
Computer Organization &Computer Organization &Computer Organization & Computer Organization &
Assembly Languages Assembly Languages

Computer Organization (I)

Fundamentals
Pu-Jen Cheng

MaterialsMaterials

Some materials used in this course are adapted fromSome materials used in this course are adapted from
The slides prepared by Kip Irvine for the book, Assembly Language
for Intel-Based Computers, 5th Ed.
The slides prepared by S. Dandamudi for the book, Fundamentals of
Computer Organization and Designs.
The slides prepared by S Dandamudi for the book Introduction toThe slides prepared by S. Dandamudi for the book, Introduction to
Assembly Language Programming, 2nd Ed.
Introduction to Computer Systems, CMU
(http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/
15213-f05/www/)

Assembly Language & Computer Organization NTUAssembly Language & Computer Organization, NTU
(http://www.csie.ntu.edu.tw/~cyy/courses/assembly/
05fall/news/)/ /)
(http://www.csie.ntu.edu.tw/~acpang/course/asm_2004)

OutlineOutline
General Concepts of Computer Organization

Overview of Microcomputer
CPU, Memory, I/O
Instruction Execution Cycley

Central Processing Unit (CPU)
CISC vs. RISC
6 Instruction Set Design Issues6 Instruction Set Design Issues

How Hardwares Execute Processor’s Instructions
Digital Logic Design (Combinational & Sequential Circuits)
Microprogrammed ControlMicroprogrammed Control

Pipelining
3 Hazards
3 t h l i f f i t3 technologies for performance improvement

Memory
Data Alignment
2 Design Issues (Cache, Virtual Memory)

I/O Devices

General Concepts of Computer OrganizationGeneral Concepts of Computer Organization

Overview of MicrocomputerOverview of Microcomputer

Von Neumann Machine, 1945Von Neumann Machine, 1945

Memory, Input/Output, Arithmetic/Logic Unit, Control Unity, p p , g ,
Stored-program Model

Both data and programs are stored in the same main memory

Sequential Execution

http://www.virtualtravelog.net/entries/2003-08-TheFirstDraft.pdf

What is MicrocomputerWhat is Microcomputer

MicrocomputerMicrocomputer
A computer with a microprocessor (µP) as its central processing
unit (CPU)

Microprocessor (µP)
A digital electronic component with transistors on a single
semiconductor integrated circuit (IC)semiconductor integrated circuit (IC)
One or more microprocessors typically serve as a central
processing unit (CPU) in a computer system or handheld device.

Components of MicrocomputerComponents of Microcomputer

Basic Microcomputer DesignBasic Microcomputer Design

data bus

registers

I/O I/OCentral Processor Unit
(CPU)

Memory Storage
Unit

ALU l k

I/O
Device

#1

I/O
Device

#2

CUALU clock

control bus

CU

address bus

CPUCPU
Arithmetic and logic unit (ALU) performs arithmetic (add, subtract) and
logical (AND OR NOT) operationslogical (AND, OR, NOT) operations
Registers store data and instructions used by the processor
Control unit (CU) coordinates sequence of execution steps

Fetch instructions from memory, decode them to find their types
Clock
Datapath consists of registers and ALU(s)Datapath consists of registers and ALU(s)

Datapath ALU inputDatapath
operand operandALU output

Program Counter (PC)
(or Instruction Pointer (IP))
Instruction Register (IR)
M Add R i tMemory Address Register
(MAR)
Memory Data Register
(MDR)(MDR)

RISC processorRISC processor

ClockClock

Provide timing signal and the basic unit of time
Synchronize all CPU and BUS operations
Machine (clock) cycle measures time of a single operation
Clock is used to trigger eventsgg
Clock period = 1GHz→clock cycle=1ns1

Clock frequency
A instruction could take multiple cycles to complete, e.g. multiply in
8088 takes 50 cycles

one cycle

11

00

Memory, I/O, System BusMemory, I/O, System Bus
Main/primary memory (random access memory, RAM)
t b th i t ti d d tstores both program instructions and data

I/O devices
Interface: I/O controllerInterface: I/O controller
User interface: keyboard, display screen, printer, modem, …
Secondary storage: disk
Communication network

System Bus
A bunch of parallel wiresA bunch of parallel wires
Transfer data among the components
Address bus (determine the amount of physical memory addressable)
Data bus (indicate the size of the data transferred)
Control bus (consists of control signals:

memory/IO read/write interrupt bus request/grand)memory/IO read/write, interrupt, bus request/grand)

Instruction Execution CycleInstruction Execution Cycle

Execution CycleExecution Cycle
Fetch (IF): CU fetches next instruction, advance PC/IP
Decode (ID): CU determines what the instruction will do
Execute
Fetch operands (OF): (memory operand needed) read value from memory
E t th i t ti (IE)Execute the instruction (IE)
Store output operand (WB): (memory operand needed) write result to
memoryy

Instruction Execution Cycle (cont.)Instruction Execution Cycle (cont.)

Fetch PCFetch
Decode
Fetch operands

I-1 I-2 I-3 I-4

PC program

memory fetchFetch operands
Execute
Store output

op1
op2

memory

registers

read

registersp

I-1
instruction
register

g g

w
rit

e

decode

w
rit

e

ALUw

execute

w flags

(output)

Introduction to Digital Logic DesignIntroduction to Digital Logic Design

See asm ch2 dl pptSee asm_ch2_dl.ppt

CPUCPU

CPUCPU

CISC vs RISCCISC vs. RISC
6 Instruction Set Design Issues

N b f AddNumber of Addresses
Flow of Control
O d TOperand Types
Addressing Modes
Instruction Types
Instruction Formats

ProcessorProcessor
RISC and CISC designs

Reduced Instruction Set Computer (RISC)
Simple instructions, small instruction set
O d d t b i i tOperands are assumed to be in processor registers

Not in memory
Simplify design (e.g., fixed instruction size)Simplify design (e.g., fixed instruction size)

Examples: ARM (Advanced RISC Machines),
DEC Alpha (now Compaq)p (p q)

Complex Instruction Set Computer (CISC)
Complex instructions, large instruction set
Operands can be in registers or memory

Instruction size varies
T i ll iTypically use a microprogram
Example: Intel 80x86 family

Processor (cont.)Processor (cont.)

Processor (cont.)Processor (cont.)

Variations of the ISA-level can be implemented byVariations of the ISA level can be implemented by
changing the microprogram

Instruction Set Design IssuesInstruction Set Design Issues

Number of AddressesNumber of Addresses
Flow of Control
OOperand Types
Addressing Modes
Instruction Types
Instruction FormatsInstruction Formats

Number of AddressesNumber of Addresses

Four categoriesFour categories
3-address machines

2 for the source operands and one for the result2 for the source operands and one for the result
2-address machines

One address doubles as source and result
1-address machine

Accumulator machines
Accumulator is used for one source and result

0-address machines
Stack machines
Operands are taken from the stack
R lt t th t kResult goes onto the stack

Number of Addresses (cont.)Number of Addresses (cont.)

Three-address machinesThree-address machines
Two for the source operands, one for the result
RISC processors use three addressesRISC processors use three addresses
Sample instructions
add dest src1 src2add dest,src1,src2

; M(dest)=[src1]+[src2]
b d t 1 2sub dest,src1,src2

; M(dest)=[src1]-[src2]
lt d t 1 2mult dest,src1,src2

; M(dest)=[src1]*[src2]

Number of Addresses (cont.)Number of Addresses (cont.)

ExampleExample
C statement

A = B + C * D – E + F + AA = B + C D E + F + A
Equivalent code:
mult T C D ;T = C*Dmult T,C,D ;T = C D
add T,T,B ;T = B+C*D
sub T T E ;T = B+C*D-Esub T,T,E ;T = B+C*D-E
add T,T,F ;T = B+C*D-E+F
add A T A ;A = B+C*D-E+F+Aadd A,T,A ;A = B+C*D-E+F+A

Number of Addresses (cont.)Number of Addresses (cont.)

Two-address machinesTwo-address machines
One address doubles (for source operand & result)
Last example makes a case for itLast example makes a case for it

Address T is used twice
Sample instructionsSample instructions

load dest,src ; M(dest)=[src]
add dest src M(dest) [dest]+[src]add dest,src ; M(dest)=[dest]+[src]
sub dest,src ; M(dest)=[dest]-[src]

lt d t M(d t) [d t]*[]mult dest,src ; M(dest)=[dest]*[src]

Number of Addresses (cont.)Number of Addresses (cont.)

ExampleExample
C statement

A = B + C * D – E + F + AA = B + C D E + F + A
Equivalent code:
load T C ;T = Cload T,C ;T = C
mult T,D ;T = C*D
add T B ;T = B+C*Dadd T,B ;T = B+C*D
sub T,E ;T = B+C*D-E
add T F ;T = B+C*D-E+Fadd T,F ;T = B+C*D-E+F
add A,T ;A = B+C*D-E+F+A

Number of Addresses (cont.)Number of Addresses (cont.)

One-address machinesOne-address machines
Use special set of registers called accumulators

Specify one source operand & receive the resultSpecify one source operand & receive the result
Called accumulator machines
Sample instructionsSample instructions

load addr ; accum = [addr]
store addr M[addr] acc mstore addr ; M[addr] = accum
add addr ; accum = accum + [addr]
b dd [dd]sub addr ; accum = accum - [addr]

mult addr ; accum = accum * [addr]

Number of Addresses (cont.)Number of Addresses (cont.)

ExampleExample
C statement
A = B + C * D – E + F + AA B C D E F A

Equivalent code:
load C ;load C into accum
mult D ;accum = C*D
add B ;accum = C*D+B
sub E ;accum = B+C*D-E
add F ;accum = B+C*D-E+F
add A ;accum = B+C*D-E+F+A
store A ;store accum contents in A

Number of Addresses (cont.)Number of Addresses (cont.)

Zero-address machinesZero-address machines
Stack supplies operands and receives the result

Special instructions to load and store use an addressSpecial instructions to load and store use an address
Called stack machines (Ex: HP3000, Burroughs B5500)
Sample instructionsSample instructions

push addr ; push([addr])
pop addr pop([addr])pop addr ; pop([addr])
add ; push(pop + pop)

b h()sub ; push(pop - pop)
mult ; push(pop * pop)

Number of Addresses (cont.)Number of Addresses (cont.)

ExampleExample
C statement

A B C * D E F AA = B + C * D – E + F + A
Equivalent code:
push E sub
push C push Fp p
push D add
Mult push AMult push A
push B add
add pop A

Load/Store ArchitectureLoad/Store Architecture

Instructions expect operands in internal processor registersInstructions expect operands in internal processor registers
Special LOAD and STORE instructions move data between
registers and memory
RISC uses this architecture
Reduces instruction length

Load/Store Architecture (cont.)Load/Store Architecture (cont.)

Sample instructionsSample instructions
load Rd,addr ;Rd = [addr]
t dd R (dd) Rstore addr,Rs ;(addr) = Rs
add Rd,Rs1,Rs2 ;Rd = Rs1 + Rs2
b Rd R 1 R 2 Rd R 1 R 2sub Rd,Rs1,Rs2 ;Rd = Rs1 - Rs2

mult Rd,Rs1,Rs2 ;Rd = Rs1 * Rs2

Number of Addresses (cont.)Number of Addresses (cont.)

ExampleExample
C statement

A B + C * D E + F + AA = B + C * D – E + F + A
Equivalent code:
load R1,B mult R2,R2,R3
load R2,C add R2,R2,R1
load R3,D sub R2,R2,R4
load R4,E add R2,R2,R5
load R5,F add R2,R2,R6
load R6,A store A,R2

Flow of ControlFlow of Control

Default is sequential flowDefault is sequential flow
Several instructions alter this default execution

B hBranches
Unconditional
C di i lConditional
Delayed branches

Procedure calls
Delayed procedure calls

Flow of Control (cont.)Flow of Control (cont.)

BranchesBranches
Unconditional

Absolute addressAbsolute address
PC-relative

Target address is specified relative to PC contentsTarget address is specified relative to PC contents
Relocatable code

Example: MIPSExample: MIPS
Absolute address

j targetj target
PC-relative

b targetb target

Flow of Control (cont.)Flow of Control (cont.)

e g , Pentium e g , SPARCe.g., Pentium e.g., SPARC

Flow of Control (cont.)Flow of Control (cont.)

BranchesBranches
Conditional

Jump is taken only if the condition is metp y
Two types

Set-Then-Jump
Condition testing is separated from branching
Condition code registers are used to convey the condition test
result
Condition code registers keep a record of the status of the last
ALU operation such as overflow condition

Example: Pentium codeExample: Pentium code
cmp AX,BX ; compare AX and BX
je target ; jump if equal

Flow of Control (cont.)Flow of Control (cont.)

Test-and-JumpTest and Jump
Single instruction performs condition testing and branching

Example: MIPS instructionp
beq Rsrc1,Rsrc2,target

Jumps to target if Rsrc1 = Rsrc2g

Delayed branching
Control is transferred after executing the instruction thatControl is transferred after executing the instruction that
follows the branch instruction

This instruction slot is called delay sloty
Improves efficiency
Highly pipelined RISC processors supportg y p pe ed SC p ocesso s suppo

Flow of Control (cont.)Flow of Control (cont.)

Procedure callsProcedure calls
Facilitate modular programming
Require two pieces of information to returnRequire two pieces of information to return

End of procedure
Pentium

uses ret instruction
MIPS

uses jr instructionuses jr instruction
Return address

In a (special) register
MIPS allows any general-purpose register

On the stack
PentiumPentium

Flow of Control (cont.)Flow of Control (cont.)

Flow of Control (cont.)Flow of Control (cont.)

Delay slot

Parameter PassingParameter Passing

Two basic techniquesTwo basic techniques
Register-based (e.g., PowerPC, MIPS)

Internal registers are usedInternal registers are used
Faster
Limit the number of parametersLimit the number of parameters
Recursive procedure

Stack-based (e.g., Pentium)(g)
Stack is used

More general

Operand TypesOperand Types

Instructions support basic data typesInstructions support basic data types
Characters
IntegersIntegers
Floating-point

I t ti l dInstruction overload
Same instruction for different data types
Example: Pentium
mov AL,address ;loads an 8-bit value
mov AX,address ;loads a 16-bit value
mov EAX,address ;loads a 32-bit value

Operand TypesOperand Types

Separate instructionsSeparate instructions
Instructions specify the operand size
Example: MIPSExample: MIPS
lb Rdest,address ;loads a byte
lh Rdest address ;loads a halfwordlh Rdest,address ;loads a halfword

;(16 bits)
l Rdest address loads a ordlw Rdest,address ;loads a word

;(32 bits)
ld Rd t dd l d d bl dld Rdest,address ;loads a doubleword

;(64 bits)

Similar instruction: store

Addressing ModesAddressing Modes

How the operands are specifiedHow the operands are specified
Operands can be in three places

RegistersRegisters
Register addressing mode

Part of instructionPart of instruction
Constant
Immediate addressing modeg
All processors support these two addressing modes

Memory
Difference between RISC and CISC
CISC supports a large variety of addressing modes
RISC f ll l d/ t hit tRISC follows load/store architecture

Instruction TypesInstruction Types

Several types of instructionsyp
Data movement

Pentium: mov dest,src
Some do not provide direct data movement
instructions
I di t d t tIndirect data movement
add Rdest,Rsrc,0 ;Rdest = Rsrc+0

Arithmetic and LogicalArithmetic and Logical
Arithmetic

Integer and floating point signed and unsignedInteger and floating-point, signed and unsigned
add, subtract, multiply, divide

LogicalLogical
and, or, not, xor

Instruction Types (cont.)Instruction Types (cont.)

Condition code bitsCondition code bits
S: Sign bit (0 = +, 1= -)
Z: Zero bit (0 = nonzero 1 = zero)Z: Zero bit (0 = nonzero, 1 = zero)
O: Overflow bit (0 = no overflow, 1 = overflow)
C: Carry bit (0 = no carry 1 = carry)C: Carry bit (0 = no carry, 1 = carry)

E l P tiExample: Pentium
cmp count,25 ;compare count to 25

;subtract 25 from count
je target ;jump if equal

Instruction Types (cont.)Instruction Types (cont.)

Flow control and I/O instructionsFlow control and I/O instructions
Branch
Procedure call
Interrupts

I/O instructions
Memory-mapped I/O

Most processors support memory-mapped I/O
No separate instructions for I/ONo separate instructions for I/O

Isolated I/O
Pentium supports isolated I/OPentium supports isolated I/O
Separate I/O instructions

in AX,io_port ;read from an I/O port
t i t AX it t I/O tout io_port,AX ;write to an I/O port

Instruction FormatsInstruction Formats

Two typesTwo types
Fixed-length

Used by RISC processorsUsed by RISC processors
32-bit RISC processors use 32-bits wide instructions

Examples: SPARC MIPS PowerPCExamples: SPARC, MIPS, PowerPC

Variable-length
Used by CISC processorsUsed by CISC processors
Memory operands need more bits to specify

OpcodeOpcode
Major and exact operation

Examples of Instruction FormatsExamples of Instruction Formats

How Hardware ExecutesHow Hardware Executes
Processor’s Instructionsocesso s s uc o s

How Hardware Executes
Processor’s InstructionsProcessor s Instructions

Digital Logic DesignDigital Logic Design
Combinational and Sequential Circuits

Microprogrammed ControlMicroprogrammed Control

Virtual MachinesVirtual Machines
Abstractions for computers

High-Level Language Level 5
Machine-independent

Assembly Language Level 4 Machine-specific

Operating System

Instruction Set

Level 3

Instruction Set
Architecture

Microarchitecture L l 1

Level 2

Microarchitecture

Digital Logic Level 0

Level 1

Basic Microcomputer DesignBasic Microcomputer Design

data bus

registers

I/O I/OCentral Processor Unit
(CPU)

Memory Storage
Unit

ALU l k

I/O
Device

#1

I/O
Device

#2

CUALU clock

control bus

CU

address bus

Consider 1-bus DatapathConsider 1 bus Datapath

Assume all entities areAssume all entities are
32-bit wide

1-bit ALU1 bit ALU

ALU Circuit in 1-bus DatapathALU Circuit in 1 bus Datapath

Memory Interface ImplementationMemory Interface Implementation

Microprogrammed ControlMicroprogrammed Control

32 32-bit general-purpose registers32 32 bit general purpose registers
Interface only with the A-bus
Each register has two control signals

G i d G tGxin and Gxout
Control signals used by the other registers

PC register:PC register:
PCin, PCout, and PCbout

IR register:
IRout and IRbin

MAR register:
MARin, MARout, and MARboutMARin, MARout, and MARbout

MDR register:
MDRin, MDRout, MDRbin and MDRbout

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

add %G9,%G5,%G7add %G9,%G5,%G7

Implemented as
Transfer G5 contents to A registerTransfer G5 contents to A register

Assert G5out and Ain
Place G7 contents on the A busPlace G7 contents on the A bus

Assert G7out
Instruct ALU to perform addition p

Appropriate ALU function control signals

Latch the result in the C register
Assert Cin

Transfer contents of the C register to G9
Assert Cout and G9in

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

Instruction FetchInstruction Fetch

Implemented as
PCbout: read: PCout: ALU=add4: Cin;PCbout: read: PCout: ALU add4: Cin;
read: Cout: PCin;
Read: IRbin;Read: IRbin;
Decodes the instruction and jumps to
the appropriate execution rountinethe appropriate execution rountine

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

Example instruction groupsExample instruction groups
Load/store

Moves data between registers and memoryMoves data between registers and memory
Register

Arithmetic and logic instructionsArithmetic and logic instructions
Branch

J di t/i di tJump direct/indirect
Call

P d i ti h iProcedures invocation mechanisms
More…

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

High-level FSM
for instruction
executionexecution

FSM: finite state machine

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

Software implementationSoftware implementation
Typically used in CISC

Hardware implementation (PLA) is complex andHardware implementation (PLA) is complex and
expensive

ExampleExample
add %G9,%G5,%G7

Three steps
S1 G5out: Ain;
S2 G7out: ALU=add: Cin;
S3 Cout: G9in: end;

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

Simple
microcodemicrocode
organization

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

Uses a microprogram to generate the controlUses a microprogram to generate the control
signals

Encode the signals of each step as a codewordEncode the signals of each step as a codeword
Called microinstruction

A instruction is expressed by a sequence of codewordsA instruction is expressed by a sequence of codewords
Called microroutine

Mi ti ll i l t th FSMMicroprogram essentially implements the FSM
discussed before

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

A simple microcontroller can execute aA simple microcontroller can execute a
microprogram to generate the control signals

Control storeControl store
Store microprogram

Use μPCUse μPC
Similar to PC

Address generatorAddress generator
Generates appropriate address depending on the

Opcode andOpcode, and
Condition code inputs

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

MicrocontrollerMicrocontroller

Microcodes reside in control store, which might be read-only memory (ROM)

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

Microinstruction formatMicroinstruction format
Two basic ways

Horizontal organizationHorizontal organization
Vertical organization

Horizontal organization
O bit f h i lOne bit for each signal
Very flexible
L i i t tiLong microinstructions
Example: 1-bus datapath

N d 90 bit f h i i t tiNeeds 90 bits for each microinstruction

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

Horizontal
microinstruction
format

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

Vertical organizationVertical organization
Encodes to reduce microinstruction length

Reduced flexibility
Example:

Horizontal organization
64 t l i l f th 32 l i t64 control signals for the 32 general purpose registers

Vertical organization
5 bits to identify the register and 1 for in/outy g

2-bus Datapath2 bus Datapath

Microprogrammed Control (cont.)Microprogrammed Control (cont.)

Adding more buses reduces time needed toAdding more buses reduces time needed to
execute instructions

No need to multiplex the busNo need to multiplex the bus
Example

dd %G9 %G5 %G7add %G9,%G5,%G7

Needed three steps in 1-bus datapath
Need only two steps with a 2-bus datapath
S1 G5out: Ain;
S2 G7out: ALU=add: G9in;

PipeliningPipelining

PipeliningPipelining

IntroductionIntroduction
3 Hazards

R D t d C t l H dResource, Data and Control Hazards
3 Technologies for Performance Improvement

Superscalar, Superpipelined, and Very Long Instruction
Word

Serial and PipeliningSerial and Pipelining

Serial execution: 20 cycles

Pipelined execution: 8 cycles

F k d i iFor k states and n instructions,
the number of required cycles is:

k + (n – 1)k + (n 1)

PipeliningPipelining

PipeliningPipelining
Overlapped execution
Increases throughput

Pipelining (cont.)Pipelining (cont.)

Pipelining requires buffersPipelining requires buffers
Each buffer holds a single value
Uses just-in-time principlej p p

Any delay in one stage affects the entire pipeline flow
Ideal scenario: equal work for each stage

Sometimes it is not possible
Slowest stage determines the flow rate in the entire
pipelinepipeline

Pipelining (cont.)Pipelining (cont.)

Some reasons for unequal work stagesSome reasons for unequal work stages
A complex step cannot be subdivided conveniently
An operation takes variable amount of time to executep

EX: Operand fetch time depends on where the operands
are located

RegistersRegisters
Cache
Memory

Complexity of operation depends on the type of operation
Add: may take one cycle
M lti l t k l lMultiply: may take several cycles

Pipeline StallPipeline Stall

Operand fetch of I2 takes three cyclesOperand fetch of I2 takes three cycles
Pipeline stalls for two cycles

Caused by hazards
Pipeline stalls reduce overall throughput

HazardsHazards

Three types of hazardsThree types of hazards
Resource hazards

Occurs when two or more instructions use the same
resource
Also called structural hazards

D t h dData hazards
Caused by data dependencies between instructions

Example: Result produced by I1 is read by I2p p y y
Control hazards

Default: sequential execution suits pipelining
Altering control flow (e.g., branching) causes problems

Introduce control dependencies

Resource HazardsResource Hazards

ExampleExample
Conflict for memory in clock cycle 3

I1 fetches operandp
I3 delays its instruction fetch from the same memory

Data HazardsData Hazards

ExampleExample
I1: add R2,R3,R4 /* R2 = R3 + R4 */
I2: sub R5,R6,R2 /* R5 = R6 – R2 */

Introduces data dependency between I1 and I2

Control Hazards

»Determine branch decision early

Performance ImprovementPerformance Improvement

Several techniques to improve performance of aSeveral techniques to improve performance of a
pipelined system

Superscalar
Replicates the pipeline hardwareReplicates the pipeline hardware

Superpipelined
Increases the pipeline depth

Very long instruction word (VLIW)Very long instruction word (VLIW)
Encodes multiple operations into a long instruction word
Hardware schedules these instructions on multiple
functional units (No run time analysis)functional units (No run-time analysis)
add R1, R2, R3 ; R1 = R2 + R3
sub R5, R6, R7 ; R5 = R6 – R7
and R4, R1, R5 ; R4 = R1 AND R5
xor R9, R9, R9 ; R9 = R9 XOR R9

cycle 1: add, sub, xor
cycle 2: and

Superscalar ProcessorSuperscalar Processor

Ex: Pentium

Wasted Cycles (pipelined)Wasted Cycles (pipelined)

When one of the stages requires two or more clock cycles,When one of the stages requires two or more clock cycles,
clock cycles are again wasted.

St

S1 S2 S3 S4 S5
1

Stages

S6
I-1

exe

For k states and n
instructions the

cl
es

2
3
4
5

I-2
I-3

I-1
I-2
I-3

I-1
I-2
I-3

I-1
I-1

instructions, the
number of required
cycles is:

k + (2 1)

C
yc 5

6
7

I 3
I-2 I-1

I-1
8 I-3 I-2

I 1

I-2

k + (2n – 1)

9 I-2
10
11

I-3
I-3

I-3

SuperscalarSuperscalar

A superscalar processor has multiple execution pipelines.
In the following, note that Stage S4 has left and right
pipelines (u and v).

S1 S2 S3 S5

Stages

S6

S4 For k states and n
instructions theS1 S2 S3 u S5

1

s

S6

2
3

I-1
I-2
I-3

I-1
I-2 I-1

v instructions, the
number of required
cycles is:

k +

C
yc

le
s 4

5
6
7

I-4 I-3
I-4

I-2
I-3
I-4

I-1

I-3 I-1
I-2 I-1

I-2

I-4
I-2

I-1

I-3

k + n

8
9

I-3
I-4

I-2
I-3

10 I-4

I-4
3

Superpipelined ProcessorSuperpipelined Processor

Ex: MIPS R4000Ex: MIPS R4000

MemoryMemory

MemoryMemory

IntroductionIntroduction
Building Memory Blocks
l fAlignment of Data

2 Memory Design Issues
Cache
Virtual Memoryy

Memory (cont.)Memory (cont.)

Ordered sequence of bytesOrdered sequence of bytes
The sequence number is called the memory address
Byte addressable memoryByte addressable memory

Each byte has a unique address
Almost all processors support thisp pp

Memory address space
Determined by the address bus widthy
Pentium has a 32-bit address bus

address space = 4GB (232)
Itanium with 64-bit address bus supports

264 bytes of address space

Memory (cont.)Memory (cont.)

Memory (cont.)Memory (cont.)

Read cycleRead cycle
1. Place address on the address bus
2. Assert memory read control signal2. Assert memory read control signal
3. Wait for the memory to retrieve the data

Introduce wait states if using a slow memoryg y
4. Read the data from the data bus
5. Drop the memory read signal

In Pentium, a simple read takes three clocks
cycles

Clock 1: steps 1 and 2
Clock 2: step 3
Clock 3 : steps 4 and 5

Memory (cont.)Memory (cont.)

Write cycleWrite cycle
1. Place address on the address bus
2. Place data on the data bus2. Place data on the data bus
3. Assert memory write signal
4. Wait for the memory to retrieve the datay

Introduce wait states if necessary
5. Drop the memory write signal
In Pentium, a simple write also takes three clocks

Clock 1: steps 1 and 3
Clock 2: step 2
Clock 3 : steps 4 and 5

How Hardware ImplementsHow Hardware Implements
Memory SystemsMemory Systems

Building a Memory BlockBuilding a Memory Block

A 4 X 3 d iA 4 X 3 memory design
using D flip-flops

Building a Memory Block (cont’d)Building a Memory Block (cont d)

Bl k di t ti f 4 3Block diagram representation of a 4x3 memory

Address
Data
Control signals

ReadRead
Write

Building Larger MemoriesBuilding Larger Memories

2 X 16 memory module using 74373 chips2 X 16 memory module using 74373 chips

Designing Larger MemoriesDesigning Larger Memories

64M X 32
imemory using

16M X 16 chips

Alignment of DataAlignment of Data

Get 32-bit data in one or more read cycle?

Alignment of Data (cont.)Alignment of Data (cont.)

AlignmentAlignment
2-byte data: Even address

Rightmost address bit should be zeroRightmost address bit should be zero
4-byte data: Address that is multiple of 4

Rightmost 2 bits should be zeroRightmost 2 bits should be zero
8-byte data: Address that is multiple of 8

Ri ht t 3 bit h ld bRightmost 3 bits should be zero
Soft alignment

C h dl li d ll li d d tCan handle aligned as well as unaligned data
Hard alignment

H dl l li d d t (f li t)Handles only aligned data (enforces alignment)

Memory Design IssuesMemory Design Issues

Slower memoriesSlower memories
Problem: Speed gap between processor and memory
Solution: Cache memory

U ll t f f tUse small amount of fast memory
Make the slow memory appear faster
Works due to “reference locality”

Size limitations
Limited amount of physical memory

Overlay techniqueOverlay technique
Programmer managed

Virtual memory
Automates overlay management
Some additional benefits

Memory HierarchyMemory Hierarchy

Cache MemoryCache Memory

High-speed expensive static RAM both inside and outsideHigh speed expensive static RAM both inside and outside
the CPU.

Level-1 cache: inside the CPU
Level-2 cache: outside the CPU

Prefetch data into cache before the processor needs it
Need to predict processor future access requirements
Locality of reference

C h hit h d t t b d i l d i hCache hit: when data to be read is already in cache
memory
Cache miss: when data to be read is not in cache memoryCache miss: when data to be read is not in cache memory.
When? compulsory, capacity and conflict.
Cache design: cache size n-way block size replacementCache design: cache size, n-way, block size, replacement
policy

Why Cache Memory WorksWhy Cache Memory Works

ExampleExample
for (i=0; i<M; i++)

for(j=0; j<N; j++)for(j=0; j<N; j++)
X[i][j] = X[i][j] + K;

Each element of X is double (eight bytes)Each element of X is double (eight bytes)
Loop is executed (M*N) times

Pl i th d i h id t iPlacing the code in cache avoids access to main
memory

Repetitive useRepetitive use
Temporal locality

Prefetching datag
Spatial locality

Cache Design BasicsCache Design Basics

On every read miss
A fixed number of bytes are transferredA fixed number of bytes are transferred

More than what the processor needs
Effective due to spatial locality

Cache is divided into blocks of B bytes
b-bits are needed as offset into the block

b = log2B
Block are called cache lines

Main memory is also divided into blocks of same
size

Mapping FunctionMapping Function

Determines how memory blocks are mapped to
cache lines
Three types

Direct mappingDirect mapping
Specifies a single cache line for each memory block

Set-associative mappingSet associative mapping
Specifies a set of cache lines for each memory block

Associative mappingAssociative mapping
No restrictions

Any cache line can be used for any memory blockAny cache line can be used for any memory block

Direct MappingDirect Mapping

Set-Associate MappingSet Associate Mapping

Virtual MemoryVirtual Memory

I/O DevicesI/O Devices

Input/OutputInput/Output

I/O devices are interfaced via an I/O controllerI/O devices are interfaced via an I/O controller
Takes care of low-level operations details

Several ways of mapping I/OSeveral ways of mapping I/O
Memory-mapped I/O

Reading and writing similar to memory read/writeReading and writing similar to memory read/write
Uses same memory read and write signals
Most processors use this I/O mappingp pp g

Isolated I/O
Separate I/O address space
Separate I/O read and write signals are needed
Pentium supports isolated I/O

Also supports memory-mapped I/O

Input/Output (cont.)Input/Output (cont.)

Input/Output (cont.)Input/Output (cont.)

Several ways of transferring datay g
Programmed I/O

Program uses a busy-wait loopg y p
Anticipated transfer

Direct memory access (DMA)
Special controller (DMA controller) handles data
transfers
Typically used for bulk data transfer

Interrupt-driven I/O
Interrupts are used to initiate and/or terminate data
transfers

Powerful technique
Handles unanticipated transfers

InterconnectionInterconnection

System components are interconnected by busesSystem components are interconnected by buses
Bus: a bunch of parallel wires

Uses several buses at various levelsUses several buses at various levels
On-chip buses

B i ALU d iBuses to interconnect ALU and registers
A, B, and C buses in our example

D t d dd b t t hi hData and address buses to connect on-chip caches
Internal buses

PCI AGP PCMCIAPCI, AGP, PCMCIA
External buses

S i l ll l USB IEEE 1394 (Fi Wi)Serial, parallel, USB, IEEE 1394 (FireWire)

PC
System Busesy

ISA (Industry Standard
A hi)Architecture)

PCI (Peripheral Component
Interconnect)Interconnect)

AGP (Accelerated Graphics
Port))

Interconnection (cont.)Interconnection (cont.)

Bus is a shared resourceBus is a shared resource
Bus transactions

Sequence of actions to complete a well-definedSequence of actions to complete a well defined
activity
Involves a master and a slave

Memory read, memory write, I/O read, I/O write
Bus operations

A b s t ansaction ma pe fo m one o mo e b sA bus transaction may perform one or more bus
operations

Pentium burst read
Transfers four memory words
Bus transaction consists of four memory read
operationsoperations

Bus arbitration

SummarySummary
General Concepts of Computer Organization

Overview of Microcomputer
CPU, Memory, I/O
Instruction Execution Cycley

Central Processing Unit (CPU)
CISC vs. RISC
6 Instruction Set Design Issues6 Instruction Set Design Issues

How Hardwares Execute Processor’s Instructions
Digital Logic Design (Combinational & Sequential Circuits)
Microprogrammed ControlMicroprogrammed Control

Pipelining
3 Hazards
3 t h l i f f i t3 technologies for performance improvement

Memory
Data Alignment
2 Design Issues (Cache, Virtual Memory)

I/O Devices

