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INTRODUCTION 
 

This workbook has been written to accompany Computer Organization and Architecture: Themes and Variations and is 

designed to give students a practical introduction to the ARM processor simulator from Kiel. I have provided examples of the 

use of the ARM family simulator plus notes and comments in order to allow students to work together in labs and tutorials, or 

for individual study at home. 

 

Before we introduce the simulator, we look at several background topics that are needed before you can begin to write 

assembly-language level programs. 

 

 

THE INSTRUCTION SET ARCHITECTURE 
 

An instruction set architecture, or ISA, is an abstract model of a computer that describes what it does, rather than how it does 

it. You could say that a computer’s instruction set architecture is its functional definition.  Essentially, the ISA is concerned 

with a computer’s internal storage (its registers), the operations that the computer can perform on data (the instruction set), and 

the addressing modes used to access data. The term addressing mode is just a fancy way of expressing where the data is; for 

example, you can say that the data is in location 100, or you can say that it’s 200 location from here, or you can say, “here’s the 

actual data itself”.  

 

The first part of Computer Organization and Architecture: Themes and Variations is concerned with the instruction set 

architecture, and the second part is concerned with computer organization which described an ISA is actually implemented. 

Today, the term microarchitecture has largely replaced the computer organization. In this workbook, we are interested in the 

ISA, rather than the microarchitecture. 

 

 

REGISTERS 
 

A register is a storage device that holds a single data word exactly like a memory location.  Registers are physically located on 

the CPU chip and can be accessed far more rapidly than memory. You can think of a register as a place in which data is waiting 

to be processed. When computers operate on data, they frequently operate on data that is in a register. For example, to perform 

the multiplication A = B × C, you first read the values of B and C from memory into two registers. Then, you multiply the two 

numbers in the registers and put the result in a register. Finally, the result is transferred from a register to location A in memory. 

 

In principle, there’s no fundamental difference between a location in memory and a register. There are just a few registers in a 

computer, but millions of storage locations in memory.  Consequently, you need far fewer bits to specify a register than a 

memory location. For example, if a computer has eight data registers, an instruction requires only three bits to select one of the 

eight registers to be used by an operation; that is from 000 to 111. If you specify a memory location, you need 32 bits to select 

one out of 2
32

 possible locations (assuming a 32-bit address space). 

 

The size of a register (its width in bits) is normally the same size as memory locations and the size of the arithmetic and logical 

operations in the CPU. If you have a computer with 32-bit words, they are held in 32-bit memory locations and 32-bit registers 

and are processed by 32-bit adders, and so on. 

 

There is no fundamental difference between a register and a memory location. If you could store gigabytes of high-speed 

memory on a CPU chip and you could use very long instruction words (i.e., with the long addresses needed to specify one 

individual location) then there would be no point in using registers. If you had a computer with 4 Gbytes of memory (2
32

 bytes) 

and wished to have an instruction that could implement C = A + B (i.e., ADD C,A,B) the you would require typically 16 + 32 

+ 32 + 32 = 112 bits (the 16 bits represent the number of bits to encode the actual operation and the three 32-bits are needed for 

the addresses A, B, and C). No mainstream modern computer has such a long instruction word. 
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This warning symbol will appear 
whenever a particularly 
important or tricky concept is 
introduced. 

 

 

PROBLEM SET 1 
 

1. In your own words, explain what a register is in a computer. 

2. How many registers does the 68K have? 

3. How many registers does the ARM have? 

4. What’s the processor with the largest number of registers that you can find? 

5. If a computer has 128 user-accessible general-purpose registers, how many bits are be required to access a register? 

That is, how many bits does it take to specify 1 out of 128? 

6. Suppose a computer has eight registers and a 24-bit instruction length. A data processing instruction is of the 

ADD r1,r2,r3 which implements r1 = r2 + r3. How many bits in an instruction can be allocated to specifying an 

operation if there are four general-purpose registers?

  

 

 

PROBLEM SET 2 
 

The following problems are intended to help you understand the history of the computer. These problems are intended as 

discussion points and don’t have simple right or wrong answers. In order to do these questions you will need to read the Web-

based history material that accompanies this text. You will also need to use the web as a research tool. 

 

1. When did the idea of a computer first occur to people? 

2. What is a computer?  

3. One of the names most associated with the history of computing is John von Neumann. Who was von Neumann? Did 

he invent the computer? 

4. When was the first microprocessor created – and by whom? 

5. What was the form of the first memory used by computers (or computing devices)? 

6. Who said (and when) “There is a world market for maybe five computers”. 

7. What was the first hobby computer (personal computer) and when was it built? 

8. Who was Konrad Zuse? 

 

IMPORTANT POINT 
 

Never confuse the following two concepts: value and address (or location). A memory location holds 
a value which is the information stored in that location. The address of an item is where it is in 
memory and its value is what it is.  
 
For example, suppose memory location 1234 contains the value 55. If we add 1 to 55 we get 55 + 1 
which is 56. That is, we’ve changed the value of a variable. Now, if we add 1 to the address 1234, we 
get 1235. That’s a different location in memory which holds a different variable. 
 
The reason for making this point is that it is all too easy to confuse these two concepts because of the 
way we learn algebra at high school. We use equations like x = 4. When we write programs that use 
variables, the variables usually refer to the locations of data not to the values. So, when we say x = 4, 
we actually mean that the memory location called x contains the value 4. 
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ADDRESSING MODES 
 

An addressing mode is simply a means of expressing the location of an operand.  An address can be a register such as r3, or 

D7, or PC (program counter).  An address can be a location in memory such as address 0x12345678.  You can even express an 

address indirectly by saying, for example, “the address is the location whose address is in register r1”. All the various ways of 

expressing the location of data are called collectively addressing modes. 

 

Suppose someone said, “Here’s ten dollars”. They are giving you the actual item. This is called a literal or immediate value 

because it’s what you actually get. Unlike all other addressing modes, you don’t have to retrieve immediate data from a register 

or memory location. 

 

If someone says, “Go to room 30 and you’ll find the money on the table”, they are telling you where the money is (i.e., its 

address is room 30). This is called an absolute address because expresses absolutely exactly where the money is. This 

addressing modes is also called direct addressing.  

 

Now here’s where the fun starts. Suppose someone says, “Go to room 40 and you’ll find something to your advantage on the 

table”. You arrive at room 40 and see a message on the table saying, “The money is in room 60”. In this case we have an 

indirect address because room 40 doesn’t give us with the money, but a pointer to where it is. We have to go to a second room 

to get the money.  Indirect addressing is also called pointer-based addressing, because you can think of the note in room 40 as 

pointing to the actual data. 

 

In real life we can’t confuse a room or address in with a sum of money. However, in a computer all data is stored in binary 

form and the programmer has to remember whether a variable (or constant) is an address or a data value. 

 

By the way, because there is no means of telling which operand is a source and which is a destination in a computer instruction 

such as MOVE A,B and different computers use different conventions, I have decided to write the destination operand in bold 

font to make it easier to understand the code. For example, MOVE A,B means that B is moved to A, because A is bold and 

therefore the destination of the result.  

 

Let’s look at three computer instructions in 68K assembly language. The operation MOVE D0,D1 means 

copy the contents of register D0 into D1. The operation MOVE (A0),D1 means copy the contents of the 

memory location pointed at by register A0 into register D1. This is an example of indirect addressing 

because the instruction specifies register A0 as the source operand and then this value has to be read in 

order to access the desired operand in memory.  

 

Here we’ve used 68K instructions (the 68K instruction set is given as an appendix on page 8). In ARM 

assembly language, which is the subject of this Workbook, indirect addressing is indicated by square brackets. For example, 

LDR r0,[r1]indicates that the contents of the memory location pointed at by register r1 is to be read and copied into 

register r0. Note that the ARM and 68K assembly languages specify the order of operands differently. In the assembly 

language we use in this course: 

 

Immediate (literal) addressing is indicated by a ‘#’ symbol in front of the operand (this convention is used by both the ARM 

and 68K). Thus, #5 in an instruction means the actual value 5. A typical ARM instruction is MOV r0,#5 which means move 

the value 5 into register r0. 

 

Absolute (direct) addressing is not implemented by the ARM processor.  It is provided by the 68K and Intel IA32 processors; 

for example, the 68K instruction MOVE 1234,D0 means load register D0 with the contents of memory location 1234. The 

ARM supports only register indirect addressing. 

 

Indirect addressing is indicated by ARM processors by placing the pointer in square parentheses; for example, [r1]. All ARM 

indirect addresses are of the basic form LDR r0,[r1] or STR r3,[r6].  There are variations on this addressing mode; 

for example, LDR r0,[r1,#4]specifies an address that is four bytes on from the location pointed at by the contents of 

register r1. 
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ADDRESSING MODES EXAMPLE 
 

Let’s clarify addressing modes with a simple example. The memory map below gives the contents of each of the locations of a 

simple 16-word memory. Each of these locations contains a 4-bit binary value. We are going to look at some examples of the 

effect of computer operations.  We adopt ARM-style assembly instructions and assume 4-bit addresses and 4-bit data. 

 

 

 
 

Assume that r1 initially contains 0001 and r2 contains 1000 

 

 

a. MOV r0,#1100 Literal address Register r0 is loaded with 1100 

b. LDR r0,[r1] Register indirect address Register r0 is loaded with 0011 

c. LDR r0,[r2] Register indirect address Register r0 is loaded with 1010 

d. LDR r0,[r1,r2] Register indirect address (sum of r1 and r2) Register r0 is loaded with 1111 

e. LDR r0,[r2,#4] Register indirect address (r2 + 4) Register r0 is loaded with 0001 

f. LDR r0,[r2,#-4] Register indirect address (r2 – 4) Register r0 is loaded with 0000 

 

 

As you can see, the processor uses the address in r1 or r2 to access the appropriate memory location. ARM processors (like 

other processors) are able to perform limited pointer arithmetic. For example, in (d) the effective address is given as [r1,r2], 

which is the location pointed at by the sum of these two registers. The sum of r1 and r2 is 0001 + 1000 = 1001, so the contents 

of location 1001 (i.e., 1111) are loaded into r0. 

 

Example (e) calculates an effective address by adding 4 to the contents of r2 to get 1000 + 0100 = 1100. The contents of 

memory location 1100 is 0001 and that value is loaded into r0. Note that example (f) is almost the same except that the 

constant is negative. In this case the contents of location 1000 – 0100 = 0100 (i.e., 0000) are loaded into r0. A negative offset 

like this accesses a location at a lower address. 

 

 

 

 

0000 0010

0001 0011

0010 0010

0011 1010

0100 0000

0101 0010

0101 0001

0111 0011

1000 1010

1001 1111

1010 1010

1011 0011

1100 0001

1101 1000

1110 0000

1111 1010
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REGISTER TRANSFER LANGUAGE 
 

Before we introduce computer instructions, we are going to define a notation that makes it possible to define instructions 

clearly and unambiguously (English language is not a good tool for defining instructions).  

 

Register-transfer language (RTL) is an algebraic notation that describes how information is accessed from memories and 

registers and how it is operated on. You should appreciate that RTL is just a notation and not a programming language. RTL 

uses square brackets to indicate the contents of a memory location; for example, the expression  

 
[6] = 3  

 

is interpreted as the contents of memory location 6 contains the value 9. If we were using symbolic names, we might write 

[Time] = HoursWorked.  

 

If you want to refer to a register, you simply use its name (the names of registers vary from computer to computer – the 68K  

has eight data registers called D0, D1, D2, …, D7, whereas the ARM has 16 registers called r0 to r15). So, to say that register 

D6 contains the number 123 we write 

 
[D6] = 123  

 

A left or backward arrow  indicates the transfer of data. The left-hand side of an expression denotes the destination of the 

data defined by the source of the data defined on the right-hand side of the expression. For example, the expression 

 

[MAR]  [PC] 

 

indicates that the contents of the program counter, PC, are copied into the memory address register, MAR. The program 

counter is the register that holds the location of the next instruction to be executed. The MAR  is a register that holds the 

address of the next item to be read from memory or written to memory. Note that the contents of the PC are not modified by 

this operation.  

 

The operation [3]  [5] means copy the contents of memory location 5 to location 3.  

 

EXAMPLE 
 
A special-purpose computer has an instruction with a word-length of 24 bits. It is intended to 
perform operation of the type ADD r3,#24 where ADD is an operation, #24 is a literal (an actual 

number), and r3 is a destination register. 
 
If there are 200 different instructions and 32 registers, what is the range of unsigned integer 
literals that can be supported by this computer? 
 

SOLUTION 
 
We know that the number of bits used to represent the instruction, plus the number of bits used 
to select a register, plus the number of bits used to specify a literal must be 24. There are 200 
instructions. The next power of 2 greater than this is 256. Since 2

8
 = 256, we need 8 bits for the 

instruction. There are 32 registers and it requires 5 bits (as 2
5
 = 32) to address a register. Having 

allocated 8 bits to the instruction field and 5 bits to the register field, we have 24 – 8 – 5 = 11 bits 
left over to specify a literal (constant). Consequently, the range of literals that can be handled is 0 
to 2047 (as 2

11
 = 2048). 
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The operation [3]  [5] tells us what's happening at the micro level or register-transfer level.  In a high-level language this 

operation might be written in the rather more familiar form  

 
x = y; 

 

Consider the RTL expression 

 

[PC]  [PC] + 4 

 

which indicates that the number in the PC is increased by 4; that is, the contents of the program counter are read, 4 is added, 

and the result is copied into the PC. 

 

Suppose the computer executes an operation that stores the contents of the program counter in location 2000 in the memory. 

We can represent this action in RTL as 

 

[2000]  [PC]. 

 

Occasionally, we wish to refer to the individual bits of a register or memory location. We will do this by means of the subscript 

notation (p:q) to mean bits p to q inclusive; for example if we wish to indicate that bits 0 to 7 of a 32-bit register are set to 

zero, we write 

 

[R6(0:7)]  0. 

 

Numbers are assumed to be decimal, unless indicated otherwise. Computer languages adopt conventions such as 0x12AC or 

$12AC to indicate hexadecimal values. In RTL we will use a subscript; that is 12AC16. 

 

As a final example of RTL notation, consider the following RTL expressions. 

 

 

a. [20] = 6 

b. [20]  6 

c. [20]  [6] 

d. [20]  [6] + 3 

e. [20]  [[2]] 

 

The symbol “”is equivalent to the assignment symbol in high-level languages.  Remember that RTL is not a computer 

language; it is a notation used to define computer operations. 

 

Example (a) states that memory location 20 contains the value 6. Example (b) states that the number 6 is copied or loaded into 

memory location 20.  Example (c) indicates that the contents of memory location 6 are copied into memory location 20. 

Example (d) reads the contents of location 6, adds 3 to it, and stores the result in location 20.  Example (e) is most interesting. 

Here, the contents of memory location 2 is read, and that value used to access memory a second time. The new value is loaded 

into the contents of memory location 20. This is an example of memory indirect addressing. 

 

Consider the following examples that illustrate the assembly language of four processors and define each instruction in RTL. 

 

Processor family Instruction mnemonic RTL definition 

 

1. 68K  MOVE D0,(A5) [[A5]]  [D0] 

2. ARM  ADD  r1,r2,r3 [r1]  [r2] + [r3] 

3. IA32  MOV  ah,6 [ah]  6 

4. PowerPC   li   r25,10 [r25]  10 
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QUICK OVERVIEW OF THE ARM 
 
Before looking at the ARM processor in detail, we provide a very brief overview. The ARM processor is classified as a 
32-bit RISC (reduced instruction set processor) with a three-operand register-to-register instruction set. This is just a 
fancy way of saying that computer operations involve three operands in registers such as ADD r1,r2,r3. There 

are a few instructions that have two operands and some that have four, but that doesn’t change the overall 
classification. 
 
In order to get data into and out of registers (transfers between memory and registers), there are two special 
instructions called load and store. Load transfers data from memory to a register and store transfers data from a 
register to memory. These instructions have the forms LDR r0,[r1] and STR r0,[r1]. As we have seen, 

these instructions use register indirect (i.e., pointer-based) addressing. The location of the memory element to be 
accessed is held in a register and the addressing mode indicated by [r1]. 
 
The ARM uses a special instruction called ADR (load register with an address) that sets up a pointer in the first 
place). For example 
 
      ADR r0,List   ;register r0 points at the list 

 
Later, we will explain why this is a special instruction. 
 
An ARM instruction like SUB r3,r2,#4 subtracts the actual value 4 (remember that the literal is indicated by the 

# symbol) from the contents of register r2 and puts the result in r3. Data operations implemented by ARM 
processors write the destination (result) operand first on the left. We write the destination operand in bold font to 
remind you where the result goes. 
 
Let’s create a very simple example. 
 
      MOV r0,#2 ;Put 2 in register r0 

      MOV r1,#3 ;Put 3 in register r1 

      ADD r2,r0,r1 ;Add r0 to r1 and put the result in r2 

      MOV r4,#10  ;Put 10 in r4 (this is where we are going to store the result) 

      STR r2,[r4]  ;Store r2 in memory location 10 

       
Note how simple all this is. You perform one primitive operation at a time.  

 

RTL AND ASSEMBLY LANGUAGE 
 

Don’t confuse RTL and assembly language. An assembly language is a human-readable form of a computer’s binary 
code. It is designed to be used by programmers and may not always be logical or consistent. Some of you may notice 
inconsistencies in the assembly language that we learn in this course. 
 
RTL is a formal notation that can be manipulated like any algebraic expression. It offers a means of precisely defining 
operations without using ambiguous English. Consider the RTL example: 
 
Suppose that [4] = 3, [10]  = 4, and  [[10]] = y.  
 
We can say that y = 3, because we can substitute y = [[10]] = [4] = 3  
 
Similarly, [[4] + [10] + 6] = [3 + 4 + 6] = [13] 
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QUICK OVERVIEW OF THE 68K 
 
Although this text uses the ARM processor family to illustrate an instruction set architecture, we do occasionally refer to 
the Motorola 68K family. In brief, the Motorola 68K is a 32-bit processor first sold in 1980. The 68K family later became the 
ColdFire family and is now supported by Freescale because Motorola dropped out of the microprocessor market. The 68K 
is contemporary with Intel’s IA32. Both the 68K and IA32 have classic register-to-memory architecture. 
 
The 68K has a moderately regular instruction set in comparison with the IA32 architecture. Here, the term regular implies 
that if instruction X has addressing mode Y, then instruction P will also have addressing mode Y. The 68K’s main features 
are: 
 

 A 32-bit architecture with 32-bit registers. 

 Separate data registers (D0 to D7) and address registers (A0 to A7). Address registers may only be used as 
pointer registers in generating effective addresses. A register indirect is indicated by (A0). 

 All registers are 32 bits wide. However, many operations can act on the lower-order 8 bits of a data register, on  
the lower-order 16 bits, or on the entire 32 bits. The data size is indicated by appending .B, .W, or .L to specify an 
8-bit, 16-bit, or 32-bit operation. For example MOVE.B D0,(A0). 

 Data registers can take part in all data operations. Address registers can take part only in move, add, subtract, 
and compare operations (that is, MOVA, ADDA, SUBA, CMPA).  

 Operations on data registers update the CCR register, whereas operations on address registers (apart from 
compare) do not affect the CCR. 

 All operations on an address register yield a 32-bit result. You can perform 16-bits additions, subtractions, and 
loads on an address register, but the result is always sign-extended to 32 bits. 

 68K instructions are variable length. The shortest instruction is 16-bits. If a single operand is required, the length 
may be 16+16 or 16+32 bits. The longest instruction is 10 bytes for a move memory location to memory location 
such as MOVE Data1,Data2. 

 The addressing modes are: literal (8-, 16-, or 32-bit constant), absolute (actual address of the operand in 
memory), address register based {(A0), (#offset,A0), (D0,A0)}, predecrementing -(A0), postincrementing (A0)+} 

 Address register A7 is the system stack pointer and is used to store the return address after a subroutine call. The 
instruction RTS implements a subroutine return by popping the return address off the top of the stack and 
loading it in the PC. 

 Program counter relative addressing is supported. For example, MOVE (PC,#offset),D0. 

 The creation and deletion of stack fames is supported by LINK (create a frame) and UNLK (delete a frame). 
 
A typical fragment of 68K code is: 
 
      CLR   D0         ;clear the total in D0 

      MOVEA #X,A0      ;A0 points at X 

      MOVEA #Y,A1      ;A1 points at Y 

      MOVE  #32,D1     ;32 times round the loop 

Loop  MOVE  (A0)+,D2   ;get Xi and increment pointer 

      MOVE  (A1)+,D3   ;get Yi and increment pointer 

      MULU  D2,D3      ;multiply Xi and Yi 

      ADD   D3,D0      ;update running total 

      SUB   #1,D2      ;decrement loop counter 

      BNE   Loop       ;Repeat until all done  

 
As you can see, this is not too far from ARM code. The significant difference is the two-operand instruction format. 
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68K INSTRUCTION SET 
 
Here’s a summary of the 68K operations. We give the mnemonic, name of the operation, addressing modes, and operand 
sizes supported (Bytes, Word, Longword). 
 
ABCD Add BCD with extend Dx, Dy,  -(Ax), -(Ay) B 
ADD ADD Dn,<ea>,   <ea>,Dn BWL 
ADDA ADD binary to An <ea>,An  WL 
ADDI ADD Immediate #x,<ea>,    #<1-8>,<ea> BWL 
ADDQ ADD 3-bit immediate   BWL 
ADDX ADD eXtended Dy,Dx,  -(Ay),-(Ax) BWL 
AND Bit-wise AND <ea>,Dn,  Dn,<ea> BWL 
ANDI Bit-wise AND with Immediate #<data>,<ea>  BWL 
ASL Arithmetic Shift Left #<1-8>,Dy,  Dx,Dy, <ea> BWL 
ASR Arithmetic Shift Right   BWL 
Bcc  Conditional Branch   Bcc  <label>    BW  
BCHG Test a Bit and CHanGe Dn,<ea>  #<data>,<ea> BL 
BCLR Test a Bit and CLeaR     BL 
BSET Test a Bit and SET   BL 
BSR Branch to SubRoutine BSR <label>     BW 
BTST Bit TeST Dn,<ea>  #<data>,<ea> BL 
CHK CHecK Dn Against Bounds <ea>,Dn  W 
CLR CLeaR   <ea>  BWL 
CMP CoMPare   <ea>,Dn   BWL 
CMPA CoMPare Address <ea>,An   WL 
CMPI CoMPare Immediate #<data>,<ea>  BWL 
CMPM CoMPare Memory (Ay)+,(Ax)+  BWL 
DBcc  Looping Instruction DBcc Dn,<label>  W 
DIVS DIVide Signed <ea>,Dn  W 
DIVU DIVide Unsigned <ea>,Dn  W 
EOR Exclusive OR Dn,<ea>  BWL 
EORI Exclusive OR Immediate #<data>,<ea>  BWL 
EXG  Exchange any two registers Rx,Ry  L 
EXT Sign EXTend  Dn  WL 
ILLEGAL ILLEGAL-Instruction Exception 
JMP JuMP to Affective Address <ea> 
JSR Jump to SubRoutine <ea> 
LEA  Load Effective Address <ea>,An  L 
LINK Allocate Stack Frame An,#<displacement> 
LSL Logical Shift Left  Dx,Dy  #<1-8> ,Dy <ea> BWL 
LSR Logical Shift Right   BWL 
MOVE  Between Effective Addresses <ea>,<ea>  BWL 
MOVE  To CCR <ea>,CCR  W 
MOVE To SR <ea>,SR  W 
MOVE From SR SR,<ea>  W 
MOVE USP to/from Address Register  USP,An, An,USP <ea>,An  L 
MOVEA MOVE Address   WL 
MOVEM MOVE Multiple <register list>,<ea> <ea>,<register list WL 
MOVEP MOVE Peripheral  Dn,x(An) ,  x(An),Dn WL 
MOVEQ MOVE 8-bit immediate  #<-128.+127>,Dn  L  
MULS MULtiply Signed <ea>,Dn  W 
MULU MULtiply Unsigned <ea>,Dn  W 
NBCD Negate BCD  <ea>  B 
NEG NEGate <ea>  BWL 
NEGX NEGate with eXtend <ea>  BWL 
NOP  No OPeration 
NOT Form one's complement <ea>  BWL 
OR Bit-wise OR <ea>,Dn      Dn,<ea> BWL  
ORI Bit-wise OR with Immediate #<data>,<ea>     BWL 
PEA Push Effective Address <ea>  L 
RESET RESET all external devices 
ROL ROtate Left #<1-8>,Dy     Dx,Dy, <ea> BWL  
ROR ROtate Right   BWL  
ROXL ROtate Left with eXtend   BWL 
ROXR ROtate Right with eXtend   BWL 
RTE ReTurn from Exception  
RTR ReTurn and Restore  
RTS  ReTurn from Subroutine 
SBCD Subtract BCD with eXtend Dx,Dy     -(Ax),-(Ay) B 
Scc Set to -1 if True, 0 if False <ea>  B 
STOP  Enable & wait for interrupts  #<data> 
SUB  SUBtract binary Dn,<ea>     <ea>,Dn BWL  
SUBA  SUBtract binary from An <ea>,An  WL  
SUBI SUBtract Immediate #x,<ea>  BWL 
SUBQ SUBtract 3-bit immediate  #<data>,<ea>  BWL 
SUBX SUBtract eXtended Dy,Dx,  -(Ay),-(Ax) BWL 
SWAP SWAP words of Dn Dn  W 
TAS Test & Set MSB & Set N/Z-bits <ea>  B 
TRAP Execute TRAP Exception #<vector> 
TRAPV TRAPV Exception if V-bit Set TRAPV 
TST TeST for negative or zero <ea>  BWL 
UNLK Deallocate Stack Frame An 
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THE ARM FAMILY 
 

We use the ARM family in this course to illustrate computer architecture for several reasons. First, it illustrates all the 

important elements of an instruction set architecture. Second, it is easy to understand and has a very gentle learning curve in 

comparison with some other processors; for example an add operation is specified by ADD r1,r2,r3 which adds register r2 

to register r3 and puts the result in r1. What could be simpler?  Third, the ARM has some very interesting attributes such as 

predicated execution that make it an excellent vehicle for teaching computer architecture. 

 

 

THE ARM REGISTER SET 
 

The ARM has 16 general-purpose 32-bit data registers, r0 to r15, that can be used by the programmer to store temporary 

variables.  However, registers  r14 and r15 that special purposes. Register r14 holds a subroutine return address after a 

subroutine call. Consequently, you should use r14 only to deal with return addresses.  

 

Register r15 holds the program counter, the next instruction to be executed.  You cannot use r15 for any other purpose. The 

ARM is highly unusual in this respect because all other microprocessor families have a dedicated program counter that is not 

normally directly accessible by the programmer. The ARM programmer must not use r15 as a general-purpose data register as 

that would crash the computer. 

 

 

THE INSTRUCTION 
 

Computer instructions are executed sequentially, one by one in turn, unless a special instruction deliberately changes the flow 

of control or unless an event called an exception (interrupt) takes place.  

 

The structure of instructions varies from machine to machine. The format of an instruction running on an Intel processor is 

different to the format of an instruction running on a 68K or an ARM (even though the instructions might do the same thing). 

Instructions are classified by what they do and by the number of operands they take. The three basic instruction types are: data 

movement that copies data from one location to another, data processing that operates on data, and flow control that modifies 

the order in which instructions are executed. Instruction formats can take zero, one, two, three, or even four operands. Consider 

the following examples of instructions with zero to three operands. In these examples operands P, Q, and R may be memory 

locations or registers.   

 

Operands Instruction Effect 

Three ADD P,Q,R Add R to Q and put the result in P 

Two ADD P,Q Add P to Q and put the result in P 

One ADD P Add P to an accumulator 

Zero ADD  Add the top two items on the stack and push the result 

 

A three-address computer instruction can be written 

 
operation destination,source1,source2 

 

where operation defines the nature of the instruction, source1 is the location of the first operand, source2 is the 

location of the second operand, and destination is the location of the result. The instruction ADD r3,r1,r7 adds r1 

and r7 to get r3. 

 

This is a little pedantic, but… When we say that r1 is added to r7, we really mean that the contents of r1 

is added to the contents of r7. However, it gets boring being so precise so we often just use a register’s 

name when we really mean the contents of that register.  
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Microprocessors don’t implement three-address instructions that access memory; you can access only registers. It’s not the 

fault of the instruction designer. It’s a limitation imposed by the practicalities of computer technology. Suppose that a computer 

has a 32-bit address that allows a total of 2
32

 bytes of memory to be accessed. The three address fields, P, Q, and R needed to 

implement ADD P,Q,R would each be 32 bits, requiring 3 × 32 = 96 bits to specify the operands. Assuming a 16-bit operation 

code (allowing up to 2
16

 = 65,536 instructions), the total instruction size would be 96 + 16 = 112 bits or 14 bytes.  This 

instruction format is shown below. 

 

 

 
 

Part (b) of the above figure illustrates a typical RISC instruction format. This uses a register-to-register architecture that allows 

three registers to be specified. Each has a 5-bit address field which allows 32 registers. 

 

 

POSSIBLE THREE-ADDRESS INSTRUCTION FORMATS 
 

Computer technology developed when memory was very expensive indeed. Implementing a 14-byte instruction was not cost-

effective in the 1970s. Even if memory had been cheap, it would have been too expensive to implement 112-bit-wide data 

buses to move instructions from point to point in the computer. Finally, main memory is intrinsically slower than on-chip 

register. 

 

The modern RISC processor allows you to specify three addresses in an instruction by providing three 5-bit operand address 

fields. This restriction lets you select from one of only 32 different operands that are located in  registers within the CPU itself. 

By using on-chip registers to hold operands, the time taken to access data is minimized because no other storage mechanism 

can be accessed as rapidly as a register. An instruction with three 32-bit operands requires 3 × 5 bits to specify the operands 

which allows a 32-bit instruction to use the remaining 32 – 15 = 17 bits to specify the instruction. 

 

We’ll use the ADD instruction to add together four values in registers r2, r3, r4, and r5. In the following fragment of code, the 

semicolon indicates the start of a comment field that is not part of the executable code. This code is typical of RISC processors 

like the ARM. 

 
      ADD   r1,r2,r3       ;r1 = r2 + r3 

      ADD   r1,r1,r4       ;r1 = r1 + r4 

      ADD   r1,r1,r5       ;r1 = r1 + r5 = r2 + r3 + r4 + r5 
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Implementing a three-address instruction 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
TWO-ADDRESS MACHINES 
 

A CISC machine like, the 68K, has a two-address instruction format. Clearly, you can’t execute P  Q + R with just two 

operands. You can execute Q  P + Q. One operand appears twice, first as a source and then as a destination. The operation 

ADD P,Q implements  [Q]  [P] + [Q]. The price of a two-operand instruction format is the destruction  of one of the source 

operands. 

 

Most computer instructions can’t directly access two memory locations. Typically, the operands are either two registers or one 

register and a memory location; for example, the 68K ADD instruction can be written: 

 

Instruction RTL definition Mode 

ADD D0,D1 [D1]  [D1] + [D0]  Register-to-register 

ADD P,D2 [D2]  [D2] + [P]  Memory-to-register  (P is a directly address memory location) 

ADD D7,P [P]   [P]  + [D7]  Register-to-memory 

 

The 68K has seven general-purpose registers D0 to D7; there are no restrictions on the way in which you use these registers; 

that is, if you can use Di you can also use Dj for any i or j from 0 to 7. 

 

 

ONE-ADDRESS MACHINES  
 

A one-address machine specifies only one operand in the instruction. The second operand is a register called an accumulator 

that always takes part in the operation. For example, the one-address instruction ADD P means [A]  [A] + [P]. The 

notation [A] indicates the contents of the accumulator. A simple high-level operation R = P + Q can be implemented by the 

following fragment of 8-bit code (from a 6800 8-bit processor). 

 
   LDA  P    ;load accumulator with P 

   ADD  Q    ;add Q to accumulator 

   STA  R    ;store accumulator in R 

 

Eight-bit machines have one-address architectures. Eight-bit code is verbose, because you have to load data into the 

accumulator, process it, and then store it in memory to avoid it being overwritten by the next data-processing instruction. One-

address machines are still widely used in embedded controllers in low-cost systems.  
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SUB-WORD OPERATIONS 
 

If you wish to access individual bytes in a 16- or 32-bit processor, you need special instructions. The 68K family deals with 8-

bit, 16-bit, and 32-bit data by permitting most data-processing instructions to act on an 8-, 16-, or 32-bit slice of a register; for 

example ADD.B D0,D1, ADD.W D0,D1 and ADD.L D0,D1 each adds the contents of data register D0 to D1 and puts the 

result in D1. The suffix .B specifies an 8-bit byte operation, .W specifies a 16-bit word operation, and .L specifies a 32-bit 

longword operation. In each case the bits taking part in the operation are the low-order bits, and bits not taking part in the 

operation do not change. For example, the RTL definition of ADD.W D1,D3 is 

 

[D3(0:15)]    [D3(0:15)]  +  [D1(0:15)] 

 

RISC processors do not (generally) support 8- or 16-bit data-processing operations on 32-bit registers, but they do support 8-bit 

and 16-bit memory accesses. Consider the following ARM examples. 

 

LDR   r0,[r1]   ;load r0 with the 32-bit contents of memory pointed at by register r1 

LDRB  r0,[r1]   ;load r0 with the 8-bit contents of memory pointed at by register r1 

LDRH  r0,[r1]   ;load r0 with the 16-bit contents of memory pointed at by register r1 

 

There is also a similar set of store mnemonics with the forms STR, STRB, and STRH. 

 

In 68K terminology 8/16/32 bit values are called byte/word/longword, whereas ARM processor literature uses byte/half 

word/word.  

 

 

 

 

 

 

DATA SIZE 
 
I don’t want to go into the details of data size here because it’s a large topic. However, I do need to introduce a basic 
concept. If a computer can move data from A to B, or can perform an operation on data, we need to know the number of 
bits in a word being moved or processed.   
 
The very first microprocessor, the Intel 4004, used a 4-bit word because the technology at that time could not economically 
fabricate chips capable of handling longer wordlengths. The 4004 was able to handle 4-bit values. 
 
Very shortly after the introduction of the 4040, 8-bit microprocessors appeared. An 8-bit word is called a byte and 
operations in 8-bit computers are applied to bytes. You can’t perform a 6-bit operation and you can’t perform a 10-bit 
operation. Although an 8-bit word can handle text efficiently, it is unsuited to the representation of addresses or to any 
quantity that can have more than 256 possible values.  Eight-bit processors can concatenate two 8-bit words to create a 16-
bit address.  
 
Over the years, microprocessors grew in complexity to support 16-bit, 32-bit and 64-bit words. The larger the word size, the 
more work you can do in an instruction. In this course we use ARM processors that have 32-bit data words and 32-bit 
addresses.  
 
However, just as 4-bit and 8-bit words are too short to represent many types of data, 32-bit and 64-bit words are often too 
big. For example, if you use ASCII-encoded text, each character requires 8 bits. If you put an ASCII character in a 32-bit 
register, 24 bits are unused. This represents an inefficient use of storage. So, programmers often employ tricks to pack more 
than one character in a word. 
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Suppose a processor supports operations that act on a subsection of a register. What happens to the bits that do not take part in 

the operation? Assume that a register is partitioned as figure (a) demonstrates.  

 

Figure (b) shows how some processors deal with the problem by ignoring higher-order bits. If you add the two-low-order bytes 

in a 32-bit word, bits 0 to 7 are added together and bits 8 to 31 remain unchanged; for example, 0x12345678 + 0x11111111 = 

0x12345689. This is true of the 68K processor. 

 

Figure (c) demonstrates an alternative arrangement. Here, the bits not taking part in an operation are automatically cleared.  In 

this case, 0x12345678 + 0x11111111 = 0x00000089. 

 

In (d) the bits not taking part in an operation are sign-extended. This means that if you add two bytes in a 32-bit word, the 

result is sign extended to 32 bits. The 68K treats the contents of address registers in this way. If you perform a 16-bit operation 

on an address register, the result is sigh-extended to 32 bits. 

 

 

 
 

 

PROBLEM SET 3 
 

These questions ask you about the role of registers in computer architecture, the role of addressing modes, and the design of 

computer instruction sets. 

 

1. In the context of microprocessors, what is a user-visible register? 

2. Modern microprocessors have more registers than previous generations of microprocessors. Why? 

3. Registers are used in different ways by different microprocessor families (e.g., Intel IA32, Motorola 68K, ARM etc.).  

Describe some of the differences in the way in which registers are used and comment on the relative merits. 

4. A special-purpose computer’s instruction set is 24 bytes wide. This is a three-operand load and store (register-to-register) 

machine. If this computer provides 64 general-purpose registers, how many different instructions can be implemented? 

5. A 32-bit computer with a 32-bit instruction word uses 122 different instructions. If this computer has a three-address 

register-to-register instruction set, how many registers can be supported? 

6. A computer devotes only 4 bits in its instruction word to the selection of one of 16 registers. Can you suggest of ways of 

providing more than 16 registers while keeping the number of bits in an instruction that selects a register at 4? 
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7. What are the various groups of instruction types implemented by typical microprocessors (i.e., how are instructions 

classified)? Give examples of different types of instructions. 

8. What are the relative merits of one-address, two-address, and three-address instructions? 

9. Under what circumstances is it possible to have a zero-address computer? 

10. Are there occasions where 4-address or even 5-address instructions could prove useful? 

 

USING THE KEIL SIMULATOR 

 

The processor in the PC is not a member of the ARM family. It’s usually a member of Intel’s IA32 family or an AMD 

processor. However, you can run ARM code processor on your PC using a program from Keil
TM

. This can be found at 

www.keil.com. The Keil package, called µVision4, is very sophisticated and is intended for engineers designing embedded 

ARM-based systems. Consequently,it includes far more facilities than we need. The demonstration version that you can 

download for a PC is limited to assembly-level programs smaller than 32K bytes. This restriction is not be a problem for 

students. 

 

Essentially, µVision4 is an IDE (integrated development system) that is project-based; that is, each new program must be part 

of a project.  You begin by creating a project (i.e., a container for all your files) and then select the target processor you are 

going to use. You create source files (in our case, these will be assembly language files) and then you build your application 

(i.e., create code for your chosen processor). µVision4 allows you to construct projects with multiple source files and files in C 

or C++, although we will not be using these facilities. Having built your file, you can execute it and follow the progress of its 

execution.  

 

Let’s step through the process of creating a program. Note that this package will continue to be upgraded during its life and 

there may be differences between these examples and the system you are using. However, the sequence of operations should 

remain substantially the same. On loading µVision4 you are presented with the following screen. 

 

 
 

To start, select Project from the upper row of tabs and then New µVision Project from the pull-down window. This brings up 

the Create New Project Window and you create a project name in the selected directory. I will use FirstExample. The 

development system automatically appends a file type to create FirstExample.uvproj.  

 

When you hit save, a new window will automatically appear that invites you to select the device you are going to use. In this 

case it is the ARM (see the figure below). If you select the ARM pull-down window, it will offer various ARM versions. I used 

the ARM7 (Big Endian) version. Once you have elected the processor, a return is made to the basic project window. 

http://www.keil.com/
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Selecting the target device 
  

The next step is to create a source file. Click File in the main window. This will open a file window with the default name 

Text1. Now you can enter you source program.    

 

After entering the program you need to save it. This is done in the normal Windows way: select file and then save. You then 

have to give it a name. I chose FirstExample.asm. Note that I used the extension .asm (assembly langue) because the 

development system does not know which type of source file you are creating.  The following image shows the screen after the 

program has been entered and saved.  

 

 
 

This program is simple. It loads register with numbers (literals), adds them together and then moves the result into register r0. 

Note that there are three lines that are not part of the assembly language. These are assembler directives that tell the assembler 

things it needs to know. The first assemble directive is 

 
AREA FirstExample, CODE, READONLY 

 

Choose the processor 

you wish to simulate 

from this list. 

Assembler directives 
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The purpose of this AREA directive is to name the region of memory where the program will be located. In this case we’ve 

used FirstExample. The parameter CODE indicates that the data will be code rather than data. The third parameter 

READONLY indicates that the memory is read-only becausewe are not going to alter its contents. 

 

The ENTRY directive simply tells the assembler that the code is to be executed from this point. It’s the starting point. 

 

The final directive, END, indicates the end of the program and that there is no further code beyond this point. 

 

The next step is to tell the project manager about the assembly file we’ve just created. Click on Project to select the project 

drop-down menu and then select Manage. Then select Components, Environment, Books... from the secondary drop-down 

window. The figure (below left) shows this situation. Now click Add Files to select your source file. You will have to change 

the File of Type box from its default C Source file (*.C) to ASM Source file. Having done that, you should have the situation 

below right with one file displayed. Then click OK to end the sequence. 

 

 
 

At this stage, we have a project, a processor, and a source file. Now we need to create the environment and assemble the code. 

Click on Project and then Build target from the drop-down window. The following image shows the screen after we have 

built the target. 

 

 

The source file we 

created. 

Note how the assembler has 

formatted your code. It uses 

color to distinguish between 

code and comments and it 

highlights literals. 
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The Build Output window shows the status of the process. Here we are interested only in the magic words 0 Error(s) that 

indicate all went well. Had there been any errors in the code, we would have been informed and would have had to edit the 

source file and then rebuild it. This cycle is repeated until there are no errors reported. 

 

The final step is to run the program in the simulator. To do this select Debug from the main window and click on Start/Stop 

Debug Session. This brings up the EVALUATION MODE box that tells you are restricted to 32K. Click on OK to bring up 

the simulator window as shown below. 

 

 
 

We don’t need all this. Using normal Windows features we can resize and remove windows not of immediate importance to get 

the following image. We now have three windows. On the left there is a window, Registers,  showing the contents of registers. 

All values are in hexadecimal. The other items (which have expansion boxes) are not of interest at the moment; these describe 

the status of the processor and the value of carry and overflow bits etc. 

 

The window on the top right, Disassembly, is not necessary in this example. We could have closed it but have left it open in 

order to demonstrate the structure of the program in memory. This window takes code in memory and transforms it back into 

ARM processor op-code and mnemonics. However, should it encounter data (i.e., number or text etc.) it will produce 

meaningless code. In this example, you can see each of the instructions. The leftmost column is the memory address, the next 

column the 32-bit value (in hexadecimal) at that location. The third column contains the disassembled op-code; for example, at 

address 0x0000000C we have the value E3A04005 which translates into MOV r4,#5. Note that this window also contains the 

original source code instructions and the line numbers. 
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The window below is the same as above except that we’ve closed the disassembly window and resized to reduce clutter. 
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The final step is to run the code. We can run it in several different ways. Here, we are going to execute it line by line so that we 

can observe the way in which the contents of the registers change after each instruction.  In the image below, we have clicked 

on the step one line icon (highlighted in the image) and the first instruction has been executed. Note that in the register list, r1 

is highlighted and it has the value 2 (because it was loaded with 2). The contents of the program counter, r15, are 4 because it 

now points to the second instruction.  

 

 
 

The next image shows the screen after we have clicked the step-in button five times and have executed the first five 

instructions. 

 

 
 

Note that you have to click on Debug and then Start/stop Debugging Session to get out of the debug mode. 

This is the step-in icon. Click 

on it and one instruction is 

executed. 

Note that executing the first 

instruction has loaded r1 with 2 

(i.e., 0x00000002) 

This is the situation after the ADD r1,r1,r2 

has been executed. Register r1 initially contains 2 

and r2 contains 3. After the addition r1 contains 

2+3 = 5. 
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USING THE KEIL SIMULATOR: A SECOND EXAMPLE 
 

Let’s now look at a more realistic example of the use of the simulator that includes both a loop and an example register indirect 

addressing. We are going to add together five numbers stored in memory. 

 
        AREA Pointers, CODE, READONLY 

   ENTRY  

 

Start   ADR   r0,List      ;register r0 points to List 

   MOV   r1,#5        ;initialize loop counter in r1 to 5 

   MOV   r2,#0        ;clear the sum in r3 

 

Loop    LDR   r3,[r0]      ;copy the element pointed at by r0 to r3 

        ADD   r0,r0,#4     ;point to the next element in the series 

        ADD   r2,r2,r3     ;add the element to the running total 

   SUBS  r1,r1,#1    ;decrement to the loop counter 

   BNE   Loop         ;repeat until all elements added 

 

Endless B     Endless      ;infinite loop 

       

List    DCD   3,4,3,6,7    ;the data (five 32-bit words) 

        END  

 
 

 

The executable code consists of three parts. The first part beginning with the label Start sets up the environment. The 

instruction ADR r0,List is a pseudo instruction that loads the 32-bit value of List into register r0. List is a label that 

refers to the five items of data in memory. What is the value of  List? That’s something the programmer doesn’t have to 

worry about; the assembler’s job is to convert labels into their actual values. However, in this case it is easy. The assembler 

begins at address zero and each instruction occupies four bytes. The code consists of eight instructions which occupy 8 × 4 = 

32 bytes. Consequently List refers to location 0x00000020.   

 

The two move instructions initialize a loop counter (we are going to go round five times), and set the initial total to zero. 

 

The body of the code which we’ve printed in blue performs the actual addition. The LDR r3,[r0] instruction loads register 

r3 with the contents of the memory location pointed at by r0. Since we initialized r0 to point to  List, we will first access the 

A COMMENT ON PROGRAM LAYOUT 
 
When writing an assembly language program, column one is reserved for a user-defined name that allows us to refer to 
that line (more specifically, it corresponds to the address of that line in the program when it’s been assembled into 
machine code). In this example, the four labels are Start, Loop, Endless, and List. Actually, Start, is a dummy 
label in the sense we never refer to it. I added it simply to demonstrate that we can label a line just for the programmer 
(this indicates the start of the program). 
 
Anywhere after column one,  we can write an instruction. The only rule is that there must be at least one space following 
the mnemonic, and that parameters must be separated by commas. Spaces after a comma are optional; for example, we 
can write 
 
ADD r1,r2,r3 or 

ADD       r1,   r2,   r3 

 
Finally, we can append a comment to the right. The assembler we are using requires a semicolon to separate it from the 
code. Although we don’t have to write a program in columns as we’ve done above, it makes the program easier to read. 
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value 3. Then, we increment the pointer in r0 to point to the next word in memory to be added. This lets us step through the 

sequence of five numbers. 

 

The next step is to add the value of r3 we’ve just read to the running total in register r2 using ADD r2,r2,r3.  

 

Finally, the instruction SUBS r1,r1,#1 subtracts 1 from the loop counter in r1, which goes from 5 to 4 on the first cycle 

round the loop. The S on the end of SUB tells the processor to update the condition codes (carry, zero, negative, overflow) at 

the end of the subtract operation. The next instruction, BNE Loop, tests for the zero condition that we get when the loop count 

goes from 1 to 0. If the loop count is not 0, the BNE (branch on not zero) forces a jump to the line labeled by Loop and this 

block of code is executed again. If the loop count is 0, we have finished the loop and fall through to the next instruction. 

 

There’s nothing for us left to do, so we “jam” the computer by inserting the B Endless instruction. This is an unconditional 

branch (jump) to the line labeled by Endless. Because a jump is made to this line, the operation is repeated endlessly. This 

is a classic way of stopping a simulation. 

 

Following the executable code, the assembler directive DCD (define constant data) allows you to preload data into memory 

before the program runs.  In this case, the values 1, 4, 3, 6, and 7 are each loaded into memory as a 32-bit value. 

 

The following  snapshot demonstrates the state of the program after it has been loaded the project Build target function used 

to perform the assembly. 

 

 
 

The next snapshot shows the result of entering the debug mode. For clarity, we have removed some of the windows that are not 

needed. 

  

Click on the Debug tab to get the 

Start/Stop Debug Session command, and 

then click on it. This will display the 

debug window. 
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There are two notable features. First, the pseudo operation ADR r0,List has been translated into the actual instruction 

ADD r0,PC,#0x0000001C. A pseudo operation uses existing instruction to create an operation that loads a 32-bit value 

into a register. The assembler might generate different code on different occasions. 

 

A second interesting feature also appears in the disassembly window. You can easily recognize the program in this window. 

However, the data values stored by the assembler in memory (i.e., 5, 5, 6, 7) are read by the disassembler and translated into 

instructions. In this case the first value, 5, corresponds to the code for ANDEQ r0,r0,r3). Of course, this code is nonsense.  

However, the disassembler does not know this; it just translates anything in memory into an instruction. 

 

Disassembled 

code window. 

Some of the 

debugging 

commands. 

Instruction generated by the 

pseudo operation  
ADR r0,List. 

The constants 

created by DCD. 
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We are now going to create a memory window. To do this, click on View then select Memory Window and then Memory 1. 

Enter the starting address in the Address box in the memory window (which is 0) and hit return. This produces the display as 

shown below. In the memory window we can see both the code and data. Note that I have resized the memory window (it may 

have a different number of bytes per line on your system). You can drag the edge of the memory window to display as many or 

as few bytes per line as you require. 

 

 
 

 
 

 

 

Memory window 

Select ‘View’ tab then 

memory then memory 1 to 

select memory window. 

Starting address of the region 

of memory displayed. 
Beginning of the 

data area. 
Starting address of 

each line of data. 

 

 

The address of this byte is 0x00000047. 

Why? The first byte is at 0x00000030 

and this byte is 23 bytes on. 
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Let’s now run through a debug session with this program. The snapshot below shows the screen after we have executed the 

first three instructions. You can see that r0 is loaded with 0x24 (the start of the data area), r1 contains 5, and r2 contains 0 

(note, we have to clear r2 to 0 in the code because, in a real system, r2 will probably not contain 0 at the start of a block of 

code). Failure to initialize registers is proably the most common error that students make when writing assembly language 

programms. 

 

The next instruction to be executed is highlighted in both the program and disassembly windows.  

 

 

 
 

 

The next snapshot shows the state of the simulator after we have nearly completed one trip round the loop and are at the last 

instruction, the branch to Loop on not zero. The value of r0 is 28 (i.e., 24 + 4) because we are pointing at the next data item. 

The value of r1 (the loop counter) is 4 because we’ve decremented it on this trip. The value of r3 is 3 because we’ve loaded the 

first number, and the value of r2 is three because the sum contains only one number so far. 

 

The final snapshot for this example just shows some of the registers and code. Rregister r2 now holds the sum of the five 

numbers in memory. The value of r0 contains 0x38 which the next location after the five numbers (24 + 5 × 4 = 38 using 

hexadecimal arithmetic). 
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The sum of the five elements is in 

register r2. This is 0x00000017 or 

23 decimal. The five elements are 

3,4,3,6,7 and their sum is indeed 23. 
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Let’s look another program that uses pointer-based addressing to access memory. The snapshot below illustrates a program that 

adds together pairs of elements of two vectors X and Y, and puts the result in Z; that is, it performs zi = xi + yi for i = 0 to 3. 

 

 
 

We’ve defined two data areas: AREA VectorAddition, CODE, READONLY where the program code is located, and 

AREA VectorAddition, DATA, READWRITE. The parameters CODE and DATA refer to regions of memory that 

contain code or data, and the parameters READONLY and READWRITE indicate that the region of memory space can only be 

read (as in the case of the program), or can be both read from or written to (using parameter READWRITE). 

 

Once the program is ready to run, you select Debug and Start/Stop Debug Session in the normal way. We then have to 

perform an additional step to indicate that the data memory is writable. Click the Debug tab and then the Memory Map tab. 

 

The Memory Map below shows the situation with the address range 0x00 to 0x5B defined as both executable and readable 

memory. We need to define locations 0x38 to 0x5B as writable  locations. To do this, enter the values in the Map Range box 

and tick Read and Write. 

 

 

 

The image on the left shows the Memory Map box after 

we’ve entered the read/write range. Now click the 

Close tag. 
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The final three snapshots  for this example show, in order, the initial memory map, the state of the system during execution, 

and the final memory map. 

 

The initial memory map shows the code from 0x00000000 to 0x0000001B, and the data area starting at 0x0000002C. The 

snapshot is taken at the end of the first cycle of iteration. The three pointer registers are loaded with addresses that are four 

bytes greater than the start of the three vectors, because auto-incrementing is used and the pointer is increased after it has been 

used. The final memory map shows the source data in read and the data written back to memory in green. 
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PROBLEM SET 4 
 
1. What is an assembler? 
 

2. What is a cross-assembler? 
 

3. What is a (CPU) simulator? 
 

4. Does a simulator run as fast as the native or target processor being simulated? For example, does ARM processor 

code being executed by a simulated ARM processor on a PC run faster or slower than the same code being run on a 

real ARM processor? 
 

5. What is the wrong with ADD r0,r16,r1? 
 

6. Is there anything wrong with ADD r0,r0,r0? 
 

7. Why is ADD r1,#5,r2 wrong?  
 

8. What is the difference between a syntax error and a semantic error? 
 

9. What is the difference between an instruction and an assembler directive? 
 

10. What is the effect of ADR r0,1234? 
 

11.  ADR r0,#1234 is known as a pseudo instruction. What is a pseudo instruction and what is its purpose? 
 

12. What’s wrong, if anything, with ADD r15,r2,r3? 

 

 

PROBLEM SET 5 
 

Here we provide an introduction to the Keil ARM processor development system. 

 

1. Write a simple program to perform:  Z = A + B + C – (D × E) 

 

The instructions you may use are ADD, SUB, and MUL. Assume that the data is in registers r0 to r4 (representing A to 

E) and the result is put in r5. 

 

Enter your program into the Keil simulator and run it. You can use move instruction to load data into registers. Do you 

get the expected answer? 

 

2. Now assume A, B, C, D and E are 16-bit values in memory. You can load them by using a DCD directive. Remember 

that you use a label to define the first memory location and you can put successive values on the same line by 

separating them by commas. However, since each data item needs its own name, you are going to have to use one 

directive per element; that is:,  
 

A   DCD  4 

B   DCD  12 

C   DCD  -2 

 

Enter the program, compile (build) it and test it. 

 

3. Write a program that includes deliberate syntax errors.   Enter it in the development system, assemble (build) it and 

then debug it. 
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POINTER-BASED ADDRESSING MODES 
 

We have already introduced addressing modes. Here we discuss the ARM processor’s register indirect 

addressing mode that supports several variations. This is an important topic because it’s essential to the 

efficient manipulation of data structures such as tables, arrays, matrixes, and vectors. 

 

Let’s first review the basic concept of register indirect, or pointer-based, addressing. Indirect addressing specifies a pointer to 

the actual operand which is invariably in a register. For example, the instruction, LDR r0,[r1], first reads the contents of 

register r1 to obtain the pointer that gives you the address of the actual operand in memory. It then reads the memory location 

specified by the pointer in r1 to get the required data. This addressing mode requires three memory accesses; the first is to read 

the instruction to identify the register containing the pointer, the second is to read the contents of the register to get the pointer. 

And the third is to get the desired operand at the location specified by the pointer. 

 

You can easily see why this addressing mode is called indirect because the address register specifies the operand indirectly by 

telling you where it is, rather than what it is. This is the only form of addressing that the ARM processor can use to access 

memory. The box below describes three variations on this addressing mode and gives their assembly language forms, defines 

the addressing mode (using RTL), and gives them names. The naming of addressing modes is not always consistent in 

computer science and manufacturers sometimes use different names for the same addressing mode. 

 

 

 

 

 

 

 

 

ARM PROCESSOR POINTER-BASED ADDRESSING MODES 

 

1. LDR  r1,[r0] r0 points at the operand 

  [r1] ←  [[r0]] 

  Base register addressing  

  

2. LDR  r1,[r0,#4] The operand is 4 bytes on from the location pointed at by r0 

[r1] ←  [[r0 + 4]] 

Pre-indexed addressing 

 

3. LDR  r1,[r0,#4]! The operand is 4 bytes on from the location pointed at by r0. After loading 

the operand, the pointer register is incremented by 4 

[r1] ←  [[r0 + 4]] 

[r0] ←  [r0 ] + 4 

Pre-indexed addressing with writeback 

Autoincrementing preindexed addressing 

 

4. LDR  r1,[r0],#4 The operand is pointed at by r0. After making the access, r0 is updated by 4. 

[r1] ←  [[r0]] 

[r0] ←  [r0 ] + 4 

Post-indexed addressing 
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The following figure describes the basic register indirect (sometimes called indexed or base addressing). The instruction 

specifies an address register and that register points at the actual location of the data in memory. 

 

 
 

 

 

 

This diagram demonstrates the effect of 

incrementing r0 by 4. Now, r0 points at the next 

word so that executing LDR r1,[r0] accesses a 

different location; that is, the same instruction has 

a different outcome. 

 

 

 

 

 

 

PLAYING WITH POINTERS  
 

In principle, you don’t need any addressing mode other than the simple register indirect [r0]. In practice, computer design is 

very much about the tradeoff between computational efficiency, complexity, and cost. Most computers provide variations on 

the basic register indirect addressing mode in order to reduce the size of the code and speed up its execution.  In the 1980s, this 

was taken to extremes by the 68020 microprocessor that had truly complex addressing modes that could perform amazing 

operations with a single instruction. However, such addressing modes were so complex that compilers could not handle them 

optimally, and they took up a big chunk of the silicon chip. They were, at best, used infrequently. And they were slow. 

 

Consider the operation LDR r1,[r0,#8].  

This is only a slight modification of ARM’s plain 

vanilla register indirect addressing. The 

difference is the literal within the square 

brackets. The address of the operand is found at 

[r0] + 8; that is, the operand is 8 bytes on from 

the location pointer at by r0. This addressing 

mode is sometimes called pre-indexed 

addressing. 

 

The offset, in this case 8, is not added to the 

contents of the pointer in the register. The 

contents of r0 are fed to an adder, the offset 

added, and the result used to access memory. The contents of register r0 do not change. 

 

A typical application of pre-indexed addressing is in accessing a table. Consider a table in memory containing 12 entries 

corresponding to January to December. Register r0 points at the start of the table (i.e., January). The following operations have 

the effect: 

Accumulator

Memory

r0Pointer register

n

n+4

n+8

n-4

Destination

r1

n

8

The operand loaded into 
r1 is 8 bytes from the 
location pointed at by r0.

Executing LDR r1,[r0,#8]
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      LDR r1,[r0] ;Load r1 with the January data 

      LDR r2,[r0,#8] ;Load r2 with the March data 

      LDR r3,[r0,#28] ;Load r3 with the August data 

      STR r4,[r0,#44] ;Store the data in r4 in August’s location 

 

Why are the offsets 12, 32, and 44? The wordlength of an ARM processor is 32 bits or 4 bytes. If r0 points at January, the data 

occupies locations [r0], [r0] + 4, [r0] + 8, [r0] + 12, etc. For example, February is the second month and its data is at [r0] + 4.  

 

The offset for the first month is 0, and the offset of month i is (i - 1 * 4); e.g., May is month 5 and its offset is (5 - 1) * 4 = 16. 

 

In practice, programmers rarely used literal numeric offsets. The EQU (equate) directive assembler directive allows you to 

replace any number by a name; for example, 

 
Hastings  EQU 1066 

 

This assembler directive causes the assembler to substitute 1066 for Hastings whenever it sees it. It doesn’t matter whether 

you write ADR r0,Hastings or ADR r0,1066, it has the same effect. The example below demonstrates how we can use 

assembler directives with pre-indexed addressing to access an array of days, add two values together, and store the result. The 

memory data shows that the final value (4 + 7 = 11 = 0x0B) has been correctly stored. 

 

 
 

Suppose we didn’t have pre-indexing. What would we do? We’d have to write something like: 

 

      MOV r1,r0 ;Save pointer r0 in r1. 

      ADD r1,r1,#4 ;Create a new temporary pointer in r1 

      LDR r2,[r1] ;Read the required data from memory 

                ; LDR r2,[r0,#4] Does this in one instruction and doesn’t  tie up a second register 

The result 

in memory 

There we use Fri as the 

offset rather than the literal 

value16 (i.e., (5 – 1) × 4) 
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Simple pre-indexing is useful for accessing elements at a specified offset. However, it does not change the pointer. Sometimes, 

we are stepping through a data structure and we need to permanently update the pointer each time it’s used; for example: 

 

      MOV  r2,#64 ;Set up loop count for 64 elements 

      MOV  r3,#0 ;Clear the sum 

      ADR  r0,Table ;Point to the table of data elements to be summed 

Next  LDR  r1,[r0] ;Repeat: Read an element 

      ADD  r0,r0,#4 ;              Update the pointer 

      ADD  r3,r3,r1 ;              Add a new element to the total 

      SUBS r2,r2,#1 ;              Decrement loop counter 

      BNE  Next ;Repeat until all done 

 

There’s nothing new here. After accessing an element we update the pointer ready for the next cycle of iteration (in blue). 

Fortunately, ARM processors provide a post-indexed addressing mode. The offset is provided after the pointer, as the example 

demonstrates. 

 
      LDR  r1,[r0],#4 

 

In this case, the operand is accessed at the address pointer at by r0, and then r0 is incremented by 4. This addressing mode 

saves an instruction without incurring a time penalty. We can now write. 

 

      MOV  r2,#64 ;Set up loop count for 64 elements 

      MOV  r3,#0 ;Clear the sum 

      ADR  r0,Table ;Point to the table of data elements to be summed 

Next  LDR  r1,[r0],#4 ;Repeat: Read an element and update the pointer 

      ADD  r3,r3,r1 ;              Add a new element to the total 

      SUBS r2,r2,#1 ;              Decrement loop counter 

      BNE  Next ;Repeat until all done 
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OVERVIEW OF THE ARM PROCESSOR’S INSTRUCTIONS 
 

We now look at the type of operations ARM processors can carry out. In general, all computer instructions fall into a small 

number of groups. The main groups are: 

 

Data movement: These are all the operations that move data from one place to another and often account for about 70% of all 

the instructions in a program. 

 

Data processing: These are instructions that operate on data; that is, change its value. This group is often subdivided into 

arithmetic operations, logical operations (also called Boolean or bitwise), and shift operations. The 

following table describes there instructions. 

 

Arithmetic     Arithmetic instructions perform operations on data in numeric form.  

Logical    
A logical operation treats data as a string of bits and performs a Boolean operation on these bits; for 

example 11000111 AND 10101010 yields 10000010.  

Shift 
Shift instructions move the bits in a register one or more places left or right; for example shifting 

00000111 one place left yields 00001110. 

Bit    

A bit instruction acts on an individual bit in a register, rather than the entire contents of a register. Bit 

instructions allow you to test a single bit in a word (for 1 or 0), to set a bit, to clear a bit to 0, or to flip 

a bit into its complementary state. 

Compare    
Compare instructions compare two operands and set the processor’s status flags accordingly; for 

example, a compare operation allows you to carry out the test (X < Y) or (x == y). 

 

Flow control: This group is concerned with modifying the sequence in which instructions are executed. There are three 

main subgroups: the unconditional branch that forces a jump to a specific point in a program, the 

conditional branch that forces a jump to a point in a program, if and only if a specified condition is met, and 

the subroutine call and return. The terms branch and jump are used largely interchangeably in computing. 

 

 

 

STATUS FLAGS 
 

The processor status register records the outcome of an instruction and implements conditional 

behavior by selecting one of two courses of action. Some processors call this register a condition code 

register. Conditional behavior lets us implement high-level language operations such as 

 
if (x == 4) then  

 

or  

 

(i = 0; i < 20; i++).  

 

A processor status register contains at least four bits, Z, N, C and V, whose values are set or cleared after an instruction has 

been executed. These four flags (i.e., status bits) are: 

 

Z-bit    Set if the result of the operation is zero 

N-bit    Set if the result is negative in a two’s complement sense; that is the leftmost bit is zero. 

C-bit    Set if the result yields a carry-out; that is, if the C-bit is 1. 

V-bit    Set if the result is out-of-range in a two’s complement sense. 

 

Typical CISC processors update these flags after each operation. Most RISC processors like the ARM require you to explicitly 

update the condition codes. This makes sense because you can update the condition codes at one point in the program and test 

them later as long as you haven’t performed a second update. ARM processors require you to append an S after an instruction 

in order to force an update. Compare instruction do not need the S because, by definition, they update condition codes. 

Consider the following example: 
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   ADD   r0,r1,r2   ;add r1 to r2 

   SUB   r0,r0,r3   ;subtract r3 to get r1+ r2 - r3 

   SUBS  r0,r0,#5   ;subtract 5 to get r1+ r2 - r3 - 5 and update condition codes. 

 

Consider the following example using 8-bit arithmetic. Suppose r0 contains 001101012 and r1 contains 011000112, the effect of 

adding these two values together with ADD r1,r0,r1 would result in 

 
  001101012 
+011000112 

  100110002 

 

The result is 100110002 which is deposited in r1. If we interpret these numbers as twos complement values, we have added two 

positive values to yield a negative result. Consequently, the V-bit is set to indicate arithmetic overflow. The result is not zero, 

so the Z-bit is cleared. The carry out is 0. The most-significant bit is 1 and the N-bit is set. Consequently, after this operation 

C = 0, Z = 0, N = 1, V = 1.  

 

 

DATA MOVEMENT INSTRUCTIONS 
 

Although the most frequently executed computer operation is data movement, it is incorrectly named because the one thing it 

does not do is to move data. Data movement instructions copy data; for example, the instruction MOV r1,r0 copies the 

contents of r0 to r1, but does not modify the value of r1. You could say that a data movement instruction is a data propagate or 

data copy instruction. You can also move a literal; for example, MOV r1,#12. 

 

ARM processors have one highly unusual move instruction, the MVN, move negative, that takes the bits of one register, inverts 

them, and then copies them to the destination register; that is,  

 

MVN r0,r1 has the effect  [r0] ← 0xFFFFFFFF  r1 (performing an exclusive OR with 1 inverts a bit).  This is not the two’s 

complement of the register; it is the inverted bits of the register and differs from the two’s complement by 1. 

 

Like other RISC processors, the ARM has special-purpose data load and store instruction that copy data to and from memory; 

that is LDR and STR. We have encountered these instructions many times. CISC processors generally allow combined memory 

access and data operations. For example, the 68K instruction ADD D2,address that adds the contents of memory location 

address to register D2 and puts the sum in D2. This is a two-address instruction. 

 

ARM processors do, in fact, implement a special swap memory with register  (SWP) instruction that copies a memory location 

to a register and a register to the memory location. This operation is atomic and cannot be split up or interrupted (i.e., both the 

memory transfer to the register and from the register must take place without any interruption). You don’t have to worry about 

this instruction because we will not be using it. It’s intended for signaling between distributed processes. 
 

 

 

ARITHMETIC INSTRUCTIONS 
 

Arithmetic operations are those that act on numeric data (i.e., signed and unsigned integers).  

 

ADD r2,r1,r0 Add [r2] ← [r1] + [r0] 
ADC r2,r1,r0 Add with carry [r2] ← [r1] + [r0] + C 
SUB r2,r1,r0 Subtract [r2] ← [r1] - [r0] 
SBS r2,r1,r0 Subtract with borrow [r2] ← [r1] - [r0] - C 
RSB r2,r1,r0 Reverse subtract  [r2] ← [r0] - [r1] 
RSC r2,r1,r0 Reverse subtract with carry [r2] ← [r0] - [r1] - C 
MUL r2,r1,r0 Multiply (unsigned) [r2] ← [r1] × [r0] 
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Add    The ADD instruction adds the contents of two operands and deposits the result in the destination operand. One operand 

may be in memory.  All addition and subtraction instructions update the contents of the condition code register unless the 

destination operand is an address register. 

 

Add with Carry    The add with carry instruction, ADC, is almost the same as the ADD. The difference is that ADC adds the 

contents of two registers together with the carry bit; that is ADC r2,r1,r0 performs [r2]  [r1] + [r0] + C, 

where C is the carry bit generated by a previous operation. 

 

This instruction is used in extended arithmetic. Suppose you wish to add two 64-bit numbers using a 32-bit ARM processor. 

Assume that the most-significant 32 bits of X are in r0 and the least-significant 32 bits in r1. The most-significant 32 bits of Y 

are in r2 and the least-significant bits in r3. We can perform the 64-bit addition X + Y by 

 
      ADD  r5,r3,r1  ;Add the low-order 32 bits, update carry flag 

      ADC  r4,r2,r0  ;Add the high-order 32 bits plus any carry 

 

We use ADD to add the two low-order 32-bit words. An addition records and carry bit generated by the addition and moves it to 

the C-bit. The ADC adds the high-order words together with any carry that was generated by adding the low-order words. The 

figure below demonstrates Z = X + Y where X, Y and Z are 64-bit values and the addition is to be performed with 32-bit 

arithmetic. Each of the operands is divided into an upper and a lower 32-bit word. 

 

 
 

 
Subtract  The subtract instruction subtracts the first source operand from the second source operand and puts the result in the 

destination. SUB r2,r1,r0 performs [r2] ← [r1] - [r0]. A subtract with borrow, SBC r2,r1,r0 performs 

[r2] ← [r1] - [r0] - C (the carry bit is also subtracted from the result). This is entirely analogous to the 

corresponding add with carry instruction and is used in the same way to perform extended arithmetic. 

 

The ARM processor has a most unusual variant of the subtract instruction, RSB (reverse subtract) that performs a reverse 

subtraction in which the operands are reversed; that is, 

 

SBC r2,r1,r0 performs [r2] ← [r1] - [r0]    (normal subtraction) 

RSB r2,r1,r0 performs [r2] ← [r0] - [r1]    (reverse subtraction) 

 

At first sight, this instruction seems pointless. After all, if you want to reverse the order of the operands, you can just write 

them the other way round and write SUB r2,r1,r0 or SUB r2,r0,r1 as required. However, ARM instructions that 

specify a literal operand are always of the form ADD r1,r2,#12  and the position of the literal cannot be changed. 

Therefore, the reverse subtraction allows you to perform the operation, say, 123 - r0 by writing RSB r0,r0,#123. 

  

 

Multiplication All members of the ARM processor family have a basic multiplication instruction, MUL, that multiplies two 32-

bit words together and keeps the 32-bit lower-order word of the 64-bit result. Its format is: 

 

MUL rd,rn,rm  which performs [rd(0:31)] ← [rn(0:15)] × [rm(0:15)] 

 

There are other multiplication instructions that are implemented by other members of the ARM family. We do not deal with 

these variations. 
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Members of the ARM processor family include an interesting and powerful instruction, the multiply and accumulate (MLA). 

When you multiply two numbers, what do you do with the product? More often than not, you add it to a running total. This is a 

fundamental operation in signal processing, image processing, and a range of other applications. For example, if A and B are 

vectors, then their inner product is defined as s = ai.bi for i = 0 to n - 1. 

 

The operation MLA rd,rn,rm,ra  is defined as rd =  ra +  rn × rm. This is unusual because it is a four-operand instruction. 

Suppose we want to form the inner product of two four-component vectors, we can write: 

 

      MOV  r0,#4 ;Set up loop count for 4 components 

      MOV  r1,#0 ;Clear the inner product 

      ADR  r2,VecA ;r2 points to vector A 

      ADR  r3,VecB ;r3 points to vector B 

Next  LDR  r4,[r2],#4 ;Repeat: Read an element from vector A 

      LDR  r5,[r3],#4 ; Read an element from vector B 

      MLA  r1,r4,r5,r1 ; Multiply a pair of components and add to the total 

      SUBS r0,r0,#1 ; Decrement loop counter 

      BNE  Next ;Repeat until all done 

 

This code is very similar to that we used before, except that we have two pointers, one to each of the vectors. As an exercise, 

convert this into a program and run it on the Keil simulator. Provide your own data (by means of a DCD directive and debug the 

program. Ensure that the result is correct by evaluating it yourself and comparing it with the result from the simulator. 

 

 

Division Most members of the ARM family have very few division instructions. In fact, none at all. If you wish to perform 

division you have to write a routine to perform the division using other operations. Fortunately, division is a surprisingly 

infrequent operation. 

 

 

 

COMPARE INSTRUCTIONS 

 

High-level language provide conditional constructs of the form 

 
if (x == y) {a = b * c}; 

 

We examine how these constructs are implemented later. At this stage we are interested in the comparison part of the above 

construct, (x == y), that tests two variables for equality. We can also test for greater than or less than. The operation that 

performs the test is called comparison.  

 

The ARM processor provides a compare instruction CMP r0,r1, that evaluates [r0] - [r1] and updates the bits of the 

bits in the condition code register accordingly, Consider the examples, 

 

r0           r1           Operation     Processor status flags 
10101010 10101010 CMP r0,r1 Z = 1, C = 1, N = 0, V = 0 

10101010 00000000 CMP r0,r1 Z = 0, C = 1, N = 1, V = 0 
10101010 11000001 CMP r0,r1 Z = 0, C = 0, N = 1, V = 0 
10101010 01000001 CMP r0,r1 Z = 0, C = 1, N = 0, V = 1 

01101010 10101010  CMP r0,r1 Z = 0, C = 0, N = 1, V = 1 

 

 

A compare instruction is inevitably followed by a branch instruction that chooses one of two courses of action depending only 

on the outcome of the comparison. Here we demonstrate a compare followed by a branch. 

 

Consider the high-level construct if (x == 5) {x = x + 10}; 

 



Version 1 [WORKBOOK FOR COMPUTER ORGANIZATION AND ARCHITECTURE: THEME AND VARIATIONS] 

 

V 5.0 “© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part 38 | P a g e   

We can write the following fragment of code. 

 
     LDR  r1,[r0]    ;get X in r1 (we assume that r0 is pointing at X in memory) 

     CMP  r1,#5      ;is X == 5? 

     BNE  Exit       ;if not equal then go to ‘exit’ 

     ADD  r1,r1,#10  ;else add 10 to X 

     STR  r1,[r0]    ;restore X to memory 

Exit                 ; 

           

In this example the branch instruction BNE Exit forces a branch (jump) to the line labeled by Exit if the outcome of the 

compare operation yields not zero. 

 

 

LOGICAL INSTRUCTIONS 
 
Logical operations allow you to directly manipulate the individual bits of a word. When a logical operation is applied to two 

32-bit values, the logical operation is applied (in parallel) to each of the 32 pairs of bits; for example, a logical AND between 

words A and B would perform ci = aibi for all values of bit i.  

 

 

Mnemonic Operation Definition Example 

AND r2,r1,r0 Logical AND [r2] ← [r1]  [r0] 11110000 AND 10101010 = 10100000 

ORR r2,r1,r0 Logical OR [r2] ← [r1] +  [r0] 11110000 OR  10101010 = 11111010 

EOR r2,r1,r0 Exclusive OR [r2] ← [r1]  [r0] 11110000 EOR 10101010 = 01011010 

NOT r2,r1 Logical NOT [r2] ← [r1] 11110000              = 00001111 

MVN r2,r1 Move negated [r2] ← [r1] 11110000              = 00001111 

BIC r2,r1,r0 Logical AND NOT [r2] ← [r1]  [r0] 11110000 AND 10101010 = 01010000 

 

 

The AND operation is dyadic and is applied to two source operands. Bit i of the source is ANDed with bit i of the destination 

and the result is stored in bit i of the destination. If [r1] = 110010102, the operation AND r1,#2_11110000 results in 

[r1] = 110000002. Remember that the symbol # indicates a literal or actual operand, and the prefix 2_ indicates a binary value.  
 

The AND operation masks the bits of a word. If you AND bit x with bit y, the result is 0 if y = 0, and x if y = 1. A typical 

application of the AND instruction is to strip the parity bit off an ASCII-encoded character. That is, 

 
      AND  r2,r1,#2_01111111  

 

clears bit 7 of r1 to zero, and leaves bits 0 to 6 unchanged. 

 

The OR operation is used to set one or more bits of a word to 1. ORing a bit with 0 has no effect, and ORing the bit with 1 sets 

it. For example, if [r1] = 110010102, the operation 

 
      ORR  r2,r1,#2_11110000  

 

results in [r2] = 111110102. 

 

The exclusive OR, EOR, operation is used to toggle (i.e., invert) one or more bits of a word. EORing a bit with 0 has no effect, 

and EORing it with 1 inverts it. For example, if [r1] = 110010102, the operation 

 
      EOR r2,r1,#2_11110000  

 

results in [r1] = 001110102. 

 

By using the NOT, AND, OR, and EOR instructions, you can perform any logical operations on a word. Suppose you wish the 

clear bits 0, 1, and 2, set bits 3, 4, and 5, and toggle bits 6 and 7 of the byte in r0. You could write: 
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      AND  r2,r1,#2_11111000  ;Clear bits 0, 1, and 2 

      ORR  r2,r1,#2_00111000  ;Set bits 3, 4, and 5 

      EOR  r2,r1,#2_11000000  ;Toggle bits 6 and 7 

 

If [r1] initially contains 010101012, its final contents will be 101110002. We will look at a more practical application of bit 

manipulation after we have covered branch operations in a little more detail. 

 

ARM processors lack a NOT instruction that takes the logical complement of a word. However, the MVN, move negated 

instruction inverts the bits of the data being moved, so that MVN r1,r1 is the same as NOT r1. 

 

ARM processors have a bit clear instruction, BIC, that performs a combined AND with a negation. The effect of a BIC is to 

AND the first operand with the negated second operand; that is, if the operands are A and B, then C = A·B. This instruction is 

used as a mask to selectively clear bits; for example, the mask word 00001111, can be used to clear the four lower-order bits of 

the source operand. Consider, 

 

      BIC  r2,r1,#2_00001111  ;If r1 contains 00111010 the value of r2 is 00110000 
 

 

 

SHIFT INSTRUCTIONS 
 

A shift operation moves a group of bits one or more places left or right as the table below demonstrates. 

 

Source After shift left After shift right 

00110011 01100110 00011001 

11110011 11100110 01111001 

10000001 00000010 01000000 

 

Shift operations are used to multiply or divide by a power of 2, rearrange the bits of a word, and access bits in a specific 

location of a word. Suppose 110010102 is shifted one place right. A logical shift right operation introduces a 0 into the leftmost 

bit position vacated by the shift, and the new value is 011001012. 

 

Although there are only two shift directions, left and right, there are several variations on the basic shift operation, depending 

on whether we are treating the value being shifted as an integer or a signed value, and whether we include the carry bit in the 

shifting. 

 

All microprocessors have a set of shift operations that move the bits of a word one or more places left or 

right. However, the ARM processor is unique because it doesn’t have an explicit shift operation. Instead, 

shift operations are incorporated in all data processing operations as an option. The second operand can 

be shifted before it takes part in an operation. 

 

 

 

THE FOUR CLASSES OF SHIFT INSTRUCTION 
 

Arithmetic shifts treat the data shifted as a signed two's complement value. The sign-bit is propagated by an arithmetic shift 

right. The number 110010102 = -54 is negative, and an ASR gives 111001012 (i.e., -27). 

 

When a word is shifted right arithmetically, the old least-significant bit is copied into the carry flag bit. An arithmetic shift left 

is equivalent to multiplication by 2, and an arithmetic shift right is equivalent to division by 2. 

 

The number of bits to be shifted can be a constant defined in the program and the shift instruction always executes the same 

number of shifts. Some computers let you specify the number of bits to be shifted as the contents of a register. This allows you 

to implement dynamic shifts because you can change the contents of the register that specifies the number of shifts.  The 

following figure graphically illustrates the various forms of shift. 
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A circular shift operation treats the data being shifted as a ring with the most-significant bit adjacent to the least-significant bit. 

Circular shifts result in the most-significant bit being shifted into the least-significant bit position (left shift), or vice versa for a 

right shift. No data is lost during a circular shift. Consider the following examples. 

 

Shift type Before circular shift  After circular shift 

Rotate left, ROL 11001110 10011101 

Rotate right, ROR 11001110 01100111 

 

The last type of shift operation is called rotate through carry. The carry bit is treated as part of the word to be shifted. A 

circular shift is performed with the old carry bit being shifted into the register, and the bit lost from the register being shifted 

into the carry bit. Suppose that the carry bit is currently 1 and that the 8-bit value 111100002 is to be shifted one place right 

through carry. The final result is 111110002 and the carry bit is 0.  

 

The ARM processor’s shift options are: 

 

 

 

C

C

0Operand

OperandMSB

In an arithmetic shift, the 
number is either multiplied by 2 
(ASL) or divided by 2 (ASR). 
The sign of a two's 
complement number is 
preserved.

The bit shifted out is copied 
into the carry bit.
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LSL #n  The operand is shifted left by 0 ≤ n ≤ 31 places. The vacated bits at the least-significant end of the operand are 

filled with zeros. 

 

LSR #n The operand is shifted right by 1 ≤ n ≤ 32 places. The vacated bits at the most-significant end of the operand are 

filled with zeros. 
 

ASR #n The operand is shifted right by 1 ≤ n ≤ 32 places. The vacated bits at the most-significant end of the operand are 

filled with zeros if the original operand was positive, or with 1s if it was negative (i.e., the sign-bit is replicated). 

This divides a number by 2 for each place shifted. 

 

ROR #n The operand is rotated right by 1 ≤ n ≤ 31 places. The bit shifted out of the least-significant end is copied into the 

most-significant end of the operand. This shift preserves all bits.  

 

RRX The operand is rotated right by one bit. The bit shifted out of the least-significant end of the operand is shifted into 

the C-bit. The old value of the C-bit is copied into the most-significant end of the operand; that is, shifting takes 

place over 33 bits (i.e., the operand plus the C-bit). 

 

Note that there should be ten versions if all possibilities are included (2 directions × 5 modes). However, the missing operations 

can be synthesized from the existing operations; for example, an arithmetic shift left is identical to a logical shift left, and a 

rotate left can be achieved by rotating right (e.g., one shift left is the same as 31 shifts right). 

 

If you want to perform a simple shift, you can apply it to a MOV instruction; for example,  

 

      MOV   r2,r1, LSL #4 ;this will perform a 4-bit logical shift left  

 ;on the contents of r1 and copy the result to r2. 
 

Let’s look at another example. Consider the addition operation. 

 

      ADD   r2,r1,r0, LSL #2 ;this will perform a 2-bit logical shift left on the contents 

 ;of r0, add the result to r1, and put the sum in r2; that is 

 ;[r2] ← [r1] + [r0] × 4 
 

In this case, r0 is shifted left twice which is equivalent to multiplying by 4. Consequently, this forms the sum of r1 plus 4 r0. 

Such an operation is often used in calculating the value of addresses in array accesses and pointer manipulation. 

 

 

BRANCH INSTRUCTIONS 
 

A branch instruction modifies the flow of control and causes the program to continue execution at the target address specified 

by the branch. The simplest branch instruction is the unconditional branch instruction, B target, that always forces a jump 

to the instruction at the target address. In the following fragment of code, the ‘B Here’ instruction forces the ARM processor 

to execute next the instruction on the line with the labeled by Here. 

 

      B     Here ;jump to the line that begins ‘Here’ 
      . 

      . 

      . 

Here  ADD   r1,r1,r0 

 

In the next example, execution continues sequentially from instruction 1 to instruction 8, which is B 2000 (branch to 

instruction N at location 200016). The address of the first instruction is 100016 and each instruction takes 4 bytes. Execution 

then continues with the instruction at location N. Instruction N + 5 is B 1040 (branch to instruction 17 at location 104016.) and 

a change of flow takes place again. Note that in reality, the ARM processor’s branch instruction does not use an absolute 
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address but a relative address giving the distance to branch from the current instruction. We’ve used an absolute address here 

for convenient. In practice, the programmer uses a symbolic name (the line to branch to) and the assembler works out the 

appropriate relative offset. 

 

 
 

We have already used a simple unconditional branch in ARM programs when we wrote Here B Here when we wanted to 

force the computer into an infinite loop at the end of a program.  

 

The most important feature of any computer is its ability to implement conditional behavior by carrying out a test and then 

branching on the result of the text.  The next example demonstrates the flow of control with a conditional branch. 

 

Let’s look at this conditional behavior in high-level language. Consider the following example of the high-level construct 
 

if (x == 3) then y = 4. 

 

We can translate this construct into the following ARM processor code. 

 
      CMP  r1,#3       ;(x == 3)? 

      BNE  exit        ;if x is not 3 then leave 

      MOV  r2,#4       ;if x is 3 then y = 4 

exit  ... 

 

The instruction CMP r1,#3 compares the contents of register r1 with the literal 3 by evaluating [r1] - 3 and setting the status 

flags. If the result of the operation is zero, the Z-bit is set to 1. If the result is not zero (i.e., r1 does not contain 3), the Z-bit is 

set to 0. 

 

The key instruction is BNE exit, which means ‘branch on not zero to the instruction labeled exit’. The effect of this 

instruction is to test the Z-bit of the status flags and then branch to the instruction with the label ‘exit’ if Z = 0 (i.e., r1 is not 3). 

If r1 is 3, Z = 1, the branch is not taken and the MOV r2,#4 instruction is executed. 

 

ARM processors provide 16 branch instructions of the form Bcc where the suffix cc defines the branch condition. Some of 

these 16 conditions are described below.  

 

 

 

 

 

 

 

 

 

Instruction 1
Instruction 2
Instruction 3
Instruction 4
Instruction 5
Instruction 6
Instruction 7
B 2000

Instruction N

Instruction N+3
Instruction N+4

Instruction N+1
Instruction N+2

B 1040

Instruction 9
Instruction 10
Instruction 11
Instruction 12
Instruction 13
Instruction 14
Instruction 15
Instruction 16
Instruction 17
Instruction 18

1000

1004

1008

100C

1010

1014

1018

101C

1020

1024

1028

102C

1030

1034

1038

103C

1040

1044

2000

2004

2008

200C

2010

2014

The branch instruction forces
the instruction at 2000 to be 
executed next.

This block of code 
is not executed.

The branch B 1040 instruction 
forces a jump to 1040.
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Mnemonic Condition Flags 

 

BEQ equal Z = 1 

BNE not equal    (not zero) Z = 0 

BCS/BHS carry set/higher or same     C = 1 

BCC/BLO carry clear/lower     C = 0 

BMI negative     N = 1 

BPL positive or zero     N = 0 

BVS overflow set     V = 1 

BVC overflow clear     V = 0 

 

 

CONDITIONAL BRANCH EXAMPLE  
 

Let’s look at a simple application of conditional branching. You can implement a loop construct in the following way 

 
      MOV  r0,#20         ;load the loop counter r0 with 20 

Next  .                   ;body of loop 

      . 

      . 

      SUBS r0,r0,#1       ;decrement loop counter and set status flags 

      BNE  Next           ;repeat until loop count = zero 

 

Let’s look at another example of the use of branching. Suppose we have a number in r0 and we wish to set r1 to 1 if the number 

is odd, set r1 to 2 if the number is divisible by 4, and set r2 to 1 if it is greater than 200. This can be expressed as 

 

r1 = 0; 

r2 = 0; 

if (r0 > 200) then r2 = 1 

if (r0%2 == 1) then r1 = 1 //%2 is modulus 2 

if (r0%4 == 0) then r1 = 2 //%4 is modulus 4 

 

We can translate this into ARM processor code as 

 

      MOV   r1,#0        ;clear r1 

      MOV   r2,#0        ;clear r2 

      CMP   r0,#200      ;is r0 > 200 

      BLE   Next         ;if not then do next test 

      MOV   r2,#1        ;if it is, then set r2 to 1 

Next  MOVS  r3,r0,ROR #1 ;dummy rotate right (and update status). R3 is a temp reg 

      BCC   Next1        ;if carry clear then try next test 

      MOV   r1,#1        ;if set, number odd, then set r1 to 1 

      B     Exit         ;and leave this block 

Next1 BICS  r3,r0,#0xFFFFFFFC ;clear all bits except 2 least sig and update status 

      BNE   Exit         ;if not zero then exit 

      MOV   r1,#2        ;if zero, number divisible by 4, then set r1 to 2 

Exit  . . . 

            

As you can see, the code consists of tests and the actions or branches round actions. Note the way we test for divisibility by 4. 

The effect of BICS r3,r0,#0xFFFFFFFC is to perform a logical AND between the contents of r0 and the logical inverse 

of the literal, which is 000…11. This operation masks r0 down to the two least-significant bits 000…bb. In order for the 

number to be divisible by 4, bb must be 00. Therefore, if we test for zero and the result is zero, the number was divisible by 4. 

 

Note that in the testing we end up with some dummy values. In these cases we use r3 as a dummy register. 
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PREDICATED EXECUTION 
 

The ARM processor is unusual in the sense that it provides a conditional (or predicated) execution mode that very few other 

processors support. When an instruction is read from memory, the processor checks its associated condition. If the condition is 

true, it is executed. If the condition is false, it is simply ignored and the next instruction in sequence dealt with. That is, 

instruction execution can be squashed. 

 

All ARM processor instructions are conditional. So far, we have ignored this because the default condition is always execute. If 

you wish to attach an explicit condition, you simply add a condition suffix to the end of an instruction. Exactly the same 

suffixes used by conditional branches; for example EQ. Consider the following example, 

 

     ADDEQ r0,r1,r2 

 

This is a conditional version of the ADD. If the Z-bit (zero) is true, this instruction will be executed. Otherwise, it will be 

ignored. Let’s look at the previous example again. 

 

We can translate this into ARM processor code using conditional instructions. 

 

   MOV   r1,#0             ; r1 = 0 

   MOV   r2,#0             ; r2 = 0 

   CMP   r0,#200           ; if (r0 > 200) then r2 = 1 

   MOVGE r2,#1             ; 

   MOVS  r3,r0,ROR #1      ; if (r0%2 == 1) then r1 = 1 //%2 is mod 2 

   MOVCS r1,#1             ;  

   BICS  r3,r0,#0xFFFFFFFC ; if (r0%4 == 0) then r1 = 2 //%4 is mod 4 

   MOVEQ r1,#2             ; if zero, number divisible by 4, then set r1 to 2 

 

Notice how much more compact the code it. All the branch instructions have gone. We perform a test and then a predicated 

operation. There’s nothing to stop us doing multiple operations; for example, 

 

   CMP   r1,#123           ; if r1 == 123 

   ADDEQ r3,r3,#1          ;    r3 = r3 + 1 

   SUBEQ r4,r4,#5          ;    r4 = r4 + 1 

 

In this case, two operations are conditional and they are both predicated on outcome of the test on r1. We can also make tests 

themselves predicated in order to test compound conditions; for example. 

 

if (r0 > 200)&&(r2 == 4) then r2 = 1 

 

   CMP   r0,#200           ; if r0 > 200 

   CMPGT r3,r3,#4          ;    if r3 = r3 + 1 

   MOVEQ r2,#2             ;       r4 = r4 + 1 

 

Here, we do a test (CMP r0,#200) and then a second test if the outcome is true. The third instruction is executed only if the 

previous two tests were true. 
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BRANCH AND LINK 
 

The ARM processor includes a branch with link instruction that executes a branch and saves the return address. This allows 

you to call a subroutine and then return to the calling point. The form of the instruction is BL target, where BL is the op-

code and target the address of the point at which execution is to continue. The branch with link instruction stores the return 

address in the link register r14. Consequently, programmers should not use r14 as a general-purpose register. If you use a 

second BL instruction you will overwrite the previous address in the link register. 

 

Consider the following example. 

 

        MOV   r1,#4            ; put parameter in r1 

        MOV   r2,#3            ; put second parameter in r2 

        BL    TestSub          ; call the subroutine  

        . . .                  ; return here 

        . . . 

TestSub ADD   r3,r1,r2         ; very simple subroutine to do addition 

        MOV   PC,lr            ; same as MOV r15,r14 (forces jump back) 
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THE MAXIMUM SEQUENCE COUNTER 
 

For our next example we return to the problem of the sequence counter we introduced in Chapter 1 of Computer Organizatrion 

and Architecture. Our problem is to take a sequence of digits, one by one, and determine the longest run in a sequence of digits 

as the following figure demonstrated. The figure below is taken from the text and shows a string of digits where the longest 

sequence is 4. 

 

 
 

The pseudocode we developed to solve this problem is expressed as follows. 

 
1. Read the first digit in the string and call it New_Digit 

2. Set the Current_Run_Value to New_Digit 

3. Set the Current_Run_Length to 1 

4. Set the Max_Run to 1 

5. REPEAT 

6.  Read the next digit in the sequence (i.e., read New_Digit) 

7.  IF its value is the same as Current_Run_Value  

8.   THEN Current_Run_Length = Current_Run_Length + 1 

9.  ELSE {Current_Run_Length = 1 

10.       Current_Run_Value = New_Digit} 

11.  IF Current_Run_Length > Max_Run  

12.  THEN Max_Run = Current_Run_Length 

13. UNTIL The last digit is read 

 

This code can be converted into ARM assembly language in the following way. 

 
        AREA  RunLength,CODE,READWRITE ;find the longest run in a sequence 

        ADR   r9, ;r9 points to the sting 
 

        MOV    r0,#1 ;r0 is i (1 initially) 

        LDR    r1,[r9] ;r1 is New_Digit  (initially the first element in the string 

        MOV    r2,r1 ;r2 is the Current_Run_Value 

        MOV    r3,#1 ;r3 is the Current_Run_Length (set to 1) 

        MOV    r4,#1 ;r4 is the Max_Run_Length (set to 1) 
 

Repeat  ADD    r9,r9,#4 ;Repeat: point to next element 

        LDR    r1,[r9] ; Read next digit 

        CMP    r2,r1  ; Compare New_Digit and Current_Digit 

        ADDEQ  r3,r3,#1 ; IF same THEN Current_Length=Current_Length+1 

        MOVNE  r3,#1 ;  ELSE Current_Run_Length = 1 

        MOVNE  r2,r1 ;   Current_Run_Value = New_Digit 

        CMP    r3,r4 ; IF Current_Run_Length > Max_Run 

        MOVPL  r4,r3 ;  THEN  Max_Run = Current_Run_Length 
 

        ADD    r0,r0,#1 ; increment digit counter 
        CMP    r0,#18 ; 

        BNE    Repeat          ;until all digits tested 
 

Park    B      Park ;parking loop 
String  DCD    2,2,2,2,2,3,6,6,8,6,4,2,2,3,2,2,2 ;the string 

        END 

String of 17 digits

Run of three consecutive 
digits with the same value

Run of four consecutive 
digits with the same value
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The interesting part of this code is in red. Instead of using a conventional test and branch operation (e.g., CMP r1,r2 

followed by BEQ abc) we make use of conditional or predicated execution. Consider the code fragment: 

 
        CMP    r2,r1  ; Compare New_Digit and Current_Digit 

        ADDEQ  r3,r3,#1 ; IF same THEN Current_Length=Current_Length+1 

        MOVNE  r3,#1 ;  ELSE Current_Run_Length = 1 

        MOVNE  r2,r1 ;   Current_Run_Value = New_Digit 

 

Initially, r2 is compared with r1 which sets the zero and negative flags. The ADDEQ instruction is executed if r1 and r2 were 

equal. The next two instructions are predicated by NE (not equal or not zero). If r1 is not equal to r2 then both these 

instructions are executed. Both parts of the IF THEN ELSE clause are mutually exclusive and we do not need branch 

instructions. 

 

The following snapshot shows the execution of the code in the Keil simulator at the end of the program (note that this example 

uses a different sequence of digits to the one in the figure above). Register r4 contains the length of the longest run which is 5. 
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THE STACK 
 

The stack is a last-in-first-out (LIFO) data structure. It is a queue with only one end; that is, new items enter at the same point 

as old items leave. Items leave a stack in the reverse order in which they arrive. A LIFO queue is the same as a stack in 

conventional English. If you pile books on top of each other and then remove them from the top, it behaves exactly like a stack. 

 

A stack can be used in many ways. However, we are interested in the following three applications of the stack: 

 

1. Storing subroutine return addresses 

2. Passing parameters from a program to a subroutine 

3. Providing temporary storage (local workspace) in a subroutine. 

 

The following diagram illustrates one possible stack structure (there are four variations that are determined by the way in 

which the stack grows). The stack can be located in any region of memory. This stack grows up towards low addresses; that is, 

the address of an item at the top of the stack is lower than the address of an item at the bottom of the stack. 

 

Address register r13 is used as the stack pointer by convention. It should not be used for any other purpose. When an item 

enters the stack it is said to be pushed on the stack. When an item leaves the stack, it is said to be pulled off the stack. 

 
 

In this stack, the stack pointer points to the item at the top of the stack. This item is the last element pushed on the stack and 

will be the first item pulled off the stack (hence the term LIFO or last-in first-out). 

 

Suppose you have an item in register r0 and wish to push it on the stack.  Since the stack pointer points at the top of the stack, 

the pointer must be moved up (i.e., decremented) before the item is moved to the location now pointed at. We can do this by 

 

      SUB  r13,r13,#4   ;decrement the stack pointer to move it up 

      STR r0,[r13]          ;now put the item on the stack 

 

Fortunately, you can combine these two operations together by using the ARM processor’s auto-decrementing addressing 

mode 

 
      STR  r0,[r13,#-4]! 

 

This instruction stores the contents of  r0 at an address -4 bytes from r13; that is, 4 bytes above it. The contents of r13 are then 

decremented by 4. 

 

To pull (pop) a word off the stack, we perform the inverse operation; that is, we read the item currently at the top of the stack 

pointed at by r13 and then increment r13 to point to the  new item at the top of the stack. We can do this by: 

 

 

 

Direction of
growth as items
are added

Stack pointerTop of stack

Memory

Low memory

The stack



Version 1 [WORKBOOK FOR COMPUTER ORGANIZATION AND ARCHITECTURE: THEME AND VARIATIONS] 

 

V 5.0 “© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part 49 | P a g e   

 

 

      LDR  r0,[r13]  ;read the item at the top of the stack 

      ADD  r13,r13,#4 ;increment the stack pointer 

 

Once again, you can combine these two operations together by using the ARM processor’s auto-incrementing addressing mode 

 
      LDR  r0,[r13],#4 

 

The next figure shows the state of the stack after pushing r0 and then r1 on the stack by executing STR r0,[r13,#-4]!and 

STR r0,[r13,#-4]!. Note that we’ve used the sp synonym for r13. 

 
 

The next step is to look at the subroutine and demonstrate how subroutines use the stack to handle return addresses, pass 

parameters, and create space for local variables required by a subroutine during its life. 

 

 

SUBROUTINE CALLS 
 

A subroutine is a piece of code that is called, executed and a return is made to the calling point. Subroutines are very important 

because they implement the function or procedure at the high-level language level. At this point, we are interested only in the 

principle of the subroutine call and return. 

 

 

 

 

  
This figure demonstrates the subroutine call. Code is executed sequentially until a subroutine 

call is encountered. The current place in the code sequence is saved and control is then 

transferred to the subroutine; that is, the first instruction in the subroutine is executed and the 

processor continues executing instructions in the subroutine until a return instruction is 

encountered. Then, control is transferred back to the point immediately after the subroutine 

call by retrieving the saved return address. 
 

Consider a simple subroutine called ABC that calculates the value of 2x
2
 (where x is a 16-bit 

value passed in r0). This subroutine is called by the instruction BL ABC (branch to 

subroutine) that jumps and saves a copy of the return address in the link register, r14. A return back to the calling point is made 

by copying the return address from the link register to the program counter, r15. Note that typical CISC processors like the 

Intel IA32 family automatically use the stack to store the return address and employ an RTS (return from subroutine) 

instruction to return to the calling point. 

 

Stack pointerTop of stack

r13

Memory

The stack pointer
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Stack pointer

r13
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Stack pointer

r13

Memory

(a) Initial stack (b) Stack after 
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A typical ARM processor call and return routine is: 

 

      BL   XYZ  ;call XYZ 

      … ;return here 

 

 

 XYZ ;The subroutine 

      … ; 

      MOV  pc,lr  ;copy saved address to PC to return 

 

 

Let’s create a simple example. Consider a subroutine that calculates the value of x
2
 + 1, where x is in register r0 and the result 

is returned in r0.  

 

      MOV  r0,#4 ;set up a dummy parameter 

      BL   SQR1  ;call SQR1 

      MOV  r3,r2  ;do something with the result 

Loop  B    Loop ;stay here 

 

SQR1  MUL  r1,r0,r0 ;Calculate x
2
 (note – can’t use source register as destination) 

      ADD  r0,r1,#1 ;Add 1 to get x
2
 + 1 

      MOV  pc,lr  ;Return 

 

 

The following snapshots show the state of this program at the point the subroutine has been called. Note that r14 (the link 

register) contains the return address 0x00000008 (this is the third instruction MOV r3,r2)  

 

 
 

This subroutine mechanism has two flaws. First, because the multiply instruction can’t use the same register for 

source and destination, we have to use r1 to receive the result. This means that r1 is used by the subroutine and any 

data in it will be overwritten. Second, this subroutine can’t call another subroutine or be reused because the return 

address is in r13, the link register, and another subroutine call would overwrite it. 
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One way of solving these problems is to save the link register at the beginning of a subroutine and then restore it at 

the end. Where should it be saved? The stack is the best place to save registers because the stack grows upward, and 

all data is placed on top and not removed or overwritten as new data is added. We can also save other registers on 

the stack. We can now rewrite the previous subroutine as: 

 
SQR1  STR  lr ,[sp,#-4]! ;Save link register on the stack 

      STR  r1 ,[sp,#-4]! ;Save register r1 on the stack 

      MUL  r1,r0,r0 ;Calculate x
2
 (remember that we can’t use source register as destination with MUL) 

      ADD  r0,r1,#1 ;Add 1 to get x
2
 + 1 

      LDR  r1 ,[sp] ,#4 ;Restore register r1 from the stack 

      LDR  lr ,[sp] ,#4 ;Restore link register from  the stack 

      MOV  pc,lr  ;Return 

 

The detailed code is as follows. Note the markers. 

 
     AREA SubroutineTest, CODE, READWRITE  ;make readwrite because we have the stack in this area 

     ADR  sp,Base ;point to the base of the stack 

     MOV  r1,#0xAB ;dummy value for r1 

     MOV  lr,#0x11 ;dummy value for link register, r14  

     MOV  r0,#4       ;set up a dummy parameter in r0 

     BL   SQR1        ;call SQR1 

     MOV  r3,r0       ;do something with the result which is in r0 

Loop B    Loop ;stay here 
 

SQR1 STR  lr,[sp,#-4]! ;Save link register on the stack 

     STR  r1,[sp,#-4]! ;Save register r1 on the stack 

     MUL  r1,r0,r0 ;Calculate x
2
 (note - can't use source register as destination) 

     ADD  r0,r0,#1 ;Add 1 to get x
2
 + 1 

     LDR  r1,[sp],#4 ;Restore register r1 on the stack 

     LDR  lr,[sp],#4 ;Restore link register on the stack 

     MOV  pc,lr ;Return 

 

     DCD  0x89ABCDEF,0,0,0,0x12345678 ;stack area 

Base DCD  0xAAAAAAAA ;stack base and dummy data 
     END 
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The next snapshot shows the situation at the point the subroutine SQR1 is called. 

 

 

 

 



Version 1 [WORKBOOK FOR COMPUTER ORGANIZATION AND ARCHITECTURE: THEME AND VARIATIONS] 

 

V 5.0 “© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part 53 | P a g e   

 



Version 1 [WORKBOOK FOR COMPUTER ORGANIZATION AND ARCHITECTURE: THEME AND VARIATIONS] 

 

V 5.0 “© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part 54 | P a g e   

 
 

The final screen shows the situation immediately before the return that is made by copying the link register to the PC. 
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Version 1 [WORKBOOK FOR COMPUTER ORGANIZATION AND ARCHITECTURE: THEME AND VARIATIONS] 

 

V 5.0 “© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part 56 | P a g e   

MULTIPLE SUBROUTINE CALLS 
 

We next extend the example by demonstrating a multiple call. Here, we’ve used a typical CISC instruction BSR ABC to 

implement the call. A branch to subroutine instruction automatically saves the return address on the stack (unlike the ARM that 

saves it in the link register). Because subroutine return addresses are stacked, you can call subroutines from within a subroutine 

(nesting). In the following figure, the main body of the code calls subroutine ABC. At the end of the subroutine, a return 

instruction makes a return to the point immediately following the call. In this example, the subroutine is called from two 

different places and yet a return is made to the correct point in each case. 

 

In order to achieve this objective with the ARM processor, we can use the ARM’s block move instructions that copy multiple 

registers to and from the stack.  

 

 
 

 

 

USING BLOCK MOVE INSTRUCTIONS 
 

In practice, programmers don’t use the simple code we’ve written above to save registers on the stack and to retrieve them. 

Traditionally, RISC processors provide simple, regular instructions that take one cycle (in principle) to execute. The ARM 

processor family is different because it has a set of instructions that perform multiple actions. These instructions are called 

block move operations and are able to copy the contents of several registers to or from memory. 

 

When you first encounter ARM’s block move instruction you are likely to be overwhelmed by their apparent complexity. In 

fact, they are not complex; it’s just that there are several options to choose from. So, to keep things simple, we will just discuss 

one option here. These two block move instructions we are going to use are: 

 

STMFD ;Push a group of registers on the stack 

LDMFD ;Pull a group of registers off the stack 

 

Couldn’t be simpler. The STMFD mnemonic stands for store multiple registers full descending. The expression “full 

descending” tells you two things. The term full means that the stack points at the top item on the stack. The term descending 

tells you that the stack grows towards lower addresses as items are pushed. This is exactly the same type of stack we’ve already 

described. When we wish to store data on the system stack, we have to use r13 which we can write as sp. We also have to write 

sp! or r13! to tell the assembler that we want to use automatic indexing. Finally, we have to create a register list by enclosing 

the registers to be moved between braces; that is, {r0,r1,r7} specifies registers r0, r1 and r7, We can use a dash to denote a 

sequence of registers; for example {r0-r5,r8,r11} indicates the register list r0, r1, r2, r3, r4, r5, r8, and r11. 

 

To push r0 and r1 on the stack, we write STMFD sp!,{r0,r1}. Similarly, to pull r1 and r2 off the stack, we write 

LDMFD sp!,{r0,r1} 

 

Suppose we use a different register list for the store and retrieve multiple register operations. What would happen if we execute 

STMFD sp!,{r0,r1} then LDMFD sp!,{r5,r7}? Well, we push r0 and r1 and then we pull their values off the stack 

and transfer them to registers r5 and r7, In other words, we’ve copied one group of registers into another group. 
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Let’s demonstrate these block move instructions in action.  

 

     AREA  BlockMove,CODE,READWRITE  ;make readwrite because we have the stack in this area 

     ADR   sp,Base ;point to the base of the stack 

     MOV   r0,#0xAB ;dummy value for r0 

     MOV   r1,#0xCD ;dummy value for r1 

     MOV   lr,#0xDE ;dummy value for link register, r14  

     BL    SQR1        ;call Test 

Loop B     Loop ;stay here 
 

Test STMFD sp!,{r0,r1,lr} ;save r0, r1, lr on the stack 

     MOV   r0,#0x11 ;let’s do something pointless 

     MOV   r1,#0x22  ;let’s do something pointless 

     MOV   r14,#0x22  ;let’s change the link register 

     ADD   r3,r0,r1  ;ladd r0 and  r1 and put the result in r3 

     LDMFD sp!,{r0,r1,pc} ;pull r0, r1, lr off the stack 
 

     DCD  0x89ABCDEF,0,0,0,0x12345678 ;stack area 

Base DCD  0xAAAAAAAA ;stack base and dummy data 
     END 

 

This code is built on the previous example and uses the same basic format and stack structure. We use markers in memory like 

0xAAAAAAAA and register values like 0xAB so that we can see the data in memory when we come to debug the code. We’re 

going to run this example and examine the state of the registers and memory at three points. 

 

The next snapshot shows the situation immediately after the program has been loaded. 

 

 
 

 

 

 

 

First data stored in 

memory after the code. 

Marker for the 

base of the stack. 
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The next snapshot shows the state immediately before the branch with link instruction. 

 

 
 

 

The next snapshot shows the state after we have called the subroutine and executed the first instruction. 

 

 
 

 

 

r0 and r1 have been 

set up. 

Here’s the initial 

dummy value of the 
link register. 

Note that the stack 

pointer is pointing at 

location 0x44, the base 

of the stack. 

Here’s the data written on the stack. 
Starting at the highest address, the 

link register (0x14), then r1 (0xCD), 

and finally r0 (0xAB).  

The stack pointer is now 0x38 
because three 32-bit words 

have been pushed on the stack 

and 0x38 = 0x44 - 3 × 4. 
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The next snapshot shows the state immediately before we execute the last subroutine instruction and return. 

 

 
 

 

 

The final final shows the state after we have executed the last instruction in the subroutine and have returned to the calling 

program. 

 

 
 

Here’s the initial 

dummy value of the 

link register. 

Register r3 now 

contains r0 + r1. 
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PASSING A PARAMETER TO A SUBROUTINE 
  

When you call a subroutine, you often have to pass parameters to the subroutine. In a high-level language you might call 

subroutine XYZ with parameters P and Q by XYZ(P,Q). In a low-level language, you can push the parameters on the stack 

immediately before calling the subroutine. Of course, you don’t have to pass parameters via the stack; for example, if there are 

a very few, you can transfer them via registers. 

 

Consider the following example where we have a very simple subroutine that adds two numbers P and Q and returns their 

result S = P + Q. Using pseudocode, we can write the following sequence of actions that describes the passing of the two 

parameters and the receiving of the result. 

 

Push P 

Push Q 

Call ADD 

Pull S 

Adjust the stack 

 

We push the two parameters on the stack and call the subroutine. The subroutine reads the two parameters off the top of the 

stack, and replaces one by the result. Note that we have to adjust the stack to take account of the fact that we have pushed two 

parameters but pulled only one. The stack must always be balanced with equal numbers of push and pull operations. 

 

The next diagram shows the effect of pushing a parameter on the stack before calling a subroutine. State (a) demonstrates the 

situation immediately before the subroutine is called. State (b) shows the situation in which both parameters have been pushed. 

State (c) shows the situation in which a subroutine has been called and the return address is saved on the stack (typical of CISC 

processors). 

 
 

The next figure demonstrates the behavior of the stack during the subroutine execution. 
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As you can see, the stack grows as parameters are pushed and the subroutine called. Then the stack declines as a return made 

and the two items on the stack removed. Now, let’s look at this process in detail using an ARM processor. 

 

 

USING THE STACK - AN ARM EXAMPLE 
 

The following code sets up an environment and carries out the actions we have described. 

 

     AREA  ParamTest,CODE,READWRITE ;make readwrite because of the stack  
     ADR   sp,Base ;point to the base of the stack 

     MOV   r0,#0xAB ;dummy value for P in r0  

     MOV   r1,#0xCD ;dummy value for Q in r1 

     STR   r0,[sp,#-4]! ;push P 

     STR   r1,[sp,#-4]! ;push Q 

     BL    ADDR ;call the adder 
     LDR   r2,[sp],#4 ;pull S off the stack 

     ADD   sp,sp,#4 ;adjust the stack pointer 

Loop B     Loop ;park here 
 

ADDR STR   lr,[sp,#-4]!  ;push the link register on the stack 

     LDR   r5,[sp,#8] ;get P (buried under the return address and Q) 

     LDR   r6,[sp,#4] ;get q (buried under the return address) 

     ADD   r5,r5,r6 ;do the addition 

     STR   r5,[sp,#4] ;save result on the stack under return address (overwrite Q) 

     LDR   pc,[sp],#4 ;pull return address off the stack 
 

     DCD  0,0,0,0,0 ;stack area 

Base DCD  0xAAAAAAAA ;stack base and dummy data as marker 
     END 

 

The following snapshot demonstrates the situation when the program has been loaded. 
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The first five lines set up the stack pointer, put some data (the parameters P and Q) into registers r0 and r1 and then push the 

parameters on the stack using pre-indexing with auto decrementing; that is, the stack pointer is moved up by one word (4 bytes) 

and then the data stored at that location. 

 

     ADR   sp,Base ;point to the base of the stack 

     MOV   r0,#0xAB ;dummy value for P in r0  

     MOV   r1,#0xCD ;dummy value for Q in r1 

     STR   r0,[sp,#-4]! ;push P 

     STR   r1,[sp,#-4]! ;push Q 
 

 

 

 

 

 

 

 

 

 

 

 

 

This is the marker for the base of the stack which will grow up 

towards lower addresses. That is, the first free address on the 
stack is 0x00004C. 

 
This is a line of data in memory starting at address 0x00000048. 
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The following snapshot demonstrates the situation before calling the subroutine (i.e., we are about to execute the branch with 

link instruction). 
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The snapshot of the system below shows situation in the subroutine after reading the two parameters and pushing the return 

address. We have called a subroutine and loaded r14, the link register, with the return address, and then executed the following 

code: 

 

ADDR STR   lr,[sp,#-4]!  ;push the link register on the stack 

     LDR   r5,[sp,#8] ;get P (buried under the return address and Q) 

     LDR   r6,[sp,#4] ;get Q (buried under the return address) 
 

This code first pushes the link register on the stack and then reads the two parameters off the stack. You will see that registers 

r5 and r6 contain the same parameters are r0 and r1, and that the contents of the link register are now the topmost element on 

the stack. 
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stack 
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The next snapshot shows the situation immediately before the return from subroutine. We have just executed 

 

     ADD   r5,r5,r6 ;do the addition 

     STR   r5,[sp,#4] ;save result on the stack under return address 

 

These instructions perform the addition of the parameters in registers r5 and r6 and then store the result at [sp] + 4 which is one 

word below the top of the stack; that is, the location of parameter Q. The following memory map shows that Q (in memory) 

has changed from 0x000000CD to 0x00000178. 
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been overwritten by 
the result. 
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The final snapshot shows the situation at the end of the program when we have executed the following code. 

 

     LDR   pc,[sp],#4 ;pull return address off the stack (last line of subroutine) 

 

     LDR   r2,[sp],#4 ;pull S off the stack (first operation after the subroutine) 

     ADD   sp,sp,#4 ;adjust the stack pointer 

Loop B     Loop ;park here 

 

Note that this code is rewritten in execution order rather than program order; that is, the first line is the last operation in the 

subroutine and the second line is the first instruction at the return point. 

 

A return is made by pulling the link register off the stack and putting it in the program counter. In the calling routine, the top of 

the stack is pulled (i.e., the result) and put in r2. Finally, the stack pointer is incremented by 4 to restore it to its original value. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have pulled the 

result off the stack 
and put it in r2. 
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IMPROVING THE CODE 

 

Few programmers would write the code we used in the previous example. A more reasonable approach is: 

 

     AREA  ParamTest1,CODE,READWRITE ;make readwrite because we locate the stack in this area  
     ADR   sp,Base              ;point to the base of the stack 

     MOV   r0,#0xAB              ;dummy value for P in r0  

     MOV   r1,#0xCD              ;dummy value for Q in r1 

     STMFD sp!,{r0,r1}               ;push P and Q 

     BL    ADDR                      ;call the addition subroutine 
     LDMFD sp!,{r0,r2}         ;pull S and P off the stack 

Loop B     Loop                      ;park here 
   

ADDR STMFD sp!,{r5,r6,lr}            ;push the link register and working registers  

     LDR   r5,[sp,#16]               ;get P (buried under the return address and Q) 

     LDR   r6,[sp,#12]               ;get Q (buried under the return address)    

     ADD   r5,r5,r6                  ;do the addition                          

     STR   r5,[sp,#16]               ;save result on the stack under the return address 

     LDMFD sp!,{r5,r6,pc}            ;pull return address and working registers  
 

     DCD  0xFFFFFFFF,0,0,0,0,0       ;stack area 

Base DCD  0xAAAAAAAA              ;stack base and dummy data 
     END 

 

 

 

 

We need to look at some of the features of this program in greater detail. 

 

 

 

 

 

 

     STMFD sp!,{r0,r1}               ;push P and Q 

     BL    ADDR                      ;call the adder 

     LDMFD sp!,{r0,r2}         ;pull S and P off the stack 

Loop B     Loop                      ;park here 

   

ADDR STMFD sp!,{r5,r6,lr}            ;push the link register and working  

     LDR   r5,[sp,#16]               ;get P (buried under the return address and Q) 

     LDR   r6,[sp,#12]               ;get q (buried under the return address)    

     ADD   r5,r5,r6                  ;do the addition                          

     STR   r5,[sp,#16]               ;save result on the stack under return address 

     LDMFD sp!,{r5,r6,pc}            ;pull return address and working registers  

 

 

 

 

 

 

 

 

Note the locations of the two 
parameters. We have pushed a return 

address, r5 and r6 (3 x 4 bytes = 12), 

so that the two items are 12 and 16 

bytes below the top of the stack. 

Here we use the store multiple registers 

instruction to push two parameters on the 

stack.  

We now store the result on the stack, 

overwriting one of the original 

parameters. 

  This is the return. We use load multiple 

registers to restore the original r5 and r6 and 

we pull the return address which we directly 

load into the program counter, r15. 

We use the load multiple registers 

instruction to pull the result off the stack 

and also balance the stack; that is, push 2 

pull 2. 
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Now we can execute this code in debug mode and trace its execution. The next snapshot shows the situation after the code has 

been loaded and simulation is about to begin. 

 

 
 

The next snapshot shows the situation after the code has been executed up to the beginning of the subroutine. 

 

 
 

 

 

 

 

 

 

 

Here are parameters P and Q on the stack. 
Note that there are above 0xAAAAAAAA 

that we have used as a marker to show the 

base of the stack. 
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The next snapshot shows the situation immediately before the subroutine return. 

 

 
 

 

 

 

 

The final snapshot shows the situation at the end of the program after the data has been pulled off the stack. 

 

 
 

 

 

  

Here are registers r5, r6, and r14 that we 

have pushed on the stack. 
This is the result, 0x00000178, that has been 

written to the stack by STR r5,[sp,#16] 

These are the two values pull off the stack 

into r0 and r2. 

The stack has been balanced and the stack 
pointer is now back where it started at 

0x0000004C. 
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PASSING A PARAMETER BY ITS ADDRESS 
 

Some languages let you pass parameters by reference rather than by value; that is, you send the address of the parameter to a 

subroutine. The 68K processor has a push effective address instruction, PEA that pushes a 32-bit address on the stack. ARM 

programmers have to use conventional memory store instructions. 

 

When you retrieve a parameter passed by reference (address), you have to pull the address off the stack (or read it from the 

stack) and then access the parameter by means of address register indirect addressing. Consider the following fragment of code 

that pushes an address (initially in register r0), call a subroutine, and then retrieves the actual parameter (i.e., its value) in the 

subroutine.. 

 

      STR   r0,[sp,#-4]!        ;Push the address of parameter P on the stack (address is in r0) 

      BL    ABC                 ;Call subroutine ABC and save the link register 
      .        

ABC   STR   lr,[sp,#-4]!        ;Save the return address on the stack  
      LDR   r1,[sp,#4]          ;Read the address of parameter P under the return address 

      LDR   r2,[r1]             ;Get the value of parameter P 
      .        

      LDMFD sp!,{pc}            ;Return by loading the PC with the return address from the stack  
 
 

Retrieving a parameter by reference is a two-step operation. The first part is to get the parameter’s address, and the second part 

is to get the value pointed at by that address.  In this case we first load the address of P using LDR r1,[sp,#4]to get the 

address of P in r1 and then use LDR r2,[r1]to get the value of P in r2. We have put these two lines in blue to highlight their 

importance. 

 

Let’s use this code in an actual program. Below, we use subroutine ABC to perform P + 1. The effect of this program should be 

to add 1 to P’s initial value 0x12345678 to give 0x12345679 in the memory location defined as P. Since there are 11 

instructions before this location, the address of P is 0x0000002C (i.e., 11 x 4 expressed in hexadecimal). 

 

      AREA  PassByRef,CODE,READWRITE ; Make readwrite because we locate the stack in this area  
      ADR   sp,Base ; Point to the base of the stack 

      ADR   r0,P ; Load r0 with the address of parameter P 

      STR   r0,[sp,#-4]! ; Push the address of parameter P on the stack (address is in r0) 

      BL    ABC ; Call subroutine ABC and save the link register 

Moi   B     Moi ; Infinite loop to end the program 

             

ABC   STR   lr,[sp,#-4]! ; Save the return address on the stack  

      LDR   r1,[sp,#4] ; Read the address of parameter P under the return address 

      LDR   r2,[r1] ; Get the value of parameter P 

      ADD   r2,r2,#1 ; Add 1 to P 

      STR   r2,[r1]  ; Save the parameter in the calling environment        

      LDMFD sp!,{pc} ; Return by loading the PC with the return address from the stack  
 

P     DCD   0x12345678 ; Location of parameter P and its value 

      DCD   0xFFFFFFFF,0,0,0,0,0 ; Stack area 

Base  DCD   0xAAAAAAAA ; Stack base and dummy data 
      END 

 

The first instruction, ADR sp,Base, loads the stack pointer with the initial base of the stack, and the second instruction, ADR 

r0,P, loads r0 with the address of P. It is important to stress here that we are loading the address of P (0x0000002C) and not 

it’s value (0x12345678). 

 

The following snapshot demonstrates the situation immediately after the program has been loaded. We’ve highlighted the data 

area and the stack. 
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The next snapshot shows the state of the system up to the start of the subroutine. You can see that r0 contains the address of 

parameter P (i.e., 0x0000002C). The stack pointer has been moved up from its initial value of 0x00000040 to 0x00000044. 

 

 
 

 

 

 

 

 

 

Stack base marker End of code and data 

marker 
The space we’ve 

left for the stack 0x000004C 

 

This is the value of P 

(0x12345678) at memory 

location 0x0000002C. 

The address of P on 
the stack 

 

The stack pointer has changed 

from 0x00000048 to 0x00000044 
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The next snapshot traced execution to the point at which the address of P has been read off the stack into r1, but the value of P 

has not yet been loaded into r2. 

 

 
 

 

 

 

 

The final snapshot shows the sitiation at the end of the program. The value of P in memory has been updated. 

 

 
 

 

 

 

 

 

 

The link register 

saved on the stack 
 

Register r1 now holds the address 

of P 
 

The value of P in memory. 

It’s been updated. 
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The Stack Frame and Low-Level Support for High-Level Languages 
 
We now look at how a low-level language provides support for local variables in subroutines, and discuss how parameters are 

passed to and from procedures in greater detail. 

 

In addition to the parameters passed between a subroutine and its calling program, a subroutine sometimes needs local 

workspace for its temporary variables.  Each time the subroutine is called, a new workspace must be assigned to it.  

 

Suppose task A is using a subroutine and workspace has been allocated for use by the subroutine's variables. Assume a task 

switch takes place while task A is executing the subroutine and task B uses the same subroutine. Clearly, task B must be 

allocated new workspace for its own variables, if it is not to corrupt task A's variables. The stack provides a convenient 

mechanism for implementing the dynamic allocation of workspace. This storage allocation is dynamic because it is allocated to 

variables when they are created and then de-allocated when the variables are no longer required. 

 

Two items closely associated with dynamic storage techniques are the stack frame (SF) and the frame pointer (FP). The stack 

frame is a region of temporary storage at the top of the current stack. The frame pointer, which is in an address register, points 

to the bottom of the stack frame. Figure (a) illustrates the state of the stack after a subroutine call and figure (b) illustrates the 

stack frame that has been created on top of the subroutine’s return address. 

 

A stack frame can exist in several forms. It is, of course, programmer, dependent. Figure (b) shows a stack frame with a stack 

that grows towards low addresses. Note that, in this example, the frame pointer points to the empty base of the frame above the 

return address on the stack. 

 

 

 
Let’s consider the creation of a simple stack frame as figure (b) above demonstrates. We look at a more realistic example later.  

First we need to move the stack pointer up by one word to point at the empty base of the frame. We can do this by 

SUB sp,sp,#4.  The next step is to make the frame pointer, fp, point at the base of the stack, which we can do with 

MOV fp,sp; that is, we copy the stack pointer into the frame pointer. A stack-frame is then created by moving the stack 

pointer up by d locations at the start of a subroutine. For example, reserving 16 bytes of memory is achieved by executing 

sub sp,sp,#-16.  Once the stack frame has been created, local variables can be accessed via the stack pointer and a 

suitable offset. Consider the following code: 

 

 

SP

FP

a.The state of the stack immediately after a subroutine call b. The state of the stack after creating a stack frame

Frame pointer

Return address Return address

SP

Stack pointer

Stack frame
d

Memory Memory
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AnySub  SUB   sp,sp,#4 ;Move the stack pointer up one word past the return address on the stack 

        MOV   fp,sp ;Set up the frame pointer to point to the top of the stack 

        SUB   sp,sp,#16 ;Move the stack pointer to the top of the stack frame (we’ll allocate 16 bytes) 
        .  

        .    ;The subroutine proper (i.e., the code goes here) 

        .  

        ADD   sp,sp,#20 ;Collapse the stack frame (i.e., 16 + 4) 

        MOV   pc,lr ;and return from subroutine  

 

Before a return from subroutine is made, the stack frame must be collapsed by an ADD sp,sp,#20 instruction. This simply 

moves the stack pointer down.  In practice, this code would not be used, because it doesn’t preserve the old frame pointer; that 

is, the frame pointer is destroyed by this code. 

 
A better way of implementing a stack frame is to save the old frame pointer on the stack before creating the frame itself; that is,  

 

AnySub  SUB   sp,sp,#4 ; Move the stack pointer up to create space for the old frame pointer 

        STR   fp,[sp] ; Save the old (existing) frame pointer on the stack    

        MOV   fp,sp ; Set up the frame pointer to point to the base of the stack 

        SUB   sp,sp,#16 ; move the stack pointer to the top of the stack frame  
        .  

        .    ; The subroutine proper  
        .  

        MOV   sp,fp ; Restore the stack pointer and collapse the frame 

        LDR   fp,[sp],#4 ; Restore the old (existing) frame pointer on the stack  
 

        ADD   sp,sp,#4 ; Move the stack pointer down to point to the return address  

        MOV   pc,lr ; and return from subroutine  

 

In practice the code would be more compact with the ARM’s facilities (e.g., auto incrementing and decrementing addressing 

modes) being better used. Consider the following example. In this case consider the following example where a subroutine is 

called using a BL instruction (branch with link). In this case the return address is not saved on the stack. 

 

        BL   ABCD   ;Call subroutine ABCD 

 ;  

 ;  

ABCD    STR   fp,[sp,#-4]! ;Save the old frame pointer on the stack  (pre-indexing)         

        MOV   fp,sp ;Set up the frame pointer to point to the base of the stack 

        SUB   sp,sp,#16 ;Move the stack pointer to the top of the stack frame  
        .  

        .    ;The subroutine proper  
        .  

        MOV   sp,fp ;Restore the stack pointer and collapse the frame 

        LDR   fp,[sp],#4 ;Restore the old frame pointer on the stack  and post-increment the stack 

        MOV   pc,lr ;Return        
 

 

The following snapshot of the simulator demonstrates this fragment of code in the simulator using some dummy data to keep 

track of register values. 
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Up to now, we’ve demonstrated simple examples of stack frames. The next step is to provide a more realistic (albeit simple) 

example. This example will demonstrate various aspects of machine-level programming; for example, the use of registers 

(global and local), the use of temporary storage (stack frames), and parameter passing. 

 

 

PASSING PARAMETERS TO AND FROM A STACK FRAME 
 

We are going to use a subroutine that is called by pushing the return address on the stack. We pass two parameters to the stack; 

one by value and one by reference. Let’s assume that the stack performs B = A
2
 + B, where A is passed by reference and B by 

value. 

 

In this example, we use two registers in the subroutine, r1 and r2, that are saved on the stack at the start of the subroutine by a 

store multiple registers and then retrieved at the end of the subroutine by a load multiple registers. One register, r0, is a global 

scratchpad and does not have to be preserved by the subroutine. Finally, we create a stack frame for one variable in the 

subroutine. 

 

The code for this example is given below. We have created initial dummy values for registers so you can see them when they 

are saved in memory and used 0xFFFFFFFF as the stack base in order to make the stack visible in the memory map. 

 
      AREA   FrameParams, CODE, READWRITE 

      ADR    sp,Stack        ;set up the stack pointer 

      LDR    fp,=0xAAAAAAAA  ;dummy value for fp 

      LDR    r1,=0x11111111  ;dummy value for r1 

      LDR    r2,=0x22222222  ;dummy value for r2 

      ADR    r3,A            ;r3 is a pointer to A 

      LDR    r4,[r3]         ;get parameter A 

      STR    r4,[sp,#-4]!    ;push the value of A on the stack 

      ADR    r5,B            ;get the address of B 

      STR    r5,[sp,#-4]!    ;push the address of B on the stack 

      BL     SumSq           ;call the subroutine 

      LSR    r0,[r5]         ;if it worked, r0 should contain 7 

Again B      Again           ;parking loop 
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SumSq STMDB  sp!,{r1,r2,lr}  ;save registers on the stack 

      STR    fp,[sp,#-4]!  ;Save the old frame pointer on the stack  (pre-indexing)         

      MOV    fp,sp  ;Set up the frame pointer to point to the base of the stack 

      SUB    sp,sp,#4  ;Move the stack pointer to the top of the one-word stack frame  

      LDR    r1,[fp,#20]  ;Get the value of A off the stack in r1 

      MUL    r2,r1,r1  ;Square A 

      STR    r2,[fp,#-4]  ;Store the value of A squared in the stack frame    

      LDR    r2,[fp,#16]  ;Get the address of B off the stack in r2 (reuse r2) 

      LDR    r1,[r2]  ;Get the value of B in r1 (reuse r1) 

      LDR    r0,[fp,#-4]  ;Get the value of A squared in r0 

      ADD    r1,r1,r0  ;Add B to A squared 

      STR    r1,[r2]  ;Return the result to the calling environment 

      MOV    sp,fp  ;Restore the stack pointer and collapse the frame 

      LDR    fp,[sp],#4  ;Restore the old frame pointer on the stack  and post-increment the stack 

      LDMIA  sp!,{r1,r2,pc}  ;Restore registers and return 

  

A     DCD    2  ;dummy value for A 

B     DCD    3 ;dummy value for B 

      SPACE  16 ;reserve 16 bytes for the stack 

Stack DCD    0xFFFFFFFF ;dummy data for the base of the stack 
      END  

 

 

The next simulator snapshot shows the simulator window when the program is first loaded.  
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The next memory map demonstrates the situation immediately before the subroutine call. You can see that registers r1 and r2 

have been loaded with the markers 0x11111111 and 0x22222222. Register r4 contains the parameter A (i.e., 2) and register r5 

contains the address of parameter B (i.e., 0x00000070). 

 

The stack pointer, sp or r13, contains the value 0x00000008C and is pointing at the last value pushed on the stack; that is, the 

address of B. Finally, the frame pointer, contains the marker 0xAAAAAAAA. 

 

Here’s literals that we load into 

registers initially. Remember that the 

ARM processor can create 32-bit 

literals by storing them in memory as a 

pool of constants and then using 
pointer-based addressing to retrieve 

them 

Here’s the base of the stack 
which will grow upwards 

towards lower addresses. 
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The next memory map shows the situation in the subroutine after saving r1, r2, and the link register on the stack. 

 

The stack pointer 
contains 0x0000008C 

and is pointing here 

at the address of B on 

the stack. 

This is parameter B with 
the value 3 at memory 

location 0x00000070. 

This is parameter A 
with the value 3 at 

memory location 

0x0000006C. 

Here is the value of 

parameter A (i.e., 2) 
on the stack at 

address 0x00000090.  
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The following figure demonstrates the structure of the stack in this example. Note that addresses on the left are given with 

respect to the frame pointer. This helps to relate the stack to the offsets in the above code. 

 

 

 

Direction of
growth as items
are added

Stack pointer Top of stack

Memory
Low memory

The stack base

Parameters pushed
on the stack

r1 = 0x111111111

r2 = 0x22222222

lr (r13) = 0x00000028

Saved on entry to
the subroutine

0xAAAAAAAA

The stack frame

Frame pointer pointer

fp + 4

fp + 12

fp + 8

fp - 4

fp + 16

fp + 20 0x2 Value of A

0x70 Address of B

0xFFFFFFFF

fp

The stack pointer contains 0x00000080 and is pointing at 

the sequence r1, r2,  r13 (the link register containing the 

return address  0x00000028),  
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The following figure shows the memory map after squaring A and putting it in the stack frame. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is the old value of the 
frame pointer, r11, saved on the 

stack.  
 

The stack pointer is pointing at 

this location. 

Here we create the one-word stack frame. 
First, the old value of the frame pointer is 

pushed on the stack. This value is a marker, 

0xAAAAAAAA, which we should see on the 
stack. 

Then we copy the stack pointer to the frame 

pointer. The frame pointer’s value is now 

0x0000007C. 

Here we copy a parameter 

from the stack to the stack 
frame. Note that address 

offsets. The value of A is 20 

bytes (5 words) below the 
frame pointer and the stack 

frame’s single location is 4 

bytes above it. 

This is the value of A2 one 
word above the frame pointer 

at [fp] – 4. 

This is the value of 
parameter A at 5 words (20 

bytes) below the frame 
pointer. 
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The next memory map shows the situation  after storing the result in the calling environment and before cleaning up the stack 

frame. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here’s the rest of the 
computation. At the start of this 

code, the value of A2 is in the 

stack frame at [fp] – 4. 
 

We first retrieve the address of 

parameter B off the stack at 4 
words (16 bytes) below the 

frame pointer. The address is 

loaded into r2. The red lines 
show the contents of 2 and the 

location pointed at. This 

location contains 7, the final 
value of B, because the 

following codes changes the 

original value from 3 to 3  + 22. 

 

The next operation, 

LDR r0,[fp,#-4] loads the 

value of A2 that we’ve saved in 
the stack frame. We then add 

this to the value of B and save 

the sum in B in the calling 
environment using the pointer in 

r2. This is the end of the 

computation. 
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In the final snapshot of memory we show the memory map at the end of the program. A return has been made to the calling 

program and we have completed the program and are in a parking loop. All the registers have been reset to their original values 

except r13, the stack pointer, the program counter, and r0 which was a global scratchpad register. 

 

 

 
 

The point of this example was to demonstrate the stack frame and passing parameters both be reference and value. 

 

This is both a good example and a bad example. It is good in the sense that it is relatively simple. It is bad in the sense that no 

one would write this code because a stack frame is not necessary because there are enough registers for the local storage. 

 

However, this example does illustrate how much overhead is associated with accessing data in memory. 
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APPENDIX 
 

ARM Mnemonics 
 

This appendix provides brief details of the part of the ARM’s instruction set. We haven’t included instructions that operate on 

the coprocessor. 

 

ADC Add with carry  Rd  Rn + Op2 + Carry 

ADD Add  Rd  Rn + Op2   

AND AND  Rd  Rn AND Op2   
 

B Branch  R15  address   

BIC Bit Clear  Rd  Rn AND NOT Op2   

BL Branch with Link  R14  R15, R15  address   

BX Branch and Exchange  R15  Rn, T bit Rn[0] 
 

CMN Compare Negative  CPSR flags  Rn + Op2   

CMP Compare  CPSR flags  Rn - Op2 

EOR Exclusive OR  Rd  Rn  Op2 
 
LDM Load multiple registers  

LDR Load register from memory  Rd  [address]  
 

MLA Multiply Accumulate  Rd := (Rm  Rs) + Rn 

MOV Move register or constant  Rd  Op2  

MRS Move PSR status/flags to Register  Rn  PSR  

MSR Move register to PSR  status/flags PSR  Rm  

MUL Multiply  Rd  Rm  Rs  

MVN Move negative  register Rd  0xFFFFFFFF EOR Op 
 

ORR OR  Rd  Rn OR Op2 

RSB Reverse Subtract  Rd  Op2 - Rn 

RSC Reverse Subtract with Carry  Rd  Op2 - Rn - 1 + Carry 

SBC Subtract with Carry  Rd  Rn - Op2 - 1 + Carry 
 
STM Store Multiple   

STR Store register to memory  [address]  Rd 

SUB Subtract  Rd  Rn - Op2 
SWI Software Interrupt  OS call  
 

SWP Swap register with memory  Rd  [Rn], [Rn]  Rm  

TEQ Test bitwise equality  CPSR flags  Rn EOR Op2  

TST Test bits  CPSR flags  Rn AND Op2  

 


