Computer Organization &
Assembly Languages

T —

Introduction

Pu-Jen Cheng
2008/09/15

i Course Administration

= Instructor: Pu-Jen Cheng (CSIE R323)
pjcheng(@csie.ntu.edu.tw
http://www.csie.ntu.edu.tw/~pjcheng

= Class Hours: 2:00pm-5:00pm, Monday

s Classroom: CSIE R102
s TA(S): £'72 B b93705014@ntu.edu.tw
= Course Information:

Announce: http.//www.csie.ntu.edu.tw/~pjcheng/course/asm2008/
Q&A: bbs://ptt.cc — CSIE _ ASM

Textbook

ASSEMBLY LANGUAGE
FOR INTEL-BASED COMPUTERS

FIFTH EDITION

KIP R. IRVINE

= Assembly Language for Intel-Based Computers, 5th Edition,
by Kip Irvine, Prentice-Hall, 2006
= hitp.//www.asmirvine.com

Assembly Language for Intel-Based Computers, 5th Edition

ASSEMBLY LANGUAGE

Printable Chapters

+ TOC and Preface
+ Chapter 1
+ Chapter 2
+ Chapter 3

Buy the book at Amazon.com
Find it on Bookfinder, com
Qfficial Prentice-Hall Web site
Microsoft's MASM Reference
Intel 14-32 Architecture Manuals

by Kip Irvine, Florida International University
ISBN: 0-13-238310 - 1

Published by: Prentice-Hall

Visit the Web site for the Fourth Edition...

Information and Help

Getting started

Bug reports

Link libraries and example programs
Where is the COROM?

Supplemental files

Chapter objectives

Assembly language workbook
Supplemental articles

Help file for the book's link library

Contacts

Instructor resources
Discussion group (Y.
International reader

i References

COMPUTER SYSTEMS Computer Systems: A Programmer's Perspective

By Randal E. Bryant and David R. O'Hallaron,
Prentice Hall

http://csapp.cs.cmu.edu/

ASSEMB LY The Art of Assembly Language

LANGUAGE By Randy Hyde,
http://webster.cs.ucr.edu/AocA/Windows/PDFs/0 P
DFIndexWin.html

System Software: An Introduction to Systems
Programming

By Leland L. Beck

Addison-Wesley

i Pre-requisite

= Experiences in writing programs in a high-level
language such as C, C++, and Java

i Course Grading (tentative)

= Assignments (55%)

= Class participation (5%)
= Midterm exam (20%)

= Final exam (20%)

Materials

= Some materials used in this course are adapted from

» The slides prepared by Kip Irvine for the book, Assembly Language
for Intel-Based Computers, 5t Ed.

» The slides prepared by S. Dandamudi for the book, Introduction to
Assembly Language Programming, 2"d Ed.

> Introduction to Computer Systems, CMU
(http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/
15213-f05/wwwy/)
> Assembly Language & Computer Organization, NTU
(http://www.csie.ntu.edu.tw/~cyy/courses/assembly/06fall/news//)
(http://www.csie.ntu.edu.tw/~acpang/course/asm_2004)

i What is Assembly Language

= First Glance at Assembly Language

Translating Languages

‘ English: Display the sum of A times B plus C.

|

C++: cout<< (A*B + C);

l

Assembly Language:

mov eax,A

mul B
add eax,C

call Writelnt

Intel Machine Language:
A1 00000000

F7 25 00000004

03 05 00000008

E8 00500000

A Simple Example in VC++

*s helloworld - Microzsoft ¥izsual C++ [break] - [helloworld c]

File Edit Wiew Insert Pooject Debung Tool: Window Help

=2 | = & o o B @”hatch_readline_init j #

| | MIE BRI RE"

#include <stdio.h>

int main{wvoid}

{
int a, b, c, d;
= a = 1;
b = 2:
c = 3;
d = a =b + c;
printf{ "a = b + c = Jdwn", d };
return B;
3
ol |
=]] - - =]
T Context: |ma|n|] J K !\lame : Yalue
a {—HCE003INGA
b —BS 89934608
[—858993460
d —-85892923460

View/Debug Windows/Disassembly

*o helloworld - Microsoft ¥isnal C++ [break] - [Disassembly]

©_ File Edit View Insert Project Debug Tools Window Help

2 = Ha

IR R |hat-::h_read|ine_init

|

=l e

3:
i {
AaLB1818
aaL 61811
agLe1813
gL B1816
agLhB1817
agLB1818
agLaa1819
agLaB181c
aaL 61821
A8L 081826
5:

6z

Fil
agLe1628
8:
A8LB182F
9:

A84 81836
18:

aaL 81830
a6L 610408
A64L 61044
A8L 81847
11:

A84L 81840
A84 081 84D
A84 061 84E
AgL 81853
agLB1858
12:

int main{void)}

push
mou
sub
push
push
push
lea
mou
mou
rep stos
int a, b,

mov
imul
add
mov

ebp

ebp,esp

esp,58h

ebx=

esi

edi
edi,[ebp-58h]
ecx,14h
eax,BCCCCCCCCh
dword ptr [edi]

c, d;
dword ptr [ebp-4].1
dword ptr [ebp-8].,2
dword ptr [ebp-8Ch],3
-I-[:;

eax ,dword
eax ,dword
eax ,dword
dword ptr

ptr [ebp-4]
ptr [ebp-8]
ptr [ebp-8Ch]
[ebp-18h],eax

printf{ "a = b + c = Hdyn", d };

mou
push
push
call
add
return 8;

ecx,dword ptr [ebp-18h]
ecH

Eegizters
EAX = 888888065 EBX = FFFDABOA
ECX = 0888808068 EDX = B88438DAA
ESI = OAaBAdA6a EDI = AB12FF8EA
EIF = Ba481840 ESPF = BB12FF24
EBPF = B812FF88 EFL = 88888206 CS = 881EB
D5 = 8823 ES = 8823 55 = 86823 F5 = 083B
G5 = 8888 0OU=a UP=8 EI=1 FPL=8 ZH=08 AC=8
PE=1 C¥=8
B812FF70 = 00000005
STA = +8.000000000000000A0e+ 0000
ET1 = +8.00000000000000000e+0000
ST2 = +8.00000000000000000e+0000
ET2 = +8.00000000000000000e+0000
EThH = +8_00000000000000000e+0000
STS = +A_A0A0000000A0AABAAe+ A0
TG = +8.00000000000000000e+0000
ET7¥ = +8.00000000000000000e+0000
CTRL = 827F STAT = 8888 TAGS = FFFF
EIF = 0888008068 CS = 0068 DS = BO68
EDD = O@0800A0A

offset string "a = b + ¢ = %dwn" (0842801c)

printf (80481898)
esp,8

gcc -S prog.c

ken csie nio edo tw - PaTTY

.file Fprogl.ofr
Section .rodata

.Etring Ta Y kb 4+ o = Zdhn'
LLEexEt

.glolkhl m=ain
. LyneE main, E@function

leal [Ze=2p) , Zecx
ancdl 3 r EeE=Zp
pu=hl —d [EecM]

pushl Zebhp

o 1 Tesp, Zebhp
pu=shl e

sukbl s EFESD

o 1 P [Zebp)
o 1 P [Fekbpl
roons 1 P [ebp)
raos 1 [(Febp) , FTeax
irmmall - [(Zebpn)l , ZTeax
addl - [(Febpn) , FTeax
raows 1 Zeax, —o(Febn)
o 1 — S iExebnl , ZTeax
i Im g Fear, [Fezpl
oo 1 3.LC (==n]
call printt

mosF 1 3 Teax

Sccdl 3 Fr EE=p

popl ZecH

popl Zebhp

leal -3 [Fecx], Zesp
ret

.=i=ze main, ..—main

. ident FRZZC . (G 1. [prerelease) [(Dekbian
Section mote . GHT-stack, "', iproghic=s

hello.c
—>»

source

pre-
processor
(cpp)

h=1llo.1
———»

modified

program
(text)

compiler
(cal)

The Compilation System

source
program
(text)

printf.o
hellec.= |assembler| hello.o
(as)
assembly relocatable
program object
(text) programs
(binary)

linker
(1d)

hello
EEE—

executable

object
program
(binary)

i First Glance at Assembly Language

= Low-level language

> Each instruction performs a much lower-level task
compared to a high-level language instruction

> Most high-level language instructions need more than
one assembly instruction

= One-to-one correspondence between assembly
language and machine language instructions

> For most assembly language instructions, there is a
machine language equivalent

= Directly influenced by the instruction set and
architecture of the processor (CPU)

i Comparisons with High-level Languages

= Advantages of Assembly Languages
» Space-efficiency
(e.g. hand-held device softwares, etc)

> Time-efficiency
(e.g. Real-time applications, etc)

> Accessibility to system hardwares
(e.g., Network interfaces, device drivers, video games, etc)
= Advantages of High-level Languages
> Development
> Maintenance (Readability)
> Portability (compiler, virtual machine)

Comparisons with High-level Languages (cont.)

Type of Application

High-Level Languages

Assembly Language

Business application soft-
ware, written for single
platform, medium to large

si7e.

Formal structures make it easy to
organize and maintain large sec-

tions of code.

Minimal formal structure, so one
must be imposed by program-
mers who have varying levels of
experience. This leads to difficul-
ties maintaining existing code.

Hardware device driver.

Language may not provide for
direct hardware access. Even if it
does, awkward coding techniques
must often be used. resulting in
maintenance difficulties.

Hardware access is straightfor-
ward and simple. Easy to main-
tain when programs are short and
well documented.

Business application written
for multiple platforms (dif-
ferent operating systems).

Usually very portable. The source
code can be recompiled on each
target operating system with mini-
mal changes.

Must be recoded separately for
each platform. often vsing an
assembler with a different syn-
tax. Difficult to maintain.

Embedded systems and
compuler games requiring
direct hardware access.

Produces too much executable
code, and may not run efficientlv.

[deal, because the executable
code 1s small and runs quickly.

i Why Taking the Course?

Basic Concepts of
Computer —— | COmputer Design

Organization
Computer Organization
This Course Computer Architecture
Assembly System

—
Language Software

Assembler, Linker, Loader

Compiler, Operating System, ...

+

I really don’t think that you can write a book for
serious computer programmers unless you are
able to discuss low-level details.”

Donald Knuth (& 1E4/#)
The Art of Computer Programming

http://en.wikipedia.org/wiki/Donald_Knuth

i Course Coverage

Basic Concepts

IA-32 Processor Architecture
Assembly Language Fundamentals
Data Transfers, Addressing, and Arithmetic
Procedures

Conditional Processing

Integer Arithmetic

Advanced Procedures

Strings and Arrays

Structures and Macros

High-Level Language Interface
Assembler, Linker, and Loader
Other Advanced Topics (optional)

i What You Will Learn

= Basic principles of computer architecture

= [A-32 processors and memory management

= Basic assembly programming skills

= How high-level language is translated to assembly
= How assembly is translated to machine code

= How application program communicates with OS

= Interface between assembly to high-level language

Performance: Multiword Arithmetic

= Longhand multiplication 0101
. Final 128-bit result in P:A (1)18}
0101
= P:=0; count := 64 0101

« A ;= multiplier; B := multiplicand
=« While (count > 0)

if (LSBofA=1)

n thﬂ P :=P+B

o CF := carry generated by P+B
n elﬁ CF:=0

= endif

shift right CF:P:A by one bit position
count := count-1
end while

i Example

= B = 0101, (5)

After P+B After the shift
CF P A CF P A
Initial state | ?2 0000 1101 I
Iteration 1 0 0101 1101 ? 0010 1110
Iteration 2 0 0010 1110 ? 0001 O111
Iteration 3 0 0110 0111 ?2 0011 0011
Iteration 4 0 1000 0011 ? 0100 0001

Time Comparison

N
[

C version

(O8]
1

Time (seconds)

ASM version

0 20 40 60 80 100

Number of calls (in millions)

Multiplication time comparison on a 2.4-GHz Pentium 4 system

i Chapter 1: Basic Concept

= Virtual Machine Concept
= Data Representation
= Boolean Operations

Translating Languages

English: Display the sum of A times B plus C.

l

C++: cout<< (A*B + C);

l

Assembly Language:

mov eax,A

mul B
add eax,C

call Writelnt

Intel Machine Language:
A1 00000000

F7 25 00000004

03 05 00000008

E8 00500000

Virtual Machines

Abstractions for computers

Machine-independent
High-Level Language T

Assembly Language l -
Machine-specific

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic

i High-Level Language

= Level 5
= Application-oriented languages
> C++, Java, Pascal, Visual Basic . . .

= Programs compile into assembly language
(Level 4)

Assembly Language

4

Level 4

Instruction mnemonics that have a one-
to-one correspondence to machine
language

Calls functions written at the operating
system level (Level 3)

Programs are translated into machine
language (Level 2)

i Operating System

= Level 3
= Provides services to Level 4 programs

= Translated and run at the instruction set
architecture level (Level 2)

i Instruction Set Architecture

s Level 2

s Also known as conventional machine
language

= Executed by Level 1 (microarchitecture)
program

i Microarchitecture

s Level 1

= Interprets conventional machine
instructions (Level 2)

= Executed by digital hardware (Level 0)

i Digital Logic

= Level O

= CPU, constructed from digital logic gates
= System bus

= Memory

next: Data Representation

i Data Representation

= Binary Numbers
~ Translating between binary and decimal

= Binary Addition
= Integer Storage Sizes

= Hexadecimal Integers
» Translating between decimal and hexadecimal
» Hexadecimal subtraction

= Signed Integers
> Binary subtraction

= Fractional Binary Numbers
= Character Storage
= Machine Words

* Binary Representation

= Electronic Implementation
» Easy to store with bistable elements
> Reliably transmitted on noisy and inaccurate wires

la
-

3.3V
2.8V

0.5V
0.0V

& Binary Numbers

= Digitsare 1 and 0
> 1 = true
> 0 = false

= MSB — most significant bit
= LSB - least significant bit

= Bit numbering: [1011001010011100

Binary Numbers

= Each digit (bit) is either 1 or 0
= Each bit represents a power of 2:

Every binary
number is a
sum of powers
of 2

1

1

111111

1

27

26

Table 1-3 Binary Bit Position Values.

25

24 28 22 2

20

2"n Decimal Value 2"n Decimal Value
70 1 28 256

2! 2 2° 512

72 4 210 1024

73 N o1 2048

24 16 212 4096

25 32 2! 8192

26 64 214 16384

27 128 213 32768

i Translating Binary to Decimal

Weighted positional notation shows how to
calculate the decimal value of each binary bit:

dec= (D, ; x2")+ (D, ,x 2" + ..+ (D, x 21
+ (D, x 2%
D = binary digit

binary 00001001 = decimal 9:
(1x2)+(1x20)=09

i Translating Unsigned Decimal to Binary

= Repeatedly divide the decimal integer by 2.
= Each remainder is a binary digit in the translated value:

Division Quotient Remainder
3772 |8 l
18/ 2 Y 0
9/2 4 l
4/2 2 0
212 | 0
1 /2 () |

37 =100101

i Binary Addition

= Starting with the LSB, add each pair of digits, include the
carry if present.

0000l 1101]1

Integer Storage Sizes

Standard sizes: &

Table 1-4 Ranges of Unsigned Integers.

Storage Type Range (low-high) Powers of 2
Unsigned byte 0 to 255 Ot (28 - 1)

Unsigned word () to 63,5335 0 to {215 - 1)
Unsigned doubleword 0 to 4,294,967.295 0w (22-1)
Unsigned quadword 0 to 18.446,744.073,709.551,615 0w (2% -1

What is the largest unsigned integer that may be stored in 20 bits?

i Large Measurements

= Kilobyte (KB), 219 bytes

= Megabyte (MB), 22° bytes
= Gigabyte (GB), 239 bytes
= [erabyte (TB), 2% bytes
= Petabyte, 2°° bytes

= Exabyte, 290 bytes

= Zettabyte, 270 bytes

= Yottabyte, 280 bytes

= Googol, 1010

Hexadecimal Integers

Binary values are represented in hexadecimal.

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary Decimal Hexadecimal Binary Decimal | Hexadecimal
0000 0 0 1000 8 8

0001 l l 1001 9 9

0010 2 2 1010 10 A

0011 3 3 1011 | 1 B

0100 4 4 1100 12 C

0101 3 5 1101 13 D

0110 § 6 1110 14 E

0111 7 7 1111 15 F

i Translating Binary to Hexadecimal

= Each hexadecimal digit corresponds to 4 binary
bits.

= Example: Translate the binary integer
000101101010011110010100 to hexadecimal:

l 6 A 7 0 4

0001 0110 1010 0111 | O] 100

i Converting Hexadecimal to Decimal

= Multiply each digit by its corresponding power of
16:

dec = (D4 x 16%) + (D, x 162) + (D; x 161) + (D, x 169)

s Hex 1234 equals (1 x 16%) + (2 x 162) + (3 x 161) + (4
x 169), or decimal 4,660.

= Hex 3BA4 equals (3 x 16°) + (11 * 162) + (10 x 161) +
(4 x 169), or decimal 15,268.

Powers of 16

= Used when calculating hexadecimal values up to 8
digits long:

16" Decimal Value 16" Decimal Value
16° 1 164 65,536

16! 16 167 1.048.576

16> | 256 16° 16,777.216

60 | 4096 167 268,435,456

i Converting Decimal to Hexadecimal

Division Quotient Remainder
422/ 16 26 6

26/ 16 | A

1 /16 0 |

decimal 422 = 1A6 hexadecimal

Hexadecimal Addition

= Divide the sum of two digits by the number base (16).

= T[he quotient becomes the carry value, and the remainder
IS the sum digit.

36 28 28 BA
42 45 58 4B
78 6D 80 B5

|

21/16=1,rem 5

Important skill: Programmers frequently add and
subtract the addresses of variables and instructions.

‘L Hexadecimal Subtraction

= When a borrow is required from the digit to the left,
add 16 (decimal) to the current digit's value:

16 + 5 =21
L]
Cé 75
A2 47
24 2E

Practice: The address of var1 is 00400020. The
address of the next variable after var1 is 0040006A.
How many bytes are used by var1?

Signed Integers

= [he highest bit indicates the sign.
= 1 = negative, 0 = positive

1ot

0 jojojol1jol1]o

If the highest digit of a hexadecimal integer is > 7, the
value is negative. Examples: 8A, C5, A2, 9D

Forming the Two's Complement

s Bitwise NOT of the number and add 1

Starting value 00000001
Step 1: reverse the bits 11111110
Step 2: add 1 to the value from Step 1 11111110

+00000001
Sum: two’s complement representation 11111111

Note that 00000001 + 11111111 = 00000000

8-bit Two's Complement Integers

sign

bit

011 1 1 1 1 1 = 127
o 00 0 0O O 1 0 = 2
o 00 0 O O O 1 = 1
0 00 0 O O O 0 = 0
1T 11 1 1 1 1 1 = -1
111 11 1 1 0 = =2
1 0 0 0 0 0 0 1 = A2
1 0 0 0 0 0 0 0 = 128

8-bit two's complement integers

i Binary Subtraction

= When subtracting A — B, convert B to its two's
complement

= Add A to (-B)

00001100 ., 00001100
-00000011 11111101
00001001
Advantages for 2’s complement:
= No two O’s
= Sign bit

= Remove the need for separate circuits for add
and sub

= The highest bit is reserved for the sign. This limits

the range:

Ranges of Sighed Integers

Storage Type

Range (low-high)

Powers of 2

Signed byte

—128 to +127

202" 1)

Signed word —32,768 to +32.767 255 -
Signed doubleword —2,147,483,648 to 2,147.483,647 2o 2 -1
Signed quadword —9.223,372,036,854,775,808 to 26340 (293 1)

+9,223,372,036,854,775,807

i Fractional Binary Numbers

e

b. b,y s by, by by bybybsy *vs b,

— |

= Representation

> Bits to right of “binary point” represent fractional
powers of 2

> Represents rational number: Zbk'

Examples of Fractional Binary Numbers

= Value Representation
5-3/4 101.11,
2-7/8 10.111,
63/64 0.111111,

= Observations

> Divide by 2 by shifting right

> Multiply by 2 by shifting left

> Numbers of form 0.111111..., just below 1.0
«1/2+1/4+1/8+ ... +1/2/+ ... > 1.0
= Use notation 1.0 — ¢

i Representable Numbers

= Limitation
» Can only exactly represent numbers of the form x x 2¥
> Other numbers have repeating bit representations

= Value Representation
1/3 0.0101010101[01]...,
1/5 0.001100110011[0011]...,

1/10 0.0001100110011[0011]...,

i Converting Real Numbers

= Binary real to decimal real
110.011o =4+ 2+ 0.25+ 0.125 = 6.375

= Decimal real to binary real

0.5625 x 2 = 1.125 first bit
0.125 x 2 = 0.25 second bit
025 x2 = 05 third bit
05 x2 = 1.0 fourth bit

4.5625 =100.1001,

_ O O =

i True or False

s If x>0 then x+1>0

s If X<0 then x*2<0

s If x>y then -x < -y

s If X >=0 then -x<=0

s If xX<0 then -x>0

s If x>=0 then ((IXx—-1)&Xx) ==

s If X<O0&&kyYy>0 then x*y < O

s If X<O0 then (Xx~Ax>>31)+1)>0

Character Storage

= Character sets
> Standard ASCII (0 — 127)
» Extended ASCII (0 — 255)
. ANSI (0 — 255)
> Unicode (0 - 65,535)

= Null-terminated String
~ Array of characters followed by a null byte

= Using the ASCII table
» back inside cover of book

Machine Words

= Machine Has “Word Size”

> Nominal size of integer-valued data
= Including addresses
> Most current machines use 32 bits (4 bytes) words

« Limits addresses to 4GB
Users can access 3GB

= Becoming too small for memory-intensive applications
> High-end systems use 64 bits (8 bytes) words

= Potential address space ~ 1.8 X 101° bytes

= X86-64 machines support 48-bit addresses: 256 Terabytes
> Machines support multiple data formats

= Fractions or multiples of word size

= Always integral number of bytes

Word-Oriented Memory Organization
32-bit 64-bit

Words Words Bytes Addr.

0000

Addr 0001

1 0000 0002

m Addre_sses Specify Byte Ader o
Locations 0000 0004
. Address of first byte in Adar 0005
0004 0006

word _ 0007

» Addresses of successive 0008
words differ by 4 (32-bit) | A" 0009
or 8 (64-bit) 0008 1| Addr 0010

- 0011

0008 0012

Addr 0013

0012 0014

0015

i Data Representations

= Sizes of C Objects (in Bytes)

» C Data Type Typical 32-bit Intel IA32

= unsigned
= int

= long int
= Char

= Short

=« float

= double

= Char *
Or any other pointer

4

A OO AN B~ DN

N O MNP DM DD

X<
o
i

(@)
coO oo ~ANE DMNDMMDMND

i Byte Ordering

= How should bytes within multi-byte word be
ordered in memory?

= Conventions
> Big Endian: Sun, PPC Mac
= Least significant byte has highest address

> Little Endian: x86
= Least significant byte has lowest address

i Byte Ordering Example

= Big Endian

» Least significant byte has highest address
= Little Endian

> Least significant byte has lowest address
= Example

> Variable x has 4-byte representation 0x01234567
> Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01l 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

int A =
int B =

long int C =

IA32, x86-64 A

IA32, x86-64 B

Representing Integers

15213; Decimal: 15213
-15213; Binary: 0011 1011 0110 1101
15213; Hex: 3 B 6 D
Suna IA32 ¢ x86-64 C Sun C
6D
3B
00
00

Sun B

™~

Two’s complement representation

i Representing Strings

= Strings in C
» Represented by array of characters

> Each character encoded in ASCII format
= Standard 7-bit encoding of character set

=« Character “0” has code 0x30
Digit / has code 0x30+/

~ String should be null-terminated
= Final character = 0
= Compatibility
~ Byte ordering not an issue

m char S|[6]

31 |

“152137;

Linux/Alpha s Sun s

35 |

» 31

32 |«

» 35

31 |

» 32

33 |

» 31

» 33

00 |

» 00

i Boolean Operations

= NOT

= AND

= OR

= Operator Precedence
= [ruth Tables

Boolean Algebra

= Based on symbolic logic, designed by George Boole

= Boolean expressions created from:
- NOT, AND, OR

7

Expression Description
X NOT X
L XANDY
Xv Y XORY
X v Y (NOT X) ORY
X AY) NOT { X AND Y)
XA Y NAND(NOTY)

NOT

= Inverts (reverses) a boolean value
= Truth table for Boolean NOT operator:

X —X Digital gate diagram for NOT:

F T
T F

AND

= [ruth table for Boolean AND operator:

XY | XAY

Digital gate diagram for AND:

T F F
T T T

OR

= Truth table for Boolean OR operator:

XY | XvY

Digital gate diagram for OR:

T F T n
T T T

i Operator Precedence

= NOT > AND > OR

= Examples showing the order of operations:

Expression Order of Operations
IXvY NOT, then OR
(XVvY) OR, then NOT
XV (YAZ) AND, then OR

= Use parentheses to avoid ambiguity

Truth Tables (1 of 3)

= A Boolean function has one or more Boolean
inputs, and returns a single Boolean output.

= A truth table shows all the inputs and outputs
of a Boolean function

X —X Y —XvY
Example: =X v Y

F T F T
F T T T
T F F I

i Truth Tables (2 of 3)

= Example: X A =Y

X | Y | 7Y | XATY
F | F T F
F | T F F
T | F T T
T | T F F

Truth Tables (3 of 3)

I
NN

Two-input multiplexer

= Example: (Y AS) v (X A =S)

w
e
>
v
]
£

X ATS (YAS) VX ATIS)

= el el e N N N R T s
=l e N N N e R T
Sl 3l 8| 2| | =] 7|
=S| | 9| m| m| =] 0| o
ool T I T I B I R AR I
| | m| | S| 3| ™
Sl | = m| 2| =] | T

