
1

CSE211

Computer Organization and

Design

Lecture : 3 Tutorial: 1 Practical: 0 Credit: 4

KIDS Labs

Indrason Khumancha
Typewritten Text

Indrason Khumancha
Typewritten Text
kid_s

Indrason Khumancha
Typewritten Text

Indrason Khumancha
Typewritten Text

Indrason Khumancha
Typewritten Text

2

 Introduction

 Logic Gates

 Flip Flops

 Decoder

 Encoder

 Multiplexers

 Demultiplexer

Unit 1 : Basics of Digital Electronics

KIDS Labs

3 KIDS Labs

4 KIDS Labs

5 KIDS Labs

6 KIDS Labs

7 KIDS Labs

8 KIDS Labs

9 KIDS Labs

10 KIDS Labs

11 KIDS Labs

12

Integrated Circuits

An IC is a small silicon semiconductors crystal called chip containing the
electronic components for digital gates.
- Various gates are interconnected inside chip to form required circuit.
- Chip is mounted in ceramic/plastic container connected to external pin

Small scale Integration (SSI) : less than 10 gates

Medium Scale Integration(MSI) : between 10 to 200 gates

(decoders, adders, registers)

Large Scale Integration(LSI) : between 200 and few thousands gates

(Processors, Memory Chips)

Very Large Scale Integration (VLSI) : Thousands of gate within

single package (Large Memory Arrays, Complex Microcomputer Chips)

KIDS Labs

13

CSE211

Computer Organization and

Design

Lecture : 3 Tutorial: 2 Practical: 0 Credit: 4

KIDS Labs

14

 Introduction

 Logic Gates

 Flip Flops

 Decoder

 Encoder

 Multiplexers

 Demultiplexer

 Registers

Unit 1 : Basics of Digital Electronics

KIDS Labs

15 KIDS Labs

16 KIDS Labs

17

 D1

D2

D3

D5

D6

D7

D4

A0

A1

A2

0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0

Octal to Binary Encoder

A0 = D1 + D3 + D5 + D7

A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7

KIDS Labs

18 KIDS Labs

19

A Demultiplexer, sometimes abbreviated DMUX is a circuit that has
one input and more than one output. It is used when a circuit wishes
to send a signal to one of many devices

KIDS Labs

20 KIDS Labs

21

 When the load input is 1 , the
data in the four inputs are
transferred into the register with
the next positive transition of a
clock pulse

 When the load input is 0, the
data inputs are inhibited and the D-
output of flip flop are connected to
their inputs.

KIDS Labs

22 KIDS Labs

23 KIDS Labs

24 KIDS Labs

25

CSE211

Computer Organization and Design

Register Transfer Language

Register Transfer

KIDS Labs

Register Transfer and Micro-operations

CSE 211

Overview

 Register Transfer Language

 Register Transfer

 Bus and Memory Transfers

 Logic Micro-operations

 Shift Micro-operations

 Arithmetic Logic Shift Unit

KIDS Labs 26

Register Transfer and Micro-operations 27

CSE 211

Register Transfer Language

 Combinational and sequential circuits can be used to create simple
digital systems.

 These are the low-level building blocks of a digital computer.

 Simple digital systems are frequently characterized in terms of

 the registers they contain, and

 the operations that are performed on data stored in them

 The operations executed on the data in registers are called micro-
operations e.g. shift, count, clear and load

KIDS Labs 27

Register Transfer and Micro-operations 28

CSE 211

Register Transfer Language

Set of registers and their functions

 Sequence of microoperations performed on binary
information stored in registers

Control signals that initiate the sequence of micro-
operations (to perform the functions)

Internal hardware organization of a digital computer :

KIDS Labs 28

Register Transfer and Micro-operations 29

CSE 211

Register Transfer Language

 Rather than specifying a digital system in words, a specific notation is
used, Register Transfer Language

 The symbolic notation used to describe the micro operation transfer
among register is called a register transfer language

 For any function of the computer, the register transfer language can be
used to describe the (sequence of) micro-operations

 Register transfer language

 A symbolic language

 A convenient tool for describing the internal organization of
digital computers in concise/precise manner.

 Can also be used to facilitate the design process of digital
systems.

KIDS Labs 29

Register Transfer and Micro-operations 30

CSE 211

Register Transfer

 Registers are designated by capital letters, sometimes followed by
numbers (e.g., A, R13, IR)

 Often the names indicate function:

 MAR - memory address register

 PC - program counter

 IR - instruction register

 Registers and their contents can be viewed and represented in various
ways

 A register can be viewed as a single entity:

MAR

KIDS Labs 30

Register Transfer and Micro-operations 31

CSE 211

Register Transfer

R1

 Register

Numbering of bits

Showing individual bits

Subfields

PC(H) PC(L)
15 8 7 0

 - a register
 - portion of a register
 - a bit of a register

• Common ways of drawing the block diagram of a register

7 6 5 4 3 2 1 0

R2
15 0

• Designation of a register

KIDS Labs 31

Register Transfer and Micro-operations 32

CSE 211

Register Transfer

• Copying the contents of one register to another is a register transfer

• A register transfer is indicated as

R2  R1

 In this case the contents of register R1 are copied (loaded) into
register R2

 A simultaneous transfer of all bits from the source R1 to the
destination register R2, during one clock pulse

 Note that this is a non-destructive; i.e. the contents of R1 are not
altered by copying (loading) them to R2

KIDS Labs 32

Register Transfer and Micro-operations 33

CSE 211

Register Transfer

• A register transfer such as

R3  R5

Implies that the digital system has

– the data lines from the source register (R5) to the destination
register (R3)

– Parallel load in the destination register (R3)

– Control lines to perform the action

KIDS Labs 33

Register Transfer and Micro-operations 34

CSE 211

Control Functions

 Often actions need to only occur if a certain condition is true

 This is similar to an “if” statement in a programming language

 In digital systems, this is often done via a control signal, called a control
function

 If the signal is 1, the action takes place

 This is represented as:

P: R2  R1

Which means “if P = 1, then load the contents of register R1 into
register R2”, i.e., if (P = 1) then (R2  R1)

KIDS Labs 34

Register Transfer and Micro-operations 35

CSE 211

Hardware Implementation of Controlled Transfers

Implementation of controlled transfer

P: R2 R1

Block diagram

Timing diagram

Clock

Transfer occurs here

R2

R1

Control
Circuit

Load P

n

Clock

Load

t t+1

 The same clock controls the circuits that generate the control function and the
destination register
 Registers are assumed to use positive-edge-triggered flip-flops

KIDS Labs 35

Register Transfer and Micro-operations 36

CSE 211

Basic Symbols in Register Transfer

Capital letters Denotes a register MAR, R2

& Numerals

Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow  Denotes transfer of information R2 R1

Colon : Denotes termination of control function P:

Comma , Separates two micro-operations A B, B A

Symbols Description Examples

KIDS Labs 36

37

CSE211

Computer Organization and Design

Bus and Memory Transfers

KIDS Labs

Register Transfer and Micro-operations 38

CSE 211

Overview

 Register Transfer Language

 Register Transfer

 Bus and Memory Transfers

 Logic Micro-operations

 Shift Micro-operations

 Arithmetic Logic Shift Unit

KIDS Labs 38

Register Transfer and Micro-operations 39

CSE 211

Connecting Registers - Bus Transfer

 In a digital system with many registers, it is impractical to have data and
control lines to directly allow each register to be loaded with the contents
of every possible other registers

 To completely connect n registers  n(n-1) lines

 O(n2) cost

 This is not a realistic approach to use in a large digital system

 Instead, take a different approach

 Have one centralized set of circuits for data transfer – the bus

 BUS STRUCTURE CONSISTS OF SET OF COMMON LINES, ONE FOR EACH BIT
OF A REGISTER THROUGH WHICH BINARY INFORMATION IS TRANSFERRED
ONE AT A TIME

 Have control circuits to select which register is the source, and which is the
destination

KIDS Labs 39

Register Transfer and Micro-operations 40

CSE 211

Connecting Registers - Bus Transfer

 One way of constructing common bus system is with multiplexers

 Multiplexer selects the source register whose binary information is
kept on the bus.

 Construction of bus system for 4 register (Next Fig)

 4 bit register X 4

 four 4X1 multiplexer

 Bus selection S0, S1
KIDS Labs 40

Register Transfer and Micro-operations 41

CSE 211

Connecting Registers - Bus Transfer

KIDS Labs 41

Register Transfer and Micro-operations 42

CSE 211

Connecting Registers - Bus Transfer

 For a bus system to multiplex k registers of n bits each

 No. of multiplexer = n

 Size of each multiplexer = k x 1

 Construction of bus system for 8 register with 16 bits

 16 bit register X 8

 Sixteen 8X1 multiplexer

 Bus selection S0, S1, S2

KIDS Labs 42

Register Transfer and Micro-operations 43

CSE 211

Connecting Registers - Bus Transfer

KIDS Labs 43

Register Transfer and Micro-operations 44

CSE 211

Connecting Registers - Bus Transfer

KIDS Labs 44

Register Transfer and Micro-operations 45

CSE 211

Memory Transfer

Memory is usually accessed in computer systems by putting the desired
address in a special register, the Memory Address Register (MAR, or AR)

AR
Memory

unit

Read

Write

Data in Data out

M

KIDS Labs 45

Register Transfer and Micro-operations 46

CSE 211

Memory Read

 To read a value from a location in memory and load it into a
register, the register transfer language notation looks like this:

 This causes the following to occur

1. The contents of the MAR get sent to the memory address
lines

2. A Read (= 1) gets sent to the memory unit

3. The contents of the specified address are put on the
memory’s output data lines

4. These get sent over the bus to be loaded into register R1

R1  M[MAR]

KIDS Labs 46

Register Transfer and Micro-operations 47

CSE 211

Memory Write

 To write a value from a register to a location in memory looks like
this in register transfer language:

 This causes the following to occur

1. The contents of the MAR get sent to the memory address
lines

2. A Write (= 1) gets sent to the memory unit

3. The values in register R1 get sent over the bus to the data
input lines of the memory

4. The values get loaded into the specified address in the
memory

M[MAR]  R1

KIDS Labs 47

Register Transfer and Micro-operations 48

CSE 211

A B 1.Transfer content of reg. B into reg. A

AR DR(AD) 2.Transfer content of AD portion of reg. DR into reg. AR

A  constant 3.Transfer a binary constant into reg. A

ABUS R1, R2 ← ABUS 4.Transfer content of R1 into bus A and, at the same time,

 transfer content of bus A into R2
AR 5.Address register
DR 6.Data register
M[R] 7.Memory word specified by reg. R

M 8.Equivalent to M[AR]

DR  M 9.Memory read operation: transfers content of

 memory word specified by AR into DR

M  DR 10.Memory write operation: transfers content of

 DR into memory word specified by AR

SUMMARY OF R. TRANSFER MICROOPERATIONS

KIDS Labs 48

49

CSE211

Computer Organization and Design

Arithmetic Microoperations

KIDS Labs

Register Transfer and Micro-operations 50

CSE 211

Overview

 Register Transfer Language

 Register Transfer

 Bus and Memory Transfers

 Arithmetic Micro-operations

 Logic Micro-operations

 Shift Micro-operations

 Arithmetic Logic Shift Unit

KIDS Labs 50

Register Transfer and Micro-operations 51

CSE 211

Computer system microoperations are of four types:

 Register transfer microoperations

 Arithmetic microoperations

 Logic microoperations

 Shift microoperations

MICROOPERATIONS

KIDS Labs 51

Register Transfer and Micro-operations 52

CSE 211

Arithmetic MICROOPERATIONS

Summary of Typical Arithmetic Micro-Operations

R3  R1 + R2 Contents of R1 plus R2 transferred to R3

R3  R1 - R2 Contents of R1 minus R2 transferred to R3

R2  R2’ Complement the contents of R2

R2  R2’+ 1 2's complement the contents of R2 (negate)

R3  R1 + R2’+ 1 subtraction

R1  R1 + 1 Increment

R1  R1 - 1 Decrement

• The basic arithmetic microoperations are
– Addition
– Subtraction
– Increment
– Decrement

• The additional arithmetic microoperations are
– Add with carry
– Subtract with borrow
– Transfer/Load
– etc. …

KIDS Labs 52

Register Transfer and Micro-operations 53

CSE 211

Binary Adder

KIDS Labs 53

Register Transfer and Micro-operations 54

CSE 211

Binary Adder-Subtractor

Binary Adder-Subtractor

FA

B0 A0

S0

C0C1FA

B1 A1

S1

C2FA

B2 A2

S2

C3FA

B3 A3

S3C4

M

 Mode input M controls the operation
 M=0 ---- adder
 M=1 ---- subtractor

KIDS Labs 54

Register Transfer and Micro-operations 55

CSE 211

Binary Incrementer

Binary Incrementer

HA

x y

C S

A0 1

S0

HA

x y

C S

A1

S1

HA

x y

C S

A2

S2

HA

x y

C S

A3

S3C4

KIDS Labs 55

Register Transfer and Micro-operations 56

CSE 211

S1
S0

0
1
2
3

4x1

MUX

X0

Y0

C0

C1

D0

FA

S1
S0

0
1
2
3

4x1
 MUX

X1

Y1

C1

C2

D1

FA

S1
S0

0
1
2
3

4x1

MUX

X2

Y2

C2

C3

D2

FA

S1
S0

0
1
2
3

4x1

MUX

X3

Y3

C3

C4

D3

FA

Cout

A0

B0

A1

B1

A2

B2

A3

B3

0 1

S0
S1

Arithmetic Circuits
Cin

KIDS Labs 56

57

CSE211

Computer Organization and Design

Logic Microoperations

Shift Microoperations

Arithmetic Logic Shift Unit

KIDS Labs

Register Transfer and Micro-operations 58

CSE 211

Overview

 Register Transfer Language

 Register Transfer

 Bus and Memory Transfers

 Arithmetic Micro-operations

 Logic Micro-operations

 Shift Micro-operations

 Arithmetic Logic Shift Unit

KIDS Labs 58

Register Transfer and Micro-operations 59

CSE 211

Logic Micro operations

KIDS Labs 59

Register Transfer and Micro-operations 60

CSE 211

Logic Microoperations

KIDS Labs 60

Register Transfer and Micro-operations 61

CSE 211

Hardware Implementation

0 0 F = A  B AND

0 1 F = AB OR

1 0 F = A  B XOR

1 1 F = A’ Complement

S1 S0 Output -operation

 Function table

B

A

S

S

F

1

0

i

i

i
0

1

2

3

4 X 1
 MUX

Select

KIDS Labs 61

Register Transfer and Micro-operations 62

CSE 211

Applications of Logic Microoperations

 Logic microoperations can be used to manipulate individual bits or a
portions of a word in a register

 Consider the data in a register A. In another register, B, is bit data that
will be used to modify the contents of A

 Selective-set A  A + B

 Selective-complement A  A  B

 Selective-clear A  A • B’

 Mask (Delete) A  A • B

 Clear A  A  B

 Insert A  (A • B) + C

 Compare A  A  B

KIDS Labs 62

Register Transfer and Micro-operations 63

CSE 211

Applications of Logic Microoperations

1. In a selective set operation, the bit pattern in B is used to set certain bits in A

 1 1 0 0 At

 1 0 1 0 B

 1 1 1 0 At+1 (A  A + B)

 If a bit in B is set to 1, that same position in A gets set to 1, otherwise that
bit in A keeps its previous value

2. In a selective complement operation, the bit pattern in B is used to
complement certain bits in A

 1 1 0 0 At

 1 0 1 0 B

 0 1 1 0 At+1 (A  A  B)

 If a bit in B is set to 1, that same position in A gets complemented from its
original value, otherwise it is unchanged

KIDS Labs 63

Register Transfer and Micro-operations 64

CSE 211

Applications of Logic Microoperations

3. In a selective clear operation, the bit pattern in B is used to clear certain bits
in A

 1 1 0 0 At

 1 0 1 0 B

 0 1 0 0 At+1 (A  A  B’)

 If a bit in B is set to 1, that same position in A gets set to 0, otherwise it is
unchanged

 4. In a mask operation, the bit pattern in B is used to clear certain bits in A
 1 1 0 0 At

 1 0 1 0 B

 1 0 0 0 At+1 (A  A  B)

 If a bit in B is set to 0, that same position in A gets set to 0, otherwise it is
unchanged

KIDS Labs 64

Register Transfer and Micro-operations 65

CSE 211

Applications of Logic Microoperations

5. In a clear operation, if the bits in the same position in A and B are the same,
they are cleared in A, otherwise they are set in A

 1 1 0 0 At

 1 0 1 0 B

 0 1 1 0 At+1 (A  A  B)

KIDS Labs 65

Register Transfer and Micro-operations 66

CSE 211

Applications of Logic Microoperations

6. An insert operation is used to introduce a specific bit pattern into A register,
leaving the other bit positions unchanged

 This is done as

– A mask operation to clear the desired bit positions, followed by

– An OR operation to introduce the new bits into the desired positions

– Example

• Suppose you wanted to introduce 1010 into the low order four bits of A:

• 1101 1000 1011 0001 A (Original)
 1101 1000 1011 1010 A (Desired)

• 1101 1000 1011 0001 A (Original)

 1111 1111 1111 0000 Mask

 1101 1000 1011 0000 A (Intermediate)

 0000 0000 0000 1010 Added bits

 1101 1000 1011 1010 A (Desired)

KIDS Labs 66

Register Transfer and Micro-operations 67

CSE 211

Shift Microoperations

• There are three types of shifts
– Logical shift

– Circular shift

– Arithmetic shift

• What differentiates them is the information that goes into the serial input

Serial
input

• A right shift operation

• A left shift operation

Serial
input

KIDS Labs 67

Register Transfer and Micro-operations 68

CSE 211

Logical Shift
• In a logical shift the serial input to the shift is a 0.

• A right logical shift operation:

• A left logical shift operation:

• In a Register Transfer Language, the following notation is used
– shl for a logical shift left

– shr for a logical shift right

– Examples:

• R2  shr R2

• R3  shl R3

0

0

KIDS Labs 68

Register Transfer and Micro-operations 69

CSE 211

Circular Shift

• In a circular shift the serial input is the bit that is shifted out of the other
end of the register.

• A right circular shift operation:

• A left circular shift operation:

• In a RTL, the following notation is used
– cil for a circular shift left
– cir for a circular shift right
– Examples:

• R2  cir R2
• R3  cil R3

KIDS Labs 69

Register Transfer and Micro-operations 70

CSE 211

Arithmetic Shift

• An arithmetic shift is meant for signed binary numbers (integer)

• An arithmetic left shift multiplies a signed number by two

• An arithmetic right shift divides a signed number by two

• Sign bit : 0 for positive and 1 for negative

• The main distinction of an arithmetic shift is that it must keep the sign of
the number the same as it performs the multiplication or division

• A right arithmetic shift operation:

• A left arithmetic shift operation: 0

sign
bit

sign
bit

KIDS Labs 70

Register Transfer and Micro-operations 71

CSE 211

Arithmetic Shift

• An left arithmetic shift operation must be checked for the overflow

0

V
Before the shift, if the leftmost two
bits differ, the shift will result in an
overflow

• In a RTL, the following notation is used
– ashl for an arithmetic shift left

– ashr for an arithmetic shift right

– Examples:

» R2  ashr R2

» R3  ashl R3

sign
bit

KIDS Labs 71

Register Transfer and Micro-operations 72

CSE 211

Hardware Implementation of Shift Microoperation

KIDS Labs 72

Register Transfer and Micro-operations 73

CSE 211

Arithmetic Logic and Shift Unit

Arithmetic

Circuit

Logic

Circuit

C

C
4 x 1
 MUX

Select

0

1

2
 3

F

S3

S2

S1

S0

B

A

i

A

D

A

E

shr

shl

i+1 i

i

i

i+1

i-1

i

i

S3 S2 S1 S0 Cin Operation
0 0 0 0 0 F = A
0 0 0 0 1 F = A + 1
0 0 0 1 0 F = A + B
0 0 0 1 1 F = A + B + 1
0 0 1 0 0 F = A + B’
0 0 1 0 1 F = A + B’+ 1
0 0 1 1 0 F = A - 1
0 0 1 1 1 F = A
0 1 0 0 X F = A  B
0 1 0 1 X F = A B
0 1 1 0 X F = A  B
0 1 1 1 X F = A’
1 0 X X X F = shr A
1 1 X X X F = shl A

 KIDS Labs 73

74

CSE211

Computer Organization and Design

Instruction Codes

Computer Registers

KIDS Labs

Basic Computer Organization and Design 75

CSE 211

Overview

 Instruction Codes

 Computer Registers

 Computer Instructions

 Timing and Control

 Instruction Cycle

 Memory Reference Instructions

 Input-Output and Interrupt

 Complete Computer Description

KIDS Labs 75

Basic Computer Organization and Design 76

CSE 211

Introduction

• Organization of computer is defined by its :

• Internal Registers

• Timing and Control Structure

• Set of instructions that it uses

• Every different processor type has its own design (different registers, buses,
microoperations, machine instructions, etc)

• Modern processor is a very complex device

• It contains
– Many registers

– Multiple arithmetic units, for both integer and floating point calculations

– The ability to pipeline several consecutive instructions to speed execution

– Etc.

• However, to understand how processors work, we will start with a
simplified processor model

KIDS Labs 76

Basic Computer Organization and Design 77

CSE 211

Basic Computer

• The Basic Computer has two components, a processor and memory

• The memory has 4096 words in it

– 4096 = 212, so it takes 12 bits to select a word in memory

• Each word is 16 bits long

CPU RAM

0

4095

0 15

KIDS Labs 77

Basic Computer Organization and Design 78

CSE 211

Instruction

 Program

 A sequence of (machine) instructions

 Instruction

 binary code that specifies a sequence of microoperations for a
computer.

 The instructions of a program, along with any needed data are stored in
memory

 The CPU reads the next instruction from memory

 It is placed in an Instruction Register (IR)

 Control circuitry in control unit then translates the instruction into the
sequence of microoperations necessary to implement it

KIDS Labs 78

Basic Computer Organization and Design 79

CSE 211

Instruction Format
 Instruction Codes

 A group of bits that tell the computer to perform a specific operation (a
sequence of micro-operation)

 A computer instruction is often divided into two parts

 An opcode (Operation Code) that specifies the operation for that instruction

 Sometimes called as Macrooperation

 An address that specifies the registers and/or locations in memory to use for
that operation

 In the Basic Computer, the memory contains 4096 (= 212) words, we needs 12 bit to
specify which memory address this instruction will use

 In the Basic Computer, bit 15 of the instruction specifies the addressing mode (0:
direct addressing, 1: indirect addressing)

 Since the memory words, and hence the instructions, are 16 bits long, that leaves 3
bits for the instruction’s opcode

KIDS Labs 79

Basic Computer Organization and Design 80

CSE 211

Instruction Format

 Sometimes the address bit of instruction code represent various different
information, classified into different Instruction formats :

 Immediate Instruction : when second part of instruction specifies operand

 When second part of address specify address :

 Direct Addressing : second part of instruction specifies address of an
operand

 Indirect Addressing : second part of instruction designates an address of a
memory in which the address of the operand is found

Opcode Address

Instruction Format

15 14 12 0

I

11

Addressing
mode

KIDS Labs 80

Basic Computer Organization and Design 81

CSE 211

Addressing Mode

• The address field of an instruction can represent either
– Direct address: the address in memory of the data to use (the address of the operand), or
– Indirect address: the address in memory of the address in memory of the data to use

• Effective Address (EA)
– The address, that can be directly used without modification to access an operand for a

computation-type instruction, or as the target address for a branch-type instruction

0 ADD 457 22

Operand 457

1 ADD 300 35

1350 300

Operand 1350

+

AC

+

AC

Direct addressing Indirect addressing

KIDS Labs 81

Basic Computer Organization and Design 82

CSE 211

Processor Register

 A processor has many registers to hold instructions, addresses, data, etc

 The processor has a register, the Program Counter (PC) that holds the
memory address of the next instruction to be executed

 Since the memory in the Basic Computer only has 4096 locations,
the PC only needs 12 bits

 In a direct or indirect addressing, the processor needs to keep track of
what locations in memory it is addressing: The Address Register (AR) is
used for this

 The AR is a 12 bit register in the Basic Computer

 When an operand is found, using either direct or indirect addressing, it
is placed in the Data Register (DR). The processor then uses this value as
data for its operation

 The Basic Computer has a single general purpose register – the
Accumulator (AC)

KIDS Labs 82

Basic Computer Organisation and Design 83

CSE 211

Processor Register

 The significance of a general purpose register is that it can be referred to in
instructions

 e.g. load AC with the contents of a specific memory location; store the contents of AC
into a specified memory location

 Often a processor will need a scratch register to store intermediate results
or other temporary data; in the Basic Computer this is the Temporary
Register (TR)

 The Basic Computer uses a very simple model of input/output (I/O)
operations

 Input devices are considered to send 8 bits of character data to the processor

 The processor can send 8 bits of character data to output devices

 The Input Register (INPR) holds an 8 bit character gotten from an input
device

 The Output Register (OUTR) holds an 8 bit character to be send to an
output device

KIDS Labs 83

Basic Computer Organization and Design 84

CSE 211

Processor Register

List of BC Registers
DR 16 Data Register Holds memory operand

AR 12 Address Register Holds address for memory

AC 16 Accumulator Processor register

IR 16 Instruction Register Holds instruction code

PC 12 Program Counter Holds address of instruction

TR 16 Temporary Register Holds temporary data

INPR 8 Input Register Holds input character

OUTR 8 Output Register Holds output character

Registers in the Basic Computer

11 0

PC

15 0

IR

15 0

TR

7 0

OUTR

15 0

DR

15 0

AC

11 0

AR

INPR
0 7

Memory

4096 x 16

CPU

KIDS Labs 84

Basic Computer Organization and Design 85

CSE 211

Common Bus System

 Basic computer : 8 register, a memory unit and a control unit

 The registers in the Basic Computer are connected using a bus

 This gives a savings in circuitry over complete connections between
registers

 Output of 7 register and memory connected to input of bus

 Specific output that is selected for bus lines will be determined by
selection variables S2, S1, S0

KIDS Labs 85

Basic Computer Organization and Design 86

CSE 211

Common Bus System

S1
S0

Bus

Memory unit
 4096 x 16

LD INR CLR

Address

Read Write

AR

LD INR CLR

PC

LD INR CLR

DR

LD INR CLR

AC ALU

E

INPR

IR

LD

LD INR CLR

TR

OUTR

LD
Clock

7

1

2

3

4

5

6

S2

KIDS Labs 86

Basic Computer Organization and Design

CSE 211

Common Bus System

 Three control lines, S2, S1, and S0 control which register the bus
selects as its input

 Either one of the registers will have its load signal activated, or the
memory will have its write signal activated

 Will determine where the data from the bus gets loaded

 Memory places its 16 bit output on bus when read input is
activated and S2S1S0=111

0 0 0 x
0 0 1 AR
0 1 0 PC
0 1 1 DR
1 0 0 AC
1 0 1 IR
1 1 0 TR
1 1 1 Memory

S2 S1 S0 Register

KIDS Labs 87

Basic Computer Organization and Design

CSE 211

Common Bus System

 4 register DR, AC, IR, TR is 16 bit. The 12-bit registers, AR and PC,
have 0’s loaded onto the bus in the high order 4 bit positions

 When the 8-bit register OUTR is loaded from the bus, the data
comes from the low order 8 bits on the bus

 INPR – connected to provide information to bus

 - receives character from input device and transfer to AC

 OUTR – can only receive information from bus

 - receives a character from AC and delivers to Output device

 Three types of input to AC :

 from AC : complement AC, Shift AC

 from DR : arithmetic and logic microoperation

 from INPR

KIDS Labs 88

Basic Computer Organization and Design

CSE 211

Common Bus System

 Bus lines connected to inputs of 6 registers and memory

 Three types of input to AC :

 from AC : complement AC, Shift AC

 from DR : arithmetic and logic microoperation

 from INPR

 Input/output data connected to common bus but memory address
connected to AR

KIDS Labs 89

90

CSE211

Computer Organization and Design

Computer Instructions

Timing and Control

Instruction Cycles

Memory Reference Instructions

Input Output and Interrupts

Complete Computer Description

KIDS Labs

Basic Computer Organization and Design 91

CSE 211

Overview

Instruction Codes

 Computer Registers

 Computer Instructions

 Timing and Control

 Instruction Cycle

 Memory Reference Instructions

 Input-Output and Interrupt

 Complete Computer Description

KIDS Labs 91

Basic Computer Organization and Design 92

CSE 211

Basic Computer Instructions

Basic Computer Instruction Format

15 14 12 11 0

I Opcode Address

1. Memory-Reference Instructions (OP-code = 000 ~ 110)

2. Register-Reference Instructions (OP-code = 111, I = 0)

 3. Input-Output Instructions (OP-code =111, I = 1)

15 12 11 0

Register operation 0 1 1 1

15 12 11 0

I/O operation 1 1 1 1

KIDS Labs 92

Basic Computer Organization and Design 93

CSE 211

Basic Computer Instructions

 Only 3 bits are used for operation code

 It may seem computer is restricted to eight different

 operations

 however register reference and input output instructions use

 remaining 12 bit as part of operation code

 so total number of instruction can exceed 8

Infact total no. of instructions chosen for basic computer is 25

KIDS Labs 93

Basic Computer Organization and Design 94

CSE 211

Basic Computer Instructions

AND 0xxx 8xxx AND memory word to AC
ADD 1xxx 9xxx Add memory word to AC
LDA 2xxx Axxx Load AC from memory
STA 3xxx Bxxx Store content of AC into memory
BUN 4xxx Cxxx Branch unconditionally
BSA 5xxx Dxxx Branch and save return address
ISZ 6xxx Exxx Increment and skip if zero

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero
HLT 7001 Halt computer

INP F800 Input character to AC
OUT F400 Output character from AC
SKI F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

 Hex Code

Symbol I = 0 I = 1 Description

KIDS Labs 94

Basic Computer Organization and Design 95

CSE 211

Instruction Set Completeness

 The set of instructions are said to be complete if computer includes a
 sufficient number of instruction in each of the following categories :

A computer should have a set of instructions so that the user can construct machine
language programs to evaluate any function that is known to be computable.

 Functional Instructions

 - Arithmetic, logic, and shift instructions

 - ADD, CMA, INC, CIR, CIL, AND, CMA, CLA

Transfer Instructions

 - Data transfers between the main memory and the processor registers

 - LDA, STA

Control Instructions

 - Program sequencing and control

 - BUN, BSA, ISZ

Input/output Instructions

 - Input and output

 - INP, OUT
 KIDS Labs 95

Basic Computer Organization and Design 96

CSE 211

Control Unit

 Control unit (CU) of a processor translates from machine instructions
to the control signals for the microoperations that implement them

 Control units are implemented in one of two ways

 Hardwired Control
 CU is made up of sequential and combinational circuits to generate the control

signals

 Advantage : optimized to provide fast mode of operations

 Disadvantage : requires changes in wiring if design has been modified

 Microprogrammed Control
 A control memory on the processor contains microprograms that activate the

necessary control signals

 We will consider a hardwired implementation of the control unit for
the Basic Computer

KIDS Labs 96

Basic Computer Orgsnization and Design 97

CSE 211

Timing and Control

Control unit of Basic Computer

Instruction register (IR)

15 14 13 12 11 - 0

3 x 8

 decoder

 7 6 5 4 3 2 1 0

I

D 0

15 14 2 1 0

4 x 16

 decoder

4-bit

 sequence

 counter

 (SC)

Increment (INR)

Clear (CLR)

Clock

Other inputs

Control
signals

D

T

T

7

15

0

Combinational

Control

logic

KIDS Labs 97

Basic Computer Orgsnization and Design 98

CSE 211

Timing Signals

Clock

T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR
SC

- Generated by 4-bit sequence counter and 416 decoder
- The SC can be incremented or cleared.

- Example: T0, T1, T2, T3, T4, T0, T1, . . .
 Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

D3T4: SC  0

KIDS Labs 98

Basic Computer Orgsnization and Design 99

CSE 211

Instruction Cycle

 In Basic Computer, a machine instruction is executed in the following
cycle:
1. Fetch an instruction from memory

2. Decode the instruction

3. Read the effective address from memory if the instruction has an indirect address

4. Execute the instruction

 After an instruction is executed, the cycle starts again at step 1, for the
next instruction

Note: Every different processor has its own (different) instruction cycle

KIDS Labs 99

Basic Computer Organization and Design 100

CSE 211

Fetch and Decode

T0: AR PC

T1: IR  M [AR], PC  PC + 1

T2: D0, . . . , D7  Decode IR(12-14), AR  IR(0-11), I  IR(15)

Initially PC loaded with address of first instruction and Sequence counter
cleared to 0, giving timing signal T0

KIDS Labs 100

Basic Computer Organization and Design 101

CSE 211

Fetch and Decode
Fetch and Decode T0: AR  PC (S0S1S2=010, T0=1)

T1: IR  M [AR], PC  PC + 1 (S0S1S2=111, T1=1)
T2: D0, . . . , D7  Decode IR(12-14), AR  IR(0-11), I  IR(15)

S2

S1

S0

Bus

7
Memory
 unit

Address

Read

AR

LD

PC

INR

IR

LD Clock

1

2

5

Common bus

T1

T0

KIDS Labs 101

Basic Computer Organization and Design 102

CSE 211

Fetch and Decode

 Figure shows how first two statements are implemented in bus system

 At T0 :

 1. Place the content of PC into bus by making S2S1S0=010

 Transfer the content of bus to AR by enabling the LD input of AR

 At T1 :

 1. Enable read input of memory

 2. Place content of bus by making S2S1S0=111

 3. Transfer content of bus to IR by enabling the LD input of IR

 4. Increment PC by enabling the INR input of PC

KIDS Labs 102

Basic Computer Organization and Design 103

CSE 211

Determine the Type of Instructions

= 0 (direct)

Start
SC <-- 0

AR <-- PC
T0

IR <-- M[AR], PC <-- PC + 1

T1

AR <-- IR(0-11), I <-- IR(15)

Decode Opcode in IR(12-14),

T2

D7
= 0 (Memory-reference) (Register or I/O) = 1

I I

Execute

 register-reference

 instruction

 SC <-- 0

Execute

 input-output

 instruction

 SC <-- 0

M[AR] <-- AR Nothing

= 0 (register) (I/O) = 1 (indirect) = 1

T3 T3 T3 T3

Execute

 memory-reference

 instruction

SC <-- 0

T4

Fig : Flow chart for Instruction Cycle
KIDS Labs 103

Basic Computer Organization and Design 104

CSE 211

Determining Type of Instruction

D'7IT3: AR M[AR]

D'7I'T3: Nothing

D7I'T3: Execute a register-reference instr.

D7IT3: Execute an input-output instr.

KIDS Labs 104

Basic Computer Organization and Design 105

CSE 211

Register Reference Instruction

r = D7 IT3 => Register Reference Instruction
Bi = IR(i) , i=0,1,2,...,11

- D7 = 1, I = 0
- Register Ref. Instr. is specified in b0 ~ b11 of IR
- Execution starts with timing signal T3

Register Reference Instructions are identified when

 r: SC  0
CLA rB11: AC  0
CLE rB10: E  0
CMA rB9: AC  AC’
CME rB8: E  E’
CIR rB7: AC  shr AC, AC(15)  E, E  AC(0)
CIL rB6: AC  shl AC, AC(0)  E, E  AC(15)
INC rB5: AC  AC + 1
SPA rB4: if (AC(15) = 0) then (PC  PC+1)
SNA rB3: if (AC(15) = 1) then (PC  PC+1)
SZA rB2: if (AC = 0) then (PC  PC+1)
SZE rB1: if (E = 0) then (PC  PC+1)
HLT rB0: S  0 (S is a start-stop flip-flop)

e.g. rB11=CLA

KIDS Labs 105

Basic Computer Organization and Design 106

CSE 211

Memory Reference Instructions

AND to AC //performs AND logic with AC and memory word specified by EA
 D0T4: DR  M[AR] Read operand
 D0T5: AC  AC  DR, SC  0 AND with AC

- The effective address of the instruction is in AR and was placed there during
 timing signal T2 when I = 0, or during timing signal T3 when I = 1
- Memory cycle is assumed to be short enough to complete in a CPU cycle
- The execution of MR instruction starts with T4

Symbol
Operation
Decoder

Symbolic Description

AND D0 AC  AC  M[AR]
ADD D1 AC  AC + M[AR], E  Cout
LDA D2 AC  M[AR]
STA D3 M[AR]  AC
BUN D4 PC  AR
BSA D5 M[AR]  PC, PC  AR + 1
ISZ D6 M[AR]  M[AR] + 1, if M[AR] + 1 = 0 then PC  PC+1

KIDS Labs 106

Basic Computer Organization and Design 107

CSE 211

Memory Reference Instructions

ADD to AC // add content of memory word specified by EA to value of AC
 sum is transferred to AC and Carry to E (Extended Accumulator)

 D1T4: DR  M[AR] Read operand
 D1T5: AC  AC + DR, E  Cout, SC  0 Add to AC and store carry in E

LDA: Load to AC // Transfers memory word specified by memory address to AC
 D2T4: DR  M[AR]
 D2T5: AC  DR, SC  0

STA: Store AC // Stores the content of AC into memory specified by EA
 D3T4: M[AR]  AC, SC  0

BUN: Branch Unconditionally // Transfer program to instruction specified by EA
 D4T4: PC  AR, SC  0

KIDS Labs 107

Basic Computer Organization and Design 108

CSE 211

Memory Reference Instructions

 Memory, PC after execution

21

0 BSA 135

Next instruction

Subroutine

20

PC = 21

AR = 135

136

1 BUN 135

 Memory, PC, AR at time T4

0 BSA 135

Next instruction

Subroutine

20

21

135

PC = 136

1 BUN 135

BSA: Branch and Save Return Address // 1. stores address of next instruction in sequence (PC) into
address specified by EA 2. EA+1 transfer to PC serve as 1st inst. In subroutine
 M[AR]  PC, PC  AR + 1

BSA:
 D5T4: M[AR]  PC, AR  AR + 1
 D5T5: PC  AR, SC  0

BSA: Example
 M[135]  21, PC  135 + 1=136

KIDS Labs 108

Basic Computer Organization and Design 109

CSE 211

Memory Reference Instructions

ISZ: Increment and Skip-if-Zero
 // increments the word specified by effective address,
 and if incremented value=0 , PC incremented by 1

 D6T4: DR  M[AR]
 D6T5: DR  DR + 1
 D6T4: M[AR]  DR, if (DR = 0) then (PC  PC + 1), SC  0

KIDS Labs 109

Basic Computer Organization and Design 110

CSE 211

Flow Chart - Memory Reference Instructions
Memory-reference instruction

DR  M[AR] DR  M[AR] DR  M[AR] M[AR]  AC
 SC  0

AND ADD LDA STA

AC  AC DR
 SC  0

AC  AC + DR
 E  Cout
 SC  0

AC  DR
 SC  0

D T 0 4 D T 1 4 D T 2 4 D T 3 4

D T 0 5 D T 1 5 D T 2 5

PC  AR
 SC  0

M[AR]  PC
 AR  AR + 1

DR  M[AR]

BUN BSA ISZ

D T 4 4 D T 5 4 D T 6 4

DR  DR + 1

D T 5 5 D T 6 5

PC  AR
 SC  0

M[AR]  DR
 If (DR = 0)
 then (PC  PC + 1)
 SC  0

D T 6 6

KIDS Labs 110

Basic Computer Organization and Design 111

CSE 211

Input/Output and Interrupt

 Input-Output Configuration

INPR Input register - 8 bits
OUTR Output register - 8 bits
FGI Input flag - 1 bit
FGO Output flag - 1 bit
IEN Interrupt enable - 1 bit

- The terminal sends and receives serial information
- The serial info. from the keyboard is shifted into INPR
- The serial info. for the printer is stored in the OUTR
- INPR and OUTR communicate with the communication interface serially and with
the AC in parallel.
- The flags are needed to synchronize the timing difference between I/O device and
the computer

A Terminal with a keyboard and a Printer

Input-output
 terminal

Serial
 communication

 interface

Computer
registers and
flip-flops
 Printer

Keyboard

Receiver
 interface

Transmitter
 interface

FGO OUTR

AC

INPR FGI

Serial Communications Path

Parallel Communications Path

KIDS Labs 111

Basic Computer Organization and Design 112

CSE 211

Determining Type of Instruction

 FGI =1 when new information available at input device,
 and cleared to 0 when information accepted by
 computer

 Initially FGI=0, new key pressed , 8 bit alphanumeric
 shifted to INPR and FGI=1, Computer checks flag if 1
 then transfer content to AC and clear FGI to 0.

 Initially FGO=1,
 - computer checks flag bit if 1, then OUTR  AC and
 clears FGO=0
 - O/P device accepts information prints character and
 finally sets FGO=1.

KIDS Labs 112

Basic Computer Orgsnisation and Design 113

CSE 211

Input/Output Instructions

D7IT3 = p
IR(i) = Bi, i = 6, …, 11

 p: SC  0 Clear SC
INP pB11: AC(0-7)  INPR, FGI  0 Input char. to AC
OUT pB10: OUTR  AC(0-7), FGO  0 Output char. from AC
SKI pB9: if(FGI = 1) then (PC  PC + 1) Skip on input flag
SKO pB8: if(FGO = 1) then (PC  PC + 1) Skip on output flag
ION pB7: IEN  1 Interrupt enable on
IOF pB6: IEN  0 Interrupt enable off

I/O instructions are needed for transferring info to and from AC register, for
checking the flag bits and for controlling interrupt facility

KIDS Labs 113

Basic Computer Organization and Design 114

CSE 211

Program controlled Input/Output

• Program-controlled I/O

-Continuous CPU involvement
 CPU keeps checking flag bit. If 1 then initiates transfer
 I/O takes valuable CPU time

-Difference in information flow rate makes this type of
 transfer inefficient

• Alternative approach is to let external device inform the computer when
 it is ready for transfer, in meantime computer can be busy with other task

- Interrupt

KIDS Labs 114

Basic Computer Organization and Design 115

CSE 211

Interrupt Initiated Input/Output

- Open communication only when some data has to be passed --> interrupt.

- The I/O interface, instead of the CPU, monitors the I/O device.

- When the interface founds that the I/O device is ready for data transfer,
 it generates an interrupt request to the CPU

- Upon detecting an interrupt, the CPU stops momentarily the task
 it is doing, branches to the service routine to process the data
 transfer, and then returns to the task it was performing.

 IEN (Interrupt-enable flip-flop)

- can be set and cleared by instructions

- When cleared (IEN=0) the computer cannot be interrupted

- When set (IEN=1) the computer can be interrupted

KIDS Labs 115

Basic Computer Organization and Design 116

CSE 211

Flow Chart of Interrupt Cycle

R = Interrupt f/f

- The interrupt cycle is a HW implementation of a branch and save return address operation.
- At the beginning of the next instruction cycle, the instruction that is read from memory is in
address 1.
- At memory address 1, the programmer must store a branch instruction that sends the control to
an interrupt service routine
- The instruction that returns the control to the original program is "indirect BUN 0"

Store return address

R
=1 =0

in location 0

 M[0]  PC

Branch to location 1

 PC  1

IEN  0

 R  0

Interrupt cycle Instruction cycle

Fetch and decode

 instructions

IEN

FGI

FGO

Execute

 instructions

R  1

=1

=1

=1

=0

=0

=0

INPR Input register - 8 bits
OUTR Output register - 8 bits
FGI Input flag - 1 bit
FGO Output flag - 1 bit
IEN Interrupt enable - 1 bit

KIDS Labs 116

Basic Computer Orgsnization and Design 117

CSE 211

Register Transfer Operations in Interrupt Cycle

 Register Transfer Statements for Interrupt Cycle
 - R F/F  1 if IEN (FGI + FGO)T0T1T2
  T0T1T2 (IEN)(FGI + FGO): R  1

- The fetch and decode phases of the instruction cycle
 must be modified Replace T0, T1, T2 with R'T0, R'T1, R'T2

- The interrupt cycle :

 RT0: AR  0, TR  PC

 RT1: M[AR]  TR, PC  0

 RT2: PC  PC + 1, IEN  0, R  0, SC  0

 After interrupt cycle

0 BUN 1120

0

1

PC = 256
255

1 BUN 0

 Before interrupt

Main

 Program

1120

I/O

 Program

0 BUN 1120

0

PC = 1

 256
255

1 BUN 0

Memory

Main

 Program

1120

I/O

 Program

256

KIDS Labs 117

Basic Computer Organization and Design 118

CSE 211

Complete Computer Description

=1 (I/O) =0 (Register) =1(Indir) =0(Dir)

start
SC  0, IEN  0, R  0

R

AR  PC

R’T0

IR  M[AR], PC  PC + 1

R’T1

AR  IR(0~11), I  IR(15)
D0...D7  Decode IR(12 ~ 14)

R’T2

AR  0, TR  PC

RT0

M[AR]  TR, PC  0

RT1

PC  PC + 1, IEN  0
R  0, SC  0

RT2

D7

I I

Execute
I/O

Instruction

Execute
RR

Instruction

AR <- M[AR] Idle

D7IT3 D7I’T3 D7’IT3 D7’I’T3

Execute MR
Instruction

=0(Instruction =1(Interrupt
 Cycle) Cycle)

=1(Register or I/O) =0(Memory Ref)

 D7’T4

INPR Input register - 8 bits
OUTR Output register - 8 bits
FGI Input flag - 1 bit
FGO Output flag - 1 bit
IEN Interrupt enable - 1 bit

KIDS Labs 118

Basic Computer Organization and Design 119

CSE 211

Complete Computer Design

Fetch

Decode

Indirect
Interrupt

Memory-Reference
 AND

 ADD

 LDA

 STA
 BUN
 BSA

 ISZ

RT0:
RT1:
RT2:

D7IT3:

RT0:
RT1:
RT2:

D0T4:
D0T5:
D1T4:
D1T5:
D2T4:
D2T5:
D3T4:
D4T4:
D5T4:
D5T5:
D6T4:
D6T5:
D6T6:

AR  PC
IR  M[AR], PC  PC + 1
D0, ..., D7  Decode IR(12 ~ 14),
 AR  IR(0 ~ 11), I  IR(15)
AR  M[AR]

R  1
AR  0, TR  PC
M[AR]  TR, PC  0
PC  PC + 1, IEN  0, R  0, SC  0

DR  M[AR]
AC  AC  DR, SC  0
DR  M[AR]
AC  AC + DR, E  Cout, SC  0
DR  M[AR]
AC  DR, SC  0
M[AR]  AC, SC  0
PC  AR, SC  0
M[AR]  PC, AR  AR + 1
PC  AR, SC  0
DR  M[AR]
DR  DR + 1
M[AR]  DR, if(DR=0) then (PC  PC + 1),
SC  0

KIDS Labs 119

Basic Computer Organization and Design 120

CSE 211

Complete Computer Design

Register-Reference

 CLA
 CLE
 CMA
 CME
 CIR
 CIL
 INC
 SPA
 SNA
 SZA
 SZE
 HLT

Input-Output

 INP
 OUT
 SKI
 SKO
 ION
 IOF

D7IT3 = r
IR(i) = Bi
 r:
 rB11:
 rB10:
 rB9:
 rB8:
 rB7:
 rB6:
 rB5:
 rB4:
 rB3:
 rB2:
 rB1:
 rB0:

D7IT3 = p
IR(i) = Bi
 p:
 pB11:
 pB10:
 pB9:
 pB8:
 pB7:
 pB6:

(Common to all register-reference instr)
(i = 0,1,2, ..., 11)
SC  0
AC  0
E  0
AC  AC
E  E
AC  shr AC, AC(15)  E, E  AC(0)
AC  shl AC, AC(0)  E, E  AC(15)
AC  AC + 1
If(AC(15) =0) then (PC  PC + 1)
If(AC(15) =1) then (PC  PC + 1)
If(AC = 0) then (PC  PC + 1)
If(E=0) then (PC  PC + 1)
S  0

(Common to all input-output instructions)
(i = 6,7,8,9,10,11)
SC  0
AC(0-7)  INPR, FGI  0
OUTR  AC(0-7), FGO  0
If(FGI=1) then (PC  PC + 1)
If(FGO=1) then (PC  PC + 1)
IEN  1
IEN  0

KIDS Labs 120

Basic Computer Organization and Design 121

CSE 211

Design of a Basic Computer(BC)

Hardware Components of BC

A memory unit: 4096 x 16.
Registers:
 AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
Flip-Flops(Status):
 I, E, R, IEN, FGI, and FGO
Decoders: a 3x8 Opcode decoder
 a 4x16 timing decoder
Common bus: 16 bits
Control logic gates:
Adder and Logic circuit: Connected to AC

Control Logic Gates

- Input Controls of the nine registers

- Read and Write Controls of memory

- Set, Clear, or Complement Controls of the flip-flops

- S2, S1, S0 Controls to select a register for the bus

- AC, and Adder and Logic circuit
 KIDS Labs 121

Basic Computer Organization and Design 122

CSE 211

Design of a Basic Computer(BC)

KIDS Labs 122

Basic Computer Organization and Design 123

CSE 211

Design of a Basic Computer(BC)

KIDS Labs 123

