remain unchanged. To start a Load operation, the 

processor  sends  the  address  of the  desired  location  to  the  memory and  requests  that  its 
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contents be read. The memory reads the data stored at that address and sends them to the 

processor. 

 
The store operation transfers an item of information from the  processor  to  a  

specific memory location, destroying the former contents of that location. The processor 

sends the address of the desired location to the memory, together  with  the  data  to  be 

written into that  location. 

 
An information item of either one word or one byte  can be transferred  between     

the processor and the memory in a single operation. Actually this transfer in  between  the 

CPU register & main  memory. 

1.8 INSTRUCTIONS AND INSTRUCTION SEQUENCING 

 
A computer must have instructions capable of  performing  four  types  of  

operations. 

• Data transfers between the memory and the processor registers 

• Arithmetic and logic operations on data 

• Program sequencing and control 

• I/O transfers 

 
REGISTER TRANSFER NOTATION:- 

Transfer of information from one location in the computer to another. Possible 

locations that may be involved in such transfers are memory  locations  that  may  be  

involved in such transfers are  memory locations,  processor  registers,  or  registers  in  the 

I/O subsystem. Most of the time, we identify  a location  by  a  symbolic  name  standing for 

its  hardware  binary address. 

 
Example, names for the addresses of memory locations may be LOC, PLACE, A, 

VAR2; processor registers names may be R0, R5; and I/O  register  names  may  be  

DATAIN, OUTSTATUS, and so on. The contents of a location are denoted by placing  

square brackets around the name of the location. Thus, the expression 

R1 � [LOC] 

Means that the contents of memory location  LOC  are transferred into processor  register  

R1. 

 
As another example, consider the operation that adds the contents of registers R1 

and R2, and then places their sum into register R3. This action is indicated as 

R3 � [R1] + [R2] 
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This type of notation is known  as  Register  Transfer  Notation  (RTN). Note  that 

the right-hand side of an  RTN expression always  denotes  a  value,  and  the left-hand  side 

is the name of a location where the value is to be places, overwriting the  old contents of   

that location. 

 
ASSEMBLY LANGUAGE NOTATION:- 

Another type of notation to represent  machine  instructions  and  programs.  For  

this, we use an assembly language format. For example, an instruction that  causes  the 

transfer described above, from memory location  LOC  to  processor  register  R1,  is  

specified  by  the statement 

Move LOC, R1 

 
The contents of LOC are unchanged by the execution of this instruction, but the 

old contents of register R1 are overwritten. 

 
The second example of adding two numbers contained in processor registers R1 

and R2 and placing their sum in R3 can be specified by the assembly language statement  

Add R1, R2, R3 

 
BASIC INSTRUCTIONS:- 

The operation of adding two numbers is a  fundamental  capability  in  any  

computer.  The statement 

C = A + B 

 
In a high-level language program is a command to  the  computer  to  add  the  

current values of the two variables called A and B, and to assign the  sum  to  a  third 

variable, C. When the program containing this statement is compiled, the three variables,     

A, B, and C, are assigned to distinct locations in the memory. We will use  the  variable 

names to refer to the corresponding memory location addresses. The contents of these 

locations represent the values  of  the  three  variables.  Hence,  the  above  high-level 

language statement  requires the  action. 

C � [A] + [B] 

 
To carry out  this action, the contents of memory locations A and B are fetched   

from the memory and transferred into the processor where their  sum  is  computed. This 

result is then sent back to the memory and stored in location C. 

 
Let us first assume that this action is to be accomplished by a single machine 

instruction.  Furthermore,  assume  that  this  instruction  contains  the  memory  addresses of 
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the three operands – A, B, and C. This three-address instruction can be represented 

symbolically as 

Add A, B, C 

 
Operands A and B are called the source operands, C is called the destination  

operand, and Add is the  operation to be performed on the operands. A general instruction     

of this type has the  format. 

Operation Source1, Source 2, Destination 

 
If k bits are needed for specify the memory address of each operand, the encoded 

form of the above instruction must contain 3k bits for addressing purposes in addition to 

the bits needed to denote the Add operation. 

 
An alternative approach is to use  a  sequence  of simpler  instructions to  perform  

the same task, with each instruction having only one or two operands. Suppose that two- 

address instructions of the  form 

Operation Source, Destination 

 
Are available. An Add instruction of this type is 

Add A, B 

Which performs the operation B � [A] + [B]. 

A  single  two-address  instruction  cannot  be  used  to  solve  our  original  problem, 

which is to add the contents of locations A and B, without destroying either of them, and       

to place the sum in location C. The problem can be solved by using another two-address 

instruction that copies the contents of one memory location into another.  Such  an  

instruction is 

Move B, C 
 

Which performs the operations C � [B], leaving the contents of location B unchanged. 
 

Using only one-address  instructions,  the  operation  C �  [A]  +  [B]  can  be 

performed by executing the sequence of    instructions 

Load A 

Add B 

Store C 

 
Some early computers were  designed  around  a  single  accumulator  structure.  
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Most modern computers have a number of general-purpose processor registers – typically 

 

8 to 32, and even considerably more  in some cases. Access to data in these  registers is   

much faster than to data stored in memory locations because the registers are inside the 

processor. 

Let Ri represent a general-purpose register. The instructions 

Load A, Ri 

Store Ri, A 

a n d   

Add A, Ri 

 
Are generalizations of the Load, Store, and Add instructions for  the  single-accumulator  

case, in which register Ri performs the function of the accumulator. 

 
When a processor has  several  general-purpose  registers,  many  instructions  

involve only operands that are in the register. In fact, in many modern processors, 

computations can be performed directly only on data held  in  processor  registers. 

Instructions  such as 

Add Ri, Rj 

Or 

Add Ri, Rj, Rk 

In both of these instructions, the source operands are the  contents  of registers Ri  

and Rj. In the first instruction, Rj also serves as the destination register, whereas in the  

second instruction, a third register, Rk, is used as  the   destination. 

 
It is often necessary to transfer data between different locations. This is achieved 

with the instruction 

Move Source, Destination 

When data are moved to or from a processor register, the Move instruction can be 

used rather than the Load or Store instructions because the order of the source and  

destination operands determines which operation is intended.    Thus, 

Move A, Ri 

Is the same as 

And 

Is the same as 

 
Load A, Ri 

Move Ri, A 

Store    Ri, A 
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In processors where arithmetic operations are allowed only on operands that are 

processor registers, the C = A + B task can be performed by the instruction sequence  

Move A, Ri 

Move B, Rj 

 

Add Ri, Rj 

Move Rj, C 

In processors where one operand may be in the memory but the other must be in 

register, an instruction sequence for the required task would be 

Move A, Ri 

Add B, Ri 

Move   Ri, C 

The speed with which a given task is carried out depends on the time it takes to 

transfer instructions from memory into the  processor  and  to  access  the  operands 

referenced by these instructions. Transfers that involve the memory are much slower than 

transfers  within  the processor. 

We have discussed three-, two-, and  one-address instructions. It  is  also  possible   

to use instructions in which the locations of all operands are defined implicitly. Such 

instructions are found in machines that store operands in a structure called  a  pushdown  

stack. In this case, the instructions are called zero-address instructions. 

 

INSTRUCTION EXECUTION AND STRAIGHT-LINE SEQUENCING:- 

In  the  preceding  discussion  of  instruction  formats,  we  used  to  task C 

 
� [A] + 

[B]. fig 2.8 shows a possible program segment for this task as it appears in the memory of      

a computer. We have assumed that the computer allows one memory  operand  per  

instruction and  has a number of processor registers. The three instructions of the program  

are in successive word locations, starting at location  i. since  each  instruction is  4  bytes 

long, the second and third instructions start at addresses i + 4 and i + 8. 

Address 

 
Begin execution here i 

i + 4 

 
i + 8 

 

 

 
 

 

 
A 

Contents  
 

3-instruction 

program 

segment 

 

 

 

 
 

 

Move A, 

R0 

Move R0, C 

… 

… 

 
… 

… 
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Let us consider how this program is executed. The processor contains  a register 

called the program counter (PC), which  holds  the  address  of  the  instruction  to  be 

executed next. To begin executing a program, the address of its first instruction (I in our 

example) must be placed into the PC. Then, the processor control circuits use  the  

information in the PC to fetch and execute instructions, one at a time, in the order of 

increasing addresses. This is called straight-line sequencing. During the execution of each 

instruction, the PC is incremented by 4 to point to the  next  instruction. Thus,  after  the 

Move instruction at location i + 8 is executed,  the PC contains the value i  + 12, which is    

the address of the first instruction of the next program segment. 

 
Executing a given instruction is a two-phase procedure. In the first phase, called 

instruction fetch, the instruction is fetched from the memory  location whose address  is  in 

the PC. This instruction is placed in the instruction register (IR) in the processor. The 

instruction in IR is examined to determine which operation is to be  performed.  The  

specified operation is then performed by the processor. This often involves  fetching  

operands from the memory or from processor registers, performing an arithmetic or logic 

operation, and storing the result in the destination    location. 

 
BRANCHING:- 

Consider the task of adding a list of n numbers. Instead of using a long list of add 

instructions, it is possible to place a single add instruction in a program loop, as shown in    

fig b. The loop is a straight-line sequence of instructions executed  as  many  times  as  

needed. It starts at location LOOP and  ends  at  the  instruction  Branch  >  0. During each 

pass through this loop, the address of the next list entry is determined, and that entry is 

fetched and added  to 

 

Move NUM1, R0 
Add   NUM2, R0 
Add   NUM3, R0 

… 

… 

Add NUMn, R0 
Move   R0,  SUM 

…. 

…. 

i 

i+4 
i+8 

i+4n-4 
i+4n 
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fig a A straight-line program for adding n numbers 
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SUM N 

NUM1 NUM2 

 
NUMn 

Fig b Using a loop to add n numbers 

 
Assume that the  number of entries in  the  list,  n, is  stored in memory location  N, 

as shown. Register R1 is used as a counter to determine the number of time the loop is 

executed. Hence, the contents of location N are loaded into register R1 at the beginning        

of the program. Then, within the body of the loop, the instruction. 

Decrement R1 

Reduces the contents of R1 by 1 each time through the loop.  

This type of instruction loads a new value into the program counter. As  a  result,    

the processor fetches and executes the instruction at this new address, called the branch 

target, instead of the instruction at the location that follows the branch instruction in 

sequential address order. A conditional branch instruction causes a branch only  if  a  

specified condition is satisfied. If  the  condition  is  not  satisfied,  the  PC  is  incremented in 

Move N, R1 

Clear R0 

Determine address of 

“Next” number and add 

“Next” number to R0 

Decrement R1 

Branch >0 LOOP 

Move R0, SUM 

 

……. 

……. 

……. 

 

n 

 

 

…… 

…... 
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the normal way, and the next instruction in sequential address order  is  fetched  and  

executed. 

Branch > 0   LOOP 

 
(branch if greater that 0) is a conditional  branch instruction that causes a branch      

to location LOOP if the result of the immediately preceding instruction, which is the 

decremented value in register R1, is greater that zero.  This  means  that  the  loop  is  

repeated, as long as there are entries in the list that are yet to be added to R0. at the end of   

the nth pass through the loop, the Decrement instruction produces a value  of zero,  and  

hence, branching does not  occur. 

 
 

CONDITION CODES:- 

The processor keeps track of information  about  the  results of  various  operations 

for use by subsequent conditional  branch instructions. This is accomplished by  recording  

the required information in  individual bits, often called condition  code  flags. These flags  

are usually grouped together in a special processor register called the  condition  code  

register or status register. Individual condition code flags are set to 1 or cleared to 0, 

depending on the outcome of the operation    performed. 

 
Four commonly used flags are 

 
N(negative) Set to 1 if the result is negative; otherwise, cleared to 0 

Z(zero) Set to 1 if the result is 0; otherwise, cleared to 0  

V(overflow) Set ot1 if arithmetic overflow occurs; otherwise, cleared to 0 

C(carry) Set to 1 if a carry-out results from the operation; otherwise, cleared to 0 

 
The instruction Branch > 0, discussed in the previous section, is an example of a 

branch instruction that tests one or more of the condition  flags. It causes a branch if the  

value tested is neither negative nor equal to zero. That is, the branch is taken if neither N    

nor Z is 1. The conditions are given as logic expressions  involving  the  condition  code 

flags. 

 
In some computers, the condition code flags are affected automatically by 

instructions that perform arithmetic or logic operations. However, this is not  always  the  

case. A number of computers have two versions of an Add instruction. 

 
GENERATING MEMORY ADDRESSES:- 

Let us return to fig b. The purpose of the instruction block at LOOP is to add a 

different number from the list during each pass through the loop.  Hence,  the  Add  
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instruction in the block must refer to a different address during each pass. How are the 

 

addresses to be specified ? The memory operand address cannot  be  given  directly  in  a 

single Add instruction in the loop. Otherwise, it would need to be modified on each pass 

through the loop. 

 
The instruction set of a computer typically provides a number of such methods, 

called addressing modes. While the details differ from one computer to another, the 

underlying  concepts are the same. 

 

1.9 ADDRESSING MODES 

In general, a program operates on data that reside  in  the  computer’s  memory. 

These data can be organized in a variety of ways. If we want to keep track of students’  

names, we  can  write  them  in  a  list. Programmers use organizations called data structures 

to represent the data used in computations.  These  include  lists,  linked  lists,  arrays,  

queues, and so on. 

 
Programs are normally written in a high-level language, which enables the 

programmer to use constants, local and global  variables,  pointers,  and  arrays.  The  

different ways in which the location of an operand is  specified  in  an  instruction  are  

referred to as addressing  modes. 

 
Table 2.1 Generic addressing modes 

Name Assembler syntax Addressing function 

Immediate # Value Operand = Value 

Register Ri EA = Ri 

Absolute (Direct) LOC EA = LOC 

Indirect (Ri) EA = [Ri] 

(LOC) EA = [LOC] 

Index X(Ri) EA = [Ri] + X 

Base with index (Ri, Rj) EA = [Ri] + [Rj] 

Base with index X (Ri, Rj) EA = [Ri] + [Rj] + X 

and offset 

Relative X(PC) EA = [PC] + X 

Autoincrement (Ri)+ EA = [Ri]; Increment Ri 

Autodecrement -(Ri) Decrement Ri; EA = [Ri] 

 
EA = effective address 

Value = a signed number 
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IMPLEMENTATION OF VARIABLE AND CONSTANTS:- 

Variables and constants are the simplest data types and are found in almost every 

computer program. In assembly language, a  variable  is  represented  by  allocating  a  

register or memory location to hold its  value. Thus, the value can be changed as needed  

using  appropriate instructions. 

 
Register mode -    The operand is the contents of a processor register; the name (address)    

of the register is given in the   instruction. 

 
Absolute mode  –  The operand is in a memory location; the address of this location is   

given explicitly in the instruction. (In some assembly languages, this  mode  is  called  

Direct). 

 

The instruction 

Move LOC, R2 

 

Processor registers are used as temporary storage locations where the data is a 

register are accessed using the Register mode. The Absolute mode can represent global 

variables in a program. A declaration such   as 

Integer A, B; 

 
Immediate mode – The operand is given explicitly in the instruction. 

For example, the instruction 

Move 200immediate, R0 

 
Places the value 200 in register R0. Clearly, the Immediate mode is only used to 

specify the value of a source operand. Using a subscript to denote the Immediate mode is    

not appropriate in assembly languages. A common convention is to use the sharp sign (#)      

in front of the value to indicate that this value is to be used as  an  immediate  operand.  

Hence, we write the instruction above in the   form 

Move #200, R0 

 
INDIRECTION AND POINTERS:- 

In the addressing modes that follow, the instruction does not give the operand or 

its address explicitly, Instead, it provides information from which the memory address of 

the operand can be determined. We refer to this address as the effective address (EA) of 

the operand. 

 
Indirect mode – The effective address of the operand is the contents of  a  register  or 

memory location whose address appears in the    instruction. 
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B 

 

To execute the Add instruction in fig (a), the processor uses the value which is in 

register R1, as the effective address of the operand. It requests a read operation from the 

memory to read the contents  of  location  B. the value read is the desired  operand,  which  

the processor adds to the contents of register R0. Indirect addressing through a memory 

location is also possible as shown in fig (b). In this case, the processor  first  reads  the 

contents of memory  location A,  then  requests  a second read  operation  using the value  B 

as an address to obtain the   operand 

 

Fig  (a) Through a general-purpose register (b) Through a memory location 
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 Move #NUM, R2 
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 Branch > 0 LOOP 

 Move R0, SUM 

 

The register or memory  location  that contains  the address of  an operand is called   

a pointer. Indirection and the use of pointers are important and powerful concepts in 

programming. 

Add (R1), R0 

… 

… 

… 

Operand 

Add (A), R0 

 
… 

 

… 

… 
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Operands 
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In the program shown Register R2 is used as a pointer to the numbers  in the  list,  

and the operands are accessed indirectly through R2. The initialization section of  the  

program loads the counter value n from memory location N into  R1  and  uses  the  

immediate addressing mode to place the address value NUM1, which is the address of the 

first number in the list, into R2. Then it clears R0 to 0. The first  two  instructions  in  the  

loop implement the unspecified instruction  block  starting  at  LOOP.  The  first  time  

through the loop, the instruction Add (R2), R0  fetches  the  operand  at  location  NUM1  

and adds it to R0. The second Add instruction adds 4 to the contents of the pointer R2, so   

that it will contain the address value NUM2 when the above instruction is executed in the 

second pass through the  loop. 

 
Where B is a pointer variable. This statement may be compiled into 

Move B, R1 

Move  (R1), A 

Using indirect addressing through memory, the same action can be achieved with 

Move (B), A 

 
Indirect addressing through registers is used extensively.  The  above  program  

shows the flexibility it provides. Also, when absolute addressing is not available, indirect 

addressing through registers makes it possible to access global variables by  first loading     

the operand’s address in a  register. 

 
INDEXING AND ARRAYS:- 

A different kind of flexibility for  accessing  operands  is  useful  in  dealing  with 

lists and arrays. 

 
Index mode – the effective address of the operand  is  generated  by  adding  a  constant 

value to the contents of a  register. 

 
The register use may be either a special register  provided  for  this  purpose,  or, 

more commonly, it may  be any one of a set of general-purpose registers in the processor.     

In either case, it is referred to as index register. We indicate the Index mode symbolically     

as 

X (Ri) 

 
Where X denotes the constant value contained in the  instruction  and  Ri  is  the 

name of the register involved. The effective address of the operand is given by 

 
EA = X + [Rj] 
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1000 

20 

 

The contents of the index register are not changed in the process of  generating       

the effective address. In an assembly language program, the  constant  X  may  be  given 

either as an explicit number or as a symbolic name representing a numerical value. 

 
Fig a illustrates two ways of using the  Index mode. In fig a, the index  register,      

R1, contains the address of a memory location, and the value X  defines an  offset  (also  

called a displacement) from this address to the location where the operand is found. An 

alternative use is illustrated in fig b. Here, the constant X  corresponds  to  a  memory  

address, and the contents of the index register define the offset  to the operand. In either   

case, the effective address is the sum of two values; one is given explicitly  in  the  

instruction, and the other is stored in a   register. 

 
Fig (a) Offset is given as a constant 
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Fig (b) Offset is in the index register 
 

 

Move #LIST, R0 

Clear R1 

Clear R2 

Clear R3 

Move N, R4 

LOOP Add 4(R0), R1 

Add 8(R0), R2 

Add 12(R0), R3 

Add #16, R0 

Decrement R4 

Branch>0 LOOP 

Move R1, SUM1 

Move R2, SUM2 

Move R3, SUM3 
 

 

In the most basic form of indexed  addressing  several  variations  of  this  basic  

form provide a very efficient access to memory operands in practical programming  

situations. For example, a second register may be  used to contain the  offset X, in which  

case we can write the Index mode   as 

 
(Ri, Rj) 

 
The effective address is the sum of the contents of  registers  Ri  and  Rj.  The  

second register is usually called the base register.  This  form  of  indexed  addressing 

provides more flexibility in accessing operands, because both components of the effective 

address can be  changed. 

 
Another version of the Index mode uses two registers plus a constant, which can 

be denoted as 

 
X(Ri, Rj) 

 
In this case, the effective address is the sum of the constant X and the contents of 

registers Ri and Rj. This added flexibility is useful  in  accessing  multiple  components  

inside each item in a record, where the  beginning of an item  is specified  by the  (Ri, Rj)  

part of the addressing mode. In other words, this mode implements a three-dimensional  

array. 
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RELATIVE ADDRESSING:- 

We have defined the Index mode using general-purpose processor registers.  A 

useful version of this mode is obtained if the program counter, PC, is used instead of  a 

general purpose register. Then, X(PC) can be used to address a memory location that is X 

bytes away from the location presently pointed to by the program counter. 

 
Relative mode – The effective address is determined by the  Index  mode  using  the  

program counter in place of the general-purpose register    Ri. 

 
This mode can be used to access data operands. But, its most common use is to 

specify the target address in branch instructions. An instruction such as 

 
Branch > 0 LOOP 

 
Causes program execution to go to the branch target  location  identified  by  the 

name LOOP if the branch condition is satisfied. This location can be computed  by  

specifying it as an offset from the current value of the program counter. Since the branch 

target may be either before or after the branch instruction, the offset is given as a signed 

number. 

 
Autoincrement mode – the effective address of the operand is the contents of a register 

specified in the instruction. After accessing the operand, the contents of this register are 

automatically to point to the next item in a   list. 

 
(Ri)+ 

 
Autodecrement mode – the contents of a register specified in the instruction are first 

automatically decremented and are then used as the effective address of the operand. 

 
-(Ri) 

Move N, R1 

Move #NUM1, R2 

Clear R0 

LOOP  Add (R2)+, R0 

Decrement R1 

Branch>0 LOOP 

Move R0, SUM 

 
Fig c The Autoincrement addressing mode used in the program of fig 2.12  
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 ASSEMBLY LANGUAGE 

Machine instructions are represented by patterns of 0s and 1s. Such patterns are 

awkward to deal with when discussing or  preparing  programs.  Therefore,  we  use  

symbolic names to represent the pattern. So far, we have  used  normal  words,  such  as 

Move, Add, Increment, and Branch, for the instruction operations to represent the 

corresponding binary code patterns. When writing programs for a specific computer, such 

words are normally replaced by  acronyms called  mnemonics, such as MOV, ADD, INC,  

and BR. Similarly, we use the notation R3 to refer to register 3, and LOC to refer to a 

memory location. A complete set of such symbolic  names  and  rules  for  their  use  

constitute a programming language,  generally referred  to  as an  assembly language. 

 
Programs written in an assembly language can be automatically translated into a 

sequence of machine instructions by a program called an assembler. When the assembler 

program is executed, it reads the user program, analyzes it, and then generates the desired 

machine language program. The latter contains  patterns  of  0s  and  1s  specifying 

instructions that will be executed by the computer. The user program in its original 

alphanumeric text format is called a  source  program,  and  the  assembled  machine  

language program is called an object   program. 

 
ASSEMBLER DIRECTIVES:- 

In addition to providing a mechanism for representing instructions in a program,     

the assembly language allows the programmer to specify other information needed to  

translate the source program into the object program. We have already mentioned that we 

need to assign numerical values to any names used in a program. Suppose that the name  

SUM is used to represent the value 200. This fact may be conveyed  to  the  assembler 

program through a statement such   as 

 
SUM EQU 200 

 
This statement does not denote an instruction that will  be  executed  when  the  

object program is run; in fact, it will not even appear in the object program. It  simply  

informs  the assembler that  the name SUM should  be  replaced  by  the value 200  wherever 

it appears in the  program.  Such  statements,  called  assembler  directives  (or  commands), 

are used by the assembler while it translates a source program into an object program. 
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Fig 2.17 Memory arrangement for the program in fig b. 

 
ASSEMBLY AND EXECUTION OF PRGRAMS:- 

A source program written in an assembly language must be assembled into a  

machine language object program before it can be  executed.  This  is  done  by  the  

assembler program, which replaces  all  symbols  denoting  operations  and  addressing  

modes with the binary codes used in machine instructions,  and  replaces  all  names  and 

labels with their actual  values. 

 
The assembler assigns addresses to instructions and data blocks, starting at the 

address given in the ORIGIN assembler directives. It also inserts  constants  that  may be 

given in DATAWORD commands and reserves  memory  space  as  requested  by  

RESERVE  commands. 

 
As the assembler scans through  a source programs,  it keeps track  of  all  names  

and the numerical values that correspond to them in a symbol table. Thus, when a name 

appears a second time, it is replaced with its value from the table. A problem arises when 

 

a name appears as an operand before it is given a value. For example, this happens if a 

forward branch is required. A simple solution to this  problem  is  to  have  the  assembler 

scan through the source program twice. During the  first  pass,  it  creates  a  complete  

symbol table. At the end of this pass, all names will have been assigned numerical values.  

The assembler then  goes through the source program a second time and substitutes values  

for all names from the symbol table. Such an assembler is called a two-pass assembler. 

 
The assembler stores the object program on a magnetic disk. The object program 

must be loaded into the memory of the computer before it is executed. For this to happen, 

another utility program called a loader must already be in the memory. 

 
When the object program begins  executing,  it  proceeds  to  completion  unless  

there are logical errors in the program. The user must be able to find errors easily. The 

assembler can detect and report syntax errors. To help the user find other programming  

errors, the system software  usually  includes  a  debugger  program. This  program  enables 

the user to stop execution of the object program at some points of interest and to examine    

the contents  of various processor registers and memory   locations. 

 
NUMBER NOTATION:- 

When dealing with numerical values, it is often convenient to use the  familiar 

decimal notation. Of course, these  values are  stored  in  the  computer as binary numbers.   

In some situations, it is more convenient to specify the binary patterns directly. Most 
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assemblers allow numerical values to be  specified  in  different  ways,  using  conventions 

that are defined by the assembly language syntax. Consider, for example, the number 93, 

which is represented by the 8-bit binary number 01011101. If this value is to be used an 

immediate operand, it can be given as a decimal number, as in the instructions. 

 
ADD   #93, R1 

 
Or as a binary number identified by a prefix symbol such as a percent sign, as in 

ADD #%01011101, R1 

Binary numbers can be  written more compactly  as hexadecimal, or hex, numbers,  

in which four bits  are  represented  by  a  single  hex  digit. In hexadecimal  representation, 

the decimal value 93 becomes 5D. In assembly language, a hex representation is often 

identified by a dollar sign prefix. Thus, we would    write 

 
ADD   #$5D, R1 

 

1.10 simple input programming 

We now examine the means by which data are transferred between the memory of a 

computer and the outside world. Input/Output (I/O) operations are essential, and the way they 

are performed can have a significant effect on the performance of the computer. 

 
Consider a task that reads in character input from a keyboard and  produces  

character output on a display screen. A simple way of performing such I/O tasks is to use       

a method known as program-controlled I/O. The rate  of  data  transfer  from  the  keyboard  

to a computer is limited by the typing speed of the user, which is unlikely to exceed a few 

characters per second. The rate of output transfers from the  computer  to  the  display  is 

much higher. It is determined by the rate at which characters can be transmitted over the    

link between the computer and the display device,  typically several thousand  characters    

per second. However, this is still much slower than the speed of  a  processor  that  can 

execute many millions of instructions per second. The difference in speed between the 

processor and I/O devices creates the need for mechanisms to synchronize the transfer of  

data between  them. 
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Fig a Bus connection for processor, keyboard, and display 

 
The keyboard and the display are separate device as shown in fig a. the action of 

striking a key  on the keyboard  does  not  automatically  cause the corresponding character   

to be displayed on the screen. One block of instructions in the I/O program transfers the 

character into the processor, and another associated block of instructions  causes  the  

character to be  displayed. 

 
Striking a key stores the corresponding character code in an 8-bit buffer register 

inform the processor that a valid character is in DATAIN, a status control flag, SIN, is set     

to  1. A program monitors SIN, and when SIN is set to 1, the processor reads the contents     

of DATAIN. When the character is transferred to the processor, SIN  is  automatically  

cleared to 0. If a second character is entered at the keyboard, SIN is again set to 1, and the 

processor repeats. 

 
An analogous process takes place when characters are transferred from  the  

processor to the display.  A buffer register,  DATAOUT, and a status control flag,  SOUT,  

are used for this transfer. When SOUT equals 1, the display  is  ready  to  receive  a  

character. 

 
In order to perform I/O transfers,  we  need machine  instructions  that  can  check  

the state of the status flags and  transfer data between the processor and the  I/O device.  

These instructions are similar in format to those used for moving  data  between  the  

processor  and the  memory. For example, the processor can monitor the  keyboard status  

flag SIN and transfer a character from DATAIN to register R1 by the following sequence     

of operations. 

 
Processor DATAIN DATAOUT 
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1.11 PUSH DOWN  STACKS  

A computer program often needs to  perform  a  particular  subtask  using  the 

familiar subroutine structure. In order to organize the control and information  linkage 

between the main program and the subroutine, a data structure called a stack is used. This 

section will describe stacks, as well as a closely related data structure called a queue. 

Data operated on by a program can be organized in a variety of ways. We have 

already encountered data structured as lists. Now, we consider an important data structure 

known as a stack. A stack is a list of data elements, usually words or bytes,  with  the 

accessing restriction that elements can be added or removed  at one end of the list only.     

This end is called the top of the stack, and the other end is called the bottom. Another 

descriptive phrase, last-in-first-out (LIFO) stack, is also used to describe  this  type  of  

storage mechanism; the last data item placed on the stack is the first one removed when 

retrieval begins. The terms push and pop are used to describe placing a new  item  on the 

stack and removing the top item from the stack,    respectively. 

 

Fig b shows a stack of word data items in the memory of a computer. It contains 

numerical values, with 43 at the bottom and -28 at the top. A processor register is used to 

keep track of the address of the element of the stack that is at the top at  any given  time.   

This register is called the stack pointer (SP). It could be one  of  the  general-purpose  

registers or a register dedicated to this   function. 
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Fig b A stack of words in the memory 
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Another useful  data  structure that is similar to the  stack is called a  queue. Data   

are stored in and retrieved from a queue on a first-in-first-out (FIFO) basis. Thus, if we 

assume that the queue grows in the direction of  increasing  addresses  in  the  memory,  

which is a common practice, new data are added at the back (high-address  end)  and  

retrieved from the front (low-address end) of the    queue. 

 
There are two important differences between how a stack and a queue are 

implemented. One end of the stack is fixed (the bottom), while  the  other  end  rises  and  

falls as data are pushed and popped. A single pointer is needed to point to the  top of the  

stack at any given time. On the other hand, both ends  of  a  queue  move  to  higher  

addresses as data are added at the back and removed from the front. So two pointers are 

needed to keep track of the two ends of the   queue. 

 

…. 

…. 

…. 

-28 

17 

739 

…. 

…. 

…. 

43 

…. 

…. 
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Another difference between a stack and a queue is that, without further control, a 

queue would continuously move through the memory of a computer in the  direction of  

higher addresses. One way to limit the queue to a fixed region in memory  is  to  use  a 

circular buffer. Let us assume that memory addresses from BEGINNING to END are  

assigned to the queue. The first  entry in the queue is entered into location BEGINNING,   

and successive entries are appended to the queue by entering them at successively higher 

addresses. By the time the back of the queue reaches END, space will have been created       

at the beginning if some items have been removed from  the  queue.  Hence,  the  back  

pointer is reset to the value BEGINNING and the process continues. As in the case of a  

stack, care must be taken to detect when the region assigned to the data structure is either 

completely  full or completely  empty. 

1.12 SUBROUTINES 

In a given program, it is often necessary to perform a  particular  subtask  many  

times on different data-values. Such a subtask is usually called a subroutine. For example,     

a subroutine may evaluate the sine function or sort a list of values into increasing or 

decreasing order. 

 
It is possible to include the  block of instructions that  constitute a subroutine at  

every place where it is needed in the program. However, to save space,  only one copy of    

the instructions that constitute the subroutine is placed in the memory, and any program     

that requires the use of the subroutine simply branches to its starting location. When a 

program branches to a subroutine we say that it is calling the subroutine. The instruction    

that performs this branch operation is named a Call    instruction. 

 
After a subroutine has been  executed,  the  calling  program  must  resume 

execution, continuing immediately after the instruction that called the subroutine. The 

subroutine is said to return to the program that called it by executing a Return instruction. 

 
The way in which a computer makes it possible  to  call  and  return  from  

subroutines is referred to as its subroutine linkage  method.  The  simplest  subroutine  

linkage method is to save the return address in a  specific  location,  which  may  be  a  

register dedicated to this function. Such a register is called the link register. When the 

subroutine completes its task, the Return instruction returns to the calling program by 

branching  indirectly  through  the link register. 

 
The Call instruction is just a special branch  instruction  that  performs  the  

following  operations 

 
• Store the contents of the PC in the link register 
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• Branch to the target address specified by the instruction 

The Return instruction is a special branch instruction that performs the operation 

• Branch to the address contained in the link register . 

 
Fig a illustrates this procedure 
 

Memory 

Location 

 
 

Calling program 

Memory 

location 

 
 

Subroutine SUB 

 ….   

 
200 

…. 

Call SUB 

 
1000 

 
first instruction 

204 next instruction  …. 

 ….  …. 

 ….  Return 

 ….   

 

1000 

 

PC 

 
Link 

 

Call Return 

 

Fig b Subroutine linkage using a link register 

 
SUBROUTINE NESTING AND THE PROCESSOR STACK:- 

A common programming practice, called subroutine nesting, is to have one 

subroutine call another. In this case, the return address of the second call is also stored in    

the link register, destroying its previous contents.  Hence,  it  is  essential  to  save  the 

contents of the link register in some other location before calling another subroutine. 

Otherwise, the    return address of the first subroutine will be lost. 

 
Subroutine nesting can be carried out  to  any  depth.  Eventually,  the  last  

subroutine called completes its computations and returns to the  subroutine  that  called  it. 

204 

204 
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The return address needed for this first  return  is the  last  one  generated  in  the  nested  call 

 

sequence. That is, return addresses are generated and used in a last-in-first-out order. This 

suggests  that the return  addresses  associated  with  subroutine calls  should be pushed onto  

a stack. A particular register is designated as the stack pointer, SP, to be used in  this 

operation. The stack pointer points to a stack called the processor  stack.  The  Call  

instruction pushes the contents of the PC onto the  processor  stack  and  loads  the  

subroutine address into the PC. The Return instruction pops the return address from the 

processor stack into the  PC. 

 
PARAMETER PASSING:- 

When calling a subroutine, a program must provide to the subroutine  the  

parameters, that is, the operands or their addresses, to be used in the computation. Later,     

the subroutine returns other parameters, in this case, the results of the computation. This 

exchange of information between a calling program and a subroutine is referred to as 

parameter passing. Parameter passing may be accomplished in  several  ways.  The 

parameters may be placed in registers or in  memory  locations,  where  they  can  be  

accessed by the subroutine. Alternatively, the parameters may be placed on the processor 

stack used for saving the return   address. 

 
The purpose of the subroutines is to add a list of numbers. Instead of passing the 

actual list entries, the calling program passes the address of the  first number in the list.     

This technique is called passing by reference. The second parameter is  passed  by  value,  

that is, the actual number of entries, n, is passed to the subroutine. 

 
THE STACK FRAME:- 

Now, observe how space is used in the stack in the example. During execution of 

the subroutine, six locations at the top of the stack contain entries that are needed by the 

subroutine. These locations constitute a private workspace for the subroutine, created at 

the time the subroutine is entered and freed up when the subroutine returns control to the 

calling program. Such space is called a stack frame. 

Fig a A subroutine stack frame example. 
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Old TOS 

 
fig b shows an example of a commonly used layout for  information in a  stack  

frame. In addition to the stack pointer SP, it is  useful  to  have  another  pointer  register, 

called the frame pointer (FP), for convenient access to the parameters passed to the 

subroutine and to the local memory variables  used  by  the  subroutine.  These  local  

variables are only used within the subroutine, so it  is appropriate  to  allocate  space  for  

them in the stack  frame  associated  with  the  subroutine. We assume that four parameters 

are passed to the subroutine, three local variables are used within the subroutine,  and  

registers R0 and R1 need to be saved because they  will  also  be  used  within  the  

subroutine. 

 
The pointers SP and FP are manipulated as the stack frame is built, used, and 

dismantled for a particular of the subroutine. We begin by assuming that  SP  point  to  the 

old top-of-stack (TOS) element in fig b. Before the subroutine  is  called,  the  calling  

program pushes the four parameters onto the stack. The call instruction is then executed, 

resulting in the return address being pushed onto the stack. Now, SP points to this return 

address, and the first instruction of the subroutine  is  about  to  be  executed. This  is  the 

point at which the frame pointer FP is set to contain the proper memory address. Since FP     

is usually a general-purpose register, it may contain information of use to the Calling 

program. Therefore, its contents are saved by pushing them onto the stack. Since  the  SP  

now points to this position, its contents are copied    into FP. 

Thus, the first two instructions executed in the subroutine are 

Move FP, -(SP) 

Move SP, FP 

 
After these instructions are executed, both SP and FP point to the saved FP contents. 

 
Subtract #12, SP 

 
Finally, the contents of processor registers R0 and R1 are saved by pushing them 

onto the stack. At this point, the stack frame has been set up as shown in the fig.  

 
The subroutine now executes its task. When the task is completed, the subroutine 

pops the saved values of R1 and R0 back into those registers, removes the local variables 

from the stack frame by executing the instruction. 

 
Add #12, SP 
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And pops the saved old value of FP back into FP. At this point, SP points to the 

return address, so the Return instruction can be executed, transferring control back to the 

calling program. 

 Logic instructions 

 
Logic operations such as AND, OR, and NOT, applied to individual bits, are the basic 

building blocks of digital circuits, as described. It is  also  useful  to  be  able  to  perform 

logic operations is software, which is done using  instructions that apply these operations      

to all bits of a word or byte independently and in parallel. For example, the instruction 

 
Not dst 

 
SHIFT AND ROTATE INSTRUCTIONS:- 

There are many applications that require the bits of an operand to be shifted right     

or left some specified number of bit positions. The details of how the shifts are performed 

depend on whether the operand is a signed number or some more general binary-coded 

information. For general operands, we use a logical shift. For a number, we use  an  

arithmetic shift, which preserves the sign of the    number. 

 
Logical shifts:- 

Two logical shift instructions are needed, one for shifting left  (LShiftL)  and  

another for shifting right  (LShiftR).  These  instructions shift an operand over  a number  of 

bit positions specified  in  a  count  operand  contained  in  the  instruction. The general form 

of a logical left shift instruction  is 

 
LShiftL count, dst 

 
(a) Logical shift left LShiftL #2, R0 

 

 
 

0 
 

 

 

 

before : 
 
 

after: 

R0 

0 0   1   1   1   0  .  .  .  0  1   1 

1 1   1   0   .   .   .  0  1  1  0  0 
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(b) Logical shift right LShiftR   #2, R0 
 

 

 

 

 

 

Before: 
 

 
 

 

 
After: 

 

 
 

 

 

( c) Arithmetic shift right AShiftR   #2, R0 

 
 

 

 

Before: 
 

 
 

 

 
After: 

 
 

 

Rotate Operations:- 

In the shift operations, the bits shifted out of the operand are lost,  except  for  the  

last bit shifted out which is retained in  the  Carry  flag C. To preserve all bits, a set of     

rotate instructions can be used. They move the bits that are shifted out of one end of the 

operand back into the other end. Two versions of both the left and right rotate instructions 

R0 C 

R0 C 

0  1  1  1  0   .  .   .   0   1    1 0 

1 
0  0  0  1  1  1  0   .   .   .    0 

1 0 0 1 1 . .   .  0   1   0 0 

1 1 1 0 0 1   1   .   .   .   0 1 
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are usually provided. In one version, the bits of  the  operand  are  simply  rotated. In  the 

other version, the rotation includes the C   flag. 

 
(a) Rotate left without carry    RotateL   #2, R0 

 
 

 

 

Before: 
 

 

After: 
 

 

 

 

(b) Rotate left with carry RotateLC #2, R0 

 

 

 
 

Before: 
 

 

 
 

after: 

C 
R0 

C R0 

0 0   1   1   1   0   .   .   .   0   1    1 

1 1   1   0   .   .   .   0   1   1   0    1 

0  1   1   1   0   .   .   .   0   1  1 
0 

1   1   0   .   .   0   1   1   0    0 
1 
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(c ) Rotate right without carry RotateR #2, R0 
 

 

 

Before: 
 

 
 

 

 
After: 

 

(d) Rotate right with carry RotateRC   #2, R0 
 
 

 

 

Before: 
 

 

 
 

after: 
 

 

 Encoding of machine instructions 

We have introduced a variety of useful instructions and addressing modes. These 

instructions specify the actions that must be performed by the processor circuitry  to  carry  

out the  desired tasks. We  have  often referred  to  them as machine instructions. Actually,  

the form in which we have presented the instructions is indicative of the form used in 

assembly languages, except that we tried to avoid using acronyms for the  various  

operations, which are awkward to memorize and are likely to be specific to a particular 

commercial processor. To be executed in a processor, an instruction must be encoded in a 

compact binary pattern. Such encoded instructions are properly referred to as machine 

instructions. The instructions that use symbolic names and acronyms are called assembly 

C 

R0 

C R0 

0 1 1 1 0   .   .   .   0   1   1 0 

1   1   0   1   1   1   0 . .   .   0 1 

0   1 1 1 0 .   .   .   0   1   1 0 

1   0 0 1 1   1   0   .   .   .   0 1 
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language instructions, which are converted into the machine  instructions  using  the 

assembler  program. 

 
We have seen instructions that perform operations such as add,  subtract, move,  

shift, rotate, and branch. These instructions may use operands of different sizes, such as 32-

bit and 8-bit numbers or 8-bit ASCII-encoded characters. The type of operation that is     to 

be performed and the type of operands used may be specified using an encoded binary pattern 

referred to as the OP code for the given instruction. Suppose  that  8  bits  are  allocated for 

this purpose, giving 256 possibilities  for  specifying  different  instructions.  This leaves 24 

bits to specify the rest of the required information. 

 
Let us examine some typical cases. The instruction 

Add R1, R2 

 
Has to specify the registers R1 and R2, in addition to the OP code. If the processor has 16 

registers, then four bits are needed to identify each register. Additional bits are needed to 

indicate that the Register addressing mode is used for each operand. 

The instruction 

Move   24(R0), R5 

 
Requires 16 bits to denote the OP code and the two registers, and some  bits to express       

that the source operand uses the Index addressing mode and that the index value is 24. 

The shift instruction 

LShiftR   #2, R0 

 
And the move instruction 

Move #$3A, R1 

Have to indicate the immediate values 2 and #$3A,  respectively, in  addition  to  the  18   

bits used to specify the OP code, the addressing modes, and  the  register. This  limits  the  

size of the immediate operand to what is expressible in 14 bits. 

Consider next the branch instruction 

Branch >0 LOOP 

 
Again, 8 bits are used for the OP code, leaving  24  bits  to  specify  the  branch 

offset. Since the offset is a 2’s-complement number, the branch target  address  must  be 

within 223 bytes of the location of the branch instruction. To  branch  to  an  instruction 

outside this range, a different addressing mode has to be  used,  such  as  Absolute  or  

Register Indirect. Branch instructions that use these modes are usually called Jump 

instructions. 
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In all these examples, the instructions can be encoded in a 32-bit word. Depicts a 

possible format. There is an 8-bit Op-code field and two 7-bit fields  for  specifying  the 

source and destination operands. The 7-bit field identifies the addressing mode and the 

register involved (if any). The “Other info” field allows us to specify the additional 

information that may be needed, such as an index value or an immediate operand. 

 
But, what happens if we want to specify a memory operand using the Absolute 

addressing  mode?  The instruction 

 
Move R2, LOC 

 
(a) One-word instruction 

 
 

 
Opcode 

 
Source 

 
Dest 

 
Other info 

(b) Two-Word instruction 
 

 

 
Opcode 

 
Source 

 
Dest 

 
Other info 

Memory address/Immediate operand 

 

(c ) Three-operand instruction 

 

 
Op code 

 
Ri 

 
Rj 

 
Rk 

 
Other info 

Requires 18 bits to denote the OP code, the addressing modes, and  the  register.  

This leaves 14 bits to express the address that corresponds to LOC, which is clearly 

insufficient. 

 
And   #$FF000000. R2 

 
In which case the second word gives a full 32-bit immediate operand. 

 
If we want to allow an instruction in which two operands can be specified using     

the Absolute addressing  mode,  for example 
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Move LOC1, LOC2 

 
Then it becomes necessary to use tow additional words for the 32-bit addresses of 

the operands. 

 
This approach results in instructions of variable length, dependent on the  number   

of operands and the type of addressing modes used. Using multiple words, we  can  

implement quite complex instructions, closely resembling operations in high-level 

programming languages. The term complex instruction  set  computer  (CISC)  has  been  

used to refer to processors that use instruction sets of this type. 

 
The restriction that an instruction must occupy only one word has led to a style of 

computers that have become known as reduced instruction  set  computer  (RISC).  The  

RISC approach introduced other restrictions, such as that all manipulation of data must be 

done on operands that are already in processor registers. This restriction means  that  the 

above addition  would  need  a two-instruction sequence 

 
Move  (R3), R1 

Add R1, R2 

 
If the Add instruction only has to specify the two registers, it will need just  a  

portion of a 32-bit word. So, we may provide a more powerful instruction that uses three 

operands 

 
Add R1, R2, R3 

 
Which performs the operation 

 

R3 � [R1] + [R2] 

 
A possible format for such an instruction in shown in fig c.  Of  course,  the  

processor has to be able to deal with such three-operand instructions. In an instruction set 

where all arithmetic and logical operations use only register operands, the only memory 

references are made to load/store the operands into/from the processor registers. 

RISC-type instruction sets typically have  fewer  and  less  complex  instructions  

than CISC-type sets. We will discuss the relative merits of RISC and CISC approaches in 

Chapter 8, which deals with the details of processor    design. 
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     UNIT-2 

Register Transfer Language and Design of Control Unit 

2.1. Register Transfer Language 

• Digital systems are composed of modules that are constructed from digital 

components, such as registers, decoders, arithmetic elements, and control logic 

 • The modules are interconnected with common data and control paths to form a 

digital computer system  

• The operations executed on data stored in registers are called micro operations • A 

micro operation is an elementary operation performed on the information stored in one 

or more registers  

• Examples are shift, count, clear, and load 

 • Some of the digital components from before are registers that implement micro 

operations  

• The internal hardware organization of a digital computer is best defined by specifying  

 The set of registers it contains and their functions  

 The sequence of micro operations performed on the binary information stored 

 The control that initiates the sequence of micro operations  

• Use symbols, rather than words, to specify the sequence of micro operations  

• The symbolic notation used is called a register transfer language 

 • A programming language is a procedure for writing symbols to specify a given 

computational process 

 • Define symbols for various types of micro operations and describe associated 

hardware that can implement the micro operations 

 

2.2. Register Transfer  
• Designate computer registers by capital letters to denote its function  

• The register that holds an address for the memory unit is called MAR 

• The program counter register is called PC 

• IR is the instruction register and R1 is a processor register  

• The individual flip-flops in an n-bit register are numbered in sequence from 0 

to n-1 

• Refer to Figure 4.1 for the different representations of a register 
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• Designate information transfer from one register to another by R2 ← R1  

• This statement implies that the hardware is available  

 The outputs of the source must have a path to the inputs of the destination  

 The destination register has a parallel load capability  

• If the transfer is to occur only under a predetermined control condition, designate it 

by  

If (P = 1) then (R2 ← R1) or,  

P: R2← R1,  

Where P is a control function that can be either 0 or 1  

• Every statement written in register transfer notation implies the presence of the 

required hardware construction  

 

 
• It is assumed that all transfers occur during a clock edge transition  

• All micro operations written on a single line are to be executed at the same time T: 

R2 ← R1, R1 ← R2  
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2.3. Bus and Memory Transfers 

• Rather than connecting wires between all registers, a common bus is used  

• A bus structure consists of a set of common lines, one for each bit of a register  

• Control signals determine which register is selected by the bus during each transfer  

• Multiplexers can be used to construct a common bus  

• Multiplexers select the source register whose binary information is then placed on the 

bus  

• The select lines are connected to the selection inputs of the multiplexers and choose 

the bits of one  register . 
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• In general, a system will multiplex k registers of n bits each to produce an n-line 

common bus  

• This requires n multiplexers – one for each bit  

• The size of each multiplexer must be k x 1  

• The number of select lines required is log k • To transfer information from the bus to 

a register, the bus lines are connected to the inputs of all destination registers and the 

corresponding load control line must be activated  

• Rather than listing each step as  

BUS ← C, R1 ← BUS,  

use R1 ← C, since the bus is implied  

• Instead of using multiplexers, three-state gates can be used to construct the bus 

system  

• A three-state gate is a digital circuit that exhibits three states  

• Two of the states are signals equivalent to logic 1 and 0  

• The third state is a high-impedance state – this behaves like an open circuit, which 

means the output is disconnected and does not have a logic significance . 

 

 
 

 

 The three-state buffer gate has a normal input and a control input which 

determines the output state  

• With control 1, the output equals the normal input  

• With control 0, the gate goes to a high-impedance state  

• This enables a large number of three-state gate outputs to be connected with wires to 

form a common bus line without endangering loading effects. 
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• Decoders are used to ensure that no more than one control input is active at any given 

time  

• This circuit can replace the multiplexer in Figure 4.3  

• To construct a common bus for four registers of n bits each using three-state buffers, 

we need n circuits with four buffers in each  

• Only one decoder is necessary to select between the four registers  

• Designate a memory word by the letter M  

• It is necessary to specify the address of M when writing memory transfer operations  

• Designate the address register by AR and the data register by DR  

• The read operation can be stated as: 

 Read: DR ← M[AR]  

• The write operation can be stated as:  

Write: M[AR] ← R1  

 

2.4. Arithmetic Micro operations 

• There are four categories of the most common micro operations:  

 Register transfer: transfer binary information from one register to 

another  

 Arithmetic: perform arithmetic operations on numeric data stored in 

registers 

 Logic: perform bit manipulation operations on non-numeric data 

stored in registers  

 Shift: perform shift operations on data stored in registers  

• The basic arithmetic micro operations are addition, subtraction, increment, 

decrement, and shift  
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• Example of addition: R3 ← R1 +R2  

• Subtraction is most often implemented through complementation and addition  

• Example of subtraction: R3 ← R1 + R2 + 1 (strikethrough denotes bar on top – 1’s 

complement of R2)  

• Adding 1 to the 1’s complement produces the 2’s complement . 

• Adding the contents of R1 to the 2’s complement of R2 is equivalent to 

subtracting.

 
 

 

• Multiply and divide are not included as micro operations  

• A micro operation is one that can be executed by one clock pulse  

• Multiply (divide) is implemented by a sequence of add and shift micro operations 

(subtract and shift)  

• To implement the add micro operation with hardware, we need the registers that hold 

the data and the digital component that performs the addition  

• A full-adder adds two bits and a previous carry. 

• A binary adder is a digital circuit that generates the arithmetic sum of two binary 

numbers of any lengths  

• A binary added is constructed with full-adder circuits connected in cascade  

• An n-bit binary adder requires n full-adders  
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• The subtraction A-B can be carried out by the following steps  

 Take the 1’s complement of B (invert each bit)  

 Get the 2’s complement by adding 1  

 Add the result to A  

• The addition and subtraction operations can be combined into one common circuit by 

including an XOR gate with each full-adder. 

  
 

• The increment micro operation adds one to a number in a register  

• This can be implemented by using a binary counter – every time the count enable is 

active, the count is incremented by one  

• If the increment is to be performed independent of a particular register, then use half-

adders connected in cascade . 

• An n-bit binary incrementer requires n half-adders  
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• Each of the arithmetic micro operations can be implemented in one composite 

arithmetic circuit  

• The basic component is the parallel adder  

• Multiplexers are used to choose between the different operations  

• The output of the binary adder is calculated from the following sum:    

                    D = A + Y + Cin 
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2.5. Logic Micro operations 

• Logic operations specify binary operations for strings of bits stored in registers and 

treat each bit separately  

• Example: the XOR of R1 and R2 is symbolized by P: R1 ← R1 ⊕ R2  

• Example: R1 = 1010 and R2 = 1100  

1010 Content of R1  

1100 Content of R2  

0110 Content of R1 after P = 1  

• Symbols used for logical micro operations:  

 OR: ∨  

 AND: ∧  

 XOR: ⊕  

• The + sign has two different meanings: logical OR and summation  

• When + is in a micro operation, then summation  

• When + is in a control function, then OR  

• Example: P + Q: R1 ← R2 + R3, R4 ← R5 ∨ R6  

• There are 16 different logic operations that can be performed with two binary 

variables. 
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• The hardware implementation of logic micro operations requires that logic gates be 

inserted for each bit or pair of bits in the registers.  

 

• All 16 micro operations can be derived from using four logic gates.  
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• Logic micro operations can be used to change bit values, delete a group of bits, or 

insert new bit values into a register  

• The selective-set operation sets to 1 the bits in A where there are corresponding 1’s in 

B  

1010 A before   

1100 B (logic operand)  

1110 A after  

A ← A ∨ B  

• The selective-complement operation complements bits in A where there are 

corresponding 1’s in B  

1010 A before  

1100 B (logic operand)  

0110 A after  

A ← A ⊕ B  

• The selective-clear operation clears to 0 the bits in A only where there are 

corresponding 1’s in B  

1010 A before  

1100 B (logic operand)  

0010 A after  

 

A ← A ∧ B 

The mask operation is similar to the selective-clear operation, except that the bits of A 

are cleared only where there are corresponding 0’s in B  

1010 A before  

1100 B (logic operand)  

1000 A after  

A ← A ∧ B  

• The insert operation inserts a new value into a group of bits  

• This is done by first masking the bits to be replaced and then Oring them with the bits 

to be inserted 0110 1010 A before  

0000 1111 B (mask)  

0000 1010 A after masking  

0000 1010 A before  

1001 0000 B (insert)  

1001 1010 A after insertion  

• The clear operation compares the bits in A and B and produces an all 0’s result if the 

two number are equal  

1010 A  

1010 B  

0000 A ← A ⊕ B  

 

2.6. Shift Micro operations 

• Shift microoperations are used for serial transfer of data  

• They are also used in conjunction with arithmetic, logic, and other data-processing 

operations  

• There are three types of shifts: logical, circular, and arithmetic  

• A logical shift is one that transfers 0 through the serial input  
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• The symbols shl and shr are for logical shift-left and shift-right by one position R1 ← 

shl R1  

• The circular shift (aka rotate) circulates the bits of the register around the two ends 

without loss of information  

• The symbols cil and cir are for circular shift left and right  

 
 

 

• The arithmetic shift shifts a signed binary number to the left or right  

• To the left is multiplying by 2, to the right is dividing by 2  

• Arithmetic shifts must leave the sign bit unchanged  

• A sign reversal occurs if the bit in Rn-1 changes in value after the shift  

• This happens if the multiplication causes an overflow  

• An overflow flip-flop Vs can be used to detect the overflow  

                         Vs = Rn-1 ⊕ Rn-2  

 
 

 

 

• A bi-directional shift unit with parallel load could be used to implement this  

• Two clock pulses are necessary with this configuration: one to load the value and 

another to shift  

• In a processor unit with many registers it is more efficient to implement the shift 

operation with a combinational circuit  

• The content of a register to be shifted is first placed onto a common bus and the 

output is connected to the combinational shifter, the shifted number is then loaded back 

into the register  

• This can be constructed with multiplexers  
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Arithmetic Logic Shift Unit 

 

• The arithmetic logic unit (ALU) is a common operational unit connected to a number 

of storage registers  

• To perform a microoperation, the contents of specified registers are placed in the 

inputs of the ALU  

• The ALU performs an operation and the result is then transferred to a destination 

register  

• The ALU is a combinational circuit so that the entire register transfer operation from 

the source registers through the ALU and into the destination register can be performed 

during one clock pulse period  
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COMMON BUS SYSTEM 

 

The connection of the registers and memory of the basic computer to a common bus 

system is shown in the figure. The oup8u of seven registers and memory are connected 

to the common bus. The specific output that is selected for the bus lines at any given 

time is determined from the binary value of the selection variables S2, S1 and S0. The 

number along each output shows the decimal equivalent of the required binary 

selection. The particular register whose LD (load) input is enabled receives the data 

from the bus during the next clock pulse transition.  

 The memory receives the contents of the bus when its write input is activated. 

The memory places its 16-bit output onto the bus when the read input is activated and 

S2S1S0=111. 

 The input register INPR and the output register OUTR has 8 bits each and 

communicate with the eight least significant bits in the bus. INPR is connected to 

provide information to the bus but OUTR can only receive information from the bus. 

Five registers have three control inputs: LD (load), INR (increment), and CLR (clear). 

The memory address is connected to AR. Thus, AR must always be used to specify a 

memory address. 
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2.1.1. COMPUTER INSTRUCTIONS 

The basic computer has three instructions code formats, as shown in the following 

figures. 

 

 
  Each format has 16 bits. the operation code (opcode) part of the instruction 

contains three bits and the meaning of the remaining 13 bits depends on the operation 

code encountered.  A memory-reference instruction uses 12 bits to specify an address 

and one bit to specify the addressing mode I. I is equal to 0 for direct address and to 1 

for indirect address. The register-reference instructions are recognized by the operation 

code 111 with a 0 in the leftmost bit of the instruction. A register-reference instruction 

specifies an operation on AC register. An input-output instruction does not need a 

reference to memory and is recognized by the operation code 111 with a 1 in the 

leftmost bit of the instruction. 

2.1.2. Instruction Set Completeness 

 A computer should have a set of instructions so that the use can construct 

machine language programs to evaluate any function that is known to be computable. 

The set of instructions are said to be complete if the computer includes a sufficient 

number of instructions in each of the following categories: 

1. Arithmetic, logical, and shift instructions 

2. Instructions for moving information to and from memory and processor 

registers 

3. Program control instructions together with instructions that check status 

conditions 

4. Input and output instructions 

 

2.1.3. INSTRUCTION CYCLE 

 A program residing in the memory unit of the computer consists of a sequence 

of instructions. The program is executed in the computer by going through a cycle for 

each instruction. Each instruction cycle in turn is subdivided into a sequence of sub 

cycles or phases. In the basic computer each instruction cycle consists of the following 

phases: 

1. Fetch an instruction from memory 

2. Decode the instruction. 

3. Read the effective address from memory if the instruction has an indirect 

address. 
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4. Execute the instruction. 

Upon the completion of step 4, the control goes back to step 1 to fetch, decode, and 

execute the next instruction. 

 

 

 

2.1.4. Fetch and Decode 

 

                                                                                                                                                                                                                                                                                                                  

Initially, the program counter PC is loaded with the address of the first instruction in 

the program. The sequence counter SC is cleared to 0, providing a decoded timing 

signal T0. After each clock pulse, SC is incremented by one, so that the timing signals 

go through a sequence T0, T1, T2 and so on. The micro operations for fetch and 

decode phases can be specified by the following register transfer statements. 

 T0 : AR PC 

 T1 : IR  M[AR], PC  PC + 1 

 T2 : D0, D1, ……, D7  Decode IR(12-14), AR  IR(0-11), I IR(15) 

 Since only AR is connected to the address inputs of memory, it is necessary to 

transfer the address from PC to AR during the clock transition associated with timing  
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signal T0. The instruction read from memory is then placed in the instruction register 

IR with the clock transition associated with timing signal T1. At the same time, PC is 

incremented by one to prepare it for the address of the next instruction in the program. 

At time T2, the operation code in IR is decoded, the indirect bit is transferred to flip-

flop I, and the address part of the instruction is transferred to AR. SC is incremented 

after each clock pulse to produce the sequence T0,T1 and T2. The above figure shows 

the implementation of the first two register transfer statements. 

 To provide the data path for the transfer of PC to AR we must apply timing signal T0 

to achieve the following connection: 

1. Place the content of PC onto the bus by making the bus selection inputs 

S2S1S0 equal to 010. 

2. Transfer the content of the bust to AR by enabling the LD input of AR. 

The next clock transition initiates the transfer from PC to AR since T0 =1. In order to 

implement the second statement it is necessary to use timing signal T1 to provide the 

following connections in the bus system. 

1. Enable the read input of memory. 

2. Place the content of memory onto the bus by making S2S1S0 = 111. 

3. Transfer the content of the bus to IR by enabling the LD input of IR. 

4. Increment PC by enabling the INR input of PC. 

The next clock transition initiates the read and increment operations since T1=1. 

2.1.5. Determining the Type of Instruction 

The timing signal that is active after the decoding is T3. During time T3, the control 

unit determines the type of instruction that was just read from memory. The following 

flowchart determines the instruction type after the decoding. 

Decoding output D7 is equal to 1 if the operation code is equal to binary 111. From the 

above figure we can determine that if D7=1, the instruction must be a register-

reference or input-output type. If D7=0, the operation code must be one of the other 

sever values 000 through 110, specifying a memory-reference instruction. Control then 

inspects the value of the first bit of the instruction, which is now available in flip-flop 

I. If D7=0 and I=1, we have a memory-reference instruction with an indirect address. It 

is then necessary to read the effective address from memory. The micro operation for 

the indirect address condition can be symbolized by the register transfer statement, 
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The three instruction types are subdivided into four separate paths. The selected 

operation is activated with the clock transition associated with timing signal T3. This 

can be symbolized as, 

    D7’ I T3: AR  M[AR] 

    D7’ I’ T3: Nothing 

    D7 I’ T3: Execute a register-reference instruction 

    D7 I T3: Execute an input-output instruction 

2.1.6.REGISTER-REFERENCE INSTRUCTIONS 

 Register-reference instructions are recognized by the control when D7 =1 and 

I=0. These instructions use bits 0 through 11 of the instruction code to specify one of 

the 12 instructions. These 12 bits are available in IR(0-11). They are transferred to AR 

during time T2. Let D7I’T3= r, which is the Boolean relation for the control function. 

The control function is distinguished by one of the bits in IR(0-11). By assigning the 

symbol Bi to bit I of IR, all control functions can be simply denoted by rBi. The control 

functions and micro operations for the register-reference instructions are listed in the 

following table. 

 

Symbol Control 

Function 

Symbolic Description Meaning 

CLA 

CLE 

CMA 

CME 

CIR 

CIL 

INC 

SPA 

SNA 

SZA 

SZE 

HLT 

rB11 

rB10 

rB9 

rB8 

rB7 

rB6 

rB5 

rB4 

rB3 

rB2 

rB1 

rB0 

AC0 

E0 

ACAC 

EE 

AC shr AC, AC(15)E, EAC(0) 

AC  shl AC, AC(0)E, EAC(15) 

AC  AC +1 

If(AC(15)=0) then (PCPC +1) 

If(AC(15)=1) then (PC PC+1) 

If(AC=0) then PC  PC +1 

If(E=0) then (PC  PC +1) 

S 0(S is a start-stop flip-flop) 

Clear AC 

Clear E 

Complement AC 

Complement E 

Circulate right 

Circulate left 

Increment AC 

Skip if positive 

Skip if negative 

Skip if AC zero 

Skip if E zero 

Halt computer 
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2.2. MEMORY-REFERENCE INSTRUCTIONS 

1. AND to AC: This is an instruction that performs the AND logic operation on 

pairs of bits in AC and memory word specified by the effective address. The 

result of the operation is transferred to AC. The micro operations that execute 

this instruction are: 

D0T4 : DR  M[AR] 

D0T5 : AC  AC  DR, SC 0 

2. ADD to AC:  This instruction adds the content of the memory word specified 

by the effective address to the value of AC. The sum is transferred into AC and 

the output carry Cout is transferred to the E (extended accumulator) flip-flop. 

The microoperations needed to execute this instruction are, 

 

D1T4: DR  M[AR] 

D1T5: AC  AC + DR, E  Cout, SC 0 

3. LDA: Load to AC:  This instruction transfers the memory word specified by 

the effective address to AC. The microoperations needed to execute this 

instruction are 

 

D2T4:  DR  M[AR] 

D2T5:  AC  DR, SC 0 

4. STA: Store AC:  This instruction stores the content of AC into the memory 

word specified by the effective address. Since the output of AC is applied to the 

bus and the data input of memory is connected to the bus, we can execute this 

instruction with one micro operation: 

D3T4: M[AR]  AC, SC 0 

5. BUN: Branch Unconditionally:  This instruction transfers the program to the 

instruction specified by the effective address. PC holds the address of the 

instruction to be read from memory in the next instruction cycle. PC is 

incremented at time T1 to prepare it for the address of the next instruction in 

the program sequence. The BUN instruction allows the programmer to specify 

an instruction out of the sequence, and the program branches (or jumps) 

unconditionally. The instruction is executed with one micro operation: 

D4T4: PC  AR, SC  0 

6. BSA: Branch and Save Return Address:  This instruction is useful for 

branching to a portion of the program called a subroutine or procedure. When 

executed, the BSA instruction stores the address of the next instruction in 

sequence into a memory location specified by the effective address. The 

effective address plus one is then transferred to PC to serve as the address of 

the first instruction in the subroutine. This operation was specified with the 

following register transfer: 

M[AR]  PC, PC  AR + 1 
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A numerical example that demonstrates how this instruction is used with a subroutine 

is shown in the following figure. 

 Memory     Memory 

  

                    20  20 

PC=21                                                                      21 

 

 

                                                                                135 

AR=135                                                                 

       136                                                             PC=136 

 

 

 

 

                 Before BSA Execution                             After BSA Execution 

 

    M[135]  21,  PC  135 + 1 = 136 

 

  

 

 

 

 

 

 

 

 

It is not possible to perform the operation of the BSA instruction in one clock cycle 

when we use the bus system of the basic computer. To use the memory and the bus 

properly, the BSA instruction must be executed with a sequence of two micro 

operations: 

   D5 T4 : M[AR]  PC,  AR  AR + 1 

   D5 T5: PC  AR,  SC  0 

7. ISZ: Increment and Skip if Zero:  This instruction increments the word 

specified by the effective address, and if the increment value is equal to 0, PC 

is incremented by 1. The programmer usually stores a negative numbers (in 2’s 

complement) in the memory word. As this negative number is repeatedly 

incremented by one, it eventually reaches the value of zero. At that time PC is 

increment by one in order to skip the next instruction in the program. 

 Since it is not possible to increment a word inside the memory, it is necessary 

to read the word into DR, increment DR, and store the word back into memory. This is 

done with the following sequence of microoperations 

    

   D6T4: DR  M[AR] 

   D6T5: DR  DR + 1 

  D6T6: M[AR]  DR, if (DR = 0) then (PC  PC + 1), SC  0 

 

 

0      BSA      135   

Next instruction 
 

 

 
 

    Subroutine 

 

 

1     BUN     135 

0        BSA    135 

Next instruction 

 
 

            21 

 
    Subroutine 

 

 

1     BUN    135 
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2.2.1. Control Flowchart 

 The following flowchart shows all micro operations for execution of the seven 

memory-reference instructions. 

  

Memory-reference instruction 

 

 
 

2.2.2.INPUT-OUTPUT INSTRUCTIONS 

 Input-output instructions are needed for transferring information to and from 

AC register, for checking the flag bits, and for controlling the interrupt facility. Input-

output instructions have an operation code 1111 and are recognized by the control 

when D7 = 1 and I=1. The remaining bits of the instruction specify the particular 

operation. Let D7IT3 = p, which is the control function for the Boolean relation. The 

control function is distinguished by one of the bits in IR(6-11). By assigning the 

symbol Bi to bit I of IR, all control functions can be denoted by pBi, for I=6 through 

11. The control functions and micro operations for the input-output instructions are 

listed in the following table. 

Symbol Control 

Function 

Symbolic Description Meaning 

INP 

OUT 

SKI 

SKO 

pB11 

pB10 

pB9 

pB8 

AC(0-7)INPR, FGI0 

OUTRAC(0-7), FGO0 

If(FGI=1) then (PCPC +1) 

If(FGO=1) then (PCPC +1) 

Input character 

Output character 

Skip on input flag 

Skip on output flag 
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ION 

IOF 

pB7 

pB6  

IEN1 

IEN0 

Interrupt enable on 

Interrupt enable off 

 

2.3. INPUT-OUTPUT AND INTERRUPT 

2.3.1. Input-Output Configuration 

 The terminal sends and receives serial information. Each quality of information 

has eight bits of an alphanumeric code. The serial information from the keyboard is 

shifted into the input register INPR. The serial information for the printer is stored in 

the output register OUTR. These two registers communicate with a communication 

interface serially and with the AC in parallel. The input-output configuration is shown 

in the following figure. 

 
 The input register INPR consists of eight bits and holds alphanumeric input 

information. The 1-bit input flag FGI is a control flip-flop. The flag bit is set to 1 when 

new information is available in the input device and is cleared to 0 when the 

information is accepted by the computer. The flag is needed to synchronize the timing 

rate difference between the input device and the computer.  

 The process of information transfer is as follows. Initially, the input flag FGI is 

cleared to 0. when a key is stuck in the keyboard, an 8-bit alphanumeric code is shifted 

into INPR and the input flag FGI is set to 1. as long as the flag is set, the information in 

INPR cannot be changed by striking another key.  

 The OUTR works similarly but the direction of information flow is reversed. 

Initially, the output flag FGO is set to 1. Thus, the computer transfers the information 

from AC to OUTR and FGO is cleared to 0. The printer accepts the coded information, 

prints the corresponding character, and when the operation is completed, it sets FGO to 

1. 

2.3.2. I/O Interrupt 

 Assume that a computer can execute an instruction cycle in 1 s. Assume that 

the input-output device can transfer information at a maximum rate of 10 characters 

per second. This is equivalent to 1 character every 1,00,000 s. Two instructions are 

executed when the computer checks the flag bit and decides not to transfer the 

information. This means that at the maximum rate, the computer will check the flag 

50,000 times between each transfer. The processor is wasting time while checking the 

flag instead of doing some other useful processing task. 

 To avoid this, an I/O interrupt can be sent by the external device. While the 

computer is running a program, it does not check the flags. However, when a flag is 

set, the computer is momentarily interrupted from proceeding with the current program 

and is informed that a flag has been set. Then the processor stops its current execution 

temporarily to take care of the input or output transfer. The following flowchart shows 

how an interrupt cycle occurs. 

 An interrupt flip-flop R is included in the computer. When R=0, the computer 
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goes through an instruction cycle. During the execute phase of the instruction cycle 

IEN is checked by the control. If it is 0, it indicates that the programmer does not want 

to use the interrupt, so control continues with the next instruction cycle. If IEN is 1, 

control checks the flag bits. if both flags are 0, it indicates that neither the input nor the 

output registers are ready for transfer of information. In this case, control continues 

with the next instruction cycle. If either flag is set to 1 while IEN=1, flip-flop R is set 

to 1. An example that shows what happens during the interrupt cycle is shown in the 

following figure. 

  

 Memory before Interrupt   Memory after Interrupt 

 

 0  0 

 1 PC= 1 

 

255                                                               255 

   PC=256                                                                256 

 

          1120                                                           1120 

 

 

 

 

 
2.3.3. INTERRUPT CYCLE 

 The interrupt cycle is initiated after the last execute phase if the interrupt flip-

flop R is equal to 1. This flip-flop is set to 1 if IEN=1 and either FGI or FGO are equal 

to 1. This can happen with any clock transition except when timing signals T0, T1, or 

T2 are active. The condition for setting flip-flop R to 1 can be expressed with the 

following register transfer statement: 

 
0 BUN 1120 
 
Main 
Program 

 

I/O 

program 
 

 

1 BUN     0 
 

        256 
0 BUN 1120 
 
Main 
Program 

 

I/O 
program 

 

 
1 BUN   0 
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  T0’T1’T2’ (IEN)(FGI+FGO): R1 

 

 The register transfer statements for the interrupt cycle can be expressed as, 

 

  RT0: AR0, TRPC 

  RT1: M[AR]TR, PC 0 

  RT2: PCPC +1, IEN 0, R0, SC0 

2.4. ADDRESSING MODES 

 Computers use addressing mode techniques for the purpose of accommodating 

one or both of the following provisions: 

1. To give programming flexibility to the user by providing such facilities as 

pointers to memory, counters for loop control, indexing of data, and program 

relocation. 

2. To reduce the number of bits in the addressing field of the instruction. 

 In some computers the addressing mode of the instruction is specified with a 

distinct binary code. Other computers use a single binary code that designates both the 

operation and the mode of the instruction. An example of an instruction format with a 

distinct addressing mode field is shown in the following figure. 

 

  

 

The ‘Mode’ specifies any one of the different Addressing Modes. They are, 

1. Implied Mode: In this mode the operands are specified implicitly in the 

definition of the instruction. For e.g., the instruction “Complement 

Accumulator” is an implied mode instruction, because the operand in the 

Accumulator register because the operand in the Accumulator register is 

implied in the definition of the instruction. Thus, all register-reference 

instructions that use an Accumulator are implied-mode instructions. Zero-

address instructions in a stack-organized computer are implied-mode 

instructions, since the operands are implied to be on top of the Stack. 

2. Immediate Mode:  In this mode the operand is specified in the instruction 

itself. 

3. Register Mode: In this mode the operands are in registers that reside within the 

CPU. The particular register is selected from a register field in the instruction. 

A k-bit field can specify any one of 2k registers. 

4. Register Indirect Mode: In this mode the instruction specifies a register in the 

CPU whose contents give the address of the operand in memory. The 

advantage of a Register Indirect Mode instruction is that the address field of 

the instruction uses fewer bits to select a register than a memory address 

directly. 

5. Auto-increment or Auto-decrement Mode:  This is similar to the register 

indirect mode except that the register is incremented after its value is used to 

access memory in case of Auto-increment and the register is decremented 

before its value is used to access memory in case of Auto-decrement. When the 

address stored in the register refers to a table of data in memory, it is necessary 

to increment or decrement the register after every access to the table. The 

effective address is defined to be the memory address obtained from the 

computation directed by the given addressing mode 

6. Direct Address Mode: In this mode the effective address is equal to the address 

part of the instruction. 

Opcode    Mode            Address 
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7. Indirect Address Mode: In this mode the address field of the instruction gives 

the address where the effective address is stored in memory. 

8. Relative Address Mode: In this mode the content of the PC is added to the 

address part of the instruction in order to obtain the effective address. 

9. Indexed Addressing Mode:  In this mode the content of an Index Register is 

added to the address part of the instruction to obtain the effective address. The 

Index Register is a special CPU register that contains an index value. The 

address field of the instruction defines the beginning address of a data array in 

memory. Each operand in the array is stored in memory relative to the 

beginning address. The distance between the beginning address and the address 

of the operand is the index value stored in the Index Register. Any operand in 

the array can be accessed with the same instruction provided that the index 

register contains the correct index value. The index register can be incremented 

to facilitate access to consecutive operands. 

10. Base Register Addressing Mode: In this mode the content of a base register is 

added to the address part of the instruction to obtain the effective address. A 

base register is assumed to hold a base address and the address field of the 

instruction gives a displacement relative to this base address. The Base 

Register Addressing mode is used in computer to facilitate the relocation of 

programs in memory. When programs and data are moved form one segment 

of memory to another, as required in multiprogramming systems, the address 

values of instructions must reflect this change of position. With a base register, 

the displacement values of instructions do not have to change. Only the value 

of the base register requires updating to reflect the beginning of a new memory 

segment. 

 

 

 

2.4.1. Numerical Example 

 To show the differences between the various modes, let us assume the state of 

the memory and various processor registers as shown below. 

 
 Now consider the following table, which specifies the Effective Address 

Obtained from the different Addressing Modes and the Contents of AC. 

Addressing Mode Effective Content of AC 
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Address 

Direct Address 

Immediate Operand 

Indirect Address 

Relative Address 

Indexed Address 

Register  

Register Indirect 

Auto increment 

Auto decrement 

500 

200 

800 

702 

600 

 --  

400 

400 

399 

800 

500 

300 

325 

900 

400 

700 

700 

450 

2.5. DATA TRANSFER INSTRUCTIONS 

The Typical Data Transfer Instructions are shown in the table below. 

Name                           Mnemonic 

Load                              LD 

Store                     ST 

Move                              MOV 

Exchange                   XCH 

Input                              IN 

Output                   OUT 

Push                              PUSH  

Pop                              POP  

 

 

   The Data Transfer Instructions with Different Addressing Modes are shown in table 

below. 

  
 

2.5.1.DATA MANIPULATION INSTRUCTIONS 

The three Basic Types of instructions are         

 (1) Arithmetic instructions 

(2) Logical and bit manipulation instructions    

(3) Shift instructions 

2.5.2. Arithmetic Instructions 

 The basic arithmetic operations are Add, Subtract, Increment, and Decrement 

etc. The following table shows the operation, its representation and description. 
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Operation Representation Description 

Add R3  R1 + R2 Contents of R1 and R2 are added 

and the result is transferred to R3 

Subtract R3  R1 – R2 Contents of R2 are subtracted from 

contents of R1 and the result is 

transferred to R3 

1’s Complement R1 Complement the content of R1 

2’s Complement R1 +1 Complement the contents of R1 

and add 1 in it. 

2’s Complement 

subtraction 

R3  R1 + R2 + 1 Add R1 and the 2’s Complement 

of R2 

Increment R1  R1 +1 Increment the contents of R1 by 

one 

Decrement R1  R1 –1 Decrement the contents of R1 by 

one 
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Unit-III 

Control Memory 

 

3.7. Control Unit 

 3.7.1. Control Memory  

• The control unit in a digital computer initiates sequences of 

microoperations  

• The complexity of the digital system is derived form the number of 

sequences that are performed  

• When the control signals are generated by hardware, it is hardwired  

• In a bus-oriented system, the control signals that specify microoperations 

are groups of bits that select the paths in multiplexers, decoders, and 

ALUs.  

• The control unit initiates a series of sequential steps of microoperations  

• The control variables can be represented by a string of 1’s and 0’s called 

a control word  

• A microprogrammed control unit is a control unit whose binary control 

variables are stored in memory  

• A sequence of microinstructions constitutes a microprogram  

• The control memory can be a read-only memory  

• Dynamic microprogramming permits a microprogram to be loaded and 

uses a writable control memory  

• A computer with a microprogrammed control unit will have two separate 

memories: a main memory and a control memory  

• The microprogram consists of microinstructions that specify various 

internal control signals for execution of register microoperations  

• These microinstructions generate the microoperations to:  

o fetch the instruction from main memory  

o evaluate the effective address  

o execute the operation  

o return control to the fetch phase for the next instruction  

• The control memory address register specifies the address of the 

microinstruction  

• The control data register holds the microinstruction read from memory  

• The microinstruction contains a control word that specifies one or more 
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microoperations for the data processor  

• The location for the next microinstruction may, or may not be the next in 

sequence  

• Some bits of the present microinstruction control the generation of the 

address of the next microinstruction  

• The next address may also be a function of external input conditions  

• While the microoperations are being executed, the next address is 

computed in the next address generator circuit (sequencer) and then 

transferred into the CAR to read the next microinstructions  

• Typical functions of a sequencer are:  

 

incrementing the CAR by one  

o loading into the CAR and address from control memory  

o transferring an external address  

o loading an initial address to start the control operations  

• A clock is applied to the CAR and the control word and next-address 

information are taken directly from the control memory  

• The address value is the input for the ROM and the control work is the 

output  

• No read signal is required for the ROM as in a RAM  

• The main advantage of the micro programmed control is that once the 

hardware configuration is established, there should be no need for h/w or 

wiring changes  

• To establish a different control sequence, specify a different set of 

microinstructions for control memory  

 

3.8. Address Sequencing  

• Microinstructions are stored in control memory in groups, with each 

group specifying a routine  

• Each computer instruction has its own microprogram routine to generate 

the microoperations  

• The hardware that controls the address sequencing of the control 

memory must be capable of sequencing the microinstructions within a 

routine and be able to branch from one routine to another  

• Steps the control must undergo during the execution of a single 
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computer instruction:  

o Load an initial address into the CAR when power is turned on in 

the computer. This address is usually the address of the first 

microinstruction that activates the instruction fetch routine – IR 

holds instruction  

o The control memory then goes through the routine to determine 

the effective address of the operand – AR holds operand address  

o The next step is to generate the microoperations that execute the 

instruction by considering the opcode and applying a mapping  

o After execution, control must return to the fetch routine by 

executing an unconditional branch  

• The microinstruction in control memory contains a set of bits to initiate 

microoperations in computer registers and other bits to specify the method 

by which the next address is obtained  

• Conditional branching is obtained by using part of the microinstruction to 

select a specific status bit in order to determine its condition  

• The status conditions are special bits in the system that provide 

parameter information such as the carry-out of an adder, the sign bit of a 

number, the mode bits of an instruction, and i/o status conditions  

• The status bits, together with the field in the microinstruction that 

specifies a branch address, control the branch logic  

• The branch logic tests the condition, if met then branches, otherwise, 

increments the CAR  

• If there are 8 status bit conditions, then 3 bits in the microinstruction are 

used to specify the condition and provide the selection variables for the 

multiplexer  

• For unconditional branching, fix the value of one status bit to be one load 

the branch address from control memory into the CAR  

• A special type of branch exists when a microinstruction specifies a branch 

to the first word in control memory where a microprogram routine is 

located  

• The status bits for this type of branch are the bits in the opcode  

• Assume an opcode of four bits and a control memory of 128 locations  

• The mapping process converts the 4-bit opcode to a 7-bit address for 

control memory  
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• This provides for each computer instruction a microprogram routine with 

a capacity of four microinstructions  

• Subroutines are programs that are used by other routines to accomplish 

a particular task and can be called from any point within the main body of 

the microprogram  

• Frequently many microprograms contain identical section of code  

• Microinstructions can be saved by employing subroutines that use 

common sections of microcode  

• Microprograms that use subroutines must have a provisions for storing 

the return address during a subroutine call and restoring the address 

during a subroutine return  

• A subroutine register is used as the source and destination for the 

addresses  

 

3.9. Micro program Example  

• The process of code generation for the control memory is called 

microprogramming  

• Two memory units:  

o Main memory – stores instructions and data  

o Control memory – stores microprogram  

• Four processor registers  

o Program counter – PC  

o Address register – AR  

o Data register – DR  

o Accumulator register - AC  

• Two control unit registers  

o Control address register – CAR  

o Subroutine register – SBR  

• Transfer of information among registers in the processor is through MUXs 

rather than a bus  

• Three fields for an instruction:  

o 1-bit field for indirect addressing  

o 4-bit opcode  

o 11-bit address field  

• The example will only consider the following 4 of the possible 16 memory 
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instructions  

ADD 0000 AC ← AC + M[EA]  

BRANCH 0001 If (AC < 0) then (PC ← EA)  

STORE 0010 M[EA] ← AC  

EXCHANGE 0011 AC ← M[EA], M[EA] ← AC  

• The microinstruction format is composed of 20 bits with four parts to it  

o Three fields F1, F2, and F3 specify microoperations for the 

computer [3 bits each]  

o The CD field selects status bit conditions [2 bits]  

o The BR field specifies the type of branch to be used [2 bits]  

o The AD field contains a branch address [7 bits]  

• Each of the three microoperation fields can specify one of seven 

possibilities  

• No more than three microoperations can be chosen for a microinstruction  

• If fewer than three are needed, the code 000 = NOP  

DR ← M[AR], PC ← PC +1 F2 = 100 and F3 = 101  

F1 F2 F3 = 000 100 101  

• Five letters to specify a transfer-type microoperation  

o First two designate the source register  

o Third is a ‘T’  

o Last two designate the destination register  

AC ← DR F1 = 100 = DRTAC  

• The condition field is two bits to specify four status bit conditions  

00 Always = 1 U Unconditional branch  

01 DR(15) I Indirect address bit  

10 AC(15) S Sign bit of AC  

11 AC = 0 Z Zero value in AC  

• The branch field is two bits and is used with the address field to choose 

the address of the next microinstruction  

00 JMP CAR ← AD if condition =1  

CAR ← CAR + 1 else  

01 CALL CAR ← AD, SBR ← CAR + 1 if cond. =1  

CAR ← CAR +1 else  

10 RET CAR ← SBR  

11 MAP CAR(2-5) ← DR(11-14), CAR(0,1,6) ← 0  
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• Each line of an assembly language microprogram defines a symbolic 

microinstruction and is divided into five parts  

1. The label field may be empty or it may specify a symbolic 

address. Terminate with a colon  

2. The microoperations field consists of 1-3 symbols, separated by 

commas. Only one symbol from each F field. If NOP, then translated 

to 9 zeros  

3. The condition field specifies one of the four conditions  

4. The branch field has one of the four branch symbols  

5. The address field has three formats  

a. A symbolic address – must also be a label  

b. The symbol NEXT to designate the next address in 

sequence  

c. Empty if the branch field is RET or MAP and is converted to 

7 zeros  

• The symbol ORG defines the first address of a microprogram routine  

ORG 64 – places first microinstruction at control memory 1000000  

• The control memory has 128 locations, each one is 20 bits  

• The first 64 locations are occupied by the routines for the 16 instructions, 

addresses 0-63  

• Can start the fetch routine at address 64  

• The fetch routine requires the following three microinstructions (locations 

64-66)  

AR ← PC  

DR ← M[AR], PC ← PC +1  

AR ← DR(0-10), CAR(2-5) ← DR(11-14), CAR(0,1,6) ← 0  

ORG 64  

Fetch: PCTAR U JMP NEXT  

READ, INCPC U JMP NEXT  

DRTAR U MAP  

Address F1 F2 F3 CD BR AD 

1000000 110 000 000 00 00 1000001  

1000001 000 100 101 00 00 1000010  

1000010 101 000 000 00 11 0000000  
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3.10. Design of Control Unit  

The bits of the microinstruction are usually divided into fields, with 

each field defining a distinct, separate function. The various fields 

encountered in instruction formats provide control bits to initiate micro 

operations in the system, special bits to specify the way that the next 

address is to be evaluated, and an address field for branching. The number 

of control bits that initiate micro operation can be reduced by grouping 

mutually exclusive variables into fields and encoding the k bits in each field 

to provide 2 micro operations. Each field requires a decoder to produce the 

corresponding control signals. This method reduces the size of the 

microinstruction bits but requires additional hardware external to the 

control memory. It also increases the delay time of the control signals 

because they must propagate through the decoding circuits. 

 

The encoding of control bits was demonstrated in the programming 

example of the preceding section. The nine bits of the microoperation field 

are divided into three subfields of three bits each. The control memory 

output of each subfield must be decoded to provide the distinct 

microoperations. The outputs of the decoders are connected to the 

appropriate inputs in the processor unit. 

Below figure shows the three decoders and some of the connections 

that must be made from their outputs. Each of the three fields of the 

microinstruction presently available in the output of control memory are 

decoded with a 3  8 decoder to provide eight outputs. Each of these 

outputs must be connected to the proper circuit to initiate the 

corresponding microoperation as specified in Table 7-1. For example, when 

FI = 101 (binary 5), the next clock pulse transition transfers the content of 

DR (0-10) to AR (symbolized by DRTAR in Table 7-1). Similarly, when F1 = 

101 (binary 6) there is a transfer from PC to AR (symbolized by PCTAR). As 

shown in Fig. 4-7, outputs 5 and 6 of decoder F1 are connected to the load 

input of AR so that when either one of these outputs is active, information 

from the multiplexers is transferred to AR. The multiplexers select the 

information from DR when output 5 is active and from PC when output 5 in 

inactive. The transfer into AR occurs with a clock pulse transition only 

when output 5 or output 6 of the decoder are active. The other outputs of 
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the decoders that initiate transfers between registers must be connected in 

a similar fashion. 

The arithmetic logic shift unit can be designed, instead of using 

gates to generate the control signals marked by the symbols AND, ADD, 

and DR in Fig , these inputs will now come from the outputs of the 

decoders associated with the symbols AND, ADD, and DRTAC, respectively 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure : Decoding of micro operation fields 

 

as shown in Fig. The other output of the decoders that are 

associated with an AC operation must also be connected to the arithmetic 

logic shift unit in a similar fashion. 

 

 



[Computer Organization] 
 

[Dept of CSE,VEMU] Page 94  

2.7. COMPUTER ARITHMETIC 

 Data is manipulated by using the arithmetic instructions in digital 

computers. Data is manipulated to produce results necessary to give 

solution for the computation problems. The Addition, subtraction, 

multiplication and division are the four basic arithmetic operations. If we 

want then we can derive other operations by using these four operations.  

 To execute arithmetic operations there is a separate section called 

arithmetic processing unit in central processing unit. The arithmetic 

instructions are performed generally on binary or decimal data. Fixed-point 

numbers are used to represent integers or fractions. We can have signed 

or unsigned negative numbers. Fixed-point addition is the simplest 

arithmetic operation. 

 If we want to solve a problem then we use a sequence of well-

defined steps. These steps are collectively called algorithm. To solve 

various problems we give algorithms. In order to solve the computational 

problems, arithmetic instructions are used in digital computers that 

manipulate data. These instructions perform arithmetic calculations. 

 And these instructions perform a great activity in processing data in 

a digital computer. As we already stated that with the four basic arithmetic 

operations addition, subtraction, multiplication and division, it is possible to 

derive other arithmetic operations and solve scientific problems by means 

of numerical analysis methods. 

 A processor has an arithmetic processor(as a sub part of it) that 

executes arithmetic operations. The data type, assumed to reside in 

processor, registers during the execution of an arithmetic instruction. 

Negative numbers may be in a signed magnitude or signed complement 

representation. There are three ways of representing negative fixed point - 

binary numbers signed magnitude, signed 1’s complement or signed 2’s 

complement. Most computers use the signed magnitude representation for 

the mantissa. 

2.7.1. Addition and Subtraction with Signed –Magnitude Data 

 We designate the magnitude of the two numbers by A and B. Where 

the signed numbers are added or subtracted, we find that there are eight 

different conditions to consider, depending on the sign of the numbers and 

the operation performed. These conditions are listed in the first column of 
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Table 4.1. The other columns in the table show the actual operation to be 

performed with the magnitude of the numbers. The last column is needed 

to present a negative zero. In other words, when two equal numbers are 

subtracted, the result should be +0 not -0. The algorithms for addition and 

subtraction are derived from the table and can be stated as follows (the 

words parentheses should be used for the subtraction algorithm). 

 

 When the signs of A and B are same, add the two magnitudes and 

attach the sign of result is that of A. When the signs of A and B are not 

same, compare the magnitudes and subtract the smaller number from the 

larger. Choose the sign of the result to be the same as A, if A > B or the 

complement of the sign of A if A < B. If the two magnitudes are equal, 

subtract B from A and make the sign of the result will be positive. 
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2.7.2. Hardware Implementation for Signed-Magnitude Data: 
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2.7.3. Addition and Subtraction with signed 2’s Complement Data: 

 

 

 

 

 

2.8. MULTIPLICATION ALGORITHMS: 

 Multiplication of two fixed-point binary numbers in signed magnitude 

representation is done with paper and pencil by a process of successive 

shift and add operations. This process is best illustrated with a numerical 

example: 
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This process looks at successive bits of the multiplier, least significant bit 

first. If the multiplier bit is 1, the multiplicand is copied as it is; otherwise, 

we copy zeros. Now we shift numbers copied down one position to the left 

from the previous numbers. Finally, the numbers are added and their sum 

produces the product. 

 

 

2.8.1. Hardware Implementation for Signed-Magnitude Data: 

 When multiplication is implemented in a digital computer, we change 

the process slightly. Here, instead of providing registers to store and add 

simultaneously as many binary numbers as there are bits in the multiplier, 

it is convenient to provide an adder for the summation of only two binary 

numbers, and successively accumulate the partial 

products in a register. Second, instead of shifting the multiplicand to left, 

the partial product is shifted to the right, which results in leaving the 

partial product and the multiplicand in the required relative positions. Now, 

when the corresponding bit of the multiplier is 0, there is no need to add 

all zeros to the partial product since it will not alter its value. 

 The hardware for multiplication consists of the equipment given in 

Figure .The multiplier is stored in the register and its sign in Qs. The 

sequence counter SC is initially set bits in the multiplier. After forming each 

partial product the counter is decremented. When the content of the 

counter reaches zero, the product is complete and we stop the process. 
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2.8.2. Booth Multiplication Algorithm: 

 If the numbers are represented in signed 2’s complement then we 

can multiply them by using Booth algorithm. In fact the strings of 0's in the 

multiplier need no addition but just shifting, and a string of l's in the 

multiplier from bit weight 2k to weight 2m can be treated as 2k+1 - 2m. 

For example, the binary number 001111 (+15) has a string of 1's from 23 

to 20(k = 3, m = 0). 

  The number can be represented as 2k+1 – 2m = 24- 20= 16 

- 1 = 15. Therefore, the multiplication M x 14, where M is the multiplicand 

and 14 the multiplier may be computed as M x 24 - M x 21. That is, the 

product can be obtained by shifting the binary multiplicand M four times to 

the left and subtracting M shifted left once. 

 Booth algorithm needs examination of the multiplier bits and shifting 

of the partial product. Prior to the shifting, the multiplicand added to the 

partial product, subtracted from the partial product, or left unchanged by 

the following rules: 

1. The multiplicand is subtracted from the partial product when we get the 

first least significant 1 in a string of 1's in the  multiplier. 
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2. The multiplicand is added to the partial product when we get the first Q 

(provided that there was a previous 1) in a  string of 0's in the multiplier. 

3. The partial product does not change when the multiplier bit is the same 

as the previous multiplier bit. 

 The algorithm applies to both positive and negative multipliers in 2's 

complement representation. This is because a negative multiplier ends with 

a string of l's and the last operation will be a subtraction of the appropriate 

weight. For example, a multiplier equal to -14 is represented in 2's 

complement as 110010 and is treated as -24 + 22 – 21 = -14. 

 The hardware implementation of Booth algorithm requires the 

register configuration shown in Fig. Qn represents the least significant bit 

of the multiplier in register QR. An extra flip-flop Qn+1 is appended to QR 

to provide a double bit inspection of the multiplier. The flowchart for Booth 

algorithm is shown in Figure 4.7(b). AC and the appended bit Qn+1 are 

initially set to 0 and the sequence counter SC is set to a number n equal to 

the number of bits in the multiplier. The two bits of the multiplier in Qn and 

Qn+1 are inspected. If the two bits are 10, it means that the first 1 in a 

string of 1's has been encountered. This needs a subtraction of the 

multiplicand from the partial product in AC. If the two bits are equal to 01. 

It means that the first 0 in a string of 0's has been encountered. This 

needs the addition of the multiplicand to the partial product in AC. When 

the two bits are equal, the partial product does not change. An overflow 

cannot occur because the addition and subtraction of the multiplicand 

follow each other. Hence, the two numbers that are added always have 

opposite sign, a condition that excludes an overflow. Next step is to shift 

right the partial product and the multiplier (including bit Qn+1). This is an 

arithmetic shift right (ashr) operation which shifts AC and QR to the right 

and leaves the sign bit in AC same The sequence counter decrements and 

the computational loop is repeated n times. 

 A numerical example of Booth algorithm is given in Table 4.3 for n = 

5. It gives the multiplication of (-9) x (-13) = +117. Note that the 

multiplier in QR is negative and that the multiplicand in BR is also negative. 

The 10-bit product appears in AC. The final value of Qn+1 is the original 

sign bit of the multiplier and should not be taken as part of the product. 
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2.8.3. Array Multiplier 

 To check the bits of the multiplier one at a time and forming partial 

products is a sequential operation requiring a sequence of add and shift 

micro-operations. The multiplication of two binary numbers can be done 

with one micro-operation by using combinational circuit that forms the 

product bits all at once. 

 

 This is a fast way since all it takes is the time for the signals to 

propagate through the gates that form the multiplication array. However, 

an array multiplier requires a large number of gates, and so it is not an 
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economical unit for the development of ICs. Now we see how an array 

multiplier is implemented with a combinational circuit. Consider the 

multiplication of two 2-bit numbers as shown in Fig. 4.8.  

 The multiplicand bits are b1 and b0, the multiplier bits are a1 and 

a0, and the product is c3 c2 c1 c0. The first partial product is obtained by 

multiplying a0 by b1b0. The multiplication of two bits gives a 1 if both bits 

are 1; otherwise, it produces a 0. This is identical to an AND operation and 

can we implement it with an AND gate. As shown in the diagram, the first 

partial product is formed by means of two AND gates. The second partial 

product is formed by multiplying a1 by b1b0 and is shifted one position to 

the left. The two partial products are added with two half-adder (HA) 

circuits. Usually, there are more bits in the partial products and it will be 

necessary to use full-adders to produce the sum. Note that the least 

significant bit of the product does not have to go through an adder since it 

is formed by the output of the first AND gate. 

  A combinational circuit binary multiplier with more bits can be 

constructed in a similar fashion. A bit of the multiplier is ANDed with each 

bit of the multiplicand in as many levels as there are bits in the multiplier. 

The binary output in each level AND gates is added in parallel with the 

partial product of the previous level to form a new partial product. The last 

level produces the product. For j multiplier bits and k multiplicand bits we 

need j * k AND gates and (j – 1) k-bit adders to produce a product of j + k 

bits. 

 As a second example, consider a multiplier circuit that multiplies a 

binary number of four bits with a number of three bits. Let the multiplicand 

be represented by b3b2b1b0 and the multiplier by a2a1a0. Since k=4 and 

j=3, we need 12 AND gates and two 4-bit adders to produce a product of 

seven bits. The logic diagram of the multiplier is 
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2.9. DIVISION ALGORITHMS 

Division of two fixed-point binary numbers in signed magnitude 

representation is performed with paper and pencil by a process of 

successive compare, shift and subtract operations. Binary division is much 
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simpler than decimal division because here the quotient digits are either 0 

or 1 and there is no need to estimate how many times the dividend or 

partial remainder fits into the divisor. The division process is described in 

Figure 4.10. The divisor B has five bits and the dividend A has ten. 

 

 

 

 The devisor is compared with the five most significant bits of the 

dividend. Since the 5- bit number is smaller than B, we again repeat the 

same process. Now the 6-bit number is greater than B, so we place a 1 for 

the quotient bit in the sixth position above the dividend. Now we shift the 

divisor once to the right and subtract it from the dividend. The difference is 

known as a partial remainder because the division could have stopped here 

to obtain a quotient of 1 and a remainder equal to the partial remainder. 

Comparing a partial remainder with the divisor continues the process. If 

the partial remainder is greater than or equal to the divisor, the quotient 

bit is equal to 1. The divisor is then shifted right and subtracted from the 

partial remainder. If the partial remainder is smaller than the divisor, the 

quotient bit is 0 and no subtraction is needed. The divisor is shifted once to 

the right in any case. Obviously the result gives both a quotient and a 

remainder.  

2.9.1.Hardware Implementation for Signed-Magnitude Data: 

 In hardware implementation for signed-magnitude data in a digital 

computer, it is convenient to change the process slightly. Instead of 

shifting the divisor to the right, two dividends, or partial remainders, are 
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shifted to the left, thus leaving the two numbers in the required relative 

position. Subtraction is achieved by adding A to the 2's complement of B. 

End carry gives the information about the relative magnitudes. 

 The hardware required is identical to that of multiplication. Register 

EAQ is now shifted to the left with 0 inserted into Qn and the previous 

value of E is lost. The example is given in Figure 4.10 to clear the proposed 

division process. The divisor is stored in the B register and the double-

length dividend is stored in registers A and Q. The dividend is shifted to the 

left and the divisor is subtracted by adding its 2's complement value.  

 The register E keeps the information about the relative magnitude. A 

quotient bit 1 is inserted into Qn and the partial remainder is shifted to the 

left to repeat the process when E = 1. If E =0, it signifies that A < B so the 

quotient in Qn remains a 0 (inserted during the shift). To restore the 

partial remainder in A the value of B is then added to its previous value. 

The partial remainder is shifted to the left and the process is repeated 

again until we get all five quotient-bits. Note that while the partial 

remainder is shifted left, the quotient bits are shifted also and after five 

shifts, the quotient is in Q and A has the final remainder. Before showing 

the algorithm in flowchart form, we have to consider the sign of the result 

and a possible overflow condition. The sign of the quotient is obtained from 

the signs of the dividend and the divisor. If the two signs are same, the 

sign of the quotient is plus. If they are not identical, the sign is minus. The 

sign of the remainder is the same as that of the dividend. 
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2.9.2. Hardware Algorithm: 

 Figure 4.6 is a flowchart of the hardware multiplication algorithm. In 

the beginning, the multiplicand is in B and the multiplier in Q. Their 

corresponding signs are in Bs and Qs respectively. We compare the signs 

of both A and Q and set to corresponding sign of the product since a 

double-length product will be stored in registers A and Q. Registers A and 

E are cleared and the sequence counter SC is set to the number of bits of 

the multiplier. Since an operand must be stored with its sign, one bit of the 

word will be occupied by the sign and the magnitude will consist of n-1 

bits. 

 Now, the low order bit of the multiplier in Qn is tested. If it is 1, the 

multiplicand (B) is added to present partial product (A), 0 otherwise. 

Register EAQ is then shifted once to the right to form the new partial 

product. The sequence counter is decremented by 1 and its new value 

checked. If it is not equal to zero, the process is repeated and a new 

partial product is formed. When SC = 0 we stops the process. 

 

 The hardware divide algorithm is given in Figure A and Q contain the 

dividend and B has the divisor. The sign of the result is transferred into Q. 

A constant is set into the sequence counter SC to specify the number of 

bits in the quotient. As in multiplication, we assume that operands are 

transferred to registers from a memory unit that has words of n bits. Since 
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an operand must be stored with its sign, one bit of the word will be 

occupied by the sign and the magnitude will have n-1 bits. We can check a 

divide-overflow condition by subtracting the divisor (B) from half of the bits 

of the dividend stored (A). If A<B, the divide-overflow occur and the 

operation is terminated. If A≥ B, no divide overflow occurs and so the 

value of the dividend is restored by adding B to A. 

 The division of the magnitudes begins by shifting the dividend in AQ 

to the left with the high-order bit shifted into E. If the bit shifted into E is 

1, we know that EA>B because EA consists of 1 followed by n-1 bits while 

B consists of only n-1 bits. In this case, B must be subtracted from EA and 

1 inserted into Qn for the quotient bit. Since in register A, the high-order 

bit of the dividend (which is in E) is missing, its value is EA – 2n-1. Adding 

to this value the 2’s complement of B results in: 

    (EA – 2n-1) + (2n-1–B) = EA – B 

If we want E to remain a 1, the carry from this addition is not transferred 

to E. If the shift-left operation inserts a 0 into E, we subtract the divisor by 

adding its 2’s complement value and the carry is transferred into E. If E=1, 

it shows that A< B, 

therefore Qn is set. If E = 0, it signifies that A < B and the original number 

is restored by B + A. In the latter case we leave a 0 in Qn. We repeat this 

process with register A holding the partial remainder. After n-1 loops, the 

quotient magnitude is stored in register Q and the remainder is found in 

register A. The quotient sign is in Qs and the sign of the remainder is in As. 
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2.9.3. Divide Overflow 

 An overflow may occur in the division operation, which may be easy 

to handle if we are using paper and pencil but is not easy when are using 

hardware. This is because the length of registers is finite and will not hold 

a number that exceeds the standard length. To see this, let us consider a 

system that has 5-bit registers. We use one register to hold 

the divisor and two registers to hold the dividend. From the example of 

Figure the quotient will consist of six bits if the five most significant bits of 

the dividend constitute a number greater than the divisor. The quotient is 

to be stored in a standard 5-bit register, so the overflow bit will require 

one more flip-flop for storing the sixth bit. This divide-overflow condition 

must be avoided in normal computer operations because the entire 

quotient will be too long for transfer into a memory unit that has words of 

standard length, that is, the same as the length of registers. Provisions to 

ensure that 



[Computer Organization] 
 

[Dept of CSE,VEMU] Page 112  

this condition is detected must be included in either the hardware or the 

software of the computer, or in a combination of the two. 

 When the dividend is twice as long as the divisor, we can understand 

the condition for overflow as follows: 

 A divide-overflow occurs if the high-order half bits of the dividend 

makes a number greater than or equal to the divisor. Another problem 

associated with division is the fact that a division by zero must be avoided. 

The divide-overflow condition takes care of this condition as well. This 

occurs because any dividend will be greater than or equal to a 

divisor, which is equal to zero. Overflow condition is usually detected when 

a special flip-flop is set. We will call it a divide-overflow flip-flop and label it 

DVF. 

2.10. FLOATING-POINT ARITHMETIC OPERATIONS 

  In many high-level programming languages we have a facility 

for specifying floating point numbers. The most common way is by a real 

declaration statement. High level programming languages must have a 

provision for handling floating-point arithmetic operations. The operations 

are generally built in the internal hardware. If no hardware is available, the 

compiler must be designed with a package of floating-point software 

subroutine. Although the hardware method is more expensive, it is much 

more efficient than the software method. Therefore, floating- point 

hardware is included in most computers and is omitted only in very small 

ones. 

2.10.1. Basic Considerations 

 There are two part of a floating-point number in a computer - a 

mantissa m and an exponent e. The two parts represent a number 

generated from multiplying m times a radix r raised to the value of e. Thus 

      m x re 

 The mantissa may be a fraction or an integer. The position of the 

radix point and the value of the radix r are not included in the registers. 

For example, assume a fraction representation and a radix 10. The decimal 

number 537.25 is represented in a register with m = 53725 and e = 3 and 

is interpreted to represent the floating-point number 

     .53725 x 103 

 A floating-point number is said to be normalized if the most 
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significant digit of the mantissa in nonzero. So the mantissa contains the 

maximum possible number of significant digits. We cannot normalize a 

zero because it does not have a nonzero digit. It is represented in floating-

point by all 0’s in the mantissa and exponent. Floating-point representation 

increases the range of numbers for a given register. 

 Consider a computer with 48-bit words. Since one bit must be 

reserved for the sign, the range of fixed-point integer numbers will be + 

(247 – 1), which is approximately + 1014. The 48 bits can be used to 

represent a floating-point number with 36 bits for the mantissa and 12 bits 

for the exponent. Assuming fraction representation for the mantissa and 

taking the two sign bits into consideration, the range of numbers that can 

be represented is 

     + (1 – 2-35) x 22047 

 This number is derived from a fraction that contains 35 1’s, an 

exponent of 11 bits(excluding its sign), and because 211–1 = 2047. The 

largest number that can be accommodated is approximately 10615. The 

mantissa that can accommodated is 35 bits (excluding the sign) and if 

considered as an integer it can store a number as large as 

(235 –1). This is approximately equal to 1010, which is equivalent to a 

decimal number of 10 digits. 

 Computers with shorter word lengths use two or more words to 

represent a floating point number. An 8-bit microcomputer uses four words 

to represent one floating-point number. One word of 8 bits are reserved for 

the exponent and the 24 bits of the other three words are used in the 

mantissa. 

 Arithmetic operations with floating-point numbers are more 

complicated than with fixed-point numbers. Their execution also takes 

longer time and requires more complex hardware. Adding or subtracting 

two numbers requires first an alignment of the radix point since the 

exponent parts must be made equal before adding or subtracting the 

mantissas. We do this alignment by shifting one mantissa while its 

exponent is adjusted until it becomes equal to the other exponent. 

Consider the sum of the following floating-point numbers: 

    .5372400 x 102 

    + .1580000 x 10-1 
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 It is necessary to make two exponents be equal before the 

mantissas can be added. We can either shift the first number three 

positions to the left, or shift the second number three positions to the 

right. When we store the mantissas in registers, shifting to the left causes 

a loss of most significant digits. Shifting to the right causes a loss of least 

significant digits. The second method is preferable because it only reduces 

the accuracy, while the first method may cause an error. The usual 

alignment procedure is to shift the mantissa that has the smaller exponent 

to the right by a number of places equal to the difference between the 

exponents. Now, the mantissas can be added. 

     . 5372400 x 102 

    +. 0001580 x 102 

    ----------------------------------- 

    . 5373980 x 102 

 When two normalized mantissas are added, the sum may contain an 

overflow digit. An overflow can be corrected easily by shifting the sum 

once to the right and incrementing the exponent. When two numbers are 

subtracted, the result may contain most significant zeros as shown in the 

following example: 

      .56780 x 105 

    - .56430 x 105 

    ----------------------------- 

       .00350 x 105 

 An underflow occurs if a floating-point number that has a 0 in the 

most significant position of the mantissa. To normalize a number that 

contains an underflow, we shift the mantissa to the left and decrement the 

exponent until a nonzero digit appears in the first position. Here, it is 

necessary to shift left twice to obtain .35000 x 103. In most computers a 

normalization procedure is performed after each operation to ensure that 

all results are in a normalized form. Floating-point multiplication and 

division need not do an alignment of the mantissas. Multiplying the two 

mantissas and adding the exponents can form the product. Dividing the 

mantissas and subtracting the exponents perform division. 

 The operations done with the mantissas are the same as in fixed-

point numbers, so the two can share the same registers and circuits. The 
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operations performed with the exponents are compared and incremented 

(for aligning the mantissas), added and subtracted (for multiplication) and 

division), and decremented (to normalize the result). We can represent the 

exponent in any one of the three representations – signed magnitude, 

signed 2’s complement or signed 1’s complement. A is a fourth 

representation also, known as a biased exponent.  

 In this representation, the sign bit is removed from beginning to 

form a separate entity. The bias is a positive number that is added to each 

exponent as the floating-point number is formed, so that internally all 

exponents are positive. The following example may clarify this type of 

representation. Consider an exponent that ranges from –50 to 49. 

Internally, it is represented by two digits (without a sign) by adding to it a 

bias of 50. The exponent register contains the number e + 50, where e is 

the actual exponent. This way, the exponents are represented in registers 

as positive numbers in the range of 00 to 99. Positive exponents in 

registers have the range of numbers from 99 to 50. The subtraction of 50 

gives the positive values from 49 to 0. Negative exponents are represented 

in registers in the range of –1 to –50. Biased exponents have the 

advantage that they contain only positive numbers. Now it becomes 

simpler to compare their relative magnitude without bothering about their 

signs. Another advantage is that the smallest possible biased exponent 

contains all zeros. The floating-point representation of zero is then a zero 

mantissa and the smallest possible exponent. 

2.10.2. Register Configuration 

 The register configuration for floating-point operations is shown in 

figure 4.13. As a rule, the same registers and adder used for fixed-point 

arithmetic are used for processing the mantissas. The difference lies in the 

way the exponents are handled. The register organization for floating-point 

operations is shown in Fig. 4.13. Three registers are there, BR, AC, and 

QR. Each register is subdivided into two parts. The mantissa part has the 

same uppercase letter symbols as in fixed-point representation. The 

exponent part may use corresponding lower-case letter symbol. 
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 Assuming that each floating-point number has a mantissa in signed-

magnitude representation and a biased exponent. Thus the AC has a 

mantissa whose sign is in As, and a magnitude that is in A. The diagram 

shows the most significant bit of A, labeled by A1. The bit in his position 

must be a 1 to normalize the number. Note that the symbol AC represents 

the entire register, that is, the concatenation of As, A and a. In the similar 

way, register BR is subdivided into Bs, B, and b and QR into Qs, Q and q. 

 

 A parallel-adder adds the two mantissas and loads the sum into A 

and the carry into E. A separate parallel adder can be used for the 

exponents. The exponents do not have a district sign bit because they are 

biased but are represented as a biased positive quantity. It is assumed 

that the floating-point number is so large that the chance of an exponent 

overflow is very remote and so the exponent overflow will be neglected. 

The exponents are also connected to magnitude comparator that provides 

three binary outputs to indicate their relative magnitude. 

 

 The number in the mantissa will be taken as a fraction, so they 

binary point is assumed to reside to the left of the magnitude part. Integer 

representation for floating point causes certain scaling problems during 

multiplication and division. To avoid these problems, we adopt a fraction 

representation. The numbers in the registers should initially be normalized. 

After each arithmetic operation, the result will be normalized. Thus all 

floating-point operands are always normalized. 

2.10.3. Addition and Subtraction of Floating Point Numbers 

 During addition or subtraction, the two floating-point operands are 

kept in AC and BR. The sum or difference is formed in the AC. The 

algorithm can be divided into four consecutive parts: 
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1. Check for zeros. 

2. Align the mantissas. 

3. Add or subtract the mantissas 

4. Normalize the result 

 A floating-point number cannot be normalized, if it is 0. If this 

number is used for computation, the result may also be zero. Instead of 

checking for zeros during the normalization process we check for zeros at 

the beginning and terminate the process if necessary. The alignment of the 

mantissas must be carried out prior to their operation. After the mantissas 

are added or subtracted, the result may be un-normalized. The 

normalization procedure ensures that the result is normalized before it is 

transferred to memory. For adding or subtracting two floating-point binary 

numbers, if BR is equal to zero, the operation is stopped, with the value in 

the AC being the result. If AC = 0, we transfer the content of BR into AC 

and also complement its sign we have to subtract the numbers. If neither 

number is equal it to zero, we proceed to align the mantissas. The 

magnitude comparator attached to exponents a and b gives three outputs, 

which show their relative magnitudes. If the two exponents are equal, we 

go to perform the arithmetic operation. If the exponents are not equal, the 

mantissa having the smaller exponent is shifted to the right and its 

exponent incremented. This process is repeated until two exponents are 

equal. 

 The addition and subtraction of the two mantissas is similar to the 

fixed-point addition and subtraction algorithm presented in Fig. 4.14. The 

magnitude part is added or subtracted depends on the operation and the 

signs of the two mantissas. If an overflow occurs when the magnitudes are 

added, it is transferred into flip-flop E. If E = 1, the bit  is transferred into 

A1 and all other bits of A are shifted right. The exponent must be 

incremented so that it can maintain the correct number. No underflow may 

occur in this case this is because the original mantissa that was not shifted 

during the alignment was already in a normalized position. If the 

magnitudes were subtracted, there may be zero or may have an underflow 

in the result. If the mantissa is equal to zero the entire floating-point 

number in the AC is cleared to zero. Otherwise, the mantissa must have at 

least one bit that is equal to 1.The mantissa has an underflow if the most 
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significant bit in position A1, is 0. In that case, the mantissa is shifted left 

and the exponent decremented. The bit in A1 is checked again and the 

process is repeated until A1 = 1. When A1 = 1, the mantissa is normalized 

and the operation is completed. 
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2.10.4. Multiplication 
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2.10.5.Division 
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2.11. DECIMAL ARITHMETIC OPERATIONS: 

2.11.1. Decimal Arithmetic Unit: 

 The user of a computer input data in decimal numbers and receives 

output in decimal form. But a CPU with an ALU can perform arithmetic 

micro-operations only on binary data. To perform arithmetic operations 

with decimal data, it is necessary to convert the input decimal numbers to 

binary, to perform all calculations with binary numbers, and to convert the 

results into decimal. This may be an efficient method in applications 

requiring a large number of calculations and a relatively smaller amount of 

input and output data. When the application calls for a large amount of 

input-output and a 

relatively smaller number of arithmetic calculations, it becomes convenient 

to do the internal arithmetic directly with the decimal numbers. Computers 

that can do decimal arithmetic must store the decimal data in binary coded 

form. The decimal numbers are then applied to a decimal arithmetic unit, 

which can execute decimal arithmetic micro-operations. 

 Electronic calculators invariably use an internal decimal arithmetic 

unit since inputs and outputs are frequent. There does not seem to be a 

reason for converting the keyboard input numbers to binary and again 

converting the displayed results to decimal, this is because this process 

needs special circuits and also takes a longer time 

to execute. Many computers have hardware for arithmetic calculations with 

both binary and decimal data. 

 Users can specify by programmed instructions whether they want 

the computer to does calculations with binary or decimal data. A decimal 

arithmetic unit is a digital function that does decimal micro-operations. It 

can add or subtract decimal numbers. The unit needs coded decimal 

numbers and produces results in the same adopted binary code. A single-

stage decimal arithmetic unit has of nine binary input variables and five 

binary output variables, since a minimum of four bits is required to 

represent each coded decimal digit. Each stage must have four inputs for 

the addend digit, four inputs for the addend digit, and an input-carry. The 

outputs need four terminals for the sum digit and one for the output carry. 

Of course, there is a wide range of possible circuit configurations 

dependent on the code used to represent the decimal digits. 
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2.11.2. BCD Adder: 

 Now let us see the arithmetic addition of two decimal digits in BCD, 

with a possible carry from a previous stage. Since each input digit does not 

exceed 9, the output sum cannot be greater than 9 + 9 + 1 = 19, the 1 in 

the sum being an input-carry. Assume that we apply two BCD digits to a 4-

bit binary adder. The adder will form the sum in binary and produce a 

result that may range from 0 to 19. These binary numbers are listed in 

Table 4.4 and are labeled by symbols K, Z8, Z4, Z2, and Z1. K is the carry 

and the subscripts under the letter Z represent the weights 8, 4, 2, and 1 

that can be 

assigned to the four its in the BCD code. The first column in the table lists 

the binary sums as they appear in the outputs of a 4-bit binary adder. The 

output sum of two decimal numbers must be represented in BCD and 

should appear in the form listed in the second column of the table. The 

problem is to find a simple rule by which the binary column of the table. 

The problem is to find a simple rule so that the binary number in the first 

column can be converted to the correct BCD digit representation of the 

number in the second column. It is apparent that when the binary sum is 

equal to or less than 1001, no conversion is needed. When the binary sum 

is greater than 1001, we need to add of binary 6 (0110) to the binary sum 

to find the correct BCD representation and to produces output-carry as 

required. 

 One way of adding decimal numbers in BCD is to use one 4-bit 

binary adder and perform the arithmetic operation one digit at a time. The 

low-order pair of BCD digits is first added to produce a binary sum if the 

result is equal or greater than 1010, it is corrected by adding 0110 to the 

binary sum. The second operation produces an output carry for the next 

pair of significant digits. The next higher-order pair of digits, together with 

the input-carry, is then added to produce their binary sum. If this result is 

equal to or greater than 1010, it is corrected by adding 0110. The 

procedure is repeated until 

all decimal digits are added. 

 The logic circuit that detects the necessary correction can be derived 

from the table entries. It is obvious that a correction is needed when the 

binary sum has an output carry K = 1. The other six combinations from 
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1010 to 1111 that need a correction have a 1 in position Z8. To 

differentiate them from binary 1000 and 1001, which also have a 1 in 

position Z8, we specify further that either Z4 or Z2 must have a 1. The 

condition for a correction and an output-carry can be expressed by the 

Boolean function  

    C = K + Z8 Z4 + Z8 Z2 

 When C = 1, we need to add 0110 to the binary sum and provide an 

output-carry for the next stage. A BCD adder is circuit that adds two BCD 

digits in parallel and generates a sum digit also in BCD. ABCD adder must 

include the correction logic in its internal construction. To add 0110 to the 

binary sum, we use a second 4-bit binary adder. The two decimal digits, 

together with the input-carry, are first added in the top 4-bit binary adder 

to produce the binary sum. When the output-carry is equal to 0, nothing is 

added to the binary sum through the bottom 4-bit binary adder. The 

output-carry generated from the bottom binary adder may be ignored, 

since it supplies information already available in the output-carry terminal. 
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2.11.3. BCD Subtraction: 

 Subtraction of two decimal numbers needs a subtractor circuit that 

is different from a BCD adder. We perform the subtraction by taking the 9’s 

or 10’s complement of the subtrahend and adding it to the minuend. Since 

the BCD is not a self-complementing code, we cannot obtain the 9’s 

complement by complementing each bit in the code. It must be formed 

using a circuit that subtracts each BCD digit from 9. The 9’s complement of 

a decimal digit represented in BCD may be obtained by complementing the 

bits in the coded representation of the digit but we have to include. There 

are two possible correction methods. In the first method, binary 1010 

(decimal 10) is added to each complemented digit then we discard the 

carry after each addition. 

 

 In the second method, binary 0110 (decimal 6) is added before the 

digit is complemented. As a numerical illustration, the 9’s complement of 

BCD 0111(decimal 7) is computed by first complementing each bit to 

obtain 1000. Adding binary 1010 and discarding the carry, we obtain 0010 

(decimal 2). By the second method, we add 0110 

to 0111 to obtain 1101. Complementing each bit, we obtain the required 

result of 0010. Complementing each bit of 4-bit binary number N is 

identical to the subtraction of the number from 1111 (decimal 15). Adding 
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the binary equivalent of decimal 10 gives 15 – N + 10 = 9 + 16. But 16 

signifies the carry that is discarded, so the result is 9 – N as required. 

Adding the binary equivalent of decimal 6 and then complementing gives 

15 – (N + 6) = 9 – N as required. 

 We can also obtain the 9’s complement of a BCD digit through a 

combinational circuit. When this circuit is combined to a BCD adder, we get 

a BCD adder/subtractor. Let the subtrahend (or addend) digit be denoted 

by the four binary variables B8, B4, B2, and B1. Let M be a mode bit that 

controls the add/subtract operation. When M = 0, the two 

digits are added; when M = 1, the digits are subtracted. Let the binary 

variables x8, x4, x2, and x1 be the outputs of the 9’s complement circuit. 

By an examination of the truth table for the circuit, it may be observed 

that B1 should always be complemented; B2 is always the same in the 9’s 

complement as in the original digit; x4 is 1 when the exclusive OR of B2 

and B4 is 1; and x8 is 1 when B8B4B2 = 000. The Boolean functions for 

the 9’s complement circuit are 

x1 = B1 M’ + B’1 M 

x2 = B2 

x4 = B4M’ + (B’4B2 + B4B’2)M 
x8 = B8M’ + B’8B4’B’2M 

 From these equations we see that x = B when M = 0. When M = 1, 

the x equals to the 9’s complement of B. One stage of a decimal arithmetic 

unit that can be used to add or subtract two BCD digits is given in Fig. 

4.18. It has of a BCD adder and a 9’s complementer. The mode M controls 

the operation of the unit. With M = 0, the S outputs form the sum of A and 

B. With M = 1, the S outputs form the sum of A plus the 9’s complement of 

B. For numbers with n decimal digits we need n such stages. The output 

carries Ci+1 from one stage. to subtract the two decimal numbers let M = 

1 and apply a 1 to the input carry C1 of the first stage. The outputs will 

form the sum of A plus the 10’s complement of B, which is equivalent to a 

subtraction operation if the carry-out of the last stage is discarded. 
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Unit-IV 

Periperal Devices 

Input –output Organization 

4.7. Input-Output Interface 

 Input-output interface provides a method for transferring 

information between internal storage and external I/O devices. Peripherals 

connected to a computer need special communication links for interfacing 

them with the central processing unit. The purpose of the communication 

link is to resolve the differences that exist between the central computer 

and each peripheral. The major differences are: 

1. Peripherals are electromechanical and electromagnetic devices and 

their manner of operation is different from the operation of the CPU and 

memory, which are electronic devices. Therefore, a conversion of signal 

values may be required. 

2. The data transfer rate of peripherals is usually slower than the 

transfer rate of the CPU, and consequently, a synchronization mechanism 

may be need. 

3. Data codes and formats in peripherals differ form the word format in 

the CPU and memory. 

4. The operating modes of peripherals are different from each other 

and each must be controlled so as not to disturb the operation of other 

peripherals connected to the CPU. 

Interface units are used because they interface between the processor bus 

and the peripheral device. In addition, each device may have its own 

controller that supervises the operations of the particular mechanism in the 

peripheral.  

Two main types of interface are CPU interface that corresponds to the 

system bus and input-output interface that depends on the nature of input-

output device. 

4.7.1. I/O Bus and Interface Modules 

 A typical communication link between the processor and several 

peripherals is shown in Fig below.  I/O bus consists of data lines, address 

lines, and control lines. The magnetic disk, printer, and terminal are 
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employed in practically any general-purpose computer. The magnetic tape 

is used in some computers for backup storage. Each peripheral device has 

associated with it an interface unit.  

 Each interface decodes the address and control received from the 

I/O bus, interprets them for the peripheral, and provides signals for the 

peripheral controller. Each peripheral has its own controller that operates 

the particular electromechanical device. 

 

 

 The I/O bus from the processor is attached to all peripheral 

interfaces. To communicate with a particular device, the processor places a 

device address on the address lines. Each interface attached to the I/O bus 

contains an address decoder that monitors the address lines.  

 All peripherals whose address does not correspond to the address in 

the bus are disabled their interface. 

The interface selected responds to the function code and proceeds to 

execute it. The function code is referred to as an I/O command and is in 

essence an instruction that is executed in the interface and its attached 

peripheral unit.  

 There are four types of commands that an interface may receive. 

They are classified as control, status, status, data output, and data input. 

 A control command is issued to activate the peripheral and to 



[Computer Organization] 
 

[Dept of CSE,VEMU] Page 129  

inform it what to do. For example, a magnetic tape unit may be instructed 

to backspace the tape by one record, to rewind the tape, or to start the 

tape moving in the forward direction. The particular control command 

issued depends on the peripheral, and each peripheral receives its own 

distinguished sequence of control commands, depending on its mode of 

operation. 

 A status command is used to test various status conditions in the 

interface and the peripheral. 

 A data output command causes the interface to respond by 

transferring data from the bus into one of its registers. 

 The data input command is the opposite of the data output. In 

this case the interface receives an item of data from the peripheral and 

places it in its buffer register 

4.7.2. I/O versus Memory Bus 

 In addition to communicating with I/O, the processor must 

communicate with the memory unit. Like the I/O bus, the memory bus 

contains data, address, and read/write control lines. There are three ways 

that computer buses can be used to communicate with memory and I/O: 

1. Use two separate buses, one for memory and the other for I/O. 

2. Use one common bus for both memory and I/O but have separate 

control lines for each. 

3. Use one common bus for memory and I/O with common control 

lines. 

 In the first method, the computer has independent sets of data, 

address, and control buses, one for accessing memory and the other for 

I/O. This is done in computers that provide a separate I/O processor (IOP) 

in addition to the central processing unit (CPU).  

 The purpose of the IOP is to provide an independent pathway for the 

transfer of information between external devices and internal memory. 

 

 

4.7.3. Isolated Versus Memory-Mapped I/O 

 Many computers use one common bus to transfer information 
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between memory or I/O and the CPU. The distinction between a memory 

transfer and I/O transfer is made through separate read and write lines. 

The CPU specifies whether the address on the address lines is for a 

memory word or for an interface register by enabling one of two possible 

read or write lines. The I/O read and I/O write control lines are enabled 

during an I/O transfer.  

 In the isolated I/O configuration, the CPU has distinct input and 

output instructions, and each of these instructions is associated with the 

address of an interface register. When the CPU fetches and decodes the 

operation code of an input or output instruction, it places the address 

associated with the instruction into the common address lines. At the same 

time, it enables the I/O read (for input) or I/O write (for output) control 

line.  

 The isolated I/O method isolates memory word and not for an I/O 

addresses so that memory address values are not affected by interface 

address assignment since each has its own address space. The other 

alternative is to use the same address space for both memory and I/O. 

This is the case in computers that employ only one set of read and write 

signals and do not distinguish between memory and I/O addresses. This 

configuration is referred to as memory-mapped I/O.  

 In a memory-mapped I/O organization there are no specific input or 

output instructions. The CPU can manipulate I/O data residing in interface 

registers with the same instructions that are used to manipulate memory 

words. Each interface is organized as a set of registers that respond to 

read and write requests in the normal address space.  

4.7.4. Example of I/O Interface 

An example of an I/O interface unit is shown in block diagram form in Fig 

below. 
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  It consists of two data registers called ports, a control register, a 

status register, bus buffers, and timing and control circuits. The interface 

communicates with the CPU through the data bus. The chip select and 

register select inputs determine the address assigned to the interface. The 

I/O read and write are two control lines that specify an input or output, 
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respectively. The four registers communicate directly with the I/O device 

attached to the interface. 

 The I/O data to and from the device can be transferred into either 

port A or Port B. The interface may operate with an output device or with 

an input device, or with a device that requires both input and output. If the 

interface is connected to a printer, it will only output data, and if it services 

a character reader, it will only input data. A magnetic disk unit transfers 

data in both directions but not at the same time, so the interface can use 

bidirectional lines. A command is passed to the I/O device by sending a 

word to the appropriate interface register. In a system like this, the 

function code in the I/O bus is not needed because control is sent to the 

control register, status information is received from the status register, and 

data are transferred to and from ports A and B registers. Thus the transfer 

of data, control, and status information is always via the common data 

bus. The distinction between data, control, or status information is 

determined from the particular register with which the CPU communicates. 

 The interface registers communicate with the CPU through the 

bidirectional data bus. The address bus selects the interface unit through 

the chip select and the two register select inputs. A circuit must be 

provided externally (usually, a decoder) to detect the address assigned to 

the interface registers. This circuit enables the chip select (CS) input when 

the interface is selected by the address bus. The two register select inputs 

RS1 and RS0 are usually connected to the two least significant lines of the 

lines address bus. These two inputs select one of the four registers in the 

interface as specified in the table accompanying the diagram. The content 

of the selected register is transfer into the CPU via the data bus when the 

I/O read signal is enabled. The CPU transfers binary information into the 

selected register via the data bus when the I/O write input is enabled. 

4.8. Asynchronous Data Transfer 

 The internal operations in a digital system are synchronized by 

means of clock pulses supplied by a common pulse generator. Clock pulses 

are applied to all registers within a unit and all data transfers among 

internal registers occur simultaneously during the occurrence of a clock 

pulse. Two units, such as a CPU and an I/O interface, are designed 

independently of each other. If the registers in the interface share a 
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common clock with the CPU registers, the transfer between the two units is 

said to be synchronous. In most cases, the internal timing in each unit is 

independent from the other in that each uses its own private clock for 

internal registers. In that case, the two units are said to be asynchronous 

to each other. This approach is widely used in most computer systems. 

 

Asynchronous data transfer between two independent units requires that 

control signals be transmitted between the communicating units to indicate 

the time at which data is being transmitted. One way of achieving this is by 

means of a strobe pulse supplied by one of the units to indicate to the 

other unit when the transfer has to occur. Another method commonly used 

is to accompany each data item being transferred with a control signal that 

indicates the presence of data in the bus. The unit receiving the data item 

responds with another control signal to acknowledge receipt of the data. 

This type of agreement between two independent units is referred to as 

handshaking. 

 

The strobe pulse method and the handshaking method of asynchronous 

data transfer are not restricted to I/O transfers. In fact, they are used 

extensively on numerous occasions requiring the transfer of data between 

two independent units. In the general case we consider the transmitting 

unit as the source and the receiving unit as the destination. 

 For example, the CPU is the source unit during an output or a write 

transfer and it is the destination unit during an input or a read transfer. It 

is customary to specify the asynchronous transfer between two 

independent units by means of a timing diagram that shows the timing 

relationship that must exist between the control signals and the data in 

buses. The sequence of control during an asynchronous transfer depends 

on whether the transfer is initiated by the source or by the destination 

unit. 

There are two types of asynchronous data transmission methods 

1. Strobe control 

2. Handshaking 

4.8.1. Strobe Control 

 The strobe control method of asynchronous data transfer employs a 
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single control line to time each transfer.  

 The strobe may be activated by either the source or the destination 

unit.  

i. source-initiated transfer. 

 

 

 The data bus carries the binary information from source unit to the 

destination unit. Typically, the bus has multiple lines to transfer an entire 

byte or word. The strobe is a single line that informs the destination unit 

when a valid data word is available in the bus. 

The strode signal is given after a brief daly, after placing the data on the 

data bus. A brief period after the strobe pulse is disabled the source stops 

sending the data. 

ii. Destination-initiated strobe for data transfer 
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  In this case the destination unit activates the strobe pulse, 

informing the source to provide the data. The source places the data on 

the data bus. The transmission id stopped briefly after the strobe pulse is 

removed. 

 The disadvantage of the strobe method is that the source unit that 

initiates the transfer has no way of knowing whether the destination unit 

has actually received the data item that was placed in the bus. Similarly, a 

destination unit that initiates the transfer has no way of knowing whether 

the source unit has actually placed the data on the bus. This difficulty is 

solved by using hand shaking method of data transfer. 

 

 

4.8.2. HANDSHAKING 

 The disadvantage of the strobe method is that the source unit that 

initiates the transfer has no way of knowing whether the destination unit 

has actually received the data item that was placed in the bus. Similarly, a 

destination unit that initiates the transfer has no way of knowing whether 

the source unit has actually placed the data on the bus,. 

 The handshake method solves this problem by introducing a second 

control signal that provides a reply to the unit that initiates the transfer. 

 The basic principle of the two-write handshaking method of data 

transfer is as follows.  

 One control line is in the same direction as the data flow in the bus 
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from the source to the destination. It is used by the source unit to inform 

the destination unit whether there are valued data in the bus. 

  The other control line is in the other direction from the destination 

to the source. It is used by the destination unit to inform the source 

whether it can accept data. The sequence of control during the transfer 

depends on the unit that initiates the transfer. 

Data Transfer Procedure When Initiated By the Source 

 The two handshaking lines are data valid, which is generated by the 

source unit, and data accepted, generated by the destination unit. The 

timing diagram shows the exchange of signals between the two units. The 

sequence of events listed in part (c) shows the four possible states that the 

system 
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can be at any given time. The source unit initiates the transfer by placing the 

data on the bus and enabling its data valid signal. The data accepted signal is 

activated by the destination unit after it accepts the data from the bus. The 

source unit then disables its data valid signal, which invalidates the data on the 

bus.  
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Destination -Initiated Transfer Using Handshaking 
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The destination unit then disables its data accepted signal and the system goes 

into its initial state. The source dies not send the next data item until after the 

destination unit shows its readiness to accept new data by disabling its data 

accepted signal. This scheme allows arbitrary delays from one state to the next 

and permits each unit to respond at its own data transfer rate. The rate of 

transfer is determined by the slowest unit. 

 If one unit is faulty, the data transfer will not be completed. Such an error 

can be detected by means of a timeout mechanism, which produces an alarm if 

the data transfer is not completed within a predetermined time.  

4.8.3. Asynchronous Serial Transfer 

 The transfer of data between two units may be done in parallel or serial. 

In parallel data transmission, each bit of the message has its own path and the 

total message is transmitted at the same time.  

 Serial transmission can be can be synchronous or asynchronous. In 

synchronous transmission, the two units share a common clock frequency and 

bits are transmitted continuously at the rate dictated by the clock pulses. In 

long-distant serial transmission, each unit is driven by a separate clock of the 

same frequency. Synchronization signals are transmitted periodically between 

the two units to keep their clocks in step with each other.  

 In asynchronous transmission, binary information is sent only when it is 

available and the line remains idle when there is no information to be 

transmitted. This is in contrast to synchronous transmission, where bits must be 

transmitted continuously to deep the clock frequency in both units synchronized 

with each other. 

  The convention is that the transmitter rests at the 1-state when no 

characters are transmitted. The first bit, called the start bit, is always a 0 and is 

used to indicate the beginning of a character. The last bit called the stop bit is 

always a 1. An example of this format is shown in Fig. 
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 A transmitted character can be detected by the receiver from knowledge 

of the transmission rules: 

1. When a character is not being sent, the line is kept in the 1-state. 

2. The initiation of a character transmission is detected from the start bit, 

which is always 0. 

3. The character bits always follow the start bit. 

4. After the last bit of the character is transmitted, a stop bit is detected 

when the line returns to the 1-state for at least one bit time. 

At the end of the character the line is held at the 1-state for a period of at least 

one or two bit times so that both the transmitter and receiver can 

resynchronize. The length of time that the line stays in this state depends on 

the amount of time required for the equipment to resynchronize. Some older 

electromechanical terminals use two stop bits, but newer terminals use one stop 

bit. The line remains in the 1-state until another character is transmitted. The 

stop time ensures that a new character will not follow for one or two bit times. 

  The baud rate is defined as the rate at which serial information is 

transmitted and is equivalent to the data transfer in bits per second. Ten 

characters per second with an 11-bit format has a transfer rate of 110 baud. 

 

4.8.4. Asynchronous Communication Interface 

 The block diagram of an asynchronous communication interface is shown 

in below figure. It functions as both a transmitter and a receiver. The interface 

is initialized for a particular mode of transfer by means of a control byte that is 

loaded into its control register. 
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4.8.5. First –In, First – Out Buffer 

a first –in ,first –out (FIFO) buffer is a memory unit that stores information in 

such a manner that the item first in is the item first out. 
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A FIFO buffer comes with separate input and output terminals. The important 

feature of this buffer is that it can input dat and output data at two different 

rates and the output data are always in the same order in which the data 

entered the buffer. 

The logic diagram of a typical 4X4 FIFO buffer is shown below. 
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4.9. Modes of Transfer 

 Data transfer to and from peripherals may be handled in one of three 

possible modes: 

1. Programmed I/O 

2. Interrupt-initiated I/O 

3. Direct memory access (DMA) 

Programmed I/O operations are the result of I/O instructions written in the 

computer program.  

  When the interface determines that the device is ready for data transfer, 

it generates an interrupt request to the computer. Upon detecting the external 

interrupt signal, the CPU momentarily stops the task it is processing, branches 

to a service program to process the I/O transfer, and then returns to the task it 

was originally performing 

 Transfer of data under programmed I/O is between CPU and peripheral. 

In direct memory access (DMA), the interface transfers data into and out of the 

memory unit through the memory bus. The CPU initiates the transfer by 

supplying the interface with the starting address and the number of words 

needed to be transferred and then proceeds to execute other tasks.  

 Many computers combine the interface logic with the requirements for 

direct memory access into one unit and call it an I/O processor (IOP). The IOP 

can handle many peripherals through a DMA and interrupt facility. In such a 

system, the computer is divided into three separate modules: the memory unit, 

the CPU, and the IOP. 

4.9.1. Example of Programmed I/O 

 In the programmed I/O method, the I/O device dies not have direct 

access to memory. A transfer from an I/O device to memory requires the 

execution of several instructions by the CPU, including an input instruction to 

transfer the data from the device to the CPU, and a store instruction to transfer 

the data from the CPU to memory.  
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 An example of data transfer from an I/O device through an interface into 

the CPU is shown in Fig.  

  

 The device transfers bytes of data one at a time as they are available. 

When a byte of data is available, the device places it in the I/O bus and enables 

its data valid line. The interface accepts the byte into its data register and 

enables the data accepted line. The interface sets a it in the status register that 

we will refer to as an F or “flag” bit. The device can now disable the data valid 

line, but it will not transfer another byte until the data accepted line is disabled 

by the interface. A flowchart of the program that must be written for the CPU is 

shown in Fig.   
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 It is assumed that the device is sending a sequence of bytes that must be 

stored in memory. The transfer of each byte requires three instructions: 

1. Read the status register. 

2. Check the status of the flag bit and branch to step 1 if not set or to step 3 
if set. 

3. Read the data register. 

Each byte is read into a CPU register and then transferred to memory with a 

store instruction. A common I/O programming task is to transfer a block of 

words form an I/O device and store them in a memory buffer. A program that 

stores input characters in a memory buffer using the instructions mentioned in 

the earlier chapter. 

4.9.2. Interrupt-Initiated I/O 

 The CPU responds to the interrupt signal by storing the return address 

from the program counter into a memory stack and then control branches to a 

service routine that processes the required I/O transfer. The way that the 

processor chooses the branch address of the service routine varies from tone 

unit to another. In principle, there are two methods for accomplishing this. One 

is called vectored interrupt and the other, no vectored interrupt. In a non 

vectored interrupt, the branch address is assigned to a fixed location in 

memory. In a vectored interrupt, the source that interrupts supplies the branch 

information to the computer. This information is called the interrupt vector.  

4.9.3. Software Considerations 

  A computer must also have software routines for controlling peripherals 

and for transfer of data between the processor and peripherals. I/O routines 

must issue control commands to activate the peripheral and to check the device 

status to determine when it is ready for data transfer.   Error checking and 

other useful steps often accompany the transfers. In interrupt-controlled 

transfers, the I/O software must issue commands to the peripheral to interrupt 

when ready and to service the interrupt when it occurs. In DMA transfer, the I/O 

software must initiate  

the DMA channel to start its operation. 

4.10. Priority Interrupt 
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 Data transfer between the CPU and an I/O device is initiated by the CPU. 

However, the CPU cannot start the transfer unless the device is ready to 

communicate with the CPU.  

 A priority interrupts is a system that establishes a priority over the 

various sources to determine which condition is to be serviced first when two or 

more request arrive simultaneously. The system may also determine which 

conditions are permitted to interrupt the computer while another interrupt is 

being serviced. Higher-priority interrupt levels are assigned to request which, if 

delayed of interrupted, could have serious consequences. Devices with high-

speed transfers such as keyboards receive low priority. When two devices 

interrupt the computer at the same time, the computer services the devices 

interrupt the computer at the same time, the computer services the device, with 

the higher priority first. 

 The disadvantage of the soft ware method is that if there are many 

interrupts, the time required to poll them can exceed the time available to 

service the I/O device. In this situation a hardware priority-interrupt unit can be 

used to speed up the operation. 

 A hardware priority-interrupt unit functions as an overall manager in an 

interrupt system environment. It accepts interrupt requests from many sources, 

determines which of the incoming requests has the highest priority, and issues 

an interrupt request to the computer based on this determination. To speed up 

the operation, each interrupt source has its own interrupt vector to access its 

own service routine directly. Thus no polling is required because all the decisions 

are established by the hardware priority-interrupt unit. The hardware priority 

function can be established by either a serial or a parallel connection of interrupt 

lines. The serial connection is also known as the daisy chaining method. 

 

 

4.10.1. Daisy-Chaining Priority 

 The daisy-chaining method of establishing priority consists of a serial 

connection of all devices that request an interrupt.  

 The device with the highest priority is placed in the first position, followed 
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by lower-priority devices up to the device with the lowest priority, which is 

placed last in the chain. This method of connection between three devices and 

the CPU is shown in Fig. 

 

  The interrupt request line is common to all devices and forms a wired 

logic connection. If any device has its interrupt signal in the low-level state, the 

interrupt line goes to the low-level state and enables the interrupt input in the 

CPU. 

  When no interrupts are pending, the interrupt line stays in the high-level 

state and no interrupts are recognized by the CPU.  

 This signal is received by device 1 at its PI (priority in) input. The 

acknowledge signal passes on to the next device through the PO (priority out) 

output only if device 1 is not requesting an interrupt. If device 1 has a pending 

interrupt, it blocks the acknowledge signal from the next device by placing a 0 

in the PO output. It then proceeds to insert its own interrupt vector address 

(VAD) into the data bus for the CPU to use during the interrupt cycle. 

 A device with a 0 in its PI input generates a 0 in its PO output to inform 

the next-lower-priority device that the acknowledge signal has been blocked. A 

device that is requesting an interrupt and has a 1 in its PI input will intercept 

the acknowledge signal by placing a 0 in its PO output. If the device does not 
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have pending interrupts, it transmits the acknowledge signal to the next device 

by placing a 1 in its PO output. Thus the device with PI = 1 and PO = 0 is the 

one with the highest priority that is requesting an interrupt, and this device 

places its VAD on the data bus. The daisy chain arrangement gives the highest 

priority to the device that receives the interrupt acknowledge signal from the 

CPU. The farther the device is from the first position, the lower is its priority. 

Below figure  shows the internal logic that must be included with in each device 

when connected in the daisy-chaining scheme.  

 

 

  

 The device sets its RF flip-flop when it wants to interrupt the CPU. The 

output of the RF flip-flop goes through an open-collector inverter, a circuit that 

provides the wired logic for the common interrupt line. If PI = 0, both PO and 

the enable line to VAD are equal to 0, irrespective of the value of RF. If PI = 1 

and RF = 0, then PO = 1 and the vector address is disabled. This condition 
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passes the acknowledge signal to the next device through PO. The device is 

active when PI = 1 and RF = 1.  

 This condition places a 0 in PO and enables the vector address for the 

data bus. It is assumed that each device has its own distinct vector address. 

The RF flip-flop is reset after a sufficient delay to ensure that the CPU has 

received the vector address. 

 

4.10.2. Parallel Priority Interrupt 

 The parallel priority interrupt method uses a register whose bits are set 

separately by the interrupt signal from each device. Priority is established 

according to the position of the bits in the register. In addition to the interrupt 

register the circuit may include a mask register whose purpose is to control the 

status of each interrupt request.  

 The mask register can be programmed to disable lower-priority interrupts 

while a higher-priority device is being serviced. It can also provide a facility that 

allows a high-priority device to interrupt the CPU while a lower-priority device is 

being serviced. 

The priority logic for a system of four interrupt sources is shown in Fig.  

 It consists of an interrupt register whose individual bits are set by external 

conditions and cleared by program instructions. The magnetic disk, being a 

high-speed device, is given the highest priority. The printer has the next 

priority, followed by a character reader and a keyboard. The mask register has 

the same number of bits as the interrupt register. By means of program 

instructions, it is possible to set or reset any bit in the mask register.  
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4.11. Direct Memory Access (DMA) 

 The transfer of data between a fast storage device such as magnetic disk 

and memory is often limited by the speed of the CPU. Removing the CPU from 

the path and letting the peripheral device manage the memory buses directly 
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would improve the speed of transfer. This transfer technique is called direct 

memory access (DMA). During DMA transfer, the CPU is idle and has no 

control of the memory buses. A DMA controller takes over the buses to manage 

the transfer directly between the I/O device and memory. 

 The CPU may be placed in an idle state in a variety of ways. One common 

method extensively used in microprocessors is to disable the buses through 

special control signals. Following figure shows two control signals in the CPU 

that facilitate the DMA transfer.  

The bus request (BR) input is used by the DMA controller to request the CPU to 

relinquish control of the buses. When this input is active, the CPU terminates the 

execution of the current instruction and places the address bus, the data bus, 

and the read and write lines into a high-impedance state behaves like an open 

circuit, which means that the output is disconnected and does not have a logic 

significance.  

 The CPU activates the Bus grant (BG) output to inform the external DMA 

that the buses are in the high -impedance state. 

  When the DMA terminates the transfer, it disables the bus request line. 

The CPU disables the bus grant, takes control of the buses, and returns to its 

normal operation. 

  This mode of transfer is needed for fast devices such as magnetic disks, 

where data transmission cannot be stopped or slowed down until an entire block 

is transferred. An alternative technique called cycle stealing allows the DMA 

controller to transfer one data word at a time after which it must return control 

of the buses to the CPU.  

4.11.1. DMA Controller 

 The DMA controller needs the usual circuits of an interface to 

communicate with the CPU and I/O device. In addition, it needs an address 

register, a word count register, and a set of address lines.  

 The word count register specifies the number of words that must be 

transferred. The data transfer may be done directly between the device and 

memory under control of the DMA. 
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Following figure shows the block diagram of a typical DMA controller. 

 

  The unit communicates with the CPU via the data bus and control lines. 

The registers in the DMA are selected by the CPU through the address bus by 

enabling the DS (DMA select) and RS (register select) inputs. The RD (read) and 

WR (write) inputs are bidirectional. When the BG (bus grant) input is 0, the CPU 

can communicate with the DMA registers through the data bus to read from or 

write to the DMA registers. When BG = 1, the CPU has relinquished the buses 

and the DMA can communicate directly with the memory by specifying an 

address in the address bus and activating the RD or WR control. ; the DMA 

communicates with the external peripheral through the request and 

acknowledge lines by using a prescribed handshaking procedure. 

 The DMA controller has three registers: an address register, a word count 

register, and a control register. The address register contains an address to 

specify the desired location in memory. The address bits go through bus buffers 

into the address bus. The address register is incremented after each word that 

is transferred to memory.  
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 The word count register is incremented after each word that is 

transferred to memory. The word count register holds the number of words to 

be transferred. This register is decremented by one after each word transfer and 

internally tested for zero.  

 The control register specifies the mode of transfer. All registers in the 

DMA appear to the CPU as I/O interface registers. Thus the CPU can read from 

or write into the DMA registers under program control via the data bus. 

  The CPU initializes the DMA by sending the following information through 

the data bus: 

1. The starting address of the memory block where data are available (for read) 

or where data are to be stored (for write) 

2. The word count, which is the number of words in the memory block 

3. Control to specify the mode of transfer such as read or write 

4. A control to start the DMA transfer 

 

4.11.2. DMA Transfer 

 The position of the DMA controller among the other components in a 

computer system is illustrated in Fig. The CPU communicates with the DMA 

through the address and data buses as with any interface unit. The DMA has its 

own address, which activates the DS and RS lines.  

 The CPU initializes the DMA through the data bus. Once the DMA receives 

the start control command, it can start the transfer between the peripheral 

device and the memory. 

When the peripheral device sends a DMA request, the DMA controller activates 

the BR line, informing the CPU to relinquish the buses. The CPU responds with 

its BG line, informing the DMA that its buses are disabled.  

 The DMA then puts the current value of its address register into the 

address bus, initiates the RD or WR signal, and sends a DMA acknowledge to the 

peripheral device. Note that the RD and WR lines in the DMA controller are 

bidirectional. The  direction of transfer depends on the status of the BG line. 

When BG line. When BG = 0, the RD and WR are input lines allowing the CPU to 

communicate with the internal DMA registers. When BG = 1, the RD and WR 
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and output lines from the DMA controller to the random-access memory to 

specify the read or write operation for the data. 

 When the peripheral device receives a DMA acknowledge, it puts a word 

in the data us (for write) or receives a word from the data bus (for read). Thus 

the DMA controls the read or write operations and supplies the address for the 

memory. The peripheral unit can then communicate with memory through the 

data bus for direct transfer between the two units while the CPU is momentarily 

disabled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MEMORY ORGANIZATION 

4.1. MEMORY HIERARCHY 

  The memory unit is an essential component in any digital computer since 

it is needed for storing programs and data. A very small computer with a limited 

application may be able to fulfill its intended task without the need of additional 
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storage capacity. Most general-purpose computers would run more efficiently if 

they were equipped with additional storage beyond the capacity of the main 

memory. There is just not enough space in one memory unit to accommodate 

all the programs used in a typical computer. Moreover, most computer users 

accumulate and continue to accumulate large amounts of data-processing 

software.  

 The memory unit that communicates directly with the CPU is called the 

main memory.  

 Devices that provide backup storage are called auxiliary memory. The 

most common auxiliary memory devices used in computer systems are 

magnetic disks and tapes. They are used for storing system programs, large 

data files, and other backup information. 

  Only programs and data currently needed by the processor reside in 

main memory. All other information is stored in auxiliary memory and 

transferred to main memory when needed. 

The total memory capacity of a computer can be visualized as being a hierarchy 

of components.  

 A special very-high speed memory called a cache is sometimes used to 

increase the speed of processing by making current programs and data available 

to the CPU at a rapid rate. The cache memory is employed in computer systems 

to compensate for the speed differential between main memory access time and 

processor logic. CPU logic is usually faster than main memory access time, with 

the result that processing speed is limited primarily by the speed of main 

memory.  
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Memory hierarchy in a computer system. 

Making programs and data available at a rapid rate, it is possible to increase the 

performance rate of the computer. 

 While the I/O processor manages data transfers between auxiliary 

memory and main memory, the cache organization is concerned with the 

transfer of information between main memory and CPU. Thus each is involved 

with a different level in the memory hierarchy system. The reason for having 

two or three levels of memory hierarchy is economics. 

  As the storage capacity of the memory increases, the cost per bit for 

storing binary information decreases and the access time of the memory 

becomes longer.  

 The auxiliary memory has a large storage capacity, is relatively 

inexpensive, but has low access speed compared to main memory. The cache 

memory is very small, relatively expensive, and has very high access speed. 

4.2. MAIN MEMORY 

 The main memory is the central storage unit in a computer system. It is a 

relatively large and fast memory used to store programs and data during the 

computer operation.  

 The principal technology used for the main memory is based on 

semiconductor integrated circuits. Integrated circuit RAM chips are available in 

two possible operating modes, static and dynamic. The static RAM consists 

essentially of internal flip-flops that store the binary information.  The 

stored information remains valid as long as power is applied to unit.  

The dynamic RAM stores the binary information in the form of electric charges 

that are applied to capacitors. The stored charge on the capacitors  tend to 

discharge with time and the capacitors must be periodically recharged by 

refreshing the dynamic memory.  

 Refreshing is done by cycling through the words every few milliseconds to 

restore the decaying charge. The dynamic RAM offers reduced power 

consumption and larger storage capacity in a single memory chip.  

The static RAM is easier to use and has shorted read and write cycles.Originally, 

RAM was used to refer to a random-access memory, but now it is used to 
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designate a read/write memory to distinguish it from a read-only memory, 

although ROM is also random access. RAM is used for storing the bulk of the 

programs and data that are subject to change. ROM is used for storing 

programs that are permanently resident in the computer and for tables of 

constants that do not change in value one the production of the computer is 

completed. 

 The ROM portion of main memory is needed for storing an initial program 

called a bootstrap loader. The bootstrap loader is a program whose function is to 

start the computer software operating when power is turned on.  

Since RAM is volatile, its contents are destroyed when power is turned off. The 

contents of ROM remain unchanged after power is turned off and on again 

transferred to the operating system, which prepares the computer for general 

use. 

 RAM and ROM chips are available in a variety of sizes. If the memory 

needed for the computer is larger than the capacity of one chip, it is necessary 

to combine a number of chips to form the required memory size 

4.2.1. RAM AND ROM CHIPS 

 A RAM chip is better suited for communication with the CPU if it has one 

or more control inputs that select the chip only when needed. Another common 

feature is a bidirectional data bus that allows the transfer of data either from 

memory to CPU during a read operation or from CPU to memory during a write 

operation.  

 A bidirectional bus can be constructed with three-state buffers. A three-

state buffer output can be placed in one of three possible states: a signal 

equivalent to logic 1, a signal equivalent to logic 0, or a high-impedance state. 

The logic 1 and 0 are normal digital signals. The high-impedance state behaves 

like an open circuit, which means that the output does not carry a signal and 

has no logic significance. 

The block diagram of a RAM chip is shown in Fig .The capacity of the memory is 

128 words of eight bits (one byte) per word. This requires a 7-bit address and 

an 8-bit bidirectional data bus.  

The read and write inputs specify the memory operation and the two chips 
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select (CS) control inputs are for enabling the chip only when it is selected by 

the microprocessor.  

 The availability of more than one control input to select the chip facilitates 

the decoding of the address lines when multiple chips are used in the 

microcomputer.  

 The read and write inputs are sometimes combined into one line labeled 

R/W. When the chip is selected, the two binary states in this line specify the two 

operations or read or write. 

 

 

The function table listed in Fig(b) specifies the operation of the RAM chip. The 

unit is in operation only when CSI = 1 and CS2 = 0. The bar on top of the 

second select variable indicates that this input in enabled when it is equal to 0. 

If the chip select inputs are not enabled, or if they are enabled but the read but 

the read or write inputs are not enabled, the memory is inhibited and its data 

bus is in a high-impedance state. When SC1 = 1 and CS2 = 0, the memory can 

be placed in a write or read mode. When the WR input is enabled, the memory 

stores a byte from the data bus into a location specified by the address input 
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lines. When the RD input is enabled, the content of the selected byte is placed 

into the data bus. The RD and WR signals control the memory operation as well 

as the bus buffers associated with the bidirectional data bus. 

 A ROM chip is organized externally in a similar manner. However, since a 

ROM can only read, the data bus can only be in an output mode. The block 

diagram of a ROM chip is shown in Fig. For the same-size chip, it is possible to 

have more bits of ROM occupy less space than in RAM. For this reason, the 

diagram specifies a 512-byte ROM, while the RAM has only 128 bytes. 

 

 

The nine address lines in the ROM chip specify any one of the 512 bytes stored 

in it. The two chip select inputs must be CS1 = 1 and CS2 = 0 for the unit to 

operate. Otherwise, the data bus is in a high-impedance state. There is no need 

for a read or write control because the unit can only read. Thus when the chip is 

enabled by the two select inputs, the byte selected by the address lines appears 

on the data bus. 

4.2.2. MEMORY ADDRESS MAP 

 The designer of a computer system must calculate the amount of memory 

required for the particular application and assign it to either RAM or ROM. The 

interconnection between memory and processor is then established form 

knowledge of the size of memory needed and the type of RAM and ROM chips 

available. The addressing of memory can be established by means of a table 

that specifies the memory address assigned to each chip. The table, called a 

memory address map, is a pictorial representation of assigned address space for 

each chip in the system. To demonstrate with a particular example, assume that 

a computer system needs 512 bytes of RAM and 512 bytes of ROM. The RAM 
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and ROM chips 

 

 

The component column specifies whether a RAM or a ROM chip is used. The 

hexadecimal address column assigns a range of hexadecimal equivalent 

addresses for each chip. The address bus lines are listed in the third column. 

Although there are 16 lines in the address bus, the table shows only 10 lines 

because the other 6 are not used in this example and are assumed to be zero. 

The small x’s under the address bus lines designate those lines that must be 

connected to the address inputs in each chip. The RAM chips have 128 bytes 

and need seven address lines. The ROM chip has 512 bytes and needs 9 address 

lines. The x’s are always assigned to the low-order bus lines: lines 1 through 7 

for the RAM and lines 1 through 9 for the ROM. It is now necessary to 

distinguish between four RAM chips by assigning to each a different address. For 

this particular example we choose bus lines 8 and 9 to represent four distinct 

binary combinations. Note that any other pair of unused bus lines can be chosen 

for this purpose. The table clearly shows that the nine low-order bus lines 

constitute a memory space fro RAM equal to 29 = 512 bytes. The distinction 

between a RAM and ROM address is done with another bus line. Here we choose 

line 10 for this purpose. When line 10 is 0, the CPU selects a RAM, and when 

this line is equal to 1, it selects the ROM. 

 The equivalent hexadecimal address for each chip is obtained form the 

information under the address bus assignment. The address bus lines are 
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subdivided into groups of four bits each so that each group can be represented 

with a hexadecimal digit. The first hexadecimal digit represents lines 13 to 16 

and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines 

11 and 12 are always 0. The range of hexadecimal addresses for each 

component is determined from the x’s associated with it. These x’s represent a 

binary number that can range from an all-0’s to an all-1’s value. 

4.2.3. MEMORY CONNECTION TO CPU 

 RAM and ROM chips are connected to a CPU through the data and address 

buses. The low-order lines in the address bus select the byte within the chips 

and other lines in the address bus select a particular chip through its chip select 

inputs. The connection of memory chips to the CPU is shown in Fig. This 

configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of 

ROM. Each RAM receives the seven low-order bits of the address bus to select 

one of 128 possible bytes. The particular RAM chip selected is determined from 

lines 8 and 9 in the address bus. This is done through a 2X4 decoder whose 

outputs go to the SCI input in each RAM chip. Thus, when address lines 8 and 9 

are equal to 00, the first RAM chip is selected. When 01, the second RAM chip is 

selected, and so on. The RD and WR outputs from the microprocessor are 

applied to the inputs of each RAM chip. 
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The selection between RAM and ROM is achieved through bus line 10. The RAMs 

are selected when the bit in this line is 0, and the ROM when the bit is 1. The 

other chip select input in the ROM is connected to the RD control line for the 

ROM chip to be enabled only during a read operation. Address bus lines 1 to 9 

are applied to the input address of ROM without going through the decoder. This 

assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM. The data bus of 
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the ROM has only an output capability, whereas the data bus connected to the 

RAMs can transfer information in both directions. 

4.3. AUXILIARY MEMORY  

 The most common auxiliary memory devices used in computer systems 

are magnetic disks and tapes. Other components used, but not as frequently, 

are magnetic drums, magnetic bubble memory, and optical disks. To understand 

fully the physical mechanism of auxiliary memory devices one must have a 

knowledge of magnetics, electronics, and electromechanical systems. Although 

the physical properties of these storage devices can be quite complex, their 

logical properties can be characterized and compared by a few parameters. The 

important characteristics of any device are its access mode, access time, 

transfer rate, capacity, and cost. 

The average time required to reach a storage location in memory and obtain its 

contents is called the access time. In electromechanical devices with moving 

parts such as disks and tapes, the access time consists of a seek time required 

to position the read-write head to a location and a transfer time required to 

transfer data to or from the device. Because the seek time is usually much 

longer than the transfer time, auxiliary storage is organized in records or blocks.  

 A record is a specified number of characters or words. Reading or writing 

is always done on entire records. The transfer rate is the number of characters 

or words that the device can transfer per second, after it has been positioned at 

the beginning of the record. 

 

Magnetic drums and disks are quite similar in operation. Both consist of high-

speed rotating surfaces coated with a magnetic recording medium. The rotating 

surface of the drum is a cylinder and that of the disk, a round flat plate. The 

amount of surface available for recording in a disk is greater than in a drum of 

equal physical size. Therefore, more information can be stored on a disk than on 

a drum of comparable size. For this reason, disks have replaced drums in more 

recent computers 
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4.3.1. MAGNETIC DISKS 

 A magnetic disk is a circular plate constructed of metal or plastic coated 

with magnetized material. Often both sides of the disk are used and several 

disks may be stacked on one spindle with read/write heads available on each 

surface. All disks rotate together at high speed and are not stopped or started 

from access purposes. Bits are stored in the magnetized surface in spots along 

concentric circles called tracks. The tracks are commonly divided into sections 

called sectors. In most systems, the minimum quantity of information which 

can be transferred is a sector. The sub division of tone disk surface into tracks 

and sectors. 

 Some units use a single read/write head from each disk surface and some 

different read/write head. The address can then select a particular track 

electronically through a decoder circuit. This type of unit is more expensive and 

is found only in very large computer systems. 

Disks may have multiple heads and simultaneous transfer of bits from several 

tracks at the same time. 

 

 Disks that are permanently attached to the unit assembly and cannot be 

removed by the occasional user are called hard disks. A disk drive with 

removable disks is called a floppy disk. The disks used with a floppy disk drive 

are small removable disks made of plastic coated with magnetic recording 

material. There are two sizes commonly used, with diameters of 5.25 and 3.5 

inches. The 3.5-inch disks are smaller and can store more data than can the 

5.25-inch disks. Floppy disks are extensively used in personal computers as a 
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medium for distributing software to computer users. 

4.3.2. MAGNETIC TAPE 

 A magnetic tape transport consists of the electrical, mechanical, and 

electronic components to provide the parts and control mechanism for a 

magnetic-tape unit. The tape itself is a strip of plastic coated with a magnetic 

recording medium. Bits are recorded as magnetic spots on the tape along 

several tracks. Usually, seven or nine bits are recorded simultaneously to form a 

character together with a parity bit. Read/write heads are mounted one in each 

track so that data can be recorded and read as a sequence of characters. 

Magnetic tape units can be stopped, started to move forward or in reverse, or 

can be rewound. However, they cannot be started or stopped fast enough 

between individual characters. For this reason, information is recorded in blocks 

referred to as records. Gaps of unrecorded tape are inserted between records 

where the tape can be stopped.  

 

4.4. ASSOCIATIVE MEMORY 

 Many data-processing applications require the search of items in a table 

stored in memory. An assembler program searches the symbol address table in 

order to extract the symbol’s binary equivalent. An account number may be 

searched in a file to determine the holder’s name and account status.  

 The established way to search a table is to store all items where they can 

be addressed in sequence. The search procedure is a strategy for choosing a 

sequence of addresses, reading the content of memory at each address, and 

comparing the information read with the item being searched until a match 

occurs. The number of accesses to memory depends on the location of the item 

and the efficiency of the search algorithm. 

 The time required to find an item stored in memory can be reduced 

considerably if stored data can be identified for access by the content of the 

data itself rather than by an address. A memory unit accessed by content is 

called an associative memory or content addressable memory (CAM). 

  This type of memory is accessed simultaneously and in parallel on the 

basis of data content rather than by specific address or location. When a word is 
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written in an associative memory, no address is given. The memory is capable 

of finding an empty unused location to store the word. When a word is to be 

read from an associative memory, the content of the word, or part of the word, 

is specified.  

 The memory locaters all words which match the specified content and 

marks them for reading. Because of its organization, the associative memory is 

uniquely suited to do parallel searches by data association.  

 An associative memory is more expensive then a random access memory 

because each cell must have storage capability as well as logic circuits for 

matching its content with an external argument.  

 For this reason, associative memories are used in applications where the 

search time is very critical and must be very short. 

4.4.1. HARDWARE ORGANIZATION 

 The block diagram of an associative memory consists of a memory array 

and logic from words with n bits per word. The argument register A and key 

register K each have n bits, one for each bit of a word.  

 

   Block diagram for Associate Memory 
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 The match register M has m bits, one for each memory word. Each word 

in memory is compared in parallel with the content of the argument register. 

The words that match the bits of the argument register set a corresponding bit 

in the match register. After the matching process, those bits in the match 

register that have been set indicate the fact that their corresponding words have 

been matched. Reading is accomplished by a sequential access to memory for 

those words whose corresponding bits in the match register have been set. 

 The key register provides a mask for choosing a particular field or key in 

the argument word. The entire argument is compared with each memory word if 

the key register contains all 1’s. Otherwise, only those bits in the argument that 

have 1’s in their corresponding position of the key register are compared. Thus 

the key provides a mask or identifying piece of information which specifies how 

the reference to memory is made. 

 

To illustrate with a numerical example, suppose that the argument register A 

and the key register K have the bit configuration shown below. Only the three 

leftmost bits of A are compared with memory words because K has 1’s in these 

positions. 

 

Word 2 matches the unmasked argument field because the three leftmost bits of 

the argument and the word are equal. 

 The relation between the memory array and external registers in an 

associative memory is shown in below figure. 
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  The cells in the array are marked by the letter C with two subscripts. The 

first subscript gives the word number and the second specifies the bit position in 

the word. Thus cell Cij is the cell for bit j in word i. A bit A j in the argument 

register is compared with all the bits in column j of the array provided that K j = 

1. This is done for all columns j = 1, 2,…,n. If a match occurs between all the 

unmasked bits of the argument and the bits in word i, the corresponding bit Mi 

in the match register is set to 1. 

 If one or more unmasked bits of the argument and the word do not match, Mi is 

cleared to 0. 

Flop storage element Fij and the circuits for reading, writing, and matching the 

cell. The input bit is transferred into the storage cell during a write operation. 

The bit stored is read out during a read operation. The match logic compares 

the content of the storage cell with the corresponding unmasked bit of the 

argument and provides an output for the decision logic that sets the bit in Mi. 

4.4.2. MATCH LOGIC 

 The match logic for each word can be derived from the comparison 

algorithm for two binary numbers. First, we neglect the key bits and compare 

the argument in A with the bits stored in the cells of the words. Word i is equal 

to the argument in A if Aj = Fij for j = 1, 2,…, n. Two bits are equal if they are 
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both 1 or both 0. The equality of two bits can be expressed logically by the 

Boolean function 

xj = Aj Fij + A'
j Fij

' 

where xj = 1 if the pair of bits in position j are equal; otherwise, xj = 0. 

 For a word i to be equal to the argument in A we must have all xj 

variables equal to 1. This is the condition for setting the corresponding match bit 

Mi to 1. The Boolean function for this condition is 

Mi = x1 x2 x3 … xn 

and constitutes the AND operation of all pairs of matched bits in a word. One 

cell of associative memory  

 We now include the key bit Kj in the comparison logic. The requirement is 

that if Kj = 0, the corresponding bits of Aj and Fij need no comparison. Only 

when Kj = 1 must they be compared. This requirement is achieved by ORing 

each term with Kj’ , thus: 

 

When K j = 1, we have K j ’ = 0 and xj + 0 = xj. When Kj = 0, then Kj’ = 1 xj + 1 

= 1. A term (xj + Kj’) will be in the 1 state if its pair of bitsis not compared. This 

is necessary because each term is ANDed with all other terms so that an output 

of 1 will have no effect. The comparison of the bits has an effect only when Kj = 

1. The match logic for word i in an associative memory can now be expressed 

by the following Boolean function: 

Mi  = (x1 + K 'j ) (x2 + K 'j ) (x3 + K 'j ) …. (xn + K 'j ) 

Each term in the expression will be equal to 1 if its corresponding K '
j = 0. if Kj = 

1, the term will be either 0 or 1 depending on the value of xj. A match will occur 
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and Mi will be equal to 1 if all terms are equal to 1. If we substitute the original 

definition of xj. the Boolean function above can be expressed as follows: 

 

Where ∏ is a product symbol designating the AND operation of all n terms. We 

need m such functions, one for each word i = 1, 2, 3, …., m. 

 The circuit for catching one word is shown in below 

figure.

 

 Each cell requires two AND gates and one OR gate. The inverters for Aj 

and Kj are needed once for each column and are used for all bits in the column. 

The output of all OR gates in the cells of the same word go to the input of a 

common AND gate to generate the match signal for Mi. Mi will be logic 1 if a 

catch occurs and 0 if no match occurs. Note that if the key register contains all 

0’s, output Mi will be a 1 irrespective of the value of A or the word. This 

occurrence must be avoided during normal operation. 

4.4.3. READ OPERATION 

 The matched words are read in sequence by applying a read signal to 

each word line whose corresponding Mi bit is a 1. In most applications, the 

associative memory stores a table with no two identical items under a given 

key. In this case, only one word may match the unmasked argument field. By 

connecting output Mi directly to the read line in the same word position (instead 

of the M register), the content of the matched word will be presented 

automatically at the output lines and no special read command signal is needed. 

Furthermore, if we exclude words having a zero content, an all-zero output will 
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indicate that no match occurred and that the searched item is not available in 

memory. 

4.4.4. WRITE OPERATION 

 If the entire memory is loaded with new information at once prior to a 

search operation then the writing can be done by addressing each location in 

sequence. This will make the device a random-access memory for writing and a 

content addressable memory for reading. The advantage here is that the 

address for input can be decoded as in a random-access memory. Thus instead 

of having m address lines, one for each word in memory, the number of address 

lines can be reduced by the decoder to d lines, where m = 2d. 

 If unwanted words have to be deleted and new words inserted one at a 

time, there is a need for a special register to distinguish between active and 

inactive words. This register, sometimes called a tag register, would have as 

many bits as there are words in the memory. For every active word stored in 

memory, the corresponding bit in the tag register is set to 1. A word is deleted 

from memory by clearing its tag bit to 0. Words are stored in memory by 

scanning the tag register until the first 0 bit is encountered. This gives the first 

available inactive word and a position for writing a new word. After the new 

word is stored in memory it is made active by setting its tag bit to 1. An 

unwanted word when deleted from memory can be cleared to all 0’s if this value 

is used to specify an empty location.  

4.5. CACHE MEMORY 

 Analysis of a large number of typical programs has shown that the 

references, to memory at any given interval of time tend to be confined within a 

few localized areas in memory. The phenomenon is known as the property of 

locality of reference. 

 The locality of reference property, which states that over a short interval 

of time, the addresses generated by a typical program refer to a few localized 

areas of memory repeatedly, while the remainder of memory is accessed 

relatively frequently. 

 If the active portions of the program and data are placed in a fast small 

memory, the average memory access time can be reduced, thus reducing the 
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total execution time of the program. Such a fast small memory is referred to as 

a cache memory. It is placed between the CPU and main memory as illustrated 

in figure. 

  

The cache memory access time is less than the access time of main memory by 

a factor of 5 to 10. The cache is the fastest component in the memory hierarchy 

and approaches the speed of CPU components. 

 

 The fundamental idea of cache organization is that by keeping the most 

frequently accessed instructions and data in the fast cache memory. 

 The basic operation of the cache is as follows. When the CPU needs to 

access memory, the cache is examined. If the word is found in the cache, it is 

read from the fast memory. If the word addressed by the CPU is not found in 

the cache, the main memory is accessed to read the word. A block of words 

containing the one just accessed is then transferred from main memory to cache 

memory. 

  The block size may vary from one word (the one just accessed) to about 

16 words adjacent to the one just accessed. In this manner, some data are 

transferred to cache so that future references to memory find the required 

words in the fast cache memory. 

 The performance of cache memory is frequently measured in terms of a 

quantity called hit ratio. When the CPU refers to memory and finds the word in 

cache, it is said to produce a hit. If the word is not found in cache, it is in main 

memory and it counts as a miss. The ratio of the number of hits divided by the 

total CPU references to memory (hits plus misses) is the hit ratio.  

  For example, a computer with cache access time of 100 ns, a main 
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memory access time of 1000 ns, and a hit ratio of 0.9 produces an average 

access time of 200 ns. This is a considerable improvement over a similar 

computer without a cache memory, whose access time is 1000 ns. 

 The basic characteristic of cache memory is its fast access time. 

Therefore, very little or no time must be wasted when searching for words in the 

cache.  

 The transformation of data from main memory to cache memory is 

referred to as a mapping process.  

   

 Three types of mapping procedures are of practical interest when 

considering the organization of cache memory: 

1. Associative mapping 

2. Direct mapping 

3. Set-associative mapping 

 To helping the discussion of these three mapping procedures we will use a 

specific example of a memory organization as shown in figure. 

 

 The main memory can store 32K words of 12 bits each. The cache is 

capable of storing 512 of these words at any given time. For every word stored 

in cache, there is a duplicate copy in main memory. 

 The CPU communicates with both memories. It first sends a 15-bit 

address to cache. If there is a hit, the CPU accepts the 12 -bit data from cache. 

If there is a miss, the CPU reads the word from main memory and the word is 

then transferred to cache. 
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4.5.1 ASSOCIATIVE MAPPING 

The fasters and most flexible cache organization uses an associative memory. 

This organization is illustrated in Fig.  

 The associative memory stores both the address and content (data) of 

the memory word. This permits any location in cache to store any word from 

main memory. The diagram shows three words presently stored in the cache. 

The address value of 15 bits is shown as a five-digit octal number and its 

corresponding 12-bit word is shown as a four-digit octal number. A CPU address 

of 15 bits is placed in the argument register and the associative memory is 

searched for a matching address. If the address is found, the corresponding 12-

bit data is read and sent to the CPU. If no match occurs, the main memory is 

accessed for the word. This constitutes a first-in first-out (FIFO) replacement 

policy. 

4.5.2. DIRECT MAPPING 

 Associative memories are expensive compared to random-access 

memories because of the added logic associated with each cell. The possibility of 

using a random-access memory for the cache is investigated in Fig. 



[Computer Organization] 
 

[Dept of CSE , VEMU] Page 175 
 

 

The CPU address of 15 bits is divided into two fields. The nine least significant 

bits constitute the index field and the remaining six bits form the tag and the 

index bits. The number of bits in the index field is equal to the number of 

address bits required to access the cache memory. 

 In the general case, there are 2k words in cache memory and 2n words in 

main memory. The n-bit memory address is divided into two fields: k bits for 

the index field and n − k bits for the tag field. The direct mapping cache 

organization uses the n-bit address to access the main memory and the k-bit 

index to access the cache. 

 The internal organization of the words in the cache memory is as shown 

in Fig. 

 

  Each word in cache consists of the data word and its associated tag. 

When a new word is first brought into the cache, the tag bits are stored 

alongside the data bits. When the CPU generates a memory request, the index 
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field is used for the address to access the cache. 

 The tag field of the CPU address is compared with the tag in the word 

read from the cache. If the two tags match, there is a hit and the desired data 

word is in cache. If the two tags match, there is a hit and the desired data word 

is in cache. If there is no match, there is a miss and the required word is read 

from main memory.  

 To see how the direct-mapping organization operates, consider the 

numerical example shown in Fig below. 

 

  The word at address zero is presently stored in the cache (index = 000, 

tag = 00, data = 1220). Suppose that the CPU now wants to access the word at 

address 02000. The index address is 000, so it is sued to access the cache. The 

two tags are then compared. The cache tag is 00 but the address tag is 02, 

which does not produce a match. Therefore, the main memory is accessed and 

the data word 5670 is transferred to the CPU. The cache word at index address 

000 is then replaced with a tag of 02 and data of 5670. 

 The same organization but using a block size of 8 words is shown in Fig.  
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 The index field is now divided into two parts: the block field and the 

word field.  In a 512-word cache there are 64 block of 8 words each, since 

64X8 = 512. The block number is specified with a 6-bit field and the word within 

the block is specified with a 3-bit field.  

 The tag field stored within the cache is common to all eight words of the 

same block. Every time a miss occurs, an entire block of eight words must be 

transferred from main memory to cache memory. Although this takes extra 

time, the hit ratio will most likely improve with a larger block size because of the 

sequential nature of computer programs. 

4.5.3. SET-ASSOCIATIVE MAPPING 

 It was mentioned previously that the disadvantage of direct mapping is 

that two words with the same index in their address but with different tag 

values cannot reside in cache memory at the same time. A third type of cache 

organization, called set-associative mapping, is an improvement over the 

direct-mapping organization in that each word of cache can store two or more 

words of memory under the same index address. Each data word is stored 

together with its tag and the number of tag-data items in one word of cache is 

said to form a set.  

 An example of a set-associative cache organization for a set size of two is 

shown in Fig. 
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 Each index address refers to two data words and their associated tags. 

Each tag requires six bits and each data word has 12 bits, so the word length is 

2(6 + 12) = 36 bits. An index address of nine bits can accommodate 512 words. 

Thus the size of cache memory is 512 X 36.  

 It can accommodate 1024 words of main memory since each word of 

cache contains two data words. In general, a set-associative cache of set size k 

will accommodate k words of main memory in each word of cache. 

With reference to the main memory content the following is  illustrated. The 

words stored at addresses 01000 and 02000 of main memory are stored in 

cache memory at index address 000. Similarly, the words at addresses 02777 

and 00777 are stored in cache at index address 777.   

 When a miss occurs in a set-associative cache and the set is full, it is 

necessary to replace one of the tag-data items with a new value. The most 

common replacement algorithms used are: random replacement, first-in, first 

out (FIFO), and least recently used (LRU). With the random replacement policy 

the control chooses one tag-data item for replacement at random. The FIFO 

procedure selects for replacement the item that has been in the set the longest. 

The LRU algorithm selects for replacement the item that has been least recently 

used by the CPU. Both FIFO and LRU can be implemented by adding a few extra 

bits in each word of cache. 

WRITING INTO CACHE 

 For write operation, there are two ways that the system can proceed. The 

simplest and most commonly used procedure is to up data main memory with 



[Computer Organization] 
 

[Dept of CSE , VEMU] Page 179 
 

every memory write operation, with cache memory being updated in parallel if it 

contains the word at the specified address. This is called the write-through 

method. 

 The second procedure is called the write-back method. In this method 

only the cache location is updated during a write operation. The location is then 

marked by a flag so that later when the words are removed from the cache it is 

copied into main memory.  

CACHE INITIALIZATION 

 One more aspect of cache organization that must be taken into 

consideration is the problem of initialization. The cache is initialized when power 

is applied to the computer or when the main memory is loaded with a complete 

set of programs from auxiliary memory. After initialization the cache is 

considered to be empty, built in effect it contains some non-valid data. It is 

customary to include with each word in cache a valid bit to indicate whether or 

not the word contains valid data. The cache is initialized by clearing all the valid 

bits to 0. The valid bit of a particular cache word is set to 1 the first time this 

word is loaded from main memory and stays set unless the cache has to be 

initialized again.  

4.6. VIRTUAL MEMORY 

 In a memory hierarchy system, programs and data are brought into main 

memory as they are needed by the CPU. Virtual memory is a concept used in 

some large computer systems that permit the user to construct programs as 

though a large memory space were available, equal to the totality of auxiliary 

memory. Each address that is referenced by the CPU goes through an address 

mapping from the so-called virtual address to a physical address in main 

memory.  

 Virtual memory is used to give programmers the illusion that they have a 

very large memory at their disposal, even though the computer actually has a 

relatively small main memory. A virtual memory system provides a mechanism 

for translating program-generated addresses into correct main memory 

locations. This is done dynamically, while programs are being executed in the 

CPU. The translation or mapping is handled automatically by the hardware by 
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means of a mapping table. 

4.6.1. ADDRESS SPACE AND MEMORY SPACE 

 An address used by a programmer will be called a virtual address, and 

the set of such addresses the address space. An address in main memory is 

called a location or physical address. The set of such locations is called the 

memory space. Thus the address space is the set of addresses generated by 

programs as they reference instructions and data; the memory space consists of 

the actual main memory locations directly addressable for processing. In most 

computers the address and memory spaces are identical. 

 

 As an illustration, consider a computer with a main -memory capacity of 

32K words (K = 1024). Fifteen bits are needed to specify a physical address in 

memory since 32K = 215. Suppose that the computer has available auxiliary 

memory for storing 220 = 1024K words. Thus auxiliary memory has a capacity 

for storing information equivalent to the capacity of 32 main memories. 

Denoting the address space by N and the memory space by M, we then have for 

this example N = 1024K and M = 32K. 

 In a multiprogram computer system, programs and data are transferred 

to and from auxiliary memory and main memory based on demands imposed by 

the CPU. Suppose that program 1 is currently being executed in the CPU. 

Program 1 and a portion of its associated data re moved from auxiliary memory 

into main memory as shown in figure  
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Porti

ons of programs and data need not be in contiguous locations in memory since 

information is being moved in and out, and empty spaces may be available in 

scattered locations in memory. 

  

 

The mapping table may be stored in a separate memory as shown in Fig.  
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 or in main memory. In the first case, an additional memory unit is required as 

well as one extra memory access time. In the second case, the table takes 

space  from main memory and two accesses to memory are required with the 

program running at half speed. A third alternative is to use an associative 

memory as explained below. 

4.6.2. ADDRESS MAPPING USING PAGES 

 The table implementation of the address mapping is simplified if the 

information in the address space and the memory space are each divided into 

groups of fixed size. The physical memory is broken down into groups of equal 

size called blocks, which may range from 64 to 4096 words each. The term page 

refers to groups of address space of the same size. For example, if a page or 

block consists of 1K words, then, using the previous example, address space is 

divided into 1024 pages and main memory is divided into 32 blocks. Although 

both a page and a block are split into groups of 1K words, a page refers to the 

organization of address space, while a block refers to the organization of 

memory space.  

 The programs are also considered to be split into pages. Portions of 

programs are moved from auxiliary memory to main memory in records equal 

to the size of a page. The term “page frame” is sometimes used to denote a 

block. 

 

Consider a computer with an address space of 8K and a memory space of 4K. If 

we split each into groups of 1K words we obtain eight pages and four blocks as 

shown in below Fig. 
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 At any given time, up to four pages of address space may reside in main 

memory in any one of the four blocks. 

 The mapping from address space to memory space is facilitated if each 

virtual address is considered to be represented by two numbers: a page number 

address and a line within the page. In a computer with 2p words per page, p bits 

are used to specify a line address and the remaining high-order bits of the 

virtual address specify the page number. In the example figure below. 

 

 A virtual address has 13 bits. Since each page consists of 210 = 1024 

words, the high-order three bits of a virtual address will specify one of the eight 

pages and the low-order 10 bits give the line address within the page. Note that 

the line address in address space and memory space is the same; the only 
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mapping required is from a page number to a block number. 

4.6.3. ASSOCIATIVE MEMORY PAGE TABLE 

 A efficient way to organize the page table would be to construct it with a 

number of words equal to the number of blocks in main memory. In this way 

the size of the memory is reduced and each location is fully utilized. This 

method can be implemented by means of an associative memory with each 

word in memory containing a page number together with its corresponding 

block number. The page field in each word is compared with the page number in 

the virtual address. If a match occurs, the word is read from memory and its 

corresponding block number is extracted. 

 

Consider again the case of eight pages and four blocks as in the previous 

example of Fig. We replace the random access memory-page table with an 

associative memory of four words as shown in following Fig. 

 

Each entry in the associative memory array consists of two fields. The first three 

bits specify a field fro storing the page number. The last two bits constitute a 

field for storing the block number. The virtual address is placed in the argument 

register. The page number bits in the argument are compared with all page 

numbers in the page field of the associative memory. If the page number is 
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found, the 5-bit word is read out from memory. The corresponding block 

number, being in the same word, is transferred to the main memory address 

register. If no match occurs, a call to the operating system is generated to bring 

the required page from auxiliary memory. 

 

4.6.4. PAGE REPLACEMENT 

 A virtual memory system is a combination of hardware and software 

techniques. The memory management software system handles all the software 

operations for the efficient utilization of memory space. It must decide 

 (1) Which page in main memory ought to be removed to make room for a new 

page, 

 (2) When a new page is to be transferred from auxiliary memory to main 
memory, and  

(3) Where the page is to be placed in main memory.  

 The hardware mapping mechanism and the memory management 

software together constitute the architecture of a virtual memory. 

 The program is executed from main memory until it attempts to reference 

a page that is still in auxiliary memory. This condition is called page fault. 

When page fault occurs, the execution of the present program is suspended 

until the required page is brought into main memory. Since loading a page from 

auxiliary memory to main memory is basically an I/O operation, the operating 

system assigns this task to the I/O processor. In the meantime, controls 

transferred to the next program in memory that is waiting to be processed in 

the CPU. Later, when the memory block has been assigned and the transfer 

completed, the original program can resume its operation. 

 The policy for choosing pages to remove is determined from the 

replacement algorithm that is used. The goal of a replacement policy is to try to 

remove the page least likely to be referenced in the immediate future. 

 Two of the most common replacement algorithms used are the first-in 

first-out (FIFO) and the least recently used (LRU).  

 The FIFO algorithm selects for replacement the page the has been in 

memory the longest time. Each time a page is loaded into memory, its 

identification number is pushed into a FIFO stack. FIFO will be full whenever 
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memory has no more empty blocks.  

 The FIFO replacement policy has the advantage of being easy to 

implement.  

 It has the disadvantage that under certain circum-stances pages are 

removed and loaded form memory too frequently. 

 The LRU algorithm can be implemented by associating a counter with 

every page that is in main memory. When a page is referenced, its associated 

counter is set to zero. At fixed intervals of time, the counters associated with all 

pages presently in memory are incremented by 1. The least recently used page 

is the page with the highest count. The counters are often called aging registers, 

as their count indicates their age, that is, how long ago their associated pages 

have been referenced. 
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Unit-V 

Pipeline and Multiprocessor 

5.1. Parallel Processing 

Parallel processing is a term used to denote a large class of techniques that are 

used to provide simultaneous data processing tasks for the purpose of 

increasing the computational speed of computer system. 

          Instead of processing each instruction sequentially as in a conventional 

computer, a parallel processing system is able to perform concurrent data 

processing to achieve faster execution time. 

          For example, while an instruction is being executed in the ALU, the next 

instruction can be read from memory. The system may have two or more 

processors operating concurrently. 

ADVANTAGES OF PARALLEL PROCESSING: 

1. It speeds up the computer processing capability. 

2. Increases its throughput, i.e., the amount of processing that can be 

accomplished during a given interval of time. 

3. The amount of hardware increases with parallel processing and with it the 

cost of the system increases. However, technological developments have 

reduced hardware costs to the point where parallel processing techniques 

are economically feasible. 

Parallel processing can be achieved by having a multiplicity of functional units 

that perform identical or different operations simultaneously. Parallel processing 

is established by distributing the data among the multiple functional units. 

Fig shows one possible way of separating the execution time into 8 functional 

units operating in parallel. The operands in the registers are applied to one of 

the units depending on the operation specified by the instruction associated with 

the operands.  

 The operation performed in each functional unit is indicated in each block 
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of the diagram. The adder and integer multiplier perform the arithmetic 

operations with integer numbers. The floating point operations are separated 

into three circuits operating in parallel.  

 The logic, shift and increment operations can be performed concurrently 

on different data. All units are independent of each other, so one number can be 

shifted while another number is being incremented. 

 

Flynn’s classification divides computers into four major groups 

Single instruction stream, single data stream (SISD) 

Single instruction stream, multiple data stream (SIMD) 

Multiple instruction streams, single data stream (MISD) 

Multiple instruction stream, multiple data stream (MIMD) 
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SISD: 

SISD represents the organization of a single computer containing a control unit, 

a processor unit and a memory unit. Instructions are executed sequentially and 

the system may or may not have internal parallel processing capabilities. 

Parallel processing in this case may be achieved by means of multiple functional 

units or by pipeline processing. 

SIMD: 

SIMD represents an organization that includes many processing units under the 

supervision of a common control unit. All processors receive the same 

instruction from the control unit but operate on different items of data. The 

shared memory unit must contain multiple modules so that it can communicate 

with all the processors simultaneously. 

5.2. Pipelining 

Pipelining is a technique of decomposing a sequential process into sub 

operations, with each sub process being executed in a special dedicated 

segment that operates concurrently with all other segments. 

                     A pipeline can be visualized as a collection of processing 

segments through which binary information flows. Each segment performs 

partial processing dictated by the way the task is partitioned. 

                     The result obtained from the computation in each segment is 

transferred to the next segment in the pipeline. The final result is obtained after 

the data have passed through all segments. 

 

5.2.1. Pipeline Organization 

   The simplest way of viewing the pipeline structure is to imagine that 

each segment consists of an input register followed by a combinational circuit. 

The register holds the data and the combinational circuit performs the sub 

operation in the particular segment. The output of the combinational circuit is 

applied to the input register of the next segment. A clock is applied to all 

registers after enough time has elapsed to perform all segment activity. In this 

way the information flows through the pipeline one step at a time. 

Example demonstrating the pipeline organization  
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 Suppose we want to perform the combined multiply and add operations with a 

stream of numbers. 

                   Ai*Bi + Ci               for i=1, 2, 3 ….7 

Each sub operation is to implemented in a segment within a pipeline. Each 

segment has one or two registers and a combinational circuit as shown in fig. 

 

 R1 through r5 are registers that receive new data with every clock pulse. 

The multiplier and adder are combinational circuits. The sub operations 

performed in each segment of the pipeline are as follows: 

          R1<- Ai           R2<-Bi          Input Ai and Bi 

         R3<-R1*R2      R4<-Ci          multiply and input Ci 

         R5<-R3+R4                         add Ci to product  

The five registers are loaded with new data every clock pulse.  
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 The first clock pulse transfers A1 and B1 into R1 and R2. The second clock 

pulse transfers the product of R1 and R2 into R3 and C1 into R4. The same clock 

pulse transfers A2 and B2 into R1 and R2. The third clock pulse operates on all 

three segments simultaneously. It places A3 and B3 into R1 and R2, transfers 

the product of R1 and R2 into R3, transfers C2 into R4, and places the sum of 

R3 and R4 into R5. It takes three clock pulses to fill up the pipe and retrieve the 

first output from R5. From there on, each clock produces a new output and 

moves the data one step down the pipeline. This happens as long as new input 

data flow into the system. 

 

 

5.2.2.FOUR SEGMENT Pipeline 

The general structure of four segment pipeline is shown in fig. the operands are 

passed through all four segments in affixed sequence. Each segment consists of 

a combinational circuit Si that performs a sub operation over the data stream 

flowing through the pipe. The segments are separated by registers Ri that hold 

the intermediate results between the stages. Information flows between 

adjacent stages under the control of a common clock applied to all the registers 

simultaneously. 
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SPACE TIME DIAGRAM: 

 The behavior of a pipeline can be illustrated with a space time diagram. This is 

a diagram that shows the segment utilization as a function of time. 

Fig The horizontal axis displays the time in clock cycles and the vertical axis 

gives the segment number. The diagram shows six tasks T1 through T6 

executed in four segments. Initially, task T1 is handled by segment 1. After the 

first clock,  

 

segment 2 is busy with T1, while segment 1 is busy with task T2. Continuing in 

this manner, the first task T1 is completed after fourth clock cycle. From then 

on, the pipe completes a task every clock cycle. 

 Consider the case where a k-segment pipeline with a clock cycle time tp is 

used to execute n tasks. The first task T1 requires a time equal to ktp to 

complete its operation since there are k segments in a pipe. The remaining n-1 

tasks emerge from the pipe at the rate of one task per clock cycle and they will 

be completed after a time equal to (n-1) tp. Therefore, to complete n tasks 

using a k segment pipeline requires 

 k+ (n-1) clock cycles. 
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        Consider a non pipeline unit that performs the same operation and takes a 

time equal to tn to complete each task. The total time required for n tasks is n 

tn. The speedup of a pipeline processing over an equivalent non pipeline 

processing is defined by the ratio  

              S=ntn / (k+n-1)tp 

As the number of tasks increases, n becomes much larger than k-1, and k+n-1 

approaches the value of n. under this condition the speed up ratio becomes  

             S=tn/tp 

If we assume that the time it takes to process a task is the same in the pipeline 

and non pipeline circuits, we will have tn=ktp. Including this assumption speed 

up ratio reduces to  

             S=ktp/tp=k 

5.3. ARITHMETIC PIPELINE 

              An arithmetic pipeline divides an arithmetic operation into sub 

operations for execution in the pipeline segments. Pipeline arithmetic units are 

usually found in very high speed computers. They are used to implement 

floating point operations, multiplication of fixed point numbers, and similar 

computations encountered in scientific problems. 

5.3.1. Pipeline Unit For Floating Point Addition And Subtraction: 

             The inputs to the floating point adder pipeline are two normalized 

floating point binary numbers. 

       X=A*2a 

       Y=B*2b 
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A and B are two fractions that represent the mantissa and a and bare the 

exponents. The floating point addition and subtraction can be performed in four 

segments. The registers labeled are placed between the segments to store 

intermediate results. The sub operations that are performed in the four 



[Computer Organization] 
 

[Dept of CSE , VEMU] Page 195 
 

segments are: 

1. Compare the exponents 

2. Align the mantissa. 

3. Add or subtract the mantissas. 

4. Normalize the result. 

           The exponents are compared by subtracting them to determine their 

difference. The larger exponent is chosen as the exponent of the result. The 

exponent difference determines how many times the mantissa associated with 

the smaller exponent must be shifted to the right. This produces an alignment of 

the two mantissas. 

           The two mantissas are added or subtracted in segment3. The result is 

normalized in segment 4. When an overflow occurs, the mantissa of the sum or 

difference is shifted to right and the exponent incremented by one. If the 

underflow occurs, the number of leading zeroes in the mantissa determines the 

number of left shits in the mantissa and the number that must be subtracted 

from the exponent.  

5.4. INSTRUCTION PIPELINE 

             An instruction pipeline operates on a stream of instructions by 

overlapping the fetch, decode, and execute phases of instruction cycle. An 

instruction pipeline reads consecutive instructions from memory while previous 

instructions are being executed in other segments. This causes the instruction 

fetch and executes phases to overlap and perform simultaneous operations. 

 Consider a computer with an instruction fetch unit and an instruction 

execute unit designed to provide a two segment pipeline. The instruction fetch 

segment can be implemented by means of a first in first out (FIFO) buffer. 

Whenever the execution unit is not using memory, the control increments the 

program counter and uses it address value to read consecutive instructions from 

memory. The instructions are inserted into the FIFO buffer so that they can be 

executed on a first in first out basis. Thus an instruction stream can be placed in 

queue, waiting for decoding and processing by the execution segment. 

  In general the computer needs to process each instruction with the following 

sequence of steps. 
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1. Fetch the instruction. 

2. Decode the instruction. 

3. Calculate the effective address. 

4. Fetch the operands from memory. 

5. Execute the instruction. 

6. Store the result in the proper place. 

5.4.1. Four Segment Instruction Pipeline 

 

Fig shows the instruction cycle in the CPU can be processed with a four segment 

pipeline. While an instruction is being executed in segment 4, the next 

instruction in sequence is busy with fetching an operand from memory in 

segment 3. the effective address may be calculated in a separate arithmetic 

circuit for the third instruction, and whenever the memory is available, the 

fourth and all subsequent instructions are placed in an instruction FIFO. 



[Computer Organization] 
 

[Dept of CSE , VEMU] Page 197 
 

  Fig shows the operation of the instruction pipeline. The time in the 

horizontal axis is divided into steps of equal duration. The four segments are 

represented in the diagram with an abbreviated symbol. 

 

1. FI is the segment that fetches an instruction. 

2.  DA is the segment that decodes the instruction and calculates the 

effective address. 

3.  FO is the segment that fetches the operand. 

4.  EX is the segment that executes the instruction. 

         It is assumed that the processor has separate instruction and data 

memories so that the operation in FI and FO can proceed at the same time. In 

the absence of a branch instruction, each segment operates on different 

instructions. Thus, in step 4, instruction 1 is being executed in segment EX; the 

operand for instruction 2 is being fetched into segment FO; instruction 3 is 

being decoded in segment DA; and instruction 4 is being fetched from memory 

in segment FI. 

          Assume now this instruction is a branch instruction. As soon as this 

instruction is decoded in segment DA in step 4, the transfer from FI to DA of the 
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other instructions are halted until the branch instruction is executed in step 6.  

PIPELINE CONFLICTS: 

1. RESOURCE CONFLICTS: They are caused by access to memory by two 

segments at the same time. Most of these conflicts can be resolved by 

using separate instruction and data memories. 

2. DATA DEPENDENCY: these conflicts arise when an instruction depends on 

the result of a previous instruction, but this result is not yet available. 

3. BRANCH DIFFERENCE: they arise from branch and other instructions that 

change the value of PC. 

5.4.2. DATA DEPENDENCY 

 A difficulty that may cause a degradation of performance in an 

instruction pipeline collision of data or address. A collision occurs when an 

instruction cannot proceed because previous instructions did not complete 

certain operations. 

           A data dependency occurs when an instruction needs data that 

are not yet available. For example an instruction in the FO segment may 

need to fetch an operand that is being generated at the same time by the 

previous instruction in segment EX. Therefore, the second instruction 

must wait for the data to become available by the first instruction. 

          An address dependency may occur when an operand address 

cannot be calculated because the information needed by the addressing 

mode is not available. For example, an instruction with register indirect 

mode can not proceed to fetch the operand if the previous instruction is 

loading the address into the register. Therefore operand access to 

memory must be delayed until the required address is available. 

Pipelined computers deal with such conflicts between data dependencies 

in a variety of ways. 

            The most straight forward method is to insert HARDWARE 

INTERLOCKS. An interlock is a circuit that detects instructions whose 

source operands are destinations of instructions farther up in the pipeline. 
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Detection of this situation causes the instruction whose source is not 

available to be delayed by enough clock cycles to resolve the conflict. 

            Another technique called OPERRND FORWADING uses special 

hardware to detect a conflict and then avoid it by routing the data 

through special paths between pipeline segments. 

            A procedure employed in some computers is to give the 

responsibility for solving data conflicts problems to the compiler. The 

compiler for such computers are designed to detect a data conflict and 

reorder the instruction as necessary to delay the loading of the conflicting 

data by inserting no-operation instructions. This method is referred to as 

DELAYED LOAD. 

5.4.3. Handling of Branch Instructions 

       One of the major problems in operating the instruction pipeline is the 

occurrence of the branch instructions. A branch instruction can be 

conditional or unconditional. An unconditional branch always alters the 

sequential program flow by loading the program counter with the target 

address. In a conditional branch, the control selects the target instruction 

if the condition is satisfied or the next sequential instruction if the 

condition is not satisfied. 

 

Pipeline computers employ various hardware techniques to minimize the 

performance of degradation caused by instruction branching. 

        One way of handling a conditional branch is to pre fetch the target 

instruction in addition to the instruction following the branch. Both are 

saved until the branch is executed. If the branch condition is successful, 

the pipeline continues from the branch target instruction 

              Another possibility is the use of BRANCH TARGET BUFFER or 

BTB. The BTB is an associative memory included in the fetch segment of 

the pipeline. Each entry in the BTB consists of the address of the 

previously executed branch instruction and the target instruction for that 

branch. It also stores the next few instructions after the branch target 

instruction. When the pipeline decodes a branch instruction, it searches 
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the associative memory BTB for the address of the instruction. If it is in 

the BTB, the instruction is available directly and pre fetch continues from 

the new path. If the instruction is not in the BTB the pipeline shifts to a 

new instruction stream and stores the target instruction in the BTB. 

5.5. Characteristics of multiprocessors 

             A multiprocessor system is an interconnection of two or more CPUs 

with memory and input-output equipment. The term “processor” in 

multiprocessor can mean either a central processing unit (CPU) or an input-

output processor (IOP). Multiprocessors are classified as multiple instruction 

stream, multiple data stream (MIMD) systems. 

           A multiprocessor system is controlled by one operating system that 

provides interaction between processors and all the components of the system. 

A multiprocessor improves the reliability of the system so that a failure or error 

in one part has a limited effect on the rest of the system. If a fault causes one 

processor to fail, a second processor can be assigned to perform the function of 

the disabled processor. This causes the loss in efficiency of the system but with 

no delay. 

        Multiprocessors can improve performance by decomposing the program 

into parallel executable tasks. This can be achieved in two ways. 

*Multiple independent jobs can be made to operate in parallel. 

*A single job can be partitioned into multiple parallel tasks.  

 Multiprocessors are classified by the way their memory is organized 

1. Shared memory or tightly coupled multiprocessor: 

                             A multiprocessor system with common shared memory is 

classified as shared memory. It provides a cache memory with each CPU.  There 

will be a global common memory that all CPUs can access. Information can 

therefore be shared among the CPUs by placing it in the common global 

memory.  

2. Disturbed memory or loosely coupled system: 

                         Each processor element in a loosely coupled system has its 

own private local memory. The processors relay programs and data to other 

processors in packets, which consists of an address, the data content, and error 
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detecting code.  

5.6. Interconnection Structures 

              There are several physical forms available for establishing an 

interconnection network. Some of these schemes are 

1. Time-shared common bus 

2. Multiport memory 

3. Crossbar switch 

4. Multistage switching network 

5. Hypercube system 

1. Time-shared common bus: 

             A common bus multi processor system consists of a number of 

processors connected through a common path to a memory unit. Only one 

processor can communicate with the memory or another processor at any given 

time. Any processor wishing to initiate a transfer must first determine the 

availability of the bus. A command is issued to inform the destination unit what 

operation is to be performed. The receiving unit recognizes its address and 

responds to the control signals from the sender, after this the transfer will be 

initiated.  

           The system may exhibit transfer conflicts since all processors share one 

common bus. These conflicts must be resolved by putting a bus controller that 

establishes priorities among the requesting units.  

          The processors in the system are kept busy through the implementation 

of two or more buses to permit multiple simultaneous bus transfer. It increases 

the system cost and complexity. 
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                    Time shared common bus organization 

          Consider implementation of dual bus structure. In this a number of local 

buses connected to its own local memory and to one or more processors. Each 

local bus is connected to a CPU, an IOP or any combination of processors. A 

system bus controller links each local bus to common system bus. I/O devices 

connected to local memory as well as to local IOP are available to local 

processor              

     

     System bus structure for multiple processors 

 If an IOP is connected directly to the system bus, the I/O devices 

attached to it may be made available to the processors. Only one processor can 
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communicate with the shared memory and other common resources through the 

system bus at any given time.  

 The other processors are kept busy communicating with their local 

memory and I/O devices. Part of local memory may be designed as a cache 

memory attached to CPU. In this way average access time of local memory can 

be made to approach the cycle time of CPU to which it is attached. 

2. Multiport memory:  

          A multiport memory system employs separate buses between each 

memory module (MM) and each CPU. Each processor bus is connected to each 

memory module. A processor bus consists of the address, data and control lines 

required to communicate with memory. MM is said to have 4ports and each port 

accommodates one of the buses. The module must have internal control logic to 

determine which port will have access to memory at any given time.  

             The advantage of multiport memory organization is the higher transfer 

rate because of multiple paths between processor and main memory. The 

disadvantage is it requires expensive control logic and a large number of cables 

and connectors. This structure is appropriate for a system with large number of 

processors. 
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                                 Multiport memory organization 

4. Multistage Switching Network:   

          The basic component of a multistage network is a two-input, two-output 

interchange switch. A 2*2 switch has two inputs, labeled A and B and two-

outputs labeled 0 and 1. The switch has the capability of connecting inputs A or 

B to either of the outputs. If inputs A and B both requests for the same output 

only one of them will be connected other will be blocked. 

            The two processors P1 and P2 are connected through switches to eight 

memory modules marked in binary from 000 through 111. The first bit of 

destination number determines the switch output in the first level. 

For example to connect P1 to memory 101,it is necessary to form paths from P1 

to o/p 1 in t he 1st level switch, o/p 0 in the 2nd level switch and o/p in the 3rd 

level. 
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Omega Network: 

           Omega switching network have been proposed for multistage switching 

network to control processor-memory communication. In this configuration 

there is exactly one path from each source to any particular destination. A 

particular request is initiated in the switching network by source, which sends a 

3-bit pattern representing the destination number. As the binary pattern moves 

through the network, each level examines a different bit to determine the 2*2 

switch setting. When the request arrives on either input of 2*2 switch, it is 

routed to the upper output if the specified bit is 0 or to the lower output if it is 

1. 

Omega Network in a tightly coupled multiprocessor: 

           In this the source is a memory module and the destination is a memory 

module. The first pass through the network sets up the path. Succeeding paths 

are used to transfer the address into memory and then transfer the data in read 

or write direction. 

Omega Network in loosely coupled multiprocessor: 

                      In this both the source and the destination are the processing 

elements. After the path is established the source processor transfers a 

message to the destination processor. 

 5. Hypercube Interconnection 

            The hypercube or binary n-cube multiprocessor structure is a loosely 

coupled system composed of 2 power of n processors interconnected in an n-
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dimensional binary cube. Each processor forms a node of the cube. Each 

processor has direct communication paths to n other neighbor processors. Each 

processor address differs from that of its neighbors by exactly one bit position. 

        Routing messages through an n-cube structure may take from one to n 

links from a source node to a destination node. For example, in a three-cube 

structure node 000 can communicate directly with node 001. It must cross at 

least two links to communicate with 011. Computing the ex-or of the source 

node address with the destination node address can develop a routing 

procedure.                         

 

 

 

 

5.7. Interprocessor Arbitration 

         Computer systems contain a number of buses at various levels to 

facilitate the transfer of information between components. A bus that connects 

the major components in a multiprocessor system such as CPUs, IOPs and 

memory is called a system bus. The processors in a shared memory 

multiprocessor system request access to common memory through the system 

bus. The requesting processor may wait if another processor is currently 

utilizing the system bus. Arbitration must then be performed to resolve this 

multiple contention for the shared resources. Arbitration logic is a part of system 

bus controller placed between the local bus and the system bus. 
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System Bus: 

        A typical system bus consists of approximately 100 signal lines. These 

lines are divided into three functional groups data, address and control lines. 

Six bus arbitration signals  

These are used for Interprocessor arbitration.  

Bus request                      BREQ 

Common Bus request          CBRQ 

Bus busy                             BUSY 

Bus clock                             BCLK 

Bus priority in                     BPRN 

Bus priority out                    BPRO 

Functions of the Bus Arbitration Signals 

        The bus priority –in BPRN and the bus priority-out BPRO are used for a 

daisy-chain connection of bus arbitration circuits. The bus BUSY signal is an 

open collector output to instruct all arbiters when the bus is busy. The common 

bus request CBRQ is also an open collector output used to instruct the arbiter if 

there are any other arbiters of lower-priority requesting the use of bus. The 

signals used to connect parallel arbitration procedure are bus request BREQ and 

priority-in BRPN for request and ack signals respectively. The bus clock BCLK is 

used to synchronize all bus transactions 

Serial Arbitration Procedure: 

         A hardware bus priority resolving techniques can be established by means 

of a serial or parallel connection of units requesting control of the system bus. 

        Serial priority resolving technique is obtained from a daisy-chain 

interconnection of bus arbitration circuits. Each processor has its own bus 

arbitration logic with priority in and priority out lines. The priority out (PO) of 

each arbiter is connected to priority in (PI) of next lower-priority. The PI of 

highest priority unit is maintained at logic 1.  
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                          Serial Arbitration  

 The processor whose arbiter has a PI=1 and PO=0 is one that is given the 

control of the system bus. The PO output for a particular arbiter is equal to 1 f 

its PI input is equal to 1 and the processor associated with the arbiter logic is 

not requesting the control of the bus. 

Parallel Arbitration Logic: 

          The parallel arbitration logic uses an external priority encoder and a 

decoder. Each bus arbiter in this parallel scheme has a bus request output line 

and a bus ack input line. The processor takes control of the bus if its ack input 

line is enabled. First the request lines from the four arbiters 4*2 priority 

encoder. The output of the encoder generates a 2-bit code, which represents the 

highest priority unit among those requesting the bus. The 2-bit code from the 

encoder output drives a 2*4 decoder, which enables the proper ack line to grant 

bus access to the highest priority unit. 

Dynamic Arbitration Algorithms: 

              In a dynamic priority algorithm gives the system the capability for 

changing the priority of the devices while the system is in operation. The few 

arbitration procedures that follow dynamic priority algorithms are: 

Time slice: It allocates a fixed length time slice of bus time that is offered 

sequentially to each processor. The service given to each component is 

independent of its location along the bus. No preference is given to any 

particular since each is given same amount of time to communicate with the 

bus. 

Polling: In a bus system that uses polling, poll lines replace bus grant signal. 
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The bus controller to define an address for each device connected to the bus 

uses Poll lines. After a number of bus cycles, the polling process continues by 

choosing different processor. 

LRU: The least recently used (LRU) algorithm gives the highest priority to the 

requesting device that has not used the bus for the longest interval. With this 

procedure no processor is favored over any other since the priorities are 

dynamically changed to give every device an opportunity to access the bus. 

FIFO: In the first-come, first-serve scheme, requests are served in the order 

received. For this the bus controller establishes a queue according to the time 

that the bus requests arrive. Each processor must wait for its turn to use the 

bus on FIFO basis. 

Rotating daisy-chain: This procedure is a dynamic extension of daisy-chain 

algorithm. In this scheme there is no central bus controller and the priority line 

is connected from the priority-out of the last device back to the priority-in of the 

first device in a closed loop. Each arbiter priority for a given bus cycle is given 

by its position along the bus priority line from the arbiter whose processor is 

currently controlling the bus. Once, an arbiter releases the bus it has lowest 

priority. 

5.8. Interprocessor Communication 

            The various processors in a multiprocessor system must be provided 

with a facility for communicating with each other.  

        In a shared memory multi processor system, the most common procedure 

is to set aside a portion of memory that is accessible to all processors. The 

primary use of common memory is to act as a message center similar to a 

mailbox, where each processor can leave messages for other processors and 

pick up messages intended for it. The sending processor structures a request, a 

message or a procedure and places it in the memory mail box, whether it has 

meaningful information, and which processor it is intended. The receiving 

processor can check the mailbox periodically if there are valid messages for it. 

         In addition to shared memory, a multiprocessor system may have other 

shared resources. To prevent conflict use of shared resources by several 

processors there must be a provision for assigning resources to these 
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processors. This task is given to the operating system.  

There are three organizations that have been used in the design of the 

operating system for multiprocessors: 

 1. Master-slave configuration: one processor designated the master, always 

executes the operating system functions. The remaining processors as slaves do 

not perform the operating system functions. If a slave processor needs an 

operating system service, it must request it by interrupting the master and 

waiting until the current program can be interrupted. 

 

2. Separate operating system: Each processor can execute the operating 

system routines its needs. This is more suitable for loosely coupled systems 

where every processor may have its own copy of the entire os. 

3. Distributed operating system: In this each particular os has one processor 

at a time. This type of organization is also called floating os since the routine 

floats from one processor to another and the execution of routine may be 

assigned to different processors at different times. 

               In a loosely coupled multiprocessor system the memory is distributed 

among the processors and there is no shared memory for passing information. 

The communications between processors is by means of message passing 

through I/O channels. When the sending processor and the receiving processor 

name each other as source and destination, a channel of communication is 

established. 

5.9. Interprocessor Synchronization 

         Synchronization is needed to enforce the correct sequence of processes 

and to ensure mutually exclusive access to shared writable data. A number of 

hardware mechanisms for mutual exclusion have been developed. One of the 

most popular methods is binary semaphore. 

Mutual exclusion with a Semaphore: It is necessary to protect data from being 

changed simultaneously by two or more processors. This mechanism has been 

termed mutual exclusion. Mutual exclusion must be provided in a multiprocessor 

system to enable one processor to exclude or lock out access to a shared 

resource by other processors when it is in a mutual section. It is a program 
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sequence that, once begun, must complete execution before another processor 

accesses the same-shared resource. 

           A binary variable called a semaphore is often used to indicate whether or 

not a processor is executing a critical section. It is a software-controlled flag 

that is stored in a memory location that all processors can access. When it is 

equal to 1, it means that a processor is executing a critical program, so that the 

shared memory is not available to other processors. When it is equal to 0, the 

shared memory is available to any requesting processor. 

         Testing and setting the semaphore is itself a critical operation and must 

be performed as a single indivisible operation. This action would allow 

simultaneous execution of a critical section at the same time, which can result in 

erroneous initialization of control parameters and a loss of essential information. 

       A semaphore can be initialized by means of a test and set instruction in 

conjunction with a hardware lock mechanism. A hardware lock is a processor-

generated signal that serves to prevent other processors from using the system 

bus as long as the signal is active. The other processor changes the semaphore 

between the time that the processor is testing it and the time that it is setting it. 

Cache Coherence: 

         The primary advantage of cache is to its ability to reduce the average 

access time in uniprocessors. When a processor finds a writ operation in cache 

during write operation there are two commonly used procedures to update 

memory. 

1. write-through policy:  

      Both cache and maim memory are updated with every write operation  

2. Write back policy: 

           Only cache is updated and the location is marked so that it can be 

copied later into the main memory.        

 A memory scheme is coherent if the value returned on a load instruction 

is always the value given by the latest store instruction with the same address. 

Cache coherence problems exist in multiprocessors with private caches because 

of the need to share writable data. 
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Conditions for cache incoherence 

 To illustrate the problem of cache coherence, consider three processor 

configurations with private caches. Sometime during the operation an element X 

from main memory is loaded into the three processors P1, P2, P3. It is also 

copied into the private caches of the three processors. Consider X as 52. The 

load on X to the three processors results in consistent copies in the cache and 

main memory. 

                        A store to X into the cache of processor P1 updates memory to 

the new value in a write through policy. A write through policy maintains 

consistency between memory and the originating cache, but the other two 

caches are inconsistent still they hold the same old value.                   

 In writ back policy; main memory is not updated at the time of store. The 

copies in the other two caches and main memory are inconsistent. Memory is 

updated when the modified data is copied back into the main memory. 

 Solutions to the cache coherence problem: 

                  Cache coherence problems can be solved by means of software and 

hardware combinations. 

      In the software solution, it is desirable to attach a private cache to each 

processor. If cache allows nonshared and read only data, such items are called 

cachable. Shared write only data are non cachable which remains in main 

memory. This method restricts the type of data stored in caches  

 

Cache configuration after a load X 
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  Another scheme that allows writable data to exist in one cache is a 

method that employs centralized global table in its complier. Each block is 

identified as read only (RO) or write and read (WR). Only one copy of cache is 

RO. Thus if data is updated in RW block other caches are not affected because 

they do not have a copy of this block. 

      In the hardware solution, a cache controller called snoopy cache controller is 

specially designed to allow it to monitor all bus requests from CPUs and IOPs. All 

caches attached to the bus constantly monitor these network for possible write 

operations. It is basically a hardware unit designed to maintain a bus –watching 

mechanism over all the caches attaches to the bus. In this way inconsistent 

ways are prevented. 

 

With write through cache policy 

 

With write back cache policy 
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