Computer Organization &
Assembly Languages

Computer Organization (1)

Fundamentals

Pu-Jen Cheng

|
4

= Some materials used in this course are adapted from

» The slides prepared by Kip Irvine for the book, Assembly Language
for Intel-Based Computers, 5" Ed.

> The slides prepared by S. Dandamudi for the book, Fundamentals of
Computer Organization and Designs.

» The slides prepared by S. Dandamudi for the book, Introduction to
Assembly Language Programming, 2"d Ed.

> Introduction to Computer Systems, CMU
(http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/

15213-f05/www/)

» Assembly Language & Computer Organization, NTU
(http://www.csie.ntu.edu.tw/~cyy/courses/assembly/
O5fall/news/)
(http://www.csie.ntu.edu.tw/~acpang/course/asm_2004)

Materials

Outline

= General Concepts of Computer Organization
» Overview of Microcomputer
CPU, Memory, I/O
Instruction Execution Cycle
~ Central Processing Unit (CPU)
CISC vs. RISC
6 Instruction Set Design Issues
> How Hardwares Execute Processor’s Instructions
Digital Logic Design (Combinational & Sequential Circuits)
Microprogrammed Control
> Pipelining
3 Hazards
3 technologies for performance improvement
> Memory
Data Alignment
2 Design Issues (Cache, Virtual Memory)
> 1/O Devices

Overview of Microcomputer

Von Neumann Machine, 1945

= Memory, Input/Output, Arithmetic/Logic Unit, Control Unit

= Stored-program Model
~ Both data and programs are stored in the same main memory

= Sequential Execution

MEMORY

| ¥

ARITHMETIC
LOGIC
UNIT

| accumulataor

-,

CONTROL | ~
UNIT »

A

INPUT OUTPUT
http://www.virtualtravelog.net/entries/2003-08-TheFirstDraft.pdf

|
=+

= Microcomputer

~ A computer with a microprocessor (UP) as its central processing
unit (CPU)

= Microprocessor (UP)

~ A digital electronic component with transistors on a single
semiconductor integrated circuit (I1C)

~ One or more microprocessors typically serve as a central
processing unit (CPU) in a computer system or handheld device.

What is Microcomputer

|
E

Components of Microcomputer

CPU

Input/output

Memory

Basic Microcomputer Design

|
E

registers

/0
Device
#1

Central Processor Unit Memory Storage

(CPU) Unit

Cu

| cpU

!rithmetic and logic unit (ALU) performs arithmetic (add, subtract) and
logical (AND, OR, NOT) operations

= Registers store data and instructions used by the processor

= Control unit (CU) coordinates sequence of execution steps
> Fetch instructions from memory, decode them to find their types
= Clock

= Datapath consists of registers and ALU(s)

Control unit

Processor

Datapath ALU input

‘ ALU output operand operand
C bus A bus B bus
Program Counter (PC) "1 : —
(or Instruction Pointer (IP)) [™ -
Instruction Register (IR) [~ General-purpose | = .
Memory Address Register —— registers = o
(MAR) B = -
Memory Data Register E—— - |
(MDR)
[o
E i} = i
~ Memory interface registers
A B
RISC processor St AIéU
e}

|
E

Provide timing signal and the basic unit of time

Synchronize all CPU and BUS operations

Machine (clock) cycle measures time of a single operation

Clock is used to trigger events

Clock period = 1 1GHz—clock cycle=1ns

Clock

Clock frequency

= A instruction could take multiple cycles to complete, e.g. multiply in
8088 takes 50 cycles

l/l- ain/primary memory (random access memory, RAM)
stores both program instructions and data

= /O devices
~ Interface: I/O controller

~ User interface: keyboard, display screen, printer, modem, ...
~ Secondary storage: disk
> Communication network

= System Bus
» A bunch of parallel wires
~ Transfer data among the components

~ Address bus (determine the amount of physical memory addressable)
~ Data bus (indicate the size of the data transferred)
~ Control bus (consists of control signals:

memory/lO read/write, interrupt, bus request/grand)

Memory, 1/0, System Bus

Instruction Execution Cycle

—+

= Execution Cycle
» Fetch (IF): CU fetches next instruction, advance PC/IP
» Decode (ID): CU determines what the instruction will do

> Exe

cute

Fetch operands (OF): (memory operand needed) read value from memory

Execute the instruction (IE)
Store output operand (WB): (memory operand needed) write result to

memory
= Execution cycle =
IF D
Instruction | Instruction | Operand | Instruction| Result Instruction | Instruction | |
fetch decode fetch decode

Instruction execution phase

& Instruction Execution Cycle (cont.)

s Fetch

= Decode 112|183 14
= Fetch operands

s EXxecute

Store output

—
—
i §

|
E

> See asm_ch2 dl.ppt

Introduction to Digital Logic Design

CPU

|
-+

= CISC vs. RISC

= 6 Instruction Set Design Issues
> Number of Addresses
» Flow of Control
~ Operand Types
~ Addressing Modes
~ Instruction Types
> Instruction Formats

CPU

‘ Processor

:.ZISC and CISC designs
» Reduced Instruction Set Computer (RISC)
= Simple instructions, small instruction set

=« Operands are assumed to be in processor registers
Not in memory
Simplify design (e.g., fixed instruction size)
« Examples: ARM (Advanced RISC Machines),
DEC Alpha (now Compaq)
» Complex Instruction Set Computer (CISC)
« Complex instructions, large instruction set

=« Operands can be in registers or memory
Instruction size varies

« Typically use a microprogram
« Example: Intel 80x86 family

|
4

Processor (cont.)

ISA level ISA level

Microprogram control

Hardware Hardware

(a) CISC implementation (b) RISC implementation

Processor (cont.)

E

= Variations of the ISA-level can be implemented by
changing the microprogram

ISA'1

ISA 2

Microprogram 1

ISA 3

Microprogram 2

Microprogram 3

Instruction Set Design Issues

e

= Number of Addresses
s Flow of Control

Operand Types
Addressing Modes
Instruction Types
Instruction Formats

|
s

= Four categories
> 3-address machines
= 2 for the source operands and one for the result
» 2-address machines
= One address doubles as source and result
> 1-address machine
=« Accumulator machines
= Accumulator is used for one source and result
> 0-address machines
=« Stack machines
= Operands are taken from the stack
=« Result goes onto the stack

Number of Addresses

Number of Addresses (cont.)

-+

s [hree-address machines

~ Two for the source operands, one for the result

» RISC processors use three addresses
> Sample instructions

add

Sup

mult

dest,srcl,src?2
; M(dest)=[srcl]+][src2]
dest,srcl,src?
; M(dest)=[srcl]-[src2]
dest,srcl,src?2
; M(dest)=[srcl]*[src2]

|
e

= Example
~ C statement
A=B+C*D-E+F+A
~ Equivalent code:

Number of Addresses (cont.)

mult T,C,D ;T = C*D

add T,T,B ;T = B+C*D

sub T,T,E T = B+C*D-E

add T,T,F ;T = B+C*D-E+F
add A, T,A ;A = B+C*D-E+F+A

|
E

= [wo-address machines
» One address doubles (for source operand & result)
~ Last example makes a case for it
« Address T is used twice

> Sample instructions
load dest,src ; M(dest)=|src]

add dest,src ; M(dest)=[dest]+[src]
sub dest,src ; M(dest)=|dest]-[src]
mult dest,src ; M(dest)=[dest]*[src]

Number of Addresses (cont.)

|
e

= Example
~ C statement
A=B+C*D-E+F+A
~ Equivalent code:

Number of Addresses (cont.)

1oad T,C ;T =2C

mult T,D ;T = C*D

add T,B T = B+C*D

sub T, ;T = B+C*D-E

add T,F ;T = B+C*D-E+F
add A, T ;A = B+C*D-E+F+A

|
e

= One-address machines
~ Use special set of registers called accumulators
= Specify one source operand & receive the result
~ Called accumulator machines

» Sample instructions
1oad addr ; accum

Number of Addresses (cont.)

[addr]

accum

P TR P [I - | g R

SLUIcC aadar IVILdUU
add addr ; accum
sub addr ; accum
mult addr ; accum

| |—J |

accum + [addr]
accum - [addr]
accum * [addr]

|
e

= Example
> C statement
A=B+C*D-E+F+A
~ Equivalent code:
1oad C :;load C Into accum
mult D ;accum = C*D
add B ;accum = C*D+B
sub E ;accum = B+C*D-E
add F ;accum = B+C*D-E+F
A
A

Number of Addresses (cont.)

add -accum = B+C*D-E+F+A
store -store accum contents 1In A

Number of Addresses (cont.)

S

s Zero-address machines

» Stack supplies operands and receives the result
= Special instructions to load and store use an address
~ Called stack machines (Ex: HP3000, Burroughs B5500)

» Sample instructions

push
POpP
add
sub
mult

addr ;

addr

push([addr])
pop([addr)

; push(pop + pop)
; push(pop - pop)

push(pop * pop)

|
e

= Example
> C statement

A=B+C*D-E+F+A

~ Equivalent code:

Number of Addresses (cont.)

oush E sub
push C push F
oush D add
Mult push A
push B add
add pop A

|
4

= Instructions expect operands in internal processor registers

» Special LOAD and STORE instructions move data between
registers and memory

> RISC uses this architecture
> Reduces instruction length

Load/Store Architecture

8 bits Sbits 5 bits 5 bits
23 bits | Opcode | Rdest | Rsrcl | Rsrc2

Register format
8 bits 32 bits 32 bits 32 bits
104 bits | Opcode destination address sourcel address source? address

Memory format

[

1oad
store

add
sub

mult

= Sample instructions

;Rd = [addr]
;(addr) = Rs
;Rd = Rsl + Rs2
;Rd = Rsl - Rs2
;Rd = Rsl * Rs2

Rd,addr
addr ,Rs
Rd,Rs1,Rs2
Rd,Rs1,Rs2

Rd,Rs1,Rs2

Load/Store Architecture (cont.)

+

= Example
> C statement

A =

1oad
1oad
1oad
1oad
1oad
1oad

R1,B
R2,C
R3,D
R4,E
R5,F
R6,A

mult
add
sub
add
add

store

Number of Addresses (cont.)

B+C*D—E+F+A

~ Equivalent code:

R2,R2,R3
R2,R2,R1
R2,R2,R4
R2,R2,R5
R2,R2,R6
A,R2

|
4+

= Default is sequential flow

= Several instructions alter this default execution
» Branches
= Unconditional
= Conditional
« Delayed branches
~ Procedure calls
« Delayed procedure calls

Flow of Control

|
e

s Branches
> Unconditional
= Absolute address

= PC-relative
Target address is specified relative to PC contents
Relocatable code

» Example: MIPS
= Absolute address
] target
=« PC-relative
b target

Flow of Control (cont.)

|
[

instruction x | |
S target 1nstruction a

instruction y HHHH“EEEE?F: .
instruction b

instruction z | |
1nstruction ¢

(a) Normal branch execution
e.g., Pentium

Flow of Control (cont.)

instruction x

Sump carget 1nstruction a

target:
instruction b

instruction ¢

II' mon o e ey o ey _‘.-' e
metructlion y.

instruction z

(b) Delayed branch execution
e.g., SPARC

|
4+

= Branches
~ Conditional
= Jump is taken only if the condition is met
» Two types
= Set-Then-Jump

Condition testing is separated from branching

Condition code registers are used to convey the condition test
result

Condition code registers keep a record of the status of the last
ALU operation such as overflow condition

« Example: Pentium code
cmp AX,BX
je target

Flow of Control (cont.)

compare AX and BX
jump 1f equal

|
s

Flow of Control (cont.)

« Test-and-Jump
Single instruction performs condition testing and branching

= Example: MIPS instruction
beq Rsrcl,Rsrc2,target
Jumps to target if Rsrc1 = Rsrc2
= Delayed branching

~ Control is transferred after executing the instruction that
follows the branch instruction

= This instruction slot is called delay slot
~ Improves efficiency
~ Highly pipelined RISC processors support

|
4+

= Procedure calls
~ Facilitate modular programming
» Require two pieces of information to return

= End of procedure
Pentium

uses ret instruction
MIPS

uses jr instruction
=« Return address
In a (special) register
MIPS allows any general-purpose register
On the stack
Pentium

Flow of Control (cont.)

Flow of Control (cont.)

-

Calling procedure Called procedure

ProcA: .
lnstruction a

instruction Db

| | instruction ¢
instruction X

return
call procééﬂfffﬁfffffffffff
instruction v

instruction =

|
E

Calling procedure Called procedure
PrOCA:

Flow of Control (cont.)

instruction a
? instruction b

_ _ instruction c
instruction X

return
call PrOCcCA /////,/////
dnstruction v pejay ot

instruction z

&

|
]

= [wo basic techniques
» Register-based (e.g., PowerPC, MIPS)

« Internal registers are used
Faster
Limit the number of parameters
Recursive procedure

~ Stack-based (e.g., Pentium)

« Stack is used
More general

Parameter Passing

|
s

= Instructions support basic data types
~ Characters
~ Integers
~ Floating-point

= Instruction overload
» Same instruction for different data types

> Example: Pentium
mov AL ,address -loads an 8-bit value

mov AX ,address -loads a 16-bit value
mov EAX,address ;loads a 32-bit value

Operand Types

Operand Types

.

= Separate instructions

» Instructions specify the operand size
~ Example: MIPS

Ib
Ih

1d

Rdest,address
Rdest,address

NAlA—~2 ~AlAloaa <~
nResti,ad IcoS

Rdest,address

Similar instruction: store

;loads a byte

-loads a halfword

(16 bits)
-1oads a word

- (32 bits)

-loads a doubleword

- (64 bits)

|
s

= How the operands are specified
~ Operands can be in three places

=« Registers
Register addressing mode

= Part of instruction
Constant
Immediate addressing mode
All processors support these two addressing modes

« Memory
Difference between RISC and CISC

CISC supports a large variety of addressing modes
RISC follows load/store architecture

Addressing Modes

|
|

= Several types of instructions
> Data movement

Instruction Types

= Pentium: mov dest,src
= Some do not provide direct data movement
Instructions

= Indirect data movement
add Rdest,Rsrc,0 ;Rdest = Rsrc+0

~ Arithmetic and Logical
= Arithmetic

Integer and floating-point, signed and unsigned
add, subtract, multiply, divide

« Logical
and, or, not, xor

|
-+

= Condition code bits
> S: Signbit(0=+, 1= -)
~ Z: Zero bit (0 = nonzero, 1 = zero)
~ O: Overflow bit (0 = no overflow, 1 = overflow)
~ C: Carry bit (O = no carry, 1 = carry)

Instruction Types (cont.)

= Example: Pentium
cmp count,25 ;compare count to 25
;subtract 25 from count
je target ;jump 1T equal

|
-+

> Flow control and I/O instructions
= Branch
= Procedure call
= Interrupts
> 1/O instructions
= Memory-mapped 1/O

Most processors support memory-mapped 1/O
No separate instructions for 1/0O

= Isolated I/O

Pentium supports isolated 1/O

Separate I/O instructions
in AX,10 _port ;read from an 1/0 port
out 10 port,AX ;write to an 1/0 port

Instruction Types (cont.)

|
+

= [wo types
~ Fixed-length
= Used by RISC processors

= 32-bit RISC processors use 32-bits wide instructions
Examples: SPARC, MIPS, PowerPC

~ Variable-length
=« Used by CISC processors
= Memory operands need more bits to specify

= Opcode

~ Major and exact operation

Instruction Formats

s
§bits Sbits 3 bits

18 bits - Rdest | Rsrc

Examples of Instruction Formats

Register format
8 bits 32 bits 32 bits
72 bits - destination address source address

Memory format

How Hardware Executes
Processor’'s Instructions

ow Hardware Executes
Processor’s Instructions

|
4

= Digital Logic Design
» Combinational and Sequential Circuits
= Microprogrammed Control

|
E

Virtual Machines

Abstractions for computers

Machine-independent
High-Level Language T

Assembly Language l o
Machine-specific

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic

Basic Microcomputer Design

|
E

registers

/0
Device
#1

Central Processor Unit Memory Storage

(CPU) Unit

Cu

Consider 1-bus Datapath

|
e

A bus
4 General-purpose registers
Assume all entities are Purpose re 4
32-bit wide G1
G30
G31
e e}
f=]
- —
5
% et}
S| - -
Memory interface registers
A j -
AL U control
EEEEEEEEE—

I,

o
D)
]
<C
= | Jd
bﬁA
— | m

= = = =y

Full
adder

< M

Ci

Co

|
E

32

ALU Circuit in 1-bus Datapath

/
Ain:.

32

ALU control — B

32
A N

32

Cout

|
E

Memory Interface Implementation

Data bus Address bus

t

A bus

32 1

32

/IQ'

PCbout

32

32

32

32

MARIN

:
E,
lé

Sy Ry

32

1

3

MARbDboOut

32

MDRbin

1

MARoOout
32

N [

3

)

MDRout

i

32

Microprogrammed Control

= 32 32-bit general-purpose registers
~ Interface only with the A-bus

~ Each register has two control signals
=« Gxin and Gxout

= Control signals used by the other registers
» PC register:
= PCin, PCout, and PCbout
> IR register:
=« IRout and IRbin
> MAR regqister:
= MARIn, MARout, and MARbout
> MDR register:
= MDRIin, MDRout, MDRbin and MDRbout

Microprogrammed Control (cont.)

add %G9, %G5 ,%G7

Implemented as

= Transfer G5 contents to A register
Assert G50out and Ain

= Place G7 contents on the A bus
Assert G7out

= Instruct ALU to perform addition

Appropriate ALU function control signals

= Latch the result in the C register
Assert Cin

= Transfer contents of the C register to G9
Assert Cout and G9in

Microprogrammed Control (cont.)

Implemented as
= PCbout: read: PCout: ALU=add4: Cin;
= read: Cout: PCiIn;

= Read: IRbiInNn;

=« Decodes the iInstruction and jumps to
the appropriate execution rountine

Instruction Fetch

Microprogrammed Control (cont.)

|
= Example instruction groups
- Load/store
=« Moves data between registers and memory
~ Register
« Arithmetic and logic instructions
~ Branch
= Jump direct/indirect
> Call
=« Procedures invocation mechanisms
~ More...

Microprogrammed Control (cont.)

|
High-level FSM

for instruction
execution

Start

Instruction fetch & decode

Load/store FSM
Register operations FSM »

FSM: finite state machine

Microprogrammed Control (cont.)

= Software implementation
» Typically used in CISC
=« Hardware implementation (PLA) is complex and

expensive

= Example

add %G9, %G5, %G7
~ Three steps
S1 G5out: Ailn;
S2 G7out: ALU=add: Cin;
S3 Cout: G9In: end;

Microprogrammed Control (cont.)

|
4

Ajp

Ag
Simple
microcode 1
organization

)

Microcode for instruction fetch

...........

00000000000

...........

00000000000

Microprogrammed Control (cont.)

|
= Uses a microprogram to generate the control
signals
~ Encode the signals of each step as a codeword
« Called microinstruction

» A instruction is expressed by a sequence of codewords
= Called microroutine

= Microprogram essentially implements the FSM
discussed before

Microprogrammed Control (cont.)

|
= A simple microcontroller can execute a
microprogram to generate the control signals
~ Control store
= Store microprogram
> Use uPC
= Similar to PC
~ Address generator

= Generates appropriate address depending on the
Opcode, and
Condition code inputs

Microprogrammed Control (cont.)

|
-

!]
!]
! 1
K 1
5 | |
1 Address |
: generator :
! 1
Condition codes } i
; l 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
1 :
Clock : UPC :
| :
! 1
! 1
! 1
! 1
! 1
. ! |
Microcontroller l :
X 1
! 1

! Control store Control

: : word

! 1
! 1
! 1

Microcodes reside in control store, which might be read-only memory (ROM)

Microprogrammed Control (cont.)

= Microinstruction format
~ Two basic ways

« Horizontal organization
= Vertical organization

~ Horizontal organization
= One bit for each signal
= Very flexible
« Long microinstructions
=« Example: 1-bus datapath

Needs 90 bits for each microinstruction

|
E

Memory interface signals

ALU
latches

/

General-purpose

Microprogrammed Control (cont.)

register signals

N/ N

ARbout

PCin
IRout

g
%
S

MDRbin
Cout

Glin

Horizontal
microinstruction
format

Uﬁn

s
add4

BtoC
or

/" N\ /

ALU functions

Misc.
signals

Microprogrammed Control (cont.)

|
= Vertical organization
> Encodes to reduce microinstruction length
=« Reduced flexibility
> Example:

= Horizontal organization

64 control signals for the 32 general purpose registers
= Vertical organization

5 bits to identify the register and 1 for in/out

518 AU 5 KK -
< function v

Rsel

Register number

IRbin
MDRbout

2-bus Datapath

C bus General-purpose registers A bus
— GO —
- .
o ;
- G30 -
- G31 -
2 — -
'g -—
=2 —
%-. i}
S| = -

Memory interface registers

AT U control ALU

Microprogrammed Control (cont.)

= Adding more buses reduces time needed to

execute instructions
>~ No need to multiplex the bus

= Example
add %G9, %G5 ,%NG7
> Needed three steps in 1-bus datapath

~ Need only two steps with a 2-bus datapath
S1 G5out: Ailn;

S2 G7out: ALU=add: G9iIn;

Pipelining

|
-+

= Introduction

s 3 Hazards
> Resource, Data and Control Hazards

= 3 Technologies for Performance Improvement

» Superscalar, Superpipelined, and Very Long Instruction
Word

Pipelining

|
.

Serial and Pipelining

(b) Pipelined execution

Clock cycle 2 3 4 5 6 7 8 9 10 11 12 13 16 17 18 19 20
11 IFIIDEOFEIE EWB
1) IFEIDEOFEIEEWB
I3 IF i ID EOF
14 IFEIDEOFEIE EWB
(a) Serial execution
Clock eycle D a4 s 6 7 Serial execution: 20 cycles
I |IF!ID IOF! B IWB Pipelined execution: 8 cycles
—+—
L P ;OFE - EWB For k states and n instructions,
13 IF 'ID ' OF ' IE 'WB the number of required cycles is:
14 IFE]DEOFEIE:WB k+(n—1)

| Pipelining

E

= Pipelining
» QOverlapped execution
> Increases throughput

Instruction 1 2

Time (cycles) ——=

3 4 5 6

7 8 9

10

I1 IF ID OF IE WB

IF ID OF IE WB

IF ID

OF IE WB

e

Pipelining (cont.)

= Pipelining requires buffers

~ Each buffer holds a single value

~ Uses just-in-time principle
= Any delay in one stage affects the entire pipeline flow
- ldeal scenario: equal work for each stage

Instruction

fetch

= Sometimes it is not possible
=« Slowest stage determines the flow rate in the entire

pipeline
Bl B2
Instruction
] decode g

Operand
fetch

[nstruction
execution

Result
write back

Pipelining (cont.)

+

= Some reasons for unequal work stages

~ A complex step cannot be subdivided conveniently
~ An operation takes variable amount of time to execute

= EX: Operand fetch time depends on where the operands
are located

Registers
Cache
Memory

~ Complexity of operation depends on the type of operation
« Add: may take one cycle
= Multiply: may take several cycles

/

|
.

= Operand fetch of 12 takes three cycles
~ Pipeline stalls for two cycles
= Caused by hazards
~ Pipeline stalls reduce overall throughput

Clockcycle 1 2 3 4 5 6 7 8 9 10

Pipeline Stall

I1 IF ID 1OF ' IE 'WB
|

| |
12 IF ' ID 1 OF I TE 'WB

I3 IFi ID | OF | IE 'WB

14 IF I ID 1OF ' IE 'WB
] |

|
s

= Three types of hazards
> Resource hazards

= Occurs when two or more instructions use the same
resource

= Also called structural hazards
> Data hazards

= Caused by data dependencies between instructions
Example: Result produced by |1 is read by |2

~ Control hazards
= Default: sequential execution suits pipelining

= Altering control flow (e.g., branching) causes problems
Introduce control dependencies

Hazards

e

= Example

Resource Hazards

~ Conflict for memory in clock cycle 3
= |1 fetches operand

= |13 delays its instruction fetch from the same memory

Clock cycle

I1
12
I3
I4

1 2 3 4 5 6 7 8 9
IF:IDiOFiIE iWB
IFEID:OF: IE '"WB
Idle| IF ' ID ' OF 1 IE iWB

IF 1 ID
|

!
'OF I IE 'WB
| |

|
e

Data Hazards

= Example
> 11: add R2,R3,
- 12: sub R5,R6,

R4
R2

/*
/*

R2
RS

R3 + R4 */
R6 — R2 */

= Introduces data dependency between |1 and 12

Clockcycle 1 2 3 4 5 6 7 8 9 10
I1 IF:IDEOFEIE I:WB
2 IF | ID :OFE IE EWB
13 IF :IDEOFEIE:WB
14 IF : ID :OF: IE

'WB
1

]]]

Control Hazards

Clockcycle 1 2 3 4 5 6 7 8 9

1 | | |

IF ' ID 'OF ' IE 'WB

Branch instruction Ib
/

12

Discarded instructions | 13

\14

Branch target instruction It

IF ' ID '1OF ! IE 'WB
1 1 1 1

(a) Branch decision is known during the IE stage

Clockecycle 1 2 3 4 5 6 7 8 9

I I | |

Branch instruction Ib IF ' ID 'OF ' IE 'WB

Discarded instruction 12

Branch target instruction It IF 11D ! OF I IE 'WB

(b) Branch decision is known during the ID stage
»Determine branch decision early

|
s

= Several techniques to improve performance of a
pipelined system
> Superscalar
=« Replicates the pipeline hardware
> Superpipelined
= Increases the pipeline depth
~ Very long instruction word (VLIW)
« Encodes multiple operations into a long instruction word

= Hardware schedules these instructions on multiple
functional units (No run-time analysis)

Performance Improvement

= add R1, R2, RS3 ; Rl = R2 + R3
sub R5, R6, RY ; RS = R6 — RY7
and R4, R1, R5 ; R4 = R1 AND RS
xor R9, R9, R9 ; R9 = R9 XOR R9

cycle 1: add, sub, xor
cycle 2: and

|
4

Superscalar Processor

Integer
execution
/ unit
Instruction Instruction Operand Result
fetch —— decode = fetch write back
unit unit unit \ unit
Floating-point
execution
unit .

Ex: Pentium

|
E

= \When one of the stages requires two or more clock cycles,
clock cycles are again wasted.

Wasted Cycles (pipelined)

For k states and n
instructions, the
number of required
cycles is:

k+(2n-1)

1
2
3
4
5
6
7
8
9

—] —
2O

| Sup

erscalar

A superscalar processor has multiple execution pipelines.
In the following, note that Stage S4 has left and right
pipelines (u and v).

O O[N] WIN|—~

-
o

For k states and n
instructions, the
number of required
cycles is:

k+n

Superpipelined Processor

Clock cycle 1 E 2 li 3 i 4 i 5 i 6 E 7 E i 9 i
11 IF : D E OF i IE i WB |
2 IF | E OF E IE ! WB
13 IF | i OF i E | WB
14 IF | ID i OF E E !
15 IF E D E OF E | WB
(a) Pipelined execution
| l | | | | |
Clock cycle 1 : 2 '[3 : 4 5 1 6 : 7 :
11 IFl§1F2E[D1§11)2E0F150F2E1E1EmzimeWBz
S N s S e — —
2 IF] : IF2 ;IDI Emz | OF ;01:2: IE | IE2 :w131|w32 Ex: MIPS R4000
3 IF1 | IF2 | DI 51[)2 | OF1 gom: IE EIEQ :WBIWBZ
14 IFlE[FZE]D]E]DZEOFIEOFZEIEIEIEZEWBIEWBZ
15 mlémimlémzioméomimlémz EWB]WBZ

(b) Superpipelined execution

Memory

|
e

= Introduction
= Building Memory Blocks
= Alignment of Data

= 2 Memory Design Issues
~ Cache
~ Virtual Memory

Memory

|
3

= Ordered sequence of bytes
~ The sequence number is called the memory address
~ Byte addressable memory
« Each byte has a unique address
=« Almost all processors support this

= Memory address space
» Determined by the address bus width
~ Pentium has a 32-bit address bus
= address space = 4GB (23?)
~ Itanium with 64-bit address bus supports
= 254 bytes of address space

Memory (cont.)

Memory (cont.)

E

Address
(in decimal)

2321

Address
(in hex)

FFFFFFFF
FFFFFFFE
FFFFFFFD

00000002
00000001
00000000

|
.

= Read cycle
1. Place address on the address bus
2. Assert memory read control signal
3. Wait for the memory to retrieve the data
= Introduce wait states if using a slow memory
4. Read the data from the data bus
5. Drop the memory read signal
= In Pentium, a simple read takes three clocks
cycles
= Clock 1: steps 1 and 2
= Clock 2: step 3
= Clock 3 : steps 4 and 5

Memory (cont.)

Memory (cont.)

= Write cycle
1. Place address on the address bus
2. Place data on the data bus
5. Assert memory write signal
s, Wait for the memory to retrieve the data
= Introduce wait states if necessary
5. Drop the memory write signal

= In Pentium, a simple write also takes three clocks

= Clock 1: steps 1 and 3
= Clock 2: step 2
= Clock 3 : steps4 and 5

How Hardware Implements

C
J

m
il

amnrv SQvyveta
11 I\JI 'y U.yQL\.I

1vi

+

A4 X 3 memory design

using D flip-flops

— U

WR

o

Building a Memory Block

D Q

= CP

D Q

> CP

D Q

> CP

y

D Q

> CP

D Q

= CP

D Q

= CP

lb—l 0—| 0—|

1 1 1]

< —/\ J—i
5 D Q D Q [D Q
o
A0 —“-2 = CP = CP > CP
Al 2
O3 »—ﬁ)}
D Q M D Q D Q
> Cp = CP —> CP
*— N [[
| Sl | Sl
1 O\ | -
} .J: .J:
RD o1 !

Buildin

«Q

(

e

Memory B

I S W B N

Block diagram representation of a 4x3 memory

Address lines [

Write

Read

Chip select

A0
Al DO
— 4X3
WR 1
_ " memory
RD

D2
CS

/

Bidirectional
data lines

= Address
Data
Control signals

> Read
> Write

|
E

Building Larger Memories

2 X 16 memory module using 74373 chips A\

yd
D8 — D15
! 2
DO —D7

—T\ — 10—17 — I0—17
OE OE

RD] 7 Chip#1 Chip#2
__ LE LE
Cs 00 — O7 00 — 07 “
_ < DO — D7 =
WR] |
a2
v > |
5 00 b D8 — D15 // =
Al 10 E 2
&g 0l1P— v E
D8 -~ D15
7
! DO — D7
‘ 0—17 — 10—17
D OE Chip#3 OE Chip#4
LE LE
00 — 07 00 — 07
3 ‘; DO — D7

D8 — D15

Q
=4

T - R
A2 — A25
/ o Vs
AD — A23 AO — A23
o5 oM X 16 —— 16M X 16
DO — D15 DO — D15 A
% D16 — D31 DU_DISM
A2 — A2S N
DO — D31
=] yrd |
= I
e s
2 e _ oop AD — A23 AD — A23
A 0 2 o1k s 16M X 16 — leM X 16
A27 1 E ozb— DO — D15 DO —DI15
— - 03 P _
< | % D16 — D31 DO —DIS
e N
= DO — D31
=< 7
A2 — A2S U
-~
AD — A23 AO — A23
— 16M X 16 — 16M X 16
Cs Cs
DO — D15 DO — D15
% D16 — D31 PO —DIS M
A2 — A2S
DO — D31
/ L
\/ AD — A23 A0 — A23
—— 16M X 16 —— 16M X 16
Cs
DO — D15 DO — D15

memory using

16M X 16 chips

% D16 —p31 DO —DIS

[

DO — D31

D0-D31

Data bus

Alignment of Data

+

2N N N 0.

CPU

D24 — D31
A /a\
[\ L
_/
D16 — D23
/N
L)
N/
D8 — D15
/N
L
N/
D0 — D7
/N
\ L
WV, 7
Data bus
D0 — D31

ARRN

15

19

23

byte address

14

18

22

byte address

5 91317 21

byte address

7

4 8 1216 20

byte address

MEMORY

Get 32-bit data in one or more read cycle?

|
s

= Alignment
~ 2-byte data: Even address
« Rightmost address bit should be zero
~ 4-byte data: Address that is multiple of 4
« Rightmost 2 bits should be zero
~ 8-byte data: Address that is multiple of 8
= Rightmost 3 bits should be zero
~ Soft alignment
= Can handle aligned as well as unaligned data
~ Hard alighment
= Handles only aligned data (enforces alignment)

Alignment of Data (cont.)

|
)

= Slower memories
Problem: Speed gap between processor and memory

Solution: Cache memory
Use small amount of fast memory
Make the slow memory appear faster
Works due to “reference locality”

= Size limitations
» Limited amount of physical memory

Memory Design Issues

= Overlay technique
Programmer managed
> Virtual memory
« Automates overlay management
= Some additional benefits

|
4

A A

Memory Hierarchy

Higher Faster
cost Registers access

/ 7 T

CPU

Main memory

Disk

(a)

CPU

Registers
\

Cache memory

Main memory

Disk cache

Disk

(b)

Larger
size

|
s

= High-speed expensive static RAM both inside and outside
the CPU.

> Level-1 cache: inside the CPU
> Level-2 cache: outside the CPU

s Prefetch data into cache before the processor needs it
» Need to predict processor future access requirements
~ Locality of reference

= Cache hit: when data to be read is already in cache
memory

= Cache miss: when data to be read is not in cache memory.
When? compulsory, capacity and conflict.

= Cache design: cache size, n-way, block size, replacement
policy

Cache Memory

|
-+

= Example
for (1=0; 1I<M; 1++)
for(J=0; J<N; j++)
X[l = X[l + K3
~ Each element of X is double (eight bytes)
~ Loop is executed (M:N) times

« Placing the code in cache avoids access to main
memory
Repetitive use
Temporal locality
= Prefetching data
Spatial locality

Why Cache Memory Works

|
s

= On every read miss
~ A fixed number of bytes are transferred

= More than what the processor needs
Effective due to spatial locality

= Cache is divided into blocks of B bytes
= b-bits are needed as offset into the block
b = log,B
= Block are called cache lines
= Main memory is also divided into blocks of same
SlZe

Cache Design Basics

|
s

= Determines how memory blocks are mapped to
cache lines

= Three types

~ Direct mapping
= Specifies a single cache line for each memory block

» Set-associative mapping
' | 1V 1ni PPII Iv

Mapping Function

= Specifies a set of cache lines for each memory block
~ Associative mapping

= NO restrictions
Any cache line can be used for any memory block

Direct Mapping

Block Mapped to
address Byte 3 Byte 2| Byte 1 Byte 0 cache line
15 i i i 3
14 2
13 1
12 IR 0
, : , Cache H E E E X
Byte 3. Byte 2. Byte 1 . Byte 0 ine 10 2
i i i 3 9 1
E‘E:EE:;:E Imm 1 7 i i] 3
\\\ \\\ \\\ 0 6 L 2
Cache memory S ; 1
4 MDD 0
3 L 3
2 i i i 2
1 1
0 ILIMIIHIMIMMNY 0

Main memory

Set-Associate Mapping

Block Byte3i Byte2i Byte 1| Byte 0 Set

14 i i i 0

12 i i 0

_ Byte3{Byte 2| Byie 1 Byte 0 Line 10 0
L 2 8 E j E Y
X 0 6 | : | 0
Cache memory 5 _ !

4 a i i 0

A s s s e

2 0

R e e e

0 E E | 0

Main memory

|
E

Virtual Memory

DM

A\

Virtual memory Physical memory

/O Devices

|
s

= |/O devices are interfaced via an |/O controller
~ Takes care of low-level operations details

= Several ways of mapping I/O

> Memory-mapped 1I/O
=« Reading and writing similar to memory read/write
=« Uses same memory read and write signals
= Most processors use this I/O mapping

~ Isolated 1/O
= Separate I/O address space
= Separate /O read and write signals are needed

= Pentium supports isolated 1/O
Also supports memory-mapped 1/O

Input/Output

& Input/Output (cont.)

Address bus

Data bus

System bus

Control bus

-‘ !everal ways of transferring data
~» Programmed 1/O

=« Program uses a busy-wait loop
Anticipated transfer
~ Direct memory access (DMA)

= Special controller (DMA controller) handles data
transfers

« Typically used for bulk data transfer
~ Interrupt-driven 1/O

= Interrupts are used to initiate and/or terminate data
transfers
Powerful technique
Handles unanticipated transfers

Input/Output (cont.)

|
.

= System components are interconnected by buses
~ Bus: a bunch of parallel wires

s Uses several buses at various levels
» On-chip buses

« Buses to interconnect ALU and registers
A, B, and C buses in our example

« Data and address buses to connect on-chip caches
~ Internal buses

=« PCIl, AGP, PCMCIA
~ External buses

= Serial, parallel, USB, IEEE 1394 (FireWire)

Interconnection

E

PC
System Buses

ISA (Industry Standard
Architecture)

PCI (Peripheral Component

Video memory

CPU

AGP port

bridge
(north bridge)

Frame

buffer

memory

DVD AGP
graphics
F accelerator

Monitor

LAN

SCSI

Graphics

Network é PCI/ISA
e bt
Disks g_ drive CD ROM
Monitor (south bridge)

System
BIOS

ISA bus

Keyboard —
Mouse — 1/0

Printer —

— Floppy

— COM1

— COM2

1].,0031 bus
PCI

Cache bus

Level 2
cache

Memory bus

Memory

Sound

Mic

ISA slots

|
.

= Bus is a shared resource
> Bus transactions
= Sequence of actions to complete a well-defined
activity
= Involves a master and a slave
Memory read, memory write, 1/0 read, 1/0 write
~ Bus operations

= A bus transaction may perform one or more bus
operations
Pentium burst read
Transfers four memory words
Bus transaction consists of four memory read
operations

> Bus arbitration

Interconnection (cont.)

Summary

= General Concepts of Computer Organization
» Overview of Microcomputer
CPU, Memory, I/O
Instruction Execution Cycle
~ Central Processing Unit (CPU)
CISC vs. RISC
6 Instruction Set Design Issues
> How Hardwares Execute Processor’s Instructions
Digital Logic Design (Combinational & Sequential Circuits)
Microprogrammed Control
> Pipelining
3 Hazards
3 technologies for performance improvement
> Memory
Data Alignment
2 Design Issues (Cache, Virtual Memory)
> 1/O Devices

