
Computer Organization & Computer Organization &
Assembly Languages Assembly Languages

Pu-Jen Cheng
2008/09/15

Introduction

Course Administration

Instructor: Pu-Jen Cheng (CSIE R323)
pjcheng@csie.ntu.edu.tw
http://www.csie.ntu.edu.tw/~pjcheng

Class Hours: 2:00pm-5:00pm, Monday

Classroom: CSIE R102Classroom: CSIE R102

TA(s): 戴瑋彥 b93705014@ntu.edu.tw
Course Information:

Announce: http://www.csie.ntu.edu.tw/~pjcheng/course/asm2008/
Q&A: bbs://ptt.cc → CSIE_ASM

Textbook

Assembly Language for Intel-Based Computers, 5th Edition,
by Kip Irvine, Prentice-Hall, 2006
http://www.asmirvine.com

References
Computer Systems: A Programmer's Perspective
By Randal E. Bryant and David R. O'Hallaron,
Prentice Hall
http://csapp.cs.cmu.edu/

The Art of Assembly LanguageThe Art of Assembly Language
By Randy Hyde,
http://webster.cs.ucr.edu/AoA/Windows/PDFs/0_P
DFIndexWin.html

System Software: An Introduction to Systems
Programming
By Leland L. Beck
Addison-Wesley

Pre-requisite

Experiences in writing programs in a high-level
language such as C, C++, and Java

Course Grading (tentative)

Assignments (55%)
Class participation (5%)
Midterm exam (20%)
Final exam (20%)

Materials

Some materials used in this course are adapted from
The slides prepared by Kip Irvine for the book, Assembly Language
for Intel-Based Computers, 5th Ed.
The slides prepared by S. Dandamudi for the book, Introduction to
Assembly Language Programming, 2nd Ed.
Introduction to Computer Systems CMUIntroduction to Computer Systems, CMU
(http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/
15213-f05/www/)

Assembly Language & Computer Organization, NTU
(http://www.csie.ntu.edu.tw/~cyy/courses/assembly/06fall/news//)
(http://www.csie.ntu.edu.tw/~acpang/course/asm_2004)

What is Assembly Language

First Glance at Assembly Language

Translating Languages

English: Display the sum of A times B plus C.

C++: cout << (A * B + C);

Assembly Language:
mov eax,A
mul B
add eax,C
call WriteInt

Intel Machine Language:
A1 00000000
F7 25 00000004
03 05 00000008
E8 00500000

A Simple Example in VC++

View/Debug Windows/Disassembly

gcc -s prog.c

The Compilation System

First Glance at Assembly Language

Low-level language
Each instruction performs a much lower-level task
compared to a high-level language instruction
Most high-level language instructions need more than
one assembly instruction

One-to-one correspondence between assembly
language and machine language instructions

For most assembly language instructions, there is a
machine language equivalent

Directly influenced by the instruction set and
architecture of the processor (CPU)

Comparisons with High-level Languages

Advantages of Assembly Languages
Space-efficiency
(e.g. hand-held device softwares, etc)

Time-efficiency
(e g Real-time applications etc)(e.g. Real-time applications, etc)

Accessibility to system hardwares
(e.g., Network interfaces, device drivers, video games, etc)

Advantages of High-level Languages
Development
Maintenance (Readability)
Portability (compiler, virtual machine)

Comparisons with High-level Languages (cont.)

This Course

Why Taking the Course?

Basic Concepts of
Computer

Organization
Computer Design

Computer Organization
Computer ArchitectureThis Course

System
Software

Computer Architecture

Assembler, Linker, Loader
Compiler, Operating System, …

Assembly
Language

“I really don’t think that you can write a book for
serious computer programmers unless you are
able to discuss low-level details.”

Donald Knuth (高德納)
The Art of Computer Programming

http://en.wikipedia.org/wiki/Donald_Knuth

Course Coverage

Basic Concepts
IA-32 Processor Architecture
Assembly Language Fundamentals
Data Transfers, Addressing, and Arithmetic
Procedures
Conditional Processing
Integer Arithmetic
Advanced Procedures
Strings and Arrays
Structures and Macros
High-Level Language Interface
Assembler, Linker, and Loader
Other Advanced Topics (optional)

What You Will Learn

Basic principles of computer architecture
IA-32 processors and memory management
Basic assembly programming skills
How high-level language is translated to assembly
How assembly is translated to machine code
How application program communicates with OS
Interface between assembly to high-level language

Performance: Multiword Arithmetic

Longhand multiplication
Final 128-bit result in P:A

P := 0; count := 64
A := multiplier; B := multiplicand
while (count > 0)

0 1 0 1
1 1 0 1
0 1 0 1

0 1 0 1
0 1 0 1

while (count > 0)
if (LSB of A = 1)
then P := P+B

CF := carry generated by P+B
else CF := 0
end if
shift right CF:P:A by one bit position
count := count-1

end while

Example

A = 11012 (13)
B = 01012 (5)

After P+B After the shift

CF P A CF P ACF P A CF P A

Initial state ? 0000 1101 -- ---- ----

Iteration 1 0 0101 1101 ? 0010 1110

Iteration 2 0 0010 1110 ? 0001 0111

Iteration 3 0 0110 0111 ? 0011 0011

Iteration 4 0 1000 0011 ? 0100 0001

Time Comparison

2

3

4

5
e

(s
ec

on
ds

) C version

0

1

2

0 20 40 60 80 100

Number of calls (in millions)

Ti
m

e

Multiplication time comparison on a 2.4-GHz Pentium 4 system

ASM version

Chapter 1: Basic Concept

Virtual Machine Concept
Data Representation
Boolean Operations

Translating Languages

English: Display the sum of A times B plus C.

C++: cout << (A * B + C);

Assembly Language:
mov eax,A
mul B
add eax,C
call WriteInt

Intel Machine Language:
A1 00000000
F7 25 00000004
03 05 00000008
E8 00500000

Virtual Machines

High-Level Language

Assembly Language Level 4

Level 5
Machine-independent

Machine-specific

Abstractions for computers

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

High-Level Language

Level 5
Application-oriented languages

C++, Java, Pascal, Visual Basic . . .

Programs compile into assembly language
(Level 4)

Assembly Language

Level 4
Instruction mnemonics that have a one-
to-one correspondence to machine
language
Calls functions written at the operatingCalls functions written at the operating
system level (Level 3)
Programs are translated into machine
language (Level 2)

Operating System

Level 3
Provides services to Level 4 programs
Translated and run at the instruction set
architecture level (Level 2)

Instruction Set Architecture

Level 2
Also known as conventional machine
language
Executed by Level 1 (microarchitecture)
program

Microarchitecture

Level 1
Interprets conventional machine
instructions (Level 2)
Executed by digital hardware (Level 0)

Digital Logic

Level 0
CPU, constructed from digital logic gates
System bus
Memory

next: Data Representation

Data Representation

Binary Numbers
Translating between binary and decimal

Binary Addition
Integer Storage Sizes
Hexadecimal Integersg

Translating between decimal and hexadecimal
Hexadecimal subtraction

Signed Integers
Binary subtraction

Fractional Binary Numbers
Character Storage
Machine Words

Binary Representation

Electronic Implementation
Easy to store with bistable elements
Reliably transmitted on noisy and inaccurate wires

Binary Numbers

Digits are 1 and 0
1 = true
0 = false

MSB – most significant bit
LSB – least significant bit

Bit numbering:
015

1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0
MSB LSB

Binary Numbers

Each digit (bit) is either 1 or 0
Each bit represents a power of 2:

1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

Every binary
number is a
sum of powers
of 2

Translating Binary to Decimal

Weighted positional notation shows how to
calculate the decimal value of each binary bit:

dec = (Dn-1 × 2n-1) + (Dn-2 × 2n-2) + ... + (D1 × 21)
+ (D0 × 20)0

D = binary digit

binary 00001001 = decimal 9:

(1 × 23) + (1 × 20) = 9

Translating Unsigned Decimal to Binary

Repeatedly divide the decimal integer by 2.
Each remainder is a binary digit in the translated value:

37 = 100101

Binary Addition

Starting with the LSB, add each pair of digits, include the
carry if present.

0 0 0 0 0 1 0 0

1

(4)

carry:

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0

+

0 0 0 0 1 0 1 1

(4)

(7)

(11)

01234bit position: 567

Integer Storage Sizes
byte

16

8

32

word

doubleword

64quadword

Standard sizes:

What is the largest unsigned integer that may be stored in 20 bits?

Large Measurements

Kilobyte (KB), 210 bytes
Megabyte (MB), 220 bytes
Gigabyte (GB), 230 bytes
Terabyte (TB), 240 bytes
Petabyte, 250 bytes
Exabyte, 260 bytes
Zettabyte, 270 bytes
Yottabyte, 280 bytes
Googol, 10100

Hexadecimal Integers

Binary values are represented in hexadecimal.

Translating Binary to Hexadecimal

Each hexadecimal digit corresponds to 4 binary
bits.
Example: Translate the binary integer
000101101010011110010100 to hexadecimal:

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of
16:

dec = (D3 × 163) + (D2 × 162) + (D1 × 161) + (D0 × 160)

Hex 1234 equals (1 × 163) + (2 × 162) + (3 × 161) + (4
× 160), or decimal 4,660.

Hex 3BA4 equals (3 × 163) + (11 * 162) + (10 × 161) +
(4 × 160), or decimal 15,268.

Powers of 16

Used when calculating hexadecimal values up to 8
digits long:

Converting Decimal to Hexadecimal

decimal 422 = 1A6 hexadecimal

Hexadecimal Addition

Divide the sum of two digits by the number base (16).
The quotient becomes the carry value, and the remainder
is the sum digit.

36 28 28 6A
42 45 58 4B

11

42 45 58 4B
78 6D 80 B5

21 / 16 = 1, rem 5

Important skill: Programmers frequently add and
subtract the addresses of variables and instructions.

Hexadecimal Subtraction

When a borrow is required from the digit to the left,
add 16 (decimal) to the current digit's value:

16 + 5 = 21

C6 75
A2 47
24 2E

−1

Practice: The address of var1 is 00400020. The
address of the next variable after var1 is 0040006A.
How many bytes are used by var1?

Signed Integers

The highest bit indicates the sign.
1 = negative, 0 = positive

sign bit

1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

Negative

Positive

If the highest digit of a hexadecimal integer is > 7, the
value is negative. Examples: 8A, C5, A2, 9D

Forming the Two's Complement

Bitwise NOT of the number and add 1

Note that 00000001 + 11111111 = 00000000

8-bit Two's Complement Integers

Binary Subtraction

When subtracting A – B, convert B to its two's
complement
Add A to (–B)
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

– 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1
0 0 0 0 1 0 0 1

Advantages for 2’s complement:
No two 0’s
Sign bit
Remove the need for separate circuits for add
and sub

Ranges of Signed Integers

The highest bit is reserved for the sign. This limits
the range:

Fractional Binary Numbers

bi bi 1 b2 b1 b0 b 1 b 2 b 3 b j• • •• • • .

1

2

4

2i–1

2i

• • •

Representation
Bits to right of “binary point” represent fractional
powers of 2
Represents rational number:

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j .

• • •

1/2

1/4

1/8

2–j

bk ⋅2
k

k=− j

i
∑

Value Representation
5-3/4 101.112
2-7/8 10.1112
63/64 0.1111112

Examples of Fractional Binary Numbers

Observations
Divide by 2 by shifting right
Multiply by 2 by shifting left
Numbers of form 0.111111…2 just below 1.0

1/2 + 1/4 + 1/8 + … + 1/2i + … → 1.0
Use notation 1.0 – ε

Limitation
Can only exactly represent numbers of the form
Other numbers have repeating bit representations

Value Representation
1/3 0.0101010101[01]…2

Representable Numbers

/ 2

1/5 0.001100110011[0011]…2

1/10 0.0001100110011[0011]…2

Converting Real Numbers

Binary real to decimal real

Decimal real to binary real

4.5625 = 100.10012

True or False

If x > 0 then x + 1 > 0
If x < 0 then x * 2 < 0
If x > y then -x < -y
If x >= 0 then -x <= 0
If x < 0 then -x > 0
If x >= 0 then ((!x – 1) & x) == x
If x < 0 && y > 0 then x * y < 0
If x < 0 then ((x ^ x >> 31) + 1) > 0

Character Storage

Character sets
Standard ASCII (0 – 127)
Extended ASCII (0 – 255)
ANSI (0 – 255)
Unicode (0 – 65 535)Unicode (0 – 65,535)

Null-terminated String
Array of characters followed by a null byte

Using the ASCII table
back inside cover of book

Machine Words

Machine Has “Word Size”
Nominal size of integer-valued data

Including addresses
Most current machines use 32 bits (4 bytes) words

Limits addresses to 4GB
Users can access 3GBUsers can access 3GB

Becoming too small for memory-intensive applications
High-end systems use 64 bits (8 bytes) words

Potential address space ≈ 1.8 X 1019 bytes
x86-64 machines support 48-bit addresses: 256 Terabytes

Machines support multiple data formats
Fractions or multiples of word size
Always integral number of bytes

Word-Oriented Memory Organization

Addresses Specify Byte
Locations

Address of first byte in

0000

0001

0002

0003

0004

0005

32-bit
Words Bytes Addr.64-bit

Words

Addr
=
??

Addr
=
??

Addr
=

0000

0000

y
word
Addresses of successive
words differ by 4 (32-bit)
or 8 (64-bit)

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

Addr
=
??

??

Addr
=
??

Addr
=
??

0004

0008

0012

0008

Data Representations

Sizes of C Objects (in Bytes)
C Data Type Typical 32-bit Intel IA32 x86-64

unsigned 4 4 4
int 4 4 4
long int 4 4 4long int 4 4 4
char 1 1 1
short 2 2 2
float 4 4 4
double 8 8 8
char * 4 4 8

Or any other pointer

Byte Ordering

How should bytes within multi-byte word be
ordered in memory?
Conventions

Big Endian: Sun, PPC Mac
L t i ifi t b t h hi h t ddLeast significant byte has highest address

Little Endian: x86
Least significant byte has lowest address

Byte Ordering Example

Big Endian
Least significant byte has highest address

Little Endian
Least significant byte has lowest address

Example
Variable x has 4-byte representation 0x01234567
Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Representing Integers

int A = 15213;
int B = -15213;
long int C = 15213;

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D

IA32, x86-64 A

00

Sun A

6D

x86-64 C

00

Sun C

6D

IA32 C

3B

00

00

3B

6D

00

93

C4

FF

FF

IA32, x86-64 B

C4

93

FF

FF

Sun B

Two’s complement representation

00

00

00

00

3B

00

00

3B

6D

003B

00

00

char S[6]= “15213”;

Representing Strings

Strings in C
Represented by array of characters
Each character encoded in ASCII format

Standard 7-bit encoding of character set
Character “0” has code 0x30 Linux/Alpha S Sun S

Digit i has code 0x30+i
String should be null-terminated

Final character = 0
Compatibility

Byte ordering not an issue

Linux/Alpha S Sun S

32

31

31

35

33

00

32

31

31

35

33

00

Boolean Operations

NOT
AND
OR
Operator Precedence
Truth Tables

Boolean Algebra

Based on symbolic logic, designed by George Boole
Boolean expressions created from:

NOT, AND, OR

NOT

Inverts (reverses) a boolean value
Truth table for Boolean NOT operator:

Digital gate diagram for NOT:

NOT

AND

Truth table for Boolean AND operator:

Digital gate diagram for AND:

AND

OR

Truth table for Boolean OR operator:

Digital gate diagram for OR:

OR

Operator Precedence

NOT > AND > OR
Examples showing the order of operations:

Use parentheses to avoid ambiguity

Truth Tables (1 of 3)

A Boolean function has one or more Boolean
inputs, and returns a single Boolean output.
A truth table shows all the inputs and outputs
of a Boolean function

Example: ¬X ∨ Y

Truth Tables (2 of 3)

Example: X ∧ ¬Y

Truth Tables (3 of 3)

Example: (Y ∧ S) ∨ (X ∧ ¬S)
mux

X

Y

S

Z

Two-input multiplexer

