mf R

CSE?211

Computer Organization and
Design

Lecture: 3 Tutorial: 1 Practical: 0 Credit: 4

KIDS Labs

Indrason Khumancha
Typewritten Text

Indrason Khumancha
Typewritten Text
kid_s

Indrason Khumancha
Typewritten Text

Indrason Khumancha
Typewritten Text

Indrason Khumancha
Typewritten Text

Unit 1 : Basics of Digital Electronics

B Introduction
B Logic Gates
B Flip Flops
B Decoder

E Encoder

B Multiplexers

B Demultiplexer

KIDS Labs

1-1 Digital Computers

Digital — A limited number of discrete value
Bit — A Binary Digit Application S/W
Program — A Sequence of instructions l
Computer = HW + S/W | APl
Program(S/W) ‘ Operating System

A sequence of instruction

¢ S/W = Program + Data l

¢ The data that are manipulated by the

program constitute the data base
Application S/W
¢ DB, word processor, Spread Sheet

System S/W
e OS, Firmware, Compiler, Device Driver

KIDS Labs

1-1 Digital Computers

s Computer Hardware
¢ CPU
¢ Memory

e Program Memory(ROM) I Memory
¢ Data Memory(RAM)

¢ 1/O Device
¢ Interface

e Input Device: Keyboard, Mouse,

Scanner
e Output Device: Printer, Plotter,
Display l Output
e Storage Device(l/O): FDD, HDD, Device
MOD

Figure Block Diagram of a digital Computer

KIDS Labs

1-1 Digital Computers

s 3 different point of view(Computer Hardware)
¢ Computer Organization
e H/W components operation/connection
¢ Computer Design
¢ H/W Design/Implementation
¢ Computer Architecture
e Structure and behavior of the computer as seen by the user
¢ Information format, Instruction set, memory addressing, CPU, /O, Memory
» [SA(Instruction Set Architecture)

¢ the attributes of a system as seen by the programmer, i.e., the conceptual
structure and functional behavior, as distinct from the organization of the data
flows and controls, the logic design, and the physical implementation.

- Amdahl, Blaaw, and Brooks(1964)

KIDS Labs

1-2 Logic Gates

= ADC(Analog to Digital Conversion)
¢ Signal Physical Quantity Binary Information ., = ¢
. Discrete Value {

s Gate L
¢ The manipulation of binary information is done by logic circuit called
“ga_te_”.

s Fig. Digital Logic Gates
¢ AND, OR, INVERTER, BUFFER, NAND, NOR, XOR, XNOR

KIDS Labs

1-2 Logic Gates

Name { Symbol Function | Truth Table
A_B|X
A X=A*B 0 00
AND |] D—x | 0 1[0
B X=AB
A_B X
A
OR ®_X X=A+B g ? 2
B 10 |1
T
| p—>—x | x=a AF
A _|X |
Buffer AAD—K X=A b

1-2 Logic Gates

A B | X

A 0 111
NAND }x X = (ABy 1 0|1
g | 1 1 0
A_B X
A 0 0 |1
NOR ") De—x | x=asmr | 9 ¢ [8
B 11 19
A B X
XOR A — X=A®B g ? ?

_ or

Exclusive OR B X = A'B + AB’ 1 0 |1
1 1 0
A B X
XNOR A X=(A®By 0 0 [1
xclusive NOR or ? a 3
Er Equivalence | B X=A'B'+ AB 1 1 11

1-6 Flip-Flops

Combinational Circuit = Gate
Sequential Circuit = Gate + F/F

= Flip-Flop
¢ The storage elements employed in clocked sequential circuit
¢ A binary cell capable of storing one bit of information

s SR(Set/Reset) FIF

a D(Data) FIF

=1

.0 S R Q(t+1) D™ 0
00 Q) nochange D Q(t+1)
D 01 0 cleartod D e
— 10 1 setto1 0
Raw @ 11 ? Indeterminate o=
¢ “no change” condition
1) Disable Clock
' 2) Feedback output into input
o Jack/Kin
o g) FIF m T(Toggle) FIF
J - 0 J K Q(t+1) =
0 0 Qt) nochange) 0 . B
D> 01 0 clearto0 N - g
Q 14 4 8543 1 Q'(t) Complement
Kan @ 11 Qt)' Complement .

¢ JKF/F is arefinement of the SR F/F

The indeterminate condition of the SR
type is defined in complement

¢ T=1(J=K=1), T=0(J=K=0)

KIDS Labs

1-6 Flip-Flops

m SR(Set/Reset) FIF

Q' A
CP_I:
Q iy -

S

m D(Data) FIF

s JK(Jack/King) FIF

[
[H

J - =
CL~); &
K—:_>" Ra @

SET o D S-'JET Q
D>
a0 Do— R, T
m T(Toggle) FIF
g | J 3 0
—D
Lo Ko @

KIDS Labs

10

1-6 Flip-Flops

Positive clock transition |

s Edge-Triggered F/F
¢ State Change : Clock Pulse
» Rising Edge(positive-edge transition) 4
e Falling Edge(negative-edge transition) ¥_ ‘T’
¢ Setup time(20ns)

e minimum time that D input must remain at constant value before the
transition.

¢ Hold time(5ns)

» minimum time that D input must not change after the positive transition.
¢ Propagation delay(max 50ns)

¢ time between the clock input and the response in Q

¢ Master-Slave F/F

KIDS Labs

11

Integrated Circuits

An IC is a small silicon semiconductors crystal called chip containing the
electronic components for digital gates.

- Various gates are interconnected inside chip to form required circuit.

- Chip is mounted in ceramic/plastic container connected to external pin

Small scale Integration (SSI) : less than 10 gates

Medium Scale Integration(MSI) : between 10 to 200 gates
(decoders, adders, registers)

Large Scale Integration(LSI) : between 200 and few thousands gates
(Processors, Memory Chips)

Very Large Scale Integration (VLSI) : Thousands of gate within
single package (Large Memory Arrays, Complex Microcomputer Chips)

KIDS Labs 12

CSE?211

Computer Organization and
Design

Lecture: 3 Tutorial: 2 Practical: 0 Credit: 4

KIDS Labs

13

Unit 1 : Basics of Digital Electronics

E Introduction
B Logic Gates
B Flip Flops

B Decoder

E Encoder

B Multiplexers
B Demultiplexer

B Registers

KIDS Labs

14

2-2 Decoder/Encoder

s Decoder

¢ A combinational circuit that converts binary information from the n

coded inputs to a maximum of 2" unique outputs

¢ n-to-m line decoder = n x m decoder

e ninputs, m outputs

¢ If the n-bit coded information has unused bit combinations, the decoder
may have less than 2" outputs

e m<2"
s 3-to-8 Decoder
¢ A Binary-to-octal conversion
¢ Logic Diagram : Fig. 2-1
¢ Truth Table : Tab. 2-1
¢ Commercial decoders
include one or more
Enable Input(E)

DU

~—m—m—-0000OX|[B
-~ =00 ==0o0x |3

%
§

3
g
B2
4
2
2
e
S

OO - O—-0O X
“OoOO0OO0DO0ODO0OO0OO0OO
o ~To0oo0co0oocooo
oo -~00O0COO0OO
o000 ~ 000 O0CO
oo oO0O ~000O0O
o000 ~0o00O0O
(== B = R e = =]
OO0 O0O0O00 + O

A2
Al
AD

Tab. 2-1 Truth table for 3-to-8 Decoder

Fig. 2-1 3-to-8 Decoder
N

_}-l)o

e

i

D1

y — 4

D2

y -4

D3

Enable(E)

KIDS Labs

15

2-2 Decoder/Encoder

= NAND Gate Decoder Azaﬁfm»sme Active High Output

¢ Constructed with NAND instead of AND gates P o
¢ Logic Diagram/Truth Table : Fig. 2-2
Enat Output \0 =
E_|A1] 01]02|p3
0 00011 11)>.m
Fig. 2-2 2-to-4 Decoder with NANDgates o0 0 1 1 0 1 1 l_D [l
o 101101
o B 1 110 Al =)"D-‘
.] B 1 1.1 8 Enable(E)
= Decoder Expansion (a) Truth Table _D‘_ _
¢ Constructed decoder : Fig. 2-3 () Logic Diagrem
¢ 3 X 8 Decoder constructed with two 2 X 4 Decoder r - Do
Al ¢ x4 1+ DI
= Encoder Tab. 2-2 Truth Table for A2 —{> « =M
¢ Inverse Operation of a decoder Encoder 7~ D3
¢ 2"input, n output odododTToaAAAAG L - by
¢ Truth Table : Tab. 2-2 R R
: 00000100010 L
0 SOlifat;s Irggler;:nt;t;on 0000 fooolEE D7
» = + + + 00010000100 "
- Fig. 2-3 A 3-t0-8 Decoder
» A1=D2+D3+D6+D7 [GREICRSNSN ORI constructed with two
» A2=D4+D5+D6+D7 100000001 11 with 2-to-4 Decoder

KIDS Labs

2-2 Decoder/Encoder

Octal to Binary Encoder

i o o

()] ()] O 0O

O O—d1O—10O
OO —Td—HOO-
OCOO0OO A A

D, D, D. D, D, D, D, D,| A, A, A,

"0 000000

O—HOOOOOO0O

OCO—100C0O0O0OO0

COO0O-1000O0

OO0 O0O—-HOOO
OO0 O0OOHOO

OCOO0OO0OO0OOH0O

olololololoNoly

D, +D;+D:+D,

Ay =

D, + D; + Dg + D,

A=

D, + D¢+ Dg + D,

A, =

17

KIDS Labs

2-3 Multiplexers

= Multiplexer(Mux)

¢ A combinational circuit that receives binary information from one of 2"
input data lines and directs it to a single output line

¢ A 2" -to 1 multiplexer has 2" input data lines and —
n input selection lines(Data Selector) 3
¢ 4-to-1 multiplexer Diagram : Fig. 2-4

¢ 4-to-1 multiplexer Function Table : Tab. 2-3
Select Outout |,

St S0 |
Tab. 2-3 Function Table for 0 0 l.
4-to-1 line Multiplexter ‘: ; :: S0 _é ?
1 1 Iy S1
I Quadrup|e 2-to-1 Multiplexer Fig. 24 d4-to-1 Line Multiplexer
Enable
¢ Quadruple 2-to-1 Multiplexer : Fig. 2-5 Select |
Select Output ::- —— Quadruple ~— :.
: ESNES Y M L —
Fig. 2-5 Quat:rup{c 2-to-1 0 0 AlO's g‘ e Y
line Multiplexter 1 P A - E
1 1 8 S
(a) Function Table (b) Block Diagram

KIDS Labs 18

2-3 Multiplexers

Y,
A, Y,
A Y,
A, _ E
o=, l—(: = —o,
B, S, — = — D,
’ [

} S' } D:
B, D_ N
B,

s E — Data input
. Sy S, — Select Data
Fig A. Combinational logic diagram with Fig B. Demultiplexer

Sour 2 X1 multiplexer

A Demultiplexer, sometimes abbreviated DMUX is a circuit that has
one input and more than one output. It is used when a circuit wishes
to send a signal to one of many devices

KIDS Labs

19

2-4 Registers

= Register

¢ A group of flip-flops with each flip-flop capable of storing one bit of
information

¢ An n-bit register has a group of n flip-flops and is capable of storing any
binary information of n bits

¢ The simplest register consists only of flip-flops, with no external gate :
Fig. 2-6

¢ A clock input C will load all four inputs in parallel
e The clock must be inhibited if the content of the register must belleft

unchanged .3 e

= Register with Parallel Load . —_Zi 8.
¢ A 4-bit register with a load control input : Fig. 2-7 i

The clock inputs receive clock pulses at all times T I
¢ The buffer gate in the clock input will increase “fan-out’ [Lo

¢ Load Input . A
e 1: Fourinput transfer Clear — =5~

¢ 0: Input inhibited, Feedback from output to input(no change) Fig. 2-6 4-bit register

KIDS Labs 20

2-4 Registers

B When the load inputis 1, the
data in the four inputs are
transferred into the register with
the next positive transition of a
clock pulse

B When the load input is 0, the
data inputs are inhibited and the D-
output of flip flop are connected to
their inputs.

_..D..L

1
:?
VvV o

®]

ol

ol

H % %

Q
L
" HD @
>
ll> 0

Fig. 2-7 d4-bit register with parallel load

KIDS Labs

2-5 Shift Registers

m Shift Register

¢ Aregister capable of shifting its binary
information in one or both directions

¢ The logical configuration of a shift
register consists of a chain of flip-flops
in cascade

¢ The simplest possible shift register uses
only flip-flops : Fig. 2-8

¢ The serial input determines what goes
into the leftmost position during the shift

¢ The serial output is taken from the
output of the rightmost flip-flop

’—D Qb D Q D Qﬁo Q
ClOCkr 1

Fig. 2-8 J4-bit shift register

KIDS Labs

2-5 Shift Registers

s Bidirectional Shift Register with Parallel Load

¢ A register capable of shifting in one direction only is called a
unidirectional shift register

¢ A register that can shift in both directions is called a bidirectional shift
register

¢ The most general shift register has all the
capabilities listed below:
¢ An input clock pulse to synchronize all operations
o A shift-right /left (serial output/input)
e A parallel load, n parallel output lines
©

The register unchanged even though clock pulses
are applied continuously

¢ 4-bit bidirectional shift register with parallel load :

Fig. 2-9 R
e 4X1Mux=4 DFFF=4 g ¢
0 0 Nochage
0 1 Shiftright{down
Tab. 2-4 Function Table for Register ¢4 shiftleft(up) ’
of Fig. 2-9 1 1 Parallel load

KIDS Labs

23

2-5 Shift Registers

So - 5
S I D o'L Ao S,S,=00 : A — A (Nochange)
Serial input 3 S;S,=01 : A, — A (Shift)
l H- S,S,=10 : A,,— A (Shift)
- S -L S,S,=11 : Parallel load
T ELLS D Q A,
- 1
| F ;
1LY ~ = Q_L a, ® Shift Register
1° e :
: Interface digital systems situated
Iy 3 remotely from each other
L
:',’ D o-L A,
o §
Serial input -,; —L System_1 4&9 System_2
ls 3 Parallel Serial Paraliel
Clock

Fig. 2-9 Bidirectional shift register

KIDS Labs

24

CSE211
Computer Organization and Design

Register Transfer Language
Register Transfer

KIDS Labs 25

Register Transfer and Micro-operations

Overview

» Register Transfer Language
> Register Transfer

» Bus and Memory Transfers
» Logic Micro-operations

» Shift Micro-operations

» Arithmetic Logic Shift Unit

CSE 211

DY CO0S

Register Transfer and Micro-operations 27

Register Transfer Language

Combinational and sequential circuits can be used to create simple
digital systems.

These are the low-level building blocks of a digital computer.
Simple digital systems are frequently characterized in terms of
> the registers they contain, and

» the operations that are performed on data stored in them

The operations executed on the data in registers are called micro-
operations e.g. shift, count, clear and load

CSE 211

Register Transfer and Micro-operations 28

Register Transfer Language

Internal hardware organization of a digital computer :

»Set of registers and their functions

» Sequence of microoperations performed on binary
information stored in registers

» Control signals that initiate the sequence of micro-
operations (to perform the functions)

DY CO0S

CSE 211

Register Transfer and Micro-operations 29

Register Transfer Language

Rather than specifying a digital system in words, a specific notation is
used, Register Transfer Language

The symbolic notation used to describe the micro operation transfer
among register is called a register transfer language

For any function of the computer, the register transfer language can be
used to describe the (sequence of) micro-operations

Register transfer language
» A symbolic language

» A convenient tool for describing the internal organization of
digital computers in concise/precise manner.

» Can also be used to facilitate the design process of digital
systems.

CSE 211

Register Transfer and Micro-operations 30

Register Transfer

> Registers are designated by capital letters, sometimes followed by
numbers (e.g., A, R13, IR)

> Often the names indicate function:

> MAR - memory address register
> PC - program counter
> IR - instruction register

ways
> A register can be viewed as a single entity:

MAR

» Registers and their contents can be viewed and represented in various

20

DY CO0S

CSE 211

T

Register Transfer and Micro-operations 31

Register Transfer

e Designation of a register

- a register
- portion of a register
- a bit of a register

e Common ways of drawing the block diagram of a register

Register Showing individual bits
R1 7 6 5 4 3 2 1 0
15 0 15 87 0
R2 PC(H) | PC(L)
Numbering of bits Subfields

CSE 211

Register Transfer and Micro-operations 32

Register Transfer

* Copying the contents of one register to another is a register transfer

* Aregister transfer is indicated as

R2 < R1

» In this case the contents of register R1 are copied (loaded) into
register R2

> A simultaneous transfer of all bits from the source R1 to the
destination register R2, during one clock pulse

> Note that this is a non-destructive; i.e. the contents of R1 are not
altered by copying (loading) them to R2

[~
D
h
L
®
) §)

DY CO0S

CSE 211

Register Transfer and Micro-operations 33

Register Transfer

* A register transfer such as

R3 < R5
Implies that the digital system has

— the data lines from the source register (R5) to the destination
register (R3)

— Parallel load in the destination register (R3)
— Control lines to perform the action

cSE211

Register Transfer and Micro-operations 34

Control Functions

» Often actions need to only occur if a certain condition is true
» This is similar to an “if” statement in a programming language
> In digital systems, this is often done via a control signal, called a control

function

» If the signal is 1, the action takes place
» This is represented as:

P: R2 < R1

Which means “if P = 1, then load the contents of register R1 into
register R2”, i.e., if (P =1) then (R2 < R1)

CSE 211

Register Transfer and Micro-operations

35

Hardware Implementation of Controlled Transfers

P: R2«<R1

Block diagram

Timing diagram

destination register

Implementation of controlled transfer

\ 4

Clock

Load

Load
Cf)ntr.ol P | R J® Clock
Circuit ‘“
| R1 <J
t t+1

Transfer occurs here

> Registers are assumed to use positive-edge-triggered flip-flops

» The same clock controls the circuits that generate the control function and the

CSE 211

LAYLE =4~ an =1~

Register Transfer and Micro-operations 36

Basic Symbols in Register Transfer

Symbols Description Examples
Capital letters Denotes a register MAR, R2
& Numerals
Parentheses () Denotes a part of a register R2(0-7), R2(L)
Arrow <« Denotes transfer of information R2 < R1
Colon : Denotes termination of control function P:
Comma , Separates two micro-operations A«<B, B« A

CSE 211

CSE211
Computer Organization and Design

Bus and Memory Transfers

KIDS Labs 37

Register Transfer and Micro-operations 38

Overview

» Register Transfer Language
» Register Transfer

» Bus and Memory Transfers
» Logic Micro-operations

» Shift Micro-operations

» Arithmetic Logic Shift Unit

CSE 211

LAY —4~an =vy >y

Register Transfer and Micro-operations 39

Connecting Registers - Bus Transfer

>

Y VY

Y V

In a digital system with many registers, it is impractical to have data and
control lines to directly allow each register to be loaded with the contents
of every possible other registers

To completely connect n registers 2 n(n-1) lines
0O(n?) cost
» This is not a realistic approach to use in a large digital system

Instead, take a different approach
Have one centralized set of circuits for data transfer — the bus

BUS STRUCTURE CONSISTS OF SET OF COMMON LINES, ONE FOR EACH BIT
OF A REGISTER THROUGH WHICH BINARY INFORMATION IS TRANSFERRED
ONE AT A TIME

Have control circuits to select which register is the source, and which is the
destination

KINNC | L 20
™

CSE 211

TS COMS J7

Register Transfer and Micro-operations 40

Connecting Registers - Bus Transfer

From a register to bus: BUS <R

Register A Register B Register C Register D
‘ Bus lines

» One way of constructing common bus system is with multiplexers

» Multiplexer selects the source register whose binary information is
kept on the bus.

» Construction of bus system for 4 register (Next Fig)
» 4 bit register X 4
» four 4X1 multiplexer
> Bus selection SO, S1

VAT nYll NN 40

DY CO0S o

CSE 211

Register Transfer and Micro-operations

41

Connecting Registers - Bus Transfer

S1

:4-line

common

S0

4*1 4%1 4*1
MUX 3 MUX 2 MUX 1
3210 3210 3210
Frrt T FrTt
Pt Pt | T T
3210 3210 3210

Register D Register C

Register B

Jbus

4*1
MUX 0

—n D
—» DO
—» —

o - ' — o

L
3 2 1

Register A

N e = =
—s = =y =
O O o >

CSE 211

DY CO0S

Register Transfer and Micro-operations 4?2

Connecting Registers - Bus Transfer

» For a bus system to multiplex k registers of n bits each
» No. of multiplexer = n

» Size of each multiplexer =k x 1

» Construction of bus system for 8 register with 16 bits
» 16 bit register X 8
» Sixteen 8X1 multiplexer
> Bus selection SO, S1, S2

CSE 211

Register Transfer and Micro-operations 43

Connecting Registers - Bus Transfer

¢ Bus Transfer

e The content of register C is placed on the bus, and the content of the bus is
loaded into register R1 by activating its load control input ,
Bus < C, Rl <« Bus R1 Register [——~A—P
Rl«C "
¢ Three-State Bus Buffers

e A bus system can be constructed with three-state gates instead of multiplexers

e Tri-State : 0, 1, High-impedance(Open circuit)

e Buffer

» A device designed to be inserted between other devices to match impedance, to
prevent mixed interactions, and to supply additional drive or relay capability

» Buffer types are classified as inverting or noninverting

Tri-state buffer gate : Fig. 4-4
» When control input =1 : The output is enabled(output Y = input A)
» When control input =0 : The output is disabled(output Y = high-impedance)

Normal 4|>— If C=1, Output Y=A
input A If C=0, Output = High-impedance
Control

input C

C Register

CSE 211

Register Transfer and Micro-operations 44

Connecting Registers - Bus Transfer

% The construction of a bus system with tri-state buffer : Fig.

e The outputs of four buffer are connected together to form a single bus line(Tri-
state buffer

e No more than one buffer may be in the active state at any given time(2 X 4
Decoder

e To construct a common bus for 4 register with 4 bit : Fig.

A0 >
Co P
DO
Select input - N
% zra |
. —E decader 2
Enable input : . DR < M[4R]
¢ Memory Transfer WRITE: M[A4R]« Rl

e Memory read : A transfer information into DR from the memory word M selected
by the address in AR

e Memory Write : A transfer information from R1 into the memory word M selected
by the address in AR

DY CO0S

CSE 211

Register Transfer and Micro-operations

45

Memory Transfer

Memory is usually accessed in computer systems by putting the desired
address in a special register, the Memory Address Register (MAR, or AR)

v

M
Memory ' Read
unit & Write
Data out Datain

CSE 211

Register Transfer and Micro-operations 46

Memory Read

» Toread a value from a location in memory and load it into a
register, the register transfer language notation looks like this:

R1 < M[MAR]

» This causes the following to occur

1.

The contents of the MAR get sent to the memory address
lines

A Read (= 1) gets sent to the memory unit

The contents of the specified address are put on the
memory’s output data lines

These get sent over the bus to be loaded into register R1

CSE 211

Register Transfer and Micro-operations 47

Memory Write

» To write a value from a register to a location in memory looks like
this in register transfer language:

M[MAR] < R1

» This causes the following to occur

1. The contents of the MAR get sent to the memory address
lines

2. A Write (= 1) gets sent to the memory unit

3. The values in register R1 get sent over the bus to the data
input lines of the memory

4. The values get loaded into the specified address in the
memory

CSE 211

DY CO0S

Register Transfer and Micro-operations 48

SUMMARY OF R. TRANSFER MICROOPERATIONS

A< B

AR <— DR(AD)

A <— constant

ABUS <— R1, R2 < ABUS

AR
DR
MIR]
M

DR<— M

M < DR

1.Transfer content of reg. B into reg. A
2.Transfer content of AD portion of reg. DR into reg. AR
3.Transfer a binary constant into reg. A

4 Transfer content of R1 into bus A and, at the same tim

transfer content of bus A into R2
5.Address register

6.Data register

7.Memory word specified by reg. R
8.Equivalent to M[AR]

9.Memory read operation: transfers content of
memory word specified by AR into DR

10.Memory write operation: transfers content of
DR into memory word specified by AR

VAT nY <l IPNN 40

CSE 211

T LUNNI T

CSE211
Computer Organization and Design

Arithmetic Microoperations

KIDS Labs 49

Register Transfer and Micro-operations 50

Overview

» Register Transfer Language

» Register Transfer

» Bus and Memory Transfers

» Arithmetic Micro-operations
» Logic Micro-operations

» Shift Micro-operations

» Arithmetic Logic Shift Unit

®©

CSE 211

LAY —4~an =vy >y

Register Transfer and Micro-operations 51

MICROOPERATIONS

Computer system microoperations are of four types:

» Register transfer microoperations
» Arithmetic microoperations
» Logic microoperations

» Shift microoperations

CSE 211

Register Transfer and Micro-operations 52

Arithmetic MICROOPERATIONS

The basic arithmetic microoperations are
— Addition
— Subtraction
— Increment
— Decrement

The additional arithmetic microoperations are
— Add with carry
— Subtract with borrow
— Transfer/Load
— etc. ...

Summary of Typical Arithmetic Micro-Operations

R3 < R1+R2 Contents of R1 plus R2 transferred to R3

R3 « R1-R2 Contents of R1 minus R2 transferred to R3
R2 « R?’ Complement the contents of R2

R2 « R2'+1 2's complement the contents of R2 (negate)
R3« R1+R2'+1 subtraction

Rl< R1+1 Increment

Rl1«< R1-1 Decrement

an
) 5]

CSE 211

DY CO0S

Register Transfer and Micro-operations 53

Binary Adder

¢ 4-bit Binary Adder : Fig. 4-6

e Full adder = 2-bits sum + previous carry
e Binary adder = the arithmetic sum of two binary numbers of any length
o Cy(Input carry), c4(output carry)

B3 A3 B2 A2 Bl Al B0 A0
L y ! !

Co

{ FA : FA N FA i FA R
J 1 1 1 1

S3 S2 S1 S0

Figure 4-6. 4-bit binary adder

CSE 211

LAY —4~an =vy >y

Register Transfer and Micro-operations 54

Binary Adder-Subtractor

Binary Adder-Subtractor

B3 A3 B2 A2 Bl Al BO AO

\ 4 \4 \ 4 \ 4

FA € FA |« FA <4 FA

vy v v v

C4 S3 S2 S1 SO

» Mode input M controls the operation
» M=0 ---- adder
» M=1 ---- subtractor

LAY —4~an =vy >y

CSE 211

Register Transfer and Micro-operations 55

Binary Incrementer

Binary Incrementer

ﬁf ‘if Aj. ‘éi l?
X y X y X y X y
HA HA HA HA
iI T’] T’] T’] :T
C4 S3 S2 S1 SO

CSE 211

Register Transfer and Micro-operations

56

Arithmetic Circuits

S1
SO

AO

BO

Al

B1

A2

B2

A3

B3

X0 co
S1
0 FA
— 2 ax1 Yo a
7 ; MUX
X1 C1
S1
S0 FA
° Ax1 noc
—D- i MUX
X2 C2
S1
0 FA
0 ll)(]. Y2 C3
LD § MUX
X3 c3
S1
0 FA
0 ‘l)(]. Y3 (o)
—D- > MUX
3
Do—

DO

D1

D2

D3

Cout

Select

Input

Output

op
[a—
e
-
(@)
=1

D=A+Y+Ci,

—_— e e T O O O
—_— e O O = = O O
—_O = O = O = O

D=A+B
D=A+B+1
D=A+B'
D=A+B'+1
D=A
D=A+1
D=A-1
D=A

CSE 211

DY CO0S

CSE211
Computer Organization and Design

Logic Microoperations
Shift Microoperations
Arithmetic Logic Shift Unit

KIDS Labs 57

Register Transfer and Micro-operations 58

Overview

» Register Transfer Language
» Register Transfer

» Bus and Memory Transfers
» Arithmetic Micro-operations
» Logic Micro-operations

» Shift Micro-operations

» Arithmetic Logic Shift Unit

CSE 211

DY CO0S

Register Transfer and Micro-operations 59

Logic Micro operations

4 Logic microoperation
¢ Logic microoperations consider each bit of the register separately and treat
them as binary variables

» exam) P-Rl< RI® R? 1010 Content of R1

+ 1100 Content of R2

0110 Content of R1 after P=1
e Special Symbols

» Special symbols will be adopted for the logic microoperations OR(v), AND(x), and
complement(a bar on top), to distinguish them from the corresponding symbols used
to express Boolean functions

Ty exam)
P+QO:Rl<« R2+R3. R4« R5VR6

@?@ @wtm A@
¢ List of Logic Microoperation
e Truth Table for 16 functions for 2 variables : Tab. 4-5
e 16 Logic Microoperation : Tab. 4-6 -+ All other Operaﬁon_]
¢ Hardware Implementation _———~can be denved
e 16 microoperation —» Use onlyj‘r(AND, OR, XOR, Complement)
e One stage of logic circuit

inec | L [nla)

LAY —4~an =vy >y J7

CSE 211

Register Transfer and Micro-operations 60

Logic Microoperations

XY F, F, F,
0 0 0 0 0
0 1 0 0 0
1 0 0o 0 1
1 1 0o 1 0

F,=0 F<0
F, =xy F< AAB
F,=xy F< AAB

F,=x F<A
F,=x"y F< AANB
Fs=y F<B

Fi=x®y F< A®B
F,=x+y F< AVB

-0 O

F4 F5 Fﬁ F? FB F9 F'IO I:11 F12 F13 F14
000 01 1 1 1 1 1 1
1 111 00 00 1 1 1
001100 110 0 1
o1 01 010 1 0 1 0

TABLE 4-5. Truth Table for 16 Functions of Two Variables

Clear Fo=(xty)) F< AVB
AND F,=(x®y) F<A®B
F,=y F<B
Transfer A F,=xty Fe& AVB
F,=x F—A
Transfer B F,=x+y F< AVE
Ex-OR F,=(xy) F<AAB
OR F.=1 F<alll’s

TABLE 4-6. Sixteen Logic Microoperations

KINNC | L
™

NOR

Ex-NOR
Compl-B
Compl-A

NAND
set toall 1’s

L0,

CSE 211

TS COMS

A~a~g

Register Transfer and Micro-operations 61

Hardware Implementation

T

: 1 4X1
— MUX Fi
>
|>= 3 select
S1 I
So

Function table

Output p-operation

kR = O o|l¥»

F=AAB AND
F=AvVvB OR
F=A®B XOR

F=A Complement

m o r ol

CSE 211

LAY —4~an =vy >y

Register Transfer and Micro-operations 62

Applications of Logic Microoperations

» Logic microoperations can be used to manipulate individual bits or a
portions of a word in a register

» Consider the data in a register A. In another register, B, is bit data that
will be used to modify the contents of A

» Selective-set A<A+B
» Selective-complement A<—ADB
» Selective-clear A AePp
» Mask (Delete) A<—AeB
» Clear A—ADB
> Insert A<—(AeB)+C
» Compare A<—ADB

DY CO0S

CSE 211

Register Transfer and Micro-operations 63

Applications of Logic Microoperations

1. In a selective set operation, the bit pattern in B is used to set certain bits in A

1100 A,
1010 B
1110 A,, (A«<A+B)

If a bitin B is set to 1, that same position in A gets set to 1, otherwise that
bit in A keeps its previous value

2. In a selective complement operation, the bit pattern in B is used to
complement certain bits in A

1100 A,
1010 B

0110 A, (A< A ® B)

If a bitin B is set to 1, that same position in A gets complemented from its
original value, otherwise it is unchange

CSE 211

Register Transfer and Micro-operations 64

Applications of Logic Microoperations

3. In a selective clear operation, the bit pattern in B is used to clear certain bits
inA

1100 A
1010 B

0100 A,, (A<A - B

If a bitin B is set to 1, that same position in A gets set to 0, otherwise it is

unchanged
4. In a mask operation, the bit pattern in B is used to clear certain bits in A
1100 A
1010 B

1000 A, (A<A - B)

If a bitin B is set to 0, that same position in A gets set to 0, otherwise it is
unchanged

CSE 211

Register Transfer and Micro-operations 65

Applications of Logic Microoperations

1100 A
1010 B

0110 A,, (A< A ® B)

5. In a clear operation, if the bits in the same position in A and B are the same,
they are cleared in A, otherwise they are setin A

CSE 211

LAY —4~an =vy >y

Register Transfer and Micro-operations

66

Applications of Logic Microoperations

— Example

This is done as

6. Aninsert operation is used to introduce a specific bit pattern into A register,
leaving the other bit positions unchanged

— A mask operation to clear the desired bit positions, followed by
— An OR operation to introduce the new bits into the desired positions

e Suppose you wanted to introduce 1010 into the low order four bits of A:

* 1101
1111
1101
0000
1101

1101 1000 1011 0001
1101 1000 1011 1010

1000
1111
1000
0000
1000

1011
1111
1011
0000
1011

0001
0000
0000
1010
1010

A (Original)
A (Desired)

A (Original)
Mask

A (Intermediate)
Added bits

A (Desired)

VAT nYll NN il

CSE 211

INT IO U I e

Register Transfer and Micro-operations 67

Shift Microoperations

— Logical shift
— Circular shift
— Arithmetic shift

* There are three types of shifts

* What differentiates them is the information that goes into the serial input

* A right shift operation

Serial
input \
> > > > > g > —>
e A left shift operation
Serial
input
«— < < < < < < < «—

CSE 211

Register Transfer and Micro-operations 68

Logical Shift

In a logical shift the serial input to the shiftis a 0.

A right logical shift operation:

0

.,

4

A 4

A 4

4

\ 4

Y

A left logical shift operation:

A

l

A
A
A
A

A

A

In a Register Transfer Language, the following notation is used

— shl
— shr

Examples:
* R2 « shrR2
* R3 « shlIR3

for a logical shift left
for a logical shift right

fad(o]

CSE 211

LAY —4~an =vy >y

OO

Register Transfer and Micro-operations 69

Circular Shift

* In acircular shift the serial input is the bit that is shifted out of the other
end of the register.

e Aright circular shift operation:

\ 4

\ 4
A 4
A 4
A 4

4
\ 4
\ 4

* A left circular shift operation:

A
A
A
A
A
A

* In aRTL, the following notation is used
— il for a circular shift left
— cir for a circular shift right
— Examples:
* R2 «cirR2
* R3 «cilR3

KINNC | L
™

TS COMS

CSE 211

Register Transfer and Micro-operations 70

Arithmetic Shift

* An arithmetic shift is meant for signed binary numbers (integer)
e An arithmetic left shift multiplies a signed number by two

* An arithmetic right shift divides a signed number by two

* Sign bit : 0 for positive and 1 for negative

* The main distinction of an arithmetic shift is that it must keep the sign of
the number the same as it performs the multiplication or division

* Aright arithmetic shift operation:

sign
bit

A 4
\ 4
\ 4
A 4
\ 4
\ 4
A 4

\ 4

* A left arithmetic shift operation:

sign /
/ bit [< <

A
A
A
A

CSE 211

Register Transfer and Micro-operations 71

Arithmetic Shift

* An left arithmetic shift operation must be checked for the overflow

0
"

sign
bit

A
A
A
A
A
A
A

Before the shift, if the leftmost two
,ﬂ OV bits differ, the shift will result in an

overflow

e |n a RTL, the following notation is used

— ashl for an arithmetic shift left
— ashr for an arithmetic shift right
— Examples:

» R2 <« ashr R2
» R3 <« ashl R3

LAY —4~an =vy >y

CSE 211

Register Transfer and Micro-operations 72

Hardware Implementation of Shift Microoperation

¢ Hardware Implementation(Shifter) :

Serial GEIE(EESD
input(IR) ,//

¢ - Function Table

MUIX - HD

Select output
S HO H1 H2 H3

s 0 IR A0 A1 A2
A[} MUIX

Al o — HI1 1 A1 A2 A3 IL
A3

ML

a H2

ML

o H3
.T 1
Serial

input(IL)

CSE 211

Register Transfer and Micro-operations

/3

Arithmetic Logic and Shift Unit

S3

S2
S1
SO

Arithmetic

Circuit

i+1

Select

w N = O

4x1
MUX

i+1
Logic i
Circuit
shr
shi

PRPOOO0OO0OO0ODO0DO0OO0OO0OO0O0O0OWm

w
(9]

PORPRRPRRPFRPROOODODOOOON

XXRrRrROORRRROOOOX

XXPRPrOrRORROORROOZ

XXXXXXROROROROOD

5

Operation
F=A
F=A+1
F=A+B
F=A+B+1
F=A+PB
F=A+B'+1
F=A-1
F=A
F=AAB
F=AvB
F=A®B
F=A
F=shrA
F=shlA

Ao]

CSE 211

LAY —4~an =vy >y

T

CSE211
Computer Organization and Design

Instruction Codes
Computer Registers

KIDS Labs 74

Basic Computer Organization and Design 75

Overview

» Instruction Codes

» Computer Registers

» Computer Instructions

» Timing and Control

» Instruction Cycle

» Memory Reference Instructions
» Input-Output and Interrupt

» Complete Computer Description

CSE 211

LAY —4~an =vy >y

Basic Computer Organization and Design 76

Introduction

e Organization of computer is defined by its :
* Internal Registers
 Timing and Control Structure
* Set of instructions that it uses

* Every different processor type has its own design (different registers, buses,
microoperations, machine instructions, etc)

 Modern processor is a very complex device

* |t contains
— Many registers
— Multiple arithmetic units, for both integer and floating point calculations
— The ability to pipeline several consecutive instructions to speed execution
— Etc.

 However, to understand how processors work, we will start with a
simplified processor model

CSE 211

Basic Computer Organization and Design 77

Basic Computer

* The Basic Computer has two components, a processor and memory
* The memory has 4096 words in it

— 4096 = 212, so it takes 12 bits to select a word in memory
* Each word is 16 bits long

CPU RAM

15 0

4095

LAY —4~an =vy >y

CSE 211

Basic Computer Organization and Design 78

Instruction

YV V V

Program
» A sequence of (machine) instructions
Instruction

» binary code that specifies a sequence of microoperations for a
computer.

The instructions of a program, along with any needed data are stored in
memory

The CPU reads the next instruction from memory
It is placed in an Instruction Register (IR)

Control circuitry in control unit then translates the instruction into the
sequence of microoperations necessary to implement it

CSE 211

Basic Computer Organization and Design 79

Instruction Format

>

Instruction Codes

» A group of bits that tell the computer to perform a specific operation (a
sequence of micro-operation)

A computer instruction is often divided into two parts
» An opcode (Operation Code) that specifies the operation for that instruction
» Sometimes called as Macrooperation

» An address that specifies the registers and/or locations in memory to use for
that operation

In the Basic Computer, the memory contains 4096 (= 2'2) words, we needs 12 bit to
specify which memory address this instruction will use

In the Basic Computer, bit 15 of the instruction specifies the addressing mode (O:
direct addressing, 1: indirect addressing)

Since the memory words, and hence the instructions, are 16 bits long, that leaves 3
bits for the instruction’s opcode

CSE 211

Basic Computer Organization and Design 80

Instruction Format

> Sometimes the address bit of instruction code represent various different
information, classified into different Instruction formats :

» Immediate Instruction : when second part of instruction specifies operand

» When second part of address specify address :

» Direct Addressing : second part of instruction specifies address of an
operand

» Indirect Addressing : second part of instruction designates an address of a
memory in which the address of the operand is found

Instruction Format

15 14 12 11
| | Opcode | Address -I

\

Addressing
mode

VAT nYll NN (oY)

DY CO0S oY

CSE 211

Basic Computer Organization and Design 81

Addressing Mode

The address field of an instruction can represent either

— Direct address: the address in memory of the data to use (the address of the operand), or
Indirect address: the address in memory of the address in memory of the data to use

Direct addressing Indirect addressing

2> |olabp | 457 35 [1]abD | 300
300 1350
457 Qperand
1350 Qperand
\ 4 A 4
(+) S(+)
NS
L 2
| AC | | AC |
| |

« Effective Address (EA)

— The address, that can be directly used without modification to access an operand for a
computation-type instruction, or as the target address for a branch-type instruction

csE211

ao
H

Basic Computer Organization and Design 82

Processor Register

YV VYV

A processor has many registers to hold instructions, addresses, data, etc

The processor has a register, the Program Counter (PC) that holds the
memory address of the next instruction to be executed

Since the memory in the Basic Computer only has 4096 locations,
the PC only needs 12 bits

In a direct or indirect addressing, the processor needs to keep track of
what locations in memory it is addressing: The Address Register (AR) is
used for this

The AR is a 12 bit register in the Basic Computer

When an operand is found, using either direct or indirect addressing, it
is placed in the Data Register (DR). The processor then uses this value as
data for its operation

The Basic Computer has a single general purpose register — the
Accumulator (AC)

Q)

DY CO0S

CSE 211

Oz

Basic Computer Organisation and Design 83

Processor Register

» The significance of a general purpose register is that it can be referred to in
instructions

e.g. load AC with the contents of a specific memory location; store the contents of AC
into a specified memory location

» Often a processor will need a scratch register to store intermediate results
or other temporary data; in the Basic Computer this is the Temporary
Register (TR)

» The Basic Computer uses a very simple model of input/output (I/0)
operations

Input devices are considered to send 8 bits of character data to the processor

The processor can send 8 bits of character data to output devices

» The Input Register (INPR) holds an 8 bit character gotten from an input
device

> The Output Register (OUTR) holds an 8 bit character to be send to an
output device

VAT nYll NN (o]o]

DY CO0S oI

CSE 211

Basic Computer Organization and Design 84

Processor Register

Registers in the Basic Computer

9 000
L]

List of BC Registers

DR 16 Data Register Holds memory operand

AR 12 Address Register Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction Register Holds instruction code

PC 12 Program Counter Holds address of instruction
TR 16 Temporary Register Holds temporary data

INPR 8 Input Register Holds input character
OUTR 8 Output Register ..., Holds output character

1 0

. PC :

. : Memory

. 11 0 .

r AR 4096 x 16

c 0

§ IR :...........0...0...0......................0...~ CPU
1I§ 0 15 0
. TR DR

7 0o 7 0 5 0
: ODUTR INPR AC

IAYE —g—an ==y~)

CSE 211

Basic Computer Organization and Design 85

Common Bus System

Basic computer : 8 register, a memory unit and a control unit

The registers in the Basic Computer are connected using a bus

This gives a savings in circuitry over complete connections between
registers

Output of 7 register and memory connected to input of bus

Specific output that is selected for bus lines will be determined by
selection variables Sz, S1, So

lllll L oL

CSE 211

DY CO0S oI

Basic Computer Organization and Design 86

Common Bus System

S2 ::
S1 Bus
SO —*_
> Memory unit 7
4096 x 16 <
| | Address
Write Read
Ul AR 1 ol 1
LD INR CLR
| PC & '! 2
LD INR CLR
g DR | 3
1 1 1 —_
LD INR CLR
o A F—| AC N > 4
| 1 1 —_
r LD INR CLR
I INPR I
> IR ol 5
| |
LD
g TR ol " 6
| | | | I
LD INR CLR
> OUTR
; i Clock
LD
— P S—

QL

CSE 211

DY CO0S

A=A~y

Basic Computer Organization and Design

Common Bus System

» Three control lines, S,, S;, and S, control which register the bus

selects as its input

S,S5,S, | Register
0 00| x
0 01| AR
010 PC
011 DR
100, AC
101 IR
110 TR
111 Memory

» Either one of the registers will have its load signal activated, or the

memory will have its write signal activated
Will determine where the data from the bus gets loaded

» Memory places its 16 bit output on bus when read input is

activated and S2S1S0=111

CSE 211

DY CO0S

Basic Computer Organization and Design

Common Bus System

> 4 register DR, AC, IR, TR is 16 bit. The 12-bit registers, AR and PC,
have 0’s loaded onto the bus in the high order 4 bit positions

» When the 8-bit register OUTR is loaded from the bus, the data
comes from the low order 8 bits on the bus

> INPR - connected to provide information to bus
- receives character from input device and transfer to AC
» OUTR - can only receive information from bus
- receives a character from AC and delivers to Output device

» Three types of input to AC:
» from AC : complement AC, Shift AC
» from DR : arithmetic and logic microoperation
» from INPR

VAT nYll NN [eXe]

INT IO U I hdd

CSE 211

Basic Computer Organization and Design

Common Bus System

>

>

Bus lines connected to inputs of 6 registers and memory

» Three types of input to AC :

» from AC : complement AC, Shift AC
» from DR : arithmetic and logic microoperation
» from INPR

Input/output data connected to common bus but memory address
connected to AR

lllll Lo Q0

CSE 211

DY CO0S =g

CSE211
Computer Organization and Design

Computer Instructions

Timing and Control

Instruction Cycles

Memory Reference Instructions
Input Output and Interrupts

Complete Computer Description

KIDS Labs 90

Basic Computer Organization and Design 91

Overview

» Instruction Codes

» Computer Registers

» Computer Instructions

» Timing and Control

» Instruction Cycle

» Memory Reference Instructions
» Input-Output and Interrupt

» Complete Computer Description

VAT nYll NN
~

\'s]
N

CSE 211

DY CO0S

Basic Computer Organization and Design 92

Basic Computer Instructions

Basic Computer Instruction Format

1. Memory-Reference Instructions

(OP-code = 000 ~ 110)

0

I=0 : Direct. 1 15 14 12 11
[=1 : Indirect ™ | | opcode

Address

2. Register-Reference Instructions

15 1211

(OP-code =111, | =0)
0

0 1 1 1 Register operation

3. Input-Output Instructions

15 1211

(OP-code =111, |1 = 1)

0

12131 |

1/O operation

.

KINNC | L
™

(ale]

TS COMS

CSE 211

T

Basic Computer Organization and Design 93

Basic Computer Instructions

> Only 3 bits are used for operation code

» It may seem computer is restricted to eight different
operations

» however register reference and input output instructions use
remaining 12 bit as part of operation code

> so total number of instruction can exceed 8

» Infact total no. of instructions chosen for basic computer is 25

lllll Lo (als]

CSE 211

DY CO0S ==y

Basic Computer Organization and Design

94

Basic Computer Instructions

Hex Code

Symbol | I=0 =1 Description

AND OXXX 8xxX AND memory word to AC

ADD IXXX 9XXX Add memory word to AC

LDA 2xxx Axxx| Load AC from memory

STA 3xxx Bxxx| Store content of AC into memory
BUN 4xxx CxXxx Branch unconditionally

BSA 5xxx Dxxx| Branch and save return address
1SZ 6xxx_ Exxx| Increment and skip if zero

CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero

HLT 7001 Halt computer

INP F800 Input character to AC

ouT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt on

IOF FO40 _Interrupt off

CSE 211

LAY

L= g~ am =va~po)

Basic Computer Organization and Design 95

Instruction Set Completeness

A computer should have a set of instructions so that the user can construct machine
language programs to evaluate any function that is known to be computable.

The set of instructions are said to be complete if computer includes a
sufficient number of instruction in each of the following categories :

> Functional Instructions

- Arithmetic, logic, and shift instructions
- ADD, CMA, INC, CIR, CIL, AND, CMA, CLA

> Transfer Instructions

- Data transfers between the main memory and the processor registers
- LDA, STA

> Control Instructions

- Program sequencing and control
- BUN, BSA, 1SZ

» Input/output Instructions

- Input and output
- INP, OUT

CSE 211

Basic Computer Organization and Design 96

Control Unit

» Control unit (CU) of a processor translates from machine instructions
to the control signals for the microoperations that implement them

» Control units are implemented in one of two ways

Hardwired Control

CU is made up of sequential and combinational circuits to generate the control
signals

Advantage : optimized to provide fast mode of operations

Disadvantage : requires changes in wiring if design has been modified

Microprogrammed Control

A control memory on the processor contains microprograms that activate the
necessary control signals

» We will consider a hardwired implementation of the control unit for
the Basic Computer

laVal

DY CO0S

CSE 211

A~y

Basic Computer Orgsnization and Design 97

Timing and Control

Control unit of Basic Computer

Instruction register (IR)

[15 |

14 13 12 11-0 | Other inputs

3x8
decoder >
76543210
IRRNNN Do -
| ®1 Combinational
D
7 > Cont_rol
logic
>
115 >
T
S |
15 14 210
4x 16
decoder
4-bit -e———— Increment (INR)
sequence @ (Clear (CLR)
counter
(SC) <]e——— Clock

Control
signals

CSE 211

LAY —4~an =vy >y

Basic Computer Orgsnization and Design 98

Timing Signals

- Generated by 4-bit sequence counter and 4x16 decoder
- The SC can be incremented or cleared.

= Example: To, Tl’ TZ’ T3’ T4’ To’ Tl’ “ e
Assume: At time T,, SC is cleared to 0 if decoder output D3 is active.

D,T,:SC <0

coo {1 §1_ 41 51§

T4

TO

TO \
T1 \

T2 \

T3 \

Ta \

D3

cir T\ \

SC

[VAInYl YN
™

faYe)

TS COMS

CSE 211

T

Basic Computer Orgsnization and Design 99

Instruction Cycle

2.
3.
4

> In Basic Computer, a machine instruction is executed in the following
cycle:
1.

Fetch an instruction from memory
Decode the instruction
Read the effective address from memory if the instruction has an indirect address

Execute the instruction

» After an instruction is executed, the cycle starts again at step 1, for the
next instruction

Note: Every different processor has its own (different) instruction cycle

CSE 211

LAY —4~an =vy >y

Basic Computer Organization and Design 100

Fetch and Decode

Initially PC loaded with address of first instruction and Sequence counter
cleared to 0, giving timing signal To

TO: AR <PC
T1: IR< M[AR], PC <« PC+1

T2: DO,..., D7 < Decode IR(12-14), AR < IR(0-11), | < IR(15)

inec | L 100

LAY —4~an =vy >y TOO

CSE 211

Basic Computer Organization and Design 101

Fetch and Decode

Fetch and Decode

T1

TO

TO: AR «BPC (S,S,S,=010, TO=1)
T1:IR< M[AR], PC< PC+1 (S0S152=111, T1=1)
T2: DO, ..., D7 < Decode IR(12-14), AR < IR(0-11), | <— IR(15)

,]

EEamE

.JN >

=
ERa

Address
3 I Read
> AR >l

- PC A »12
(> L |
INR
> IR A *15
‘ LD

—— Clock

CSE 211

DY CO0S

Basic Computer Organization and Design 102

Fetch and Decode

» Figure shows how first two statements are implemented in bus system

> AtTo:
» 1. Place the content of PC into bus by making S251S0=010
» Transfer the content of bus to AR by enabling the LD input of AR

> AtTi:

1. Enable read input of memory

2. Place content of bus by making $251S0=111

3. Transfer content of bus to IR by enabling the LD input of IR

YV V V VY

4. Increment PC by enabling the INR input of PC

lllll Lo 1020

DY CO0S TOZ

CSE 211

Basic Computer Organization and Design 103

Determine the Type of Instructions

Start
SC«<--0

R

AR <-- PC

‘ T1

IR <- M[AR], PC <- PC+1

‘ T2

Decode Opcode in IR(12-14),
AR <-- IR(0-11), | <-- IR(15)

TO

(Register or 1/10) =1 =0 (Memory-reference)

(10) =1 =0 (register) (indirect) =1 = 0 (direct)

T3 T3 T3
Execute Execute AR <-- M[AR]_I Nothing]
input-output register-reference l ‘
instruction instruction
SC <- 0 SC <- 0 Execute T4
memory-reference
instruction
SC <- 0

Fig : Flow chart for Instruction Cycle

CSE 211

VAT n Yl PN N 102
DY CO0S TS

Basic Computer Organization and Design 104

Determining Type of Instruction

»D'71T3: AR <« M[AR]
»D'71'T3:Nothing
» D71'T3: Execute a register-reference instr.

»D7IT3: Execute an input-output instr.

LAY —4~an =vy >y

CSE 211

Basic Computer Organization and Design 105

Register Reference Instruction

Register Reference Instructions are identified when

-D,=1,1=0
- Register Ref. Instr. is specified in by ~ b,; of IR
- Execution starts with timing signal T,

r =D, I'T; => Register Reference Instruction

B, = IR(i) , i=0,1,2,...,11 e.g. rBi1=CLA

r: SC«0

CLA | rBy: AC <0

CLE rB,o: E«<O0

CMA | rB,: AC « AC’

CME | rByg: E«F

CIR rB,: AC « shr AC, AC(15) « E, E < AC(0)

CIL rBy: AC <« shl AC, AC(0) < E, E «— AC(15)

INC rB;: AC—AC+1

SPA rB,: if (AC(15) = 0) then (PC < PC+1)

SNA | rB;: if (AC(15) = 1) then (PC <« PC+1)

SZA rB,: if (AC = 0) then (PC < PC+1)

SZE rB,: if (E = 0) then (PC « PC+1)

HLT rB,: S < 0 (Sis a start-stop flip-flop)

100

CSE 211

DY CO0S

T

Basic Computer Organization and Design 106

Memory Reference Instructions

Symbol g::;z:?n Symbolic Description

AND D, AC < AC A M[AR]

ADD D, AC < AC+MI[AR],E«C_,

LDA D, AC < MIAR]

STA D, M[AR] < AC

BUN D, PC < AR

BSA D, M[AR] < PC,PC«< AR+1

1SZ D, M[AR] < MI[AR] + 1, if M[AR] + 1 = 0 then PC « PC+1

- The effective address of the instruction is in AR and was placed there during
timing signal T, when | =0, or during timing signal T; when =1

- Memory cycle is assumed to be short enough to complete in a CPU cycle

- The execution of MR instruction starts with T,

AND to AC //performs AND logic with AC and memory word specified by EA
D,T,: DR <« M[AR] Read operand
DTs: AC<« ACADR,SC«0 AND with AC

VAT n Yl PN N «WaVal

DY CO0S TOO

CSE 211

Basic Computer Organization and Design 107

Memory Reference Instructions

ADD to AC // add content of memory word specified by EA to value of AC
sum is transferred to AC and Carry to E (Extended Accumulator)

D,T,: DR < M[AR] Read operand
D,T;: AC<«<AC+DR,E«C, ,SC«<0 AddtoACandstorecarryinE

LDA: Load to AC // Transfers memory word specified by memory address to AC
D,T,: DR <« M[AR]
D,T;: AC«DR,SC«0

STA: Store AC // Stores the content of AC into memory specified by EA
D;T,: M[AR] < AC,SC«0

BUN: Branch Unconditionally // Transfer program to instruction specified by EA
D,T;; PC<«AR,SC<«0

inc 1 L Walwi

DY CO0S L7

CSE 211

Basic Computer Organization and Design 108

BSA: Branch and Save Return Address // 1. stores address of next instruction in sequence (PC) into
address specified by EA 2. EA+1 transfer to PC serve as 1% inst. In subroutine
M[AR] <« PC,PC«— AR +1
BSA:
D.T,: M[AR] < PC, AR« AR+1
D.T.: PC« AR,SC«0
BSA: Example
M[135] « 21, PC« 135+ 1=136
Memory, PC, AR at time T4 Memory, PC after execution
20 (0 BSA 135 20 |0 BSA 135
PC=21 | Next instruction 21 | Next instruction
AR =135 135 21
136 Subroutine PC=136 Subroutine
1 BUN 135 1 BUN 135

LAY —4~an =vy >y TOO

CSE 211

Basic Computer Organization and Design 109

Memory Reference Instructions

ISZ: Increment and Skip-if-Zero
// increments the word specified by effective address,
and if incremented value=0, PC incremented by 1

D.T,: DR« M[AR]
D,T.: DR« DR+1
D,T,: M[AR] < DR, if (DR = 0) then (PC <~ PC+1), SC<«0

inc 1 L 100

DY CO0S TOD

CSE 211

CSE 211

Basic Computer Organization and Design 110
Flow Chart - Memory Reference Instructions
Memory-reference instruction
AND ADD 1 LDA STA
[Dol 4 l DqT 4 Dol 4 l DJ 4
DR < MI[AR] DR < M[AR] DR « M[AR] M[AR] «— AC
SC«0
l Dol 5 l DT 5 l DT
AC<«AC DBR AC « AC + DR AC < DR
SC«0 E < Cout SC«0
SC<«0
BUN BSA ISZ
l Dyl 4 l Dol 4 v D4
PC < AR MI[AR] < PC DR < M[AR]
SC«0 AR« AR+1
l Dol 5 v _Dbds
PC « AR DR«<DR+1 L|
SC«0
v Del ¢
M[AR] < DR
If (DR = 0)
then (PC < PC+1)
Isco

Hs
®

Basic Computer Organization and Design

111

Input/Output and Interrupt

A Terminal with a keyboard and a Printer

Input-Output Configuration

Input-output
terminal

Printer

INPR
OUTR
FGI
FGO
IEN

Input register - 8 bits
Output register - 8 bits
Input flag - 1 bit
Output flag - 1 bit
Interrupt enable - 1 bit

Serial _ Computer
comirrr‘\tuer:lfgacgon registers and
flip-flops

—
ntorface <—LQ_TR_I lFco |
| A1c[|

Transmitter
Keyboard ™| “interface 4’|_I.N.EB_| LEGLI

- The terminal sends and receives serial information

- The serial info. from the keyboard is shifted into INPR

- The serial info. for the printer is stored in the OUTR

- INPR and OUTR communicate with the communication interface serially and with
the AC in parallel.
- The flags are needed to synchronize the timing difference between 1/0 device and
the computer

—— Serial Communications Path
= Parallel Communications Path

1 5

1 5

CSE 211

DY CO0S

Basic Computer Organization and Design 112

Determining Type of Instruction

» FGI =1 when new information available at input device,
and cleared to 0 when information accepted by
computer

» Initially FGI=0, new key pressed , 8 bit alphanumeric
shifted to INPR and FGI=1, Computer checks flag if 1
then transfer content to AC and clear FGI to 0.

» Initially FGO=1,
- computer checks flag bit if 1, then OUTR €< AC and
clears FGO=0
- O/P device accepts information prints character and
finally sets FGO=1.

DY CO0S

CSE 211

Basic Computer Orgsnisation and Design 113

Input/Output Instructions

I/0 instructions are needed for transferring info to and from AC register, for
checking the flag bits and for controlling interrupt facility

D,IT, =p
IR(i)=B,i=6,..,11

p: SC«0 Clear|SC
INP pB;;: AC(0-7) <~ INPR, FGl « 0 Input char. to AC
OUT | pB,,: OUTR « AC(0-7), FGO «0 Output char. from AC

SKI pBy: if(FGl = 1) then (PC<«—PC+ 1) Skip aninput flag

SKO pBg: if(FGO = 1) then (PC <~ PC+ 1) Skip an output flag

ION pB: IEN < 1 Interrupt enable on
|OF pB.: IEN<«O Interrupt enable off

~
D
N
b
H
H
({ §]

DY CO0S

CSE 211

Basic Computer Organization and Design 114

Program controlled Input/Output

* Program-controlled I/O

-Continuous CPU involvement
CPU keeps checking flag bit. If 1 then initiates transfer
I/0 takes valuable CPU time

-Difference in information flow rate makes this type of
transfer inefficient

e Alternative approach is to let external device inform the computer when
it is ready for transfer, in meantime computer can be busy with other task

- Interrupt

<
D
h
-
H
H
S

DY CO0S

CSE 211

Basic Computer Organization and Design 115

Interrupt Initiated Input/Output

- Open communication only when some data has to be passed --> interrupt.
- The 1/0 interface, instead of the CPU, monitors the 1/0 device.

- When the interface founds that the 1/O device is ready for data transfer,
it generates an interrupt request to the CPU

- Upon detecting an interrupt, the CPU stops momentarily the task
it is doing, branches to the service routine to process the data
transfer, and then returns to the task it was performing.

IEN (Interrupt-enable flip-flop)

- can be set and cleared by instructions
- When cleared (IEN=0) the computer cannot be interrupted
- When set (IEN=1) the computer can be interrupted

~
D
N
b
H
H
an

DY CO0S

CSE 211

Basic Computer Organization and Design

116

Flow Chart of Interrupt Cycle

Instruction

Fetch and decode
instructions

Execute)\
instructions

R = Interrupt f/f

Interrupt cycle

Store return address
in location 0

M[0] « PC

!

Branch to location 1
PC«1

IEN <O
R«0

address 1.

an interrupt service routine

INPR
OUTR
FGI
FGO
IEN

Input register - 8 bits
Output register - 8 bits
Input flag - 1 bit
Output flag - 1 bit
Interrupt enable - 1 bit

- The interrupt cycle is a HW implementation of a branch and save return address operation.
- At the beginning of the next instruction cycle, the instruction that is read from memory is in

- At memory address 1, the programmer must store a branch instruction that sends the control to

- The instruction that returns the control to the original program is "indirect BUN 0"

CSE 211

DY CO0S

Hs
»

Basic Computer Orgsnization and Design 117

Register Transfer Operations in Interrupt Cycle

Memory
Before interrupt After interrupt cycle
0 0 256
1 L0 BUN 1120 PC=1 10__ _BUN 1120
Main Main
255 Program 255 Program
PC =256 256
1120 1120
I/0 le]
Program Program
1 BUN 0 1 BUN 0

Register Transfer Statements for Interrupt Cycle
-R F/[F <1 ifIEN (FGI + FGO)T,'T,'T,’
< T,'T,'T, (IEN)(FGI + FGO): R« 1

- The fetch and decode phases of the instruction cycle

must be modified =»Replace T,, T,, T, with R'T,, R'T;, R'T,
- The interrupt cycle :

RT,, AR« 0, TR« PC
RT,: M[AR] « TR, PC<«0
RT,, PC<«PC+1, [EN«O0, R« 0,SC<«0

DY CO0S

CSE 211

H
H
N

Basic Computer Organization and Design 118

Complete Computer Description

| start |
SC«0,IEN<-0,R<0

=0(Instruction RA =1(Interrupt
Cycle) \/ Cycle)
v _RT, ! RT,
AR « PC | AR<0, TR« PC |
| R'T, | RTy
IR < M[AR], PC<«PC+1 M[AR] < TR,PC« 0
| R'T, RT,
AR <« IR(0~11), | « IR(15) PC<«PC+1,IEN <« O
D,...D; <~ Decode IR(12 ~ 14) R« 0,SC«0
' I
=1(Register or 1/0) /Dk =0(Memory Ref) INPR Input regist.er -8 bit%
\7/ OUTR Output register - 8 bits
FGI Input flag - 1 bit
FGO Output flag - 1 bit
=1 (1/0) (Register) =1(Indir) =0(Dir IEN Interrupt enable - 1 bit
Ul NV
D,iT; ¢ D,IT;, § D,/IT3 D,/I'T3 |
Execute Execute AR <- M[AR] | Idle |
1/0 RR
Instruction Instruction v L 4
Execute MR D,'T4
Instruction

VAT nYll NN

H
H
¢ o

CSE 211

TS

Basic Computer Organization and Design 119

Complete Computer Design
Fetch R'T,: AR «PC
R'T,: IR < M[AR], PC« PC+1
Decode R'T,: DO, ..., D7 < Decode IR(12 ~ 14),
AR « IR(0 ~ 11), | « IR(15)
Indirect D,'IT,: AR < M[AR]
Interrupt
Re«1
RT,: AR« 0, TR « PC
RT,: M[AR] < TR, PC « 0
RT,: PC<PC+1,IEN«<0O,R<«<0,SC« 0
Memory-Reference
AND D,T,: DR < M[AR]
D,Ts: AC < ACADR,SC«0
ADD D,T,: DR < M[AR]
D,T.: AC < AC +DR,E « C,,, SC« 0
LDA D,T,: DR < M[AR]
D,Ts: AC<DR,SC«0
STA D,T,: M[AR] < AC, SC « 0
BUN D,T,: PC« AR,SC« 0
BSA D;T,: M[AR] < PC,AR < AR+1
D,T.: PC< AR,SC«0
1Sz D¢T,: DR < M[AR]
DT DR« DR +1
DT M[AR] < DR, if(DR=0) then (PC < PC + 1),
SC«0
VAT mYelll] L

Hs
5]

DY CO0S

CSE 211

Basic Computer Organization and Design 120

Complete Computer Design

Register-Reference

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

Input-Output

INP
ouT
SKi
SKO
ION
IOF

DITy=r
IR(i) = B;
r:
rB,;:
rB,,:
rBgy:
rBg:
rB,:
rBg:
rBs:
rB,:
rB;:
rB,:
rB,:
rBy:

D,IT;=p
IR(i) = B,
p:
PBy:
PB4y
pB,:
pBg:
pB,:
pBg:

(Common to all register-reference instr)
(i=0,1,2, ..., 11)

SC«0

AC« 0

E«<O

AC < AC'

E<« E

AC < shr AC, AC(15) < E, E «— AC(0)
AC < shl AC, AC(0) « E, E « AC(15)
AC<—AC+1

If(AC(15) =0) then (PC < PC + 1)
If(AC(15) =1) then (PC < PC + 1)
If(AC = 0) then (PC < PC + 1)

If(E=0) then (PC « PC + 1)

S«0

(Common to all input-output instructions)
(i=6,7,8,9,10,11)

SC«0

AC(0-7) < INPR, FGl < 0

OUTR « AC(0-7), FGO <0

If(FGI=1) then (PC < PC + 1)

If(FGO=1) then (PC « PC + 1)

IEN « 1

IEN <O

VAT nYll NN

120

CSE 211

DY CO0S

T

Basic Computer Organization and Design 121

Design of a Basic Computer(BC)

Hardware Components of BC

A memory unit: 4096 x 16.
Registers:

AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
Flip-Flops(Status):

I, E, R, IEN, FGI, and FGO
Decoders: a 3x8 Opcode decoder

a 4x16 timing decoder

Common bus: 16 bits
Control logic gates:
Adder and Logic circuit: Connected to AC

Control Logic Gates

- Input Controls of the nine registers

- Read and Write Controls of memory

- Set, Clear, or Complement Controls of the flip-flops
-S,, S, Sy Controls to select a register for the bus

- AC, and Adder and Logic circuit

DY CO0S

CSE 211

Hs
Hs

Basic Computer Organization and Design 122

Design of a Basic Computer(BC)

AN

¢ Register Control : AR

e Control inputs of AR : LD, INR, CLR

in Tab. 5-6 >

e Control functions
LD(AR)=R'T,+R'T, + D,'IT,
CLR(AR) = RT,

INR(4R)= DT,

¢ Memory Control : READ

< 4R« 7~ Find all the statements that change the AR
= R

R'T,: AR« PC

R'T : AR« IR(0-11)
D.'IT; : AR < M[AR]
RI;: AR« 0

DI, : AR < AR+1

From BusﬁL AR 71i’To Bus

———) >

[
b—

E—

T 1

s

Ta

|

L/

L)

e Control inputs of Memory : READ, WRITE~<) MI4R] 7]

o Find all the statements that specify a read operation in Tab. 5-6 =? < M[AR]<__

e Control function

READ = R'T,+D.'IT,+(D, + D, + D, + D,)T,

¢ F/F Control ; [EN IEN «?

e Control funym
DB, 1 IEN «1

D——— ™,

7

PB, 1 IEN « 0

UL

RT,:IEN <0

Clock——

/N
J KQ(t+1
0 1 0
41 0 1
J SET Q
- IEN
KCLRﬁ

=D

17

CSE 211

LAY —4~an =vy >y

Tz

Basic Computer Organization and Design 123

Design of a Basic Computer(BC)

¢ Bus Control

X
» Control Function :|%, = DT} + DT x,
® X, =17 Bus« PC=Find ?« PC
o X,=1: Buis < Memory = Find 7 < M[AR]
» Same as Memory Read

» Control Function :|¥; = R'T; + D;'IT; + (Dy + Dy + D, + D,)T,

e Encoder for Bus Selection :
» ST Xy Xyt Xg + Xg
» Sy T Xt Xyt Xt X
» Sy =Xyt X+ Xt X,
o X,=1: Bus« AR=Find ?« AR
» DT, :
Djfj:

X, ——
PC « AR ?

3
PC « AR = Encoder

S Multiplexer
51 Bus Select
> Input

199

CSE 211

DY CO0S

T

