Computer Organization & & Microprocessors

Version 4.6b released on July 2018 First printed on March 2007

Background and Acknowledgements

This material is intended for the second course in digital systems focus on Computer Organization and Microprocessors. The content is derived from the author's educational, engineering and management career, and teaching experience.

I would like to extend special thanks to the many students and colleagues for their contributions in making this material a more effective learning tool.

Further, I would invite the reader to forward corrections, additional topics, examples and problems to me for future updates.

Thanks, Izad Khormaee www.EngrCS.com

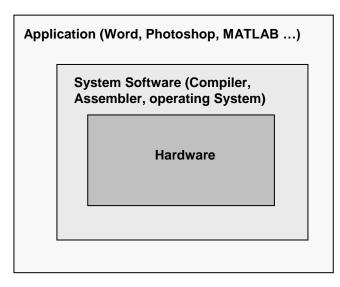
Microchip material used by permission:

Excerpts from Microchip Technology Inc.'s PIC microprocessor Datasheets, application notes and other resources has been included with permission from Microchip Technology Inc., November 9, 2006. The following are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries: Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PowerSmart, PRO MATE, rfPIC and SmartShunt; as well as the Microchip logo, the Microchip name and logo, and the KEELOQ logo.

Table of Contents

CHAP	TER 1. Introductions	6
1.1.	. Overview of components, subsystems and interfaces	7
	Processor Design Considerations	
1.3.	. Computing systems Classification	
1.4.	. Historical Perspective and Trends	
	What's next	
	. Integrated Development Environment (IDE)	
	. Additional Resources	
	Problems	
CHAP	TER 2. Assembly Instructions and Processor Architecture	
	. Instruction Structure & Execution	
	. Byte-oriented Operations	
	. Bit-oriented Operations	
	. Literal-oriented Operations	
	. Control Operations	
	. Memory Layout & Definitions	
	. Additional Resources	
2.8.	Problems	
CHAP	TER 3. Input/Output Organizations	
3.1.	Pinout and Packaging	51
3.2.	. Accessing I/O Devices	
3.3.	. Additional Resources	64
3.4.	. Problems	65
Chapt	ter 4. Program Flow, Event Handling and Control	
41	. Overview	67
	Stack Operations	
	Procedure Call and Return Instructions	
	. Interrupt/exception handling	
	. Clock and Oscillator	
	. Timers	
4.7.	. Power Management	
4.8.	. Reset	
4.9.	Analog-to-Digital Converter	
4.10	0. Pulse Width Modulation (PWM)	
4.11	1. Additional Resources	
4.12	2. Problems	
Chapt	ter 5. Arithmetic & Logic Operations	
5.1.	Arithmetic Operations	
	. Move, Set and Clear Operations	
	Branch Operations	
5.5.	. Specialty Operations	
	. IEEE Standards for Floating Point	
	. Additional Resources	
5.8.	. Problems	

Chapter 6. C/Assembly/Machine Language Equivalencies	186
6.1. Introduction	107
6.2. Indirect Addressing (INDFn)	
6.3. Functions / Procedures	
6.4. Data Types	
6.5. Program Flow Controls	
6.6. Additional Resources	
6.7. Problems	
Chapter 7. Performance	
·	
7.1. CPU Performance and Relating Factors	
7.2. Evaluating Performance	218
7.3. Performance Bench Marking Design	
7.4. Additional Resources	
7.5. Problems	221
Chapter 8. Memory & Storage Hierarchy	222
8.1. Memory & Storage Overview	
8.2. Cache Memory	
8.3. Primary Memory	
8.4. Secondary Storage	
8.5. Virtual Memory Management	
8.6. Additional Resources	
8.7. Problems	230
Chapter 9. Concurrency in Computing	231
9.1. Overview of Parallelism	
9.2. Pipelining	
9.3. Multi-processing	
9.4. Multi-core Processors	
9.5. Multi-Processor Systems	
9.6. Additional Resources	
9.7. Problems	
Chapter 10. Networking	
10.1. Networking Overview & OSI Model	242
10.2. Medial Layers (Physical, Data/Link & Network)	
10.3. Host Layers (Transport, Session, Presentation and Application)	
10.4 Additional Resources	
10.5. Problems	
Annual line A - DiOminant line (marting Ont Ommune	0.47
Appendix A. PICmicro Instruction Set Summary	247
Appendix B. PICmicro OpCode Field Description	251
Appendix C. Register File Summary	253
Appendix D. Special Features of PICmicro	257

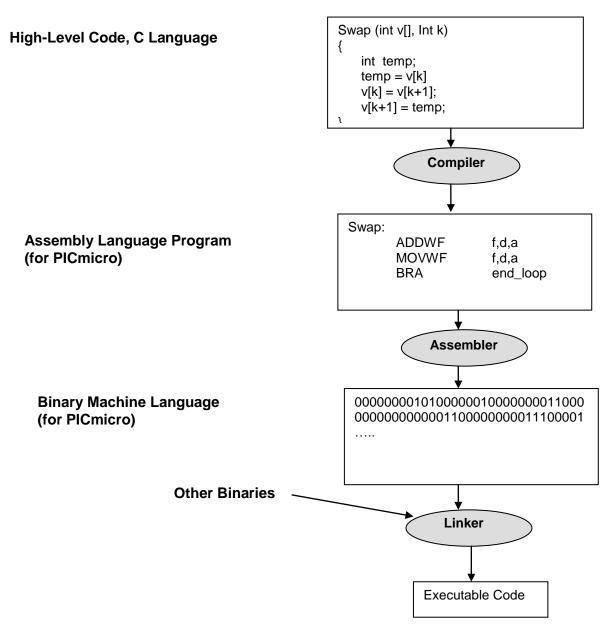

Appendix E.	Additional Resources	
Appendix E.	Additional Resources	

CHAPTER 1. INTRODUCTIONS

Key Concepts and Overview

- Overview of components, subsystems and interfaces
- Processor Design Considerations
- Computing systems Classification
- Historical Perspective and Trends
- ✤ What's next...
- Integrated Development Environment (IDE)
- Additional Resources

- 1.1. Overview of components, subsystems and interfaces
- Computer Layers


Operating System roles

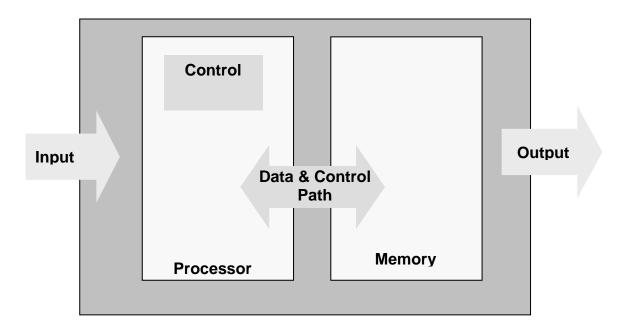
Operating Systems are basically the system resource managers and controllers. The common Operating Systems include Windows, Linux and Mac OS.

The Operating System roles include:

- Handle basic Input/output
- Start and stop applications
- Allocate storage, memory and processor In general, manage the use of computer resources among the applications (active processes)

Steps from High Level Language (C, C++, C#, Java, ...) to executable code

As it can be seen from the above figure, high level languages such as C make it easier for human programmers to read and write the program. Improved code readability increases the programmers' productivity which has led to popularity of high level language amongst Software engineers and businesses.


Compilers and assemblers are used to translate the high level language into Machine language which can be executed on the processor. Programmers typically use Assembly language to optimize the parts of code that have high impact on performance.

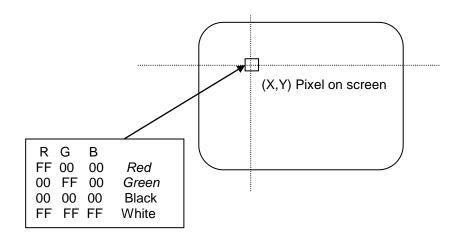
Finally, the linker allows integration of functions which are previously written or functions from available libraries.

Computer Architecture

Architecture defines the flow of data and patterns of the system. In general, a computer system can

be described using the following architectural diagram:

- Computer Components
 - Input


Keyboard, Mouse, Microphone, Joy stick and Video camera are examples of input devices.

> Output

One of the main forms of output is presenting the information on a display. There are a large number of display types. Examples include:

- Cathode Ray Tube-CRT
- Liquid Crystal Display-LCD
- Electro Luminescent-EL
- Plasma

Typically, displays are memory-mapped which means there is a memory location for every dot on the display. The value in the memory controls the color and intensity of the corresponding dot. Collections of dots may be used to form an image, text or other display elements. The following diagram presents a few examples which show the relationship between data and a RGB (Red, Green, and Blue) memory-mapped display:

- Networking is another important type of Input/Output The following list categorizes networking based on the geographical coverage:
 - Personal Networking (PN)
 PN coverage is around one person, desk or room. Some examples are:
 - USB
 - Blue tooth
 - RS232 Serial bus
 - Parallel Bus
 - Local Area Networking (LAN)

IEEE 802.3 is the most common LAN type in use within a building or small campus. The light weight wired implementation is the most common type of Local area networking in use. The wireless implementation of this network type has also grown dramatically.

Wide Area networking (WAN)
 WAN coverage is across cities, countries or continents. WAN service is typically leased from a telecommunication company. One could say that the telephone system is a form of WAN.

> Processor

Processor or Central Processing Unit (CPU) is the program execution unit of the computer and can be thought of as the brain. The following diagram shows the most common elements or functional blocks of a processor:

Control	Routing	Control	I/O Interface
Inst	uctional Cache	Routing	Secondary Cache and
En	nanced Floating Point Multimedia	& Integrated Datapath	memory interface
	Contro	1	
	ced Pipelining threading support	Control	

- Memory/Storage
 - Primary Memory

Typically referred to as solid state memory. It is smaller in size but faster (Access time in nanoseconds) and is used during program execution. (512 Mbytes for \$100 in 2005)

Volatile memory

This is the most common type of memory where data is retained as long as power is applied. There most common types of volatile memory are:

CACHE

Cache is the fastest memory and it is used for frequently accessed instructions and data. It is intermediate memory between processor and memory/storage.

DRAM

Dynamic Random Access Memory (DRAM), is the second fastest memory type used for data and programs. Processor can execute the instruction directly from DRAM. Physically, they are available in a variety of packages depending on the application.

Nonvolatile memory

This type of memory preserves the data even if power is removed. Read Only Memory (ROM), Erasable Programmable Read Only Memory (EPROM), Flash RAM and Nonvolatile RAM (NVRAM) are a few examples of nonvolatile memory.

Storage or Secondary Memory Typically, larger in size but slower access (Access time in micro to milliseconds). Also lower cost per mega bytes (250 GB for \$100 in 2005)

Some examples include Floppy Disk, Hard Disk (Magnetic Disk), CD and DVD (Optical Disk), Zip Drive, USB Jump Drive, Magnetic Tape.

Selecting amongst memory types

The selection of memory types are driven by the tradeoff between speed and price. Further, it should be noted that speed and price are inversely proportional. Most applications benefit from fastest memory, but budgets limit the speed of memory which developers can afford.

The price and speed trade off leads to small size cache memory (fastest, typically static RAM) and medium sized main memory (typically DRAM). The largest memory or storage is typically the hard disk which is also the lowest cost per byte.

Main or Mother-board

A computer typically has a main board which houses the processor and other interface logic required for the operation of the computer system. The following diagram shows some of the common components found on a main board:

Processor	M e m o r y	Disk and USB interfaces	
Processor Interface			
		Graphics	
I/O bus Slots			

1.2. Processor Design Considerations

Functionality

Functionality is the foundation of design and as such is prominent in design consideration.

Speed/Performance

Speed and performance are increasingly more important considerations in computer and process design. The market is demanding higher performance computers as applications have increased in complexity. Examples include:

- > Increased demand for graphics in order to create more natural presentations
- More types and larger data sets leading to larger and more complex database management
- Multi-tasking and increased demand on Operating System
- User's expectation of instantaneous response.

Usability

Usability or ease-of-use continues to grow in importance as a broader range of users attempts to access more of the computer's functionality.

Maintainability and reliability

As the systems become more complicated, the need for maintainability and expandability of existing software and hardware is more important than ever before. This has resulted in designers needing to use hardware modularization and its equivalent in software, Object Oriented Design.

Memory Requirement

As the technology advances and more memory becomes available at lower cost, minimization of memory requirement becomes less of a design issue.

For example, a typical desktop computer in 1985 had 512 Kbytes of RAM, where the same type of computer in 2005 had 512 Mbytes of RAM. That represents a 1,000 fold increase in 20 years. The price for a 2 Gbyte in 2010 was roughly about the same as the price for a 512 Kbyte in 1985.

1.3. Computing systems Classification

Computer Usage

It is impossible to go through a day without interacting with computer systems in our modern society. Today, computers are integrated into many facets of living and working. In many cases, you may be benefiting from the power of a computer, but you may not be aware of its existence. The following list provides a few examples:

- Cars
- Home Appliances
- Personal Computers
- Internet
- Cell Phones
- Medical solutions such as Hearing-aid, pace maker and others
- Traffic Light
- Classes of Computer Application
 - Workstations & Desktop Computers A computer used by one person with input and output devices. It may be used for personal, business, games, hobby, engineering, science or other activities. These systems typically have a dedicated display, keyboard and network connection.
 - Servers

A computer used for running large programs for multiple users, often simultaneously. It is typically in a data center, accessible only through a network. A server might not have its own keyboard and display.

Servers are available in a wide range of performance and functionality. The low-end servers and Supercomputers are the extreme ends of the spectrum:

Low-end Server

This type of server may be a desktop computer running networkable version of windows, Linux or some other operating system.

Supercomputers

This class of computers has the highest performance and is the most expensive. Supercomputers are typically used for specific and computationally intensive problems such as weather forecasting.

> Embedded

Computers embedded inside a device performing a set of predetermined functions. Embedded systems are the most pervasive type of computers and are expected continue to grow rapidly based on current trends. Embedded systems can be found in a broad range of products such as washing machines, cell phones and PDAs. A typically modern car has multiple embedded systems such as the fuel system controller and ABS breaking system.

Based on a 2002 survey, the computer system usage for each type of computer is shown below:

- 1122 million embedded or 89.5% of total
- 131 million desktops or 10.4% of total
- 1 million servers 0.1% of total

Microprocessor Survey

As of 2014, majority of processors are 64-bit (data is 64 bits wide). Prior to 2000, most processor designers were developing Complex Instruction Set Computers (CISC) which provide a large set of instructions. The most influential producers of CISC processor vendors were:

- Motorola 68K CISC
- Intel's IA-32 (Intel's Pentium,...) CISC

Since 2000, the idea behind CISC has been successfully challenged by many processor designers and as of 2014, most major producer have migrated to Reduced Instruction Set Computers (RISC) which provide a selected few simple instructions, but instructions execute in a single clock cycle. This means that instruction execution is much faster than in CISC. The most influential producers of RISC processor vendors are:

- IBM's Power PC RISC
 * Also used in Apple PCs until 2006 when Apple moved to Intel's RISC processors.
- Sun Microsystems' SPARC RISC
- Microchip's PIC processors and Microcontrollers RISC "PICmicro will be used throughout this book as an example"
- ARM Processors RISC
- MIPS RISC

1.4. Historical Perspective and Trends

Technology Trends

Year	Technology used in Computers	Relative Measure (Transistors/Device)
1951	Vacuum Tube	1
1965	Transistor	35
1975	Integrated circuits	900
1995	Very Large Scale Integrated Circuit	2,400,000
2005	Ultra Large Scale Integrated Circuit	6,200,000
2009	Dual Core Itanium 2 (596 mm ² Die) "using 90 nm process"	1,700,000,000
2012	8-Core Itanium Poulson (544 mm ² Die) "using 32 nm process"	3,100,000,000
2014	NVIDIA GK110 processor (551 mm ² Die) "using 28 nm process"	7,100,000,000

- Moore's law states that the number of transistors per square inch will double every 18-24 months. This observation has held true over the past 50 years (1965 – 2015).
- Complementary Metal Oxide Semiconductor (CMOS) is the dominant semiconductor technology for integrated circuits. The main reason is that it consumes power mainly during switching according the following formula:

Power = Capacitive load x Voltage² x Frequency switched

It is important to note that two of the main limiting factors for integrated circuits are power consumption and dissipation of resulting heat.

- Computer design trends:
 - Continued minimization of size and faster execution
 - Lower voltage (5v → 1.5V ...)
 - Use of Biological solutions
 - Nano technology
 - Parallel processing
 - Large data buses 32→64→128→?

1.5. What's next...

The remainder of this book is focused on introducing key concepts in computer organization and system design. As much as possible, the general concepts will be introduced first, followed by an implementation example.

Microchip PIC 18F1220 Microcontroller will be used as the implementation example throughout the remainder of this book. Microchip PIC 18F1220 will be referred to as PICmicro.

PICmicro is a microcontroller as opposed to a microprocessor, which means, in addition to the functionality available in a typical microprocessor, PICmirco has additional functionality and circuits which are outlined below:

- Memory
 - 4K bytes of Program Flash Memory Flash memory used to store the program instruction set which can be reprogrammed up to 100,000 times. The programming is retained for over 40 years.
 - 256 bytes of Data Memory This memory is used for data. It will be referred to as the register file since all the available data memory is available to the user.
- ✤ 16 input/output ports
- Seven 10-bit Analog to Digital Converters
- One Pulse Width Modulator (PWM)
 PWM is used to control amount of power delivered by modulating (changing) duty cycles.
- One Enhanced Universal Asynchronous Receiver Transmitter (EUSART) Serial to parallel and parallel to serial capability with auto speed detection and wake-up capability.
- Three timers
- Priority-level interrupts
- Choice of internal or external oscillator

1.6. Integrated Development Environment (IDE)

Most processor vendors provide a full Integrated Development Environment (IDE) to support the developers using of their processors in development of new products. Typically, an IDE includes editor, compiler, assembler, linker, debugger, simulator and other useful applications/tools. Processor vendors such as Microchip are focused on providing effective IDEs to increase adoption rates resulting in the higher use of their processors.

Microchip's PICmicro family of processors has an extensive set of hardware and software development tools supporting the designers. PICmicro IDE is called MPLAB IDE and can be downloaded from www.EngrCS.com or directly from Microchip's website. MPLAB IDE is available for Widows, MAC and Linux. The MPLAB IDE offers the following core functionality:

- Code Management and Editor
- > C complier is available but needs to be downloaded and installed.
- > Assembler
- Linker
- Simulator
- Programmer Interface
- > Debugger
- Extensive online help and tutorial

Below is a brief overview of these key components of MPLAB IDE:

Code Management and Editor

MPLAB IDE provides tools for managing your file as part of a project and editing your code in a context sensitive editor that provides syntax hints during programming.

Compiler

MPLAB's C compiler is a complete ANSI C compiler for PICmicro. This compiler is fully compatible and integrates seamlessly with MPLAB IDE. It also provides symbolic information that works with MPLAB IDE debugger and simulator.

C code is saved in files with extension (.c) and include files are saved in files with extension (.h). Following is an example of PICmicro C code:

```
/* File: main.c
* Project: A Simple Counter
* Author: Great Designer
* Device: PICmicro (PIC18F1220)

*****
#include <p18f1220.h>
//TRISA, TRISB, PORTA, PORT are already defined in p18f1220.h
void main(void)
{
       unsigned char input;
       unsigned char lastinput = 0x00;
       unsigned char count = 0 \times 00;
       ADCON1 = 0 \times 7F;
       TRISA = 0 \times 01;
       TRISB = 0 \times 00;
       while(1)
       {
              input = PORTA;
              input = input & 0x01;
              if(input != lastinput)
              {
                      count++;
                     PORTB = count;
              }
              lastinput = input;
       }
}
```

Assembler

PICmicro's assembler (MPASM) is an integral part of MPLAB IDE and MPASM, is a full-featured, universal macro assembler for all PICmicro MCUs. MPASM generates relocatable object files for the object linker (MPLINK), MAP files with detailed memory usage and symbol references, absolute LST files that contain source lines, machine code and COFF files for debugging.

Assembly code is saved in file with extension (.asm) which are part of a project such as the following code:

:-----_____ ; FILE: main.asm ; DESC: A Simple Counter ; DATE: 5-18-06 ; AUTH: Great Designer ; DEVICE: PICmicro (PIC18F1220) ;----list p=18F1220 radix hex ; Set processor type ; Sets the default radix for data exp. #define 0xF80 PORTA #define PORTB 0xF81 #define TRISA 0xF92 #define TRISB 0xF93 #define ADCON1 0xFC1 COUNT equ 0x080 LASTIN equ 0x081 INPUT equ TEMP equ 0x082 0x083 org 0x000 ; Set the program origin (start) to 0x000 ; Initialize all I/O ports CLRF PORTA ; Initialize PORTA CLRF PORTB ; Initialize PORTB MOVLW 0x7F ; Set all A\D Converter Pins as MOVWF ADCON1 ; digital I/O pins MOVLW 0x0A MOVWF TRISB ; Value used to initialize data direction ; Set Port B <pins 0,2,4:7> as output ; Set Port B<pins 1,3> as input MOVLW 0xE2 ; Value used to initialize data direction ; Set Port A <Pin 7:5,1> as input MOVWF TRISA ; Set Port A <Pin 0, 2:4> as output ; W = 0 MOVLW 0x00 MOVWF COUNT ; COUNT = WREG MOVWF LASTIN ; LASTIN = WREG MOVFFPORTA, INPUT; INPUT = PORTAMOVFINPUT, 0; W = PORTAXORWFLASTIN, 0; W = W XOR LAS'ANDLW0x1: W = W AND 0x1 Loop: ; W = W XOR LASTIN ANDLW 0x1 MOVFF INPUT, LASTIN ; W = W AND 0x1 ; LASTIN = PORTA ; TEMP = W MOVWF TEMP BTFSC TEMP, 0 ; If TEMP<0> = 0 Then Skip Next Command Increment CALL GOTO Loop ; W = COUNT MOVF COUNT, 0 Increment: ADDLW 1 ; W = W + 1MOVWF COUNT ; COUNT = W MOVWF PORTB ; PORTB = W RETURN ; Indicates the end of the program. end

Linker and Object Librarian

The linker is required to combine various object files generated by assembler and code libraries into an executable program. The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C compiler. It can also link relocatable objects from precompiled libraries using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules which contain that routine

will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

Simulator

A great way to test the functionality of your code is to use a simulator before downloading the code into the processor hardware. The simulator enables the designer to test the functionality while viewing the processor's internal states and registers, as well as access to the debugging process. The only limitation is that the simulator will not test the timing requirements since the code is not running at the proper speed.

The MPLAB SIM software simulator allows PICmicro code simulation in a PC hosted environment by simulating the PICmicro on an instruction level. For a given instruction, the data areas can be viewed or modified as stimuli are applied from either files or user key presses. The execution can be performed in different modes: Single-Step, Execute Until Break, or Trace. The MPLAB simulator supports symbolic debugging using MPLAB C Compilers and/or the MPASM assembler.

Debugger

The code can be debugged while simulating. The developer will have access to all the variables and memory locations as well as the ability to either single step through the code or run the code to a predetermined breakpoint.

Programmer Interface

Once the code has been tested with simulation, the next step is to download the code into the PICmicro chip so that it can be installed in the circuit. From MPLAB, code can be downloaded to PIC Micro using one the PIC programmers.

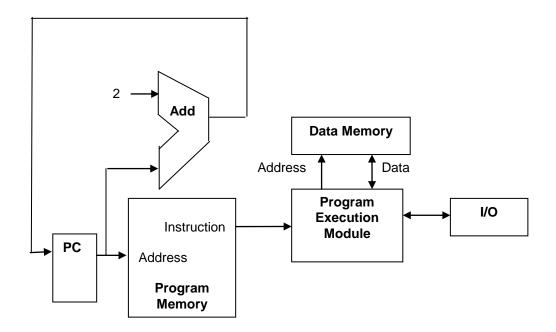
1.7. Additional Resources

- Peterson. <u>Computer Organization and Design</u>, (2007) Elsevier Service.
- Microchip Staff. <u>Microchip PIC 18F1220/1320 Data Sheet</u>. (2004) Microchip Technology Incorporated.
- ♦ Microchip Staff. <u>MPLAB IDE User's Guide</u> and <u>Getting Started with MPLAB</u>

1.8. Problems

Refer to <u>www.EngrCS.com</u> or online course page for complete solved and unsolved problem set.

CHAPTER 2. ASSEMBLY INSTRUCTIONS AND PROCESSOR ARCHITECTURE


Key concepts and Overview

- Instruction Structure & Execution
- Byte-oriented Instructions
- Bit-oriented Instructions
- Literal-oriented Instructions
- Control Instructions
- Memory Layout & Definitions
- Additional Resources

2.1. Instruction Structure & Execution

At the most basic level, a processor's first step is to read an instruction (set of binary values). This step may also be referred to as fetching an instruction. In the next step, the processor will decode and execute the instruction. Finally, the processor writes any resulting data to memory. These steps are repeated until the processor is diverted.

Below is a high level view of this process where PC refers to Program Counter. PC's value is the address of the next instruction to be fetched and executed: Notice in this example, two is added to PC each time which means each instruction is 2 bytes long.

An instruction is made up of at least two fields and may use two, four or more bytes. First field is typically the opcode that identifies the desired operation. The second field is the operand for the operation. There may be additional fields as needed.

PICmicro instructions are single word (two bytes or 16 bits) long except for the three double-word instructions. All single-word instructions are executed in a single cycle. Single cycle execution is a common characteristic of Reduced Instruction Set Computer (RISC) where there are small numbers of instructions, but the instructions execute in a single clock cycle.

PICmicro has five types of instructions:

- Byte-Oriented operations
- Bit-Oriented operations
- Control Operations
- Literal Operations
- Memory-Block Operations

The Byte-Oriented, Bit-Oriented and Literal operation instructions move and manipulate data. We will be discussing these instructions in more detail later in this chapter. For these instructions, PC is incremented by 2 each time an instruction is executed so that PC will always be pointing to the next instruction.

Control operation instructions are used to change the next PC value to point to an address other than PC+2 if certain conditions are met. This set of instructions will be discussed in a later chapter. The control instructions are used to implement conditional expression such as "If-then-else" and loops such as "For loop".

Refer to appendices for a complete listing of PICmicro instructions.

2.2. Byte-oriented Operations

Most byte-oriented instructions have three operands:

- ➤ The file register (specified by "f")
- The destination of the results (specified by "d")
- The accessed memory (specified by 'a")

The destination designator "d" specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If "d" is one, the result is placed in the file register specified in the instruction (default).

In this example ADDWF is the opcode (see appendix for PICmicro Instruction Set). Below are a more

Byte-oriented file register operations

	15	10	9	8	7		0
	OF	PCODE	d	a		f (FILE #)	
	d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address						
Ву	rte to By	te move	oper	ation	s (2-	word)	
	15	12 11					0
	OPCOL	DE		f (\$	Sourc	æ FILE #)	
		40.44					

 OPCODE
 f (Source FILE #)

 15
 12
 11
 0

 1111
 f (Destination FILE #)

detailed description and examples of Byte-Oriented Instructions:

f = 12-bit file register address

Example Instruction

ADDWF MYREG, W, B

MOVFF MYREG1, MYREG2

✤ Add WREG and f "ADDWF f,d,a"

ADDWF	ADD W to	f	
Syntax:	[label]A[DDWF f[.d [,a]]
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5	
Operation:	$(W) + (f) \rightarrow dest$		
Status Affected:	N, OV, C,	DC, Z	
Encoding:	0010	01da ff	ff ffff
Description:	result is st result is st (default). I	ored in W. If ored back in f 'a' is '0', th be selected.	e Acœss
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f	Process Data	Write to destination
<u>Example</u> : Before Instru W REG After Instruct W REG	= 0x17 = 0xC2	REG, W	

Notes:

- "ε" in the set of.
 d ε [0,1] means d can be 0 or 1.
- Arithmetic Logic Unit (ALU) Status Bit Definitions (Status Register – SFR)
 - "C" Carry Set when the instruction results in a carry out of the most significant bit, clear when no carry
 - "DC" Digit Carry Set for carry out of the 4th low order bit.
 - "N" Set for Negative result, clear for non-negative result
 - "OV" Set for overflow result, clear for non-overflow result
 - "Z" Set for zero result, clear for non-zero result
- Hexadecimal Designation Both "0x" prefix and "h" postfix indicate a hexadecimal number.

For example both "0x1F" and "1Fh" are representations of 0x1F hexadecimal.

- BSR "Bank Select Register" By default, BSR will be set to "0" which means only the first 8 bits of the register file address are used and the upper 4-bits are set to 0 (0-FF). Later in this chapter, BSR will be discussed.
- "[]" any syntax item in the square bracket is optional. "[]" may be used as nested construct.
- "()" signifies that the content of the register (not the address) will be used in the operation. For example (f) refers to content of register f.

• Example – Given the following memory map, determine the value stored at memory location 33:

<u>Address</u>	<u>Data</u>
	•
	•
	•
0x20	12
0x21	23
0x22	34
0x23	65
	•
	•
	-

Solution:

Location 33: Value is 23. (33 in decimal is equal to 0x21 in hexadecimal)

Example - ADDWF 0x12, 0, 0

Before Instruction

W = 0x10 REG (0x12) = 0x20

After Instruction

W = 0x30 REG (0x12) = 0x20

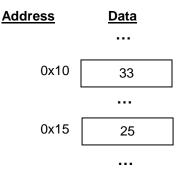
The value 0x10 is taken from working register WREG and added to the value 0x20 from file register 0x12. Because we have a zero for the [d] syntax item, the result is stored back in WREG.

Example - Given W = 25 and F register (22) = 15.
 a) Determine what the values of W and register (22) will be after execution of the following assembly code statement:

ADDWF 22,1

b) Determine the machine code equivalent for the above assembly code. Solutions:

a) W = 25 and F register (22) = 40.


b) Equivalent Machine code is "0010 0111 0001 0110".

• Move f_s to f_d "MOVFF f_s, f_d "

мо\	/FF	Move f to f			
Synt	ax:	[label]	MOVFF fg	s,f _d	
Ope	rands:	$0 \le f_s \le 40$ $0 \le f_d \le 40$	0 ≤ f _s ≤ 4095 0 ≤ f _d ≤ 4095		
Ope	ration:	$(f_{s}) \rightarrow f_{d}$			
Statı	us Affected:	None			
1stv	oding: vord (source) word (destin.)	1100 1111			fffs fffd
Des	cription:) 1111 ffff ffff ffff ffff The contents of source register 'f _s ' are moved to destination register 'f _d '. Location of source 'f _s ' can be anywhere in the 4096-byte data space (000h to FFFh) and location of destination 'f _d ' can also be anywhere from 000h to FFFh. Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. The MOVFF instruction should not be used to modify interrupt settings while any interrupt is enabled (see page 73).		ister n be ata cation n. can be). or ocation as the). ot use 0.SL as d not ettings	
Wor	ds:	2			
Cycl	es:	2 (3)			
QC	ycle Activity:				
	Q1	Q2	Q3	0	<u>2</u> 4
	Decode	Read register 'f' (src)	Process Data		No ration
	Decode	No operation	No operation		hite ster 17

Example:	MOVFF	REG1,	REG2
Before Instruc	tion		
REG1 REG2	=	0x33 0x11	
After Instructio		0X11	
REG1	=	0x33, 0x33	
REG2	=	0x33	

No dummy read • Example - Given the following memory content:

After execution of "MOVFF 0x10, 0x15":

a) What are the content in file registers 0x10 and 0x15?

b) What's the machine code equivalent?c) Assuming the instructions are stored starting at program memory location 0x26, show the program memory content from 0x26 to 0x29.

Solutions:

a)

 Address
 Data

 0x10
 33

 0x15
 33

b) "1100 0000 0001 0000" "1111 0000 0001 0101"

c)

(dest)

<u>Address</u>	<u>Data</u>
0x26	0x10
0x27	0xC0
0x28	0x15
0x29	0xF0

2.3. Bit-oriented Operations

A bit-oriented instruction has three operands:

- ➤ The file register (specified by "f")
- > The bit in the file register (specified by "b")
- The accessed memory (specified by "a")

The bit field designator 'b' selects the number (position) of the bit affected by the operation, while the file register designator "f" represents the number (address) of the file in which the bit is located.

Bit-oriented file register operations

15	12	11	9	8	7	0	
OPC	ODE	b (BIT a	#)	а	f (FILE #)		
a	= 0 te = 1 fe	it positio o force A or BSR t t file regi		ess sele	ect bank		

Example Instructions

BSF MYREG, bit

Below is a more detailed description of the two example instructions for the Bit-Oriented Instructions:

✤ Bit Set f "BSF f, b, a"

BSF	Bit Set f	 Example – value at location 29h is set to
Syntax:	[label] BSF f,b[,a]	0x20. What is the value at location 29h
Operands:	0 ≤ f ≤ 255	after the following code has been executed:
	0≤b≤7	executed.
Operation:	a ∈ [0,1] 1 → f 	"BSF 0x29,2"
Status Affected:	None	
Encoding:		Solution:
5		value in location 29h will be 0x24
Description: Bit 'b' in register 'f is set. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value.		 Example – All memory locations have been cleared prior to executing the following machine code:
Words:	1	lonowing machino codo.
Cydes:	1	"1000 1010 0111 0000"
Q Cycle Activity:		
Q1	Q2 Q3 Q4	a) What 's the assembly code
Decode	Read Process Write register 'f' Data register 'f'	equivalent?
	register i Data register i	b) Which memory location has been changed and what is the new content?
Example:	BSF FLAG_REG, 7	changed and what is the new content.
Before Instru	ction	Solution:
FLAG_R		
After Instruct FLAG_RI		a) BSF 0x70,5,0 b) Location 0x70 changed to "0010 0000" or "0x20"

Example – Location 0x35 is set to 0x31 before execution of instruction "BSF 0x35,3".

- a) What is the Machine Code for the instruction in Hex?
- b) What is the value in location 0x35 after the instruction execution?

Solution:

- a) Machine Code: (1000 0111 0011 0101)₂ 0x8735
- b) Content of 0x35: $(0011\ 1001)_2 \rightarrow 0x39$

2.4. Literal-oriented Operations

The literal instructions may use some of the following operands:

- > A literal value to be loaded into a file register (specified by 'k')
- The desired Special Function Register (FSR) register to load with the literal value (specified by 'f')
 No operand required (specified by '--')

Lit	teral operations					Example Instructions
	15	8	7		0	
	OPCODE			k (literal)		MOVLW 0x7F
	k = 8-bit immed	liate v	value	,		

Below is a more detailed description of the example instructions for the Literal-Oriented Instructions:

✤ Move literal to WREG "MOVLW 0x7F"

MOVLW Move literal to W							Notes:	
Syntax: [label] MOVLW k						•		
Operands:		$0 \le k \le 25$	0 ≤ k ≤ 255					
Oper	ration:	$k \to W$	$k \rightarrow W$					
Statu	is Affected:	None	None					
Enco	oding:	0000	1110	kk}	ck	kkkk		
Description:		The eight into W.	The eight-bit literal 'k' is loaded into W.					
Word	ds:	1	1					
Cycles:		1						
QC	ycle Activity:							
	Q1	Q2	Q3	3		Q4	_	
	Decode	Read literal "k"	Proce Dat		W	rite to W		
Example: NOVLW 0x5A								
After Instruction								

w = 0x5A

2.5. Control Operations

The control instructions may use some of the following operands:

- > A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
 No operand required (specified by '—')

Control operations Example Instructions								
CALL, GOTO and Branch operations								
15	8	7 0						
OPCO	DE	n<7:0> (literal)	GOTO Label					
15 12	11	0						
1111	n	<19:8> (literal)						
n = 20-bit imn	nediate va	lue						
15	8	7 0						
OPCOD	E S	n<7:0> (literal)	CALL MYFUNC					
15 12	11	0						
	n<	19:8> (literal)						
S = F	ast bit							
15	11_10	0						
OPCODE	n<1	0:0> (literal)	BRA MYFUNC					
15	87	0						
OPCODE	n	<7:0> (literal)	BC MYFUNC					

More detailed description of the Control instruction examples to follow:

• Go to address " $k=K_{19}K_{18}...K_1K_0$ " "GOTO k"

GOTO		Uncondit	Unconditional Branch					
Syntax:		[label]	[<i>label</i>] GOTO k					
Oper	rands:	$0 \le k \le 10$	0 ≤ k ≤ 1048575					
Operation:		$k \rightarrow PC \leq 2$	$k \rightarrow PC \leq 20:1 >$					
Statu	is Affected:	None	None					
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)			1111 k ₁₉ kkk	k ₇ kk kkk		kkkko kkkk ₈		
Desi	cription:	GOTO allo branch ar 2-Mbyte r value 'k' i: GOTO is a instruction	nywhere nemory s loaded lways a	withir range l into l	n the . Th PC<	e entire le 20-bit 20:1>.		
Words:		2	2					
Cycles:		2	2					
QC	ycle Activity:							
	Q1	Q2	Q3	3	C	Q4		
	Decode	Read literal 'k'<7:0>,	No opera			ad literal <19:8>,		

Write to PC

No operation

- "k" is shifted to the left by 1 before being assigned to PC. This means that jump are always to a word boundary.
- Example Determine the value of PC after the following machine code is executed:

"1110 1111 1000 0001" "1111 0000 1000 0010"

Solution: PC = 10502h

Example: GOTO THERE

After Instruction

No

operation

PC = Address (THERE)

No

operation

No

operation

Example – Determine the Machine Code equivalent for the Goto statement in the following Code Segment:

<u>Address</u> 0x290	Instruction (Assembly	<u>′ OpCode)</u> GOTO GreatProgram
 0x932	GreatProgram	; Now what?
Solution:		

Example – Determine the next instruction location (PC) to be accessed after the execution of the following Machine Code:

1110	1111	1010	1100
1111	0000	0000	0010

CALL	Subroutir	ne Call		
Syntax:	[<i>label</i>] C	CALL k	[,s]	
Operands:	0 ≤ k ≤ 10 s∈ [0,1]	48575		
Operation:	$(PC) + 4 \rightarrow TOS,$ $k \rightarrow PC<20:1>,$ if s = 1 $(W) \rightarrow WS,$ $(Status) \rightarrow STATUSS,$ $(BSR) \rightarrow BSRS$			
Status Affected:	None			
Encoding: 1st word (k<7:0>) 2nd word(k<19:8		llOs k _{l9} kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈
	address (F the return Status and pushed int shadow re and BSRS occurs (de value 'k' is	stack. If d BSR re ogisters, 5. If 's' = efault). T s loaded	's' = 1, f egisters a espectiv WS, ST/ 0, no up hen, the into PC+	the W, are also e ATUSS idate 20-bit <20:1>.
Words:	CALL is a 2	wo-cyc	ie instruc	suon.
Cycles:	2			
Q Cycle Activity: Q1	Q2	Q3		Q4
Decode	Read literal 'k'<7:0>,	Push P stac	Cto Re k "k"	ad literal <19:8>, ite to PC
No operation	No operation	No operat	ion o	No peration
Example:	HERE	CALL	THERE,	FAST
Before Instru PC After Instruc	= address	(HERE)	
PC TOS WS BSRS STATUS	= address = address = W = BSR	(THER (HERE		

♦ Call Subroutine at address " $k=K_{19}K_{18}...K_1K_0$ " "CALL k,s"

Notes:

.

> Example – Determine the value of PC after the execution of the following Machine Code:

1110	1111	1010	1100
1111	0100	0001	0101

Solution:

> Example – Determine the Machine Code equivalent for the following CALL Instruction:

Address	Instruction (Assembly	OpCode)
0x24	FortyTwo:	MOVFF	answer, life
0x290		CALL Fo	ortyTwo

✤ Branch Unconditionally "BRA n"

BRA	Unconditi	onal Branci	h.	No	tes:
Syntax:	[<i>label</i>] Br			•	Address Calculation
Operands:	-1024 ≤ n ≤	≤ 1023			New PC = BRA's PC + 2 + 2*n "n is in 2's Complement format"
Operation: Status Affected: Encoding: Description:	Add the 2's '2n' to the l have increa instruction, PC + 2 + 2	onnn nn s complemen PC. Since th mented to fe the new ad n. This instr	nt number ne PC will etch the next dress will be		Example – Determine the address of the next instruction to be executed after the following BRA instruction: Address <u>Memory Content</u> 0x236 <u>1101 0111 1000 1000</u> It is important to note that offset is
Words:	two-cycle i 1	nstruction.			provided in "2n" and 2's complements format. Therefore:
Cydes: Q Cyde Activity Q1	2 : Q2	Q3	Q4		1111 0001 0000 (Offset=2*n) + 0010 0011 0110 (PC) 10 (2)
Decode No operation	Read literal 'n' No operation	Process Data No operation	Write to PC No operation		4 0001 0100 1000 or 0x148 new PC
<u>Example</u> : Before Instru PC After Instruct PC	= add tion	BRA Jump Iress (HERE) Iress (Jump))		As you see the overflow is ignored and the address of the next instruction after BRA will be location 0x148.

> Example – Determine the Machine Code equivalent for the following BRA instruction:

<u>Address</u> 0x110	Instruction (Ass	sembly OpCode) BRA NextEvent
0x230	NextEvent:	NOP

> Example – Determine the PC after the execution of:

Address	<u>Code</u>
0x3210	BRA 215

Solution:

Example – Determine the Machine Code equivalent for the following BRA instruction: *Hint: Negative n value.*

Address	Instruc	tion (Assembly OpCode)
0x2110	Step:	MOVWF Dove, 0
0x2140		BRA Step

✤ Branch if Carry "BC n"

BC		Branch if	Branch if Carry			
Synt	ax:	[<i>label</i>] B	Cn			
Ope	rands:	-128 ≤ n ≤	-128 ≤ n ≤ 127			
Ope	ration:		if Carry bit is '1' (PC) + 2 + 2n → PC			
Statu	us Affected:	None				
Enco	oding:	1110	0010 nn:	nn nnnn		
Des	cription:	If the Carr	ybitis '1',th	en the		
		added to ti have incre instruction PC + 2 + 2	mplement no he PC. Since mented to fe , the new ad	e the PC will atch the next dress will be uction is then		
Wor	ds:	1				
Cyd	es:	1(2)				
	Sycle Activity: ump: Od		~	04		
	Q1	Q2	Q3	Q4		
	Decode	Read literal 'n'	Process Data	Write to PC		
	No	'n' No	Process Data No	Write to PC		
	No operation	'n	Process Data	Write to PC		
lf N	No operation o Jump:	'n' No operation	Process Data No operation	Write to PC No operation		
lf N	No operation o Jump: Q1	'n' No operation Q2	Process Data No operation Q3	Write to PC No operation Q4		
lf N	No operation o Jump:	'n' No operation	Process Data No operation	Write to PC No operation		
	No operation o Jump: Q1	'n' No operation Q2 Read literal	Process Data No operation Q3 Process	Write to PC No operation Q4 No		

Example – Assuming Carry bit is set, determine the PC after execution of the following machine code:

<u>Address</u>	Data .
0x252	1110 0010 1111 1100
Solution: OpCode n= (1111	→ BRA 1100) _{RC} = -2
New PC = I	BR PC + 2 + 2n = 0x250
	Implement the following C BC instruction:
high=0;	

if (temp == 255) { high = 1; } Solution:

Solution.	
high	equ 0x80
temp	equ 0x81
clrf	high

Example – Write the machine code for line labeled "loop2" in the following code segment:

	Wreg = 245
	org 0x3442
Loop:	Nop
	BNZ loop2
	ADDLW 25
Loop2:	BC Loop
•	
Solution:	
"1110 (010 1111 1100"

> Example – Determine the Machine Code equivalent for the following code segment:

<u>Address</u>	Instruction	(Assembly	<u>OpCode)</u>
0x220	Loop:	ADDLW	52
0x222		MOVFF	New, Old
0x226		BC	Loop
0x340	Step:	MOVWF	Dove, 0

2.6. Memory Layout & Definitions

In general, computer memory is organized into two sections: data memory and program memory. The size and organization of the memory depend on the type of system and its function. For the PICmicro example used here, the memory sizes are in Kilobytes (10³) and Megabytes(10⁶). Depending on your application, memory ranges may be in Gigabytes (10⁹) and Terrabytes (10¹²).

Typical computer systems have all three types of memory (Program memory, Data memory, Nonvolatile memory). Although Program and Data memories may be the same type of hardware, Program and Data are stored in different sections of memory. This organization is required to ensure that data does not overwrite programs. Additionally, if the data and program paths are kept separate, the processor can read and write instructions and data simultaneously in order to improve performance.

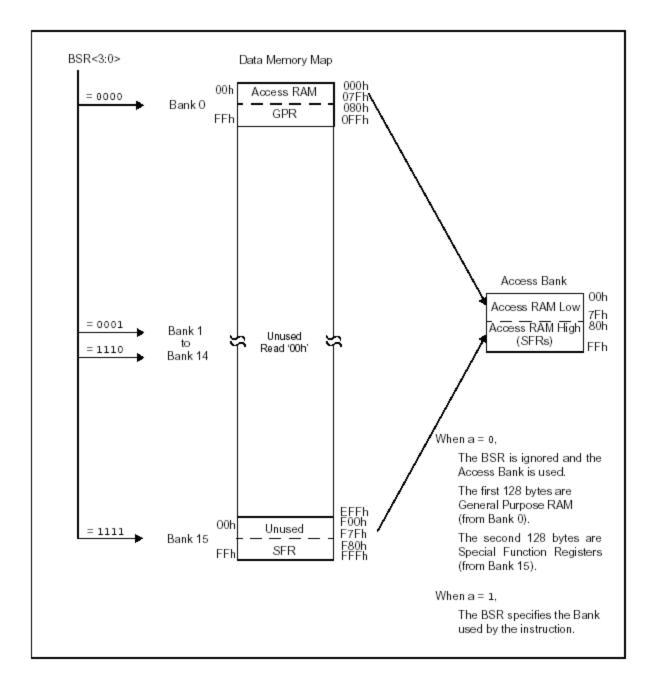
As discussed earlier, PICmicro is a microcontroller which means that it will have some amount of each memory type on-chip, in addition to other functionality. Specifically, PICmicro has the following types of memory on the chip:

Program Memory – 4 Kbytes on-chip with ability to access off-chip memory if available. The on-chip program memory is EEPROM which is non-volatile (data is not lost when power is removed). The following diagram outlines the total memory space and location of on-chip program memory from 0018h-0FFFh

Reset Vector	0000h
	0000
High Priority Interrupt Vector	0008h
Low Priority Interrupt Vector	0018h
On-Chip (4 Kbytes) Program Memory	
	0FFFh
	1000h
Addressable Memory (2 Mbytes) Reads '0' if not implemented	
	1FFFFFh

Program Memory Space (2 Mbytes)

Data RAM


PICmirco's Program and Data memories use separate buses. This allows for concurrent access of program and data resulting in improved performance.

The data memory is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. The data memory map is divided into as many as 16 banks that contain 256 bytes each. The lower 4 bits of the Bank Select Register (BSR<3:0>) select which bank will be accessed. The upper 4 bits for the BSR are not implemented.

The data memory contains Special Function Registers (SFR) and General Purpose Registers (GPR). The SFRs are used for configuraton and status reporting of the controller and peripheral functions, while GPRs are used for data storage and temporary memory for programs. The SFRs are located in Bank 15,from F80h to FFFh. . Any remaining space in the Bank may be implemented as GPRs. GPRs start at the first location of Bank 0 (000h) and extend upwards through the rest of the banks. Any read of an unimplemented location will return '0's.

The entire data memory may be accessed directly or indirectly. Direct addressing may require the use of the BSR register. Indirect addressing requires the use of a File Select Register (FSRn) and a corresponding Indirect File Operand (INDFn). Each FSR holds a 12-bit address value that can be used to access any location in the Data Memory map without banking.

The instruction set and architecture allow operations across all banks. This may be accomplished by indirect addressing or by the use of the MOVFF instruction. The MOVFF instruction is a two-word/two-cycle instruction that moves a value from one register to another. To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, regardless of the current BSR values, an Access Bank is implemented. A segment of Bank 0 and a segment of Bank 15 comprise the Access RAM.

PICmicro has banked memory in the General Purpose Registers (GPRs) area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets. Data RAM is available for use as GPRs by all instructions. The second half of Bank 15 (F80h to FFFh) contains Special Function Registers (SFRs). The SFRs are used by the Central Processing Unit (CPU) and peripheral modules for controlling the desired operation of the device.

The following registers are most commonly used:

- Addresses 0xF80 through 0xFFF. These are the Special Function Registers (SFR) such as PORTA, PORTB, TRISA, TRISB, etc.
- Addresses 0x000 through 0x0FF. These are the Access Ram and General Purpose Registers (GPR) which can be used by programs to store data.

In many instructions, the value of flag "a" may be set to define the use of BSR as shown below:

 a=0 GPR address → 0x000 – 0x07F SFR address → 0xF80 – 0xFFF

; GPRs are available at 0x00-0x7F ; SFR range is always from F80 to FFH

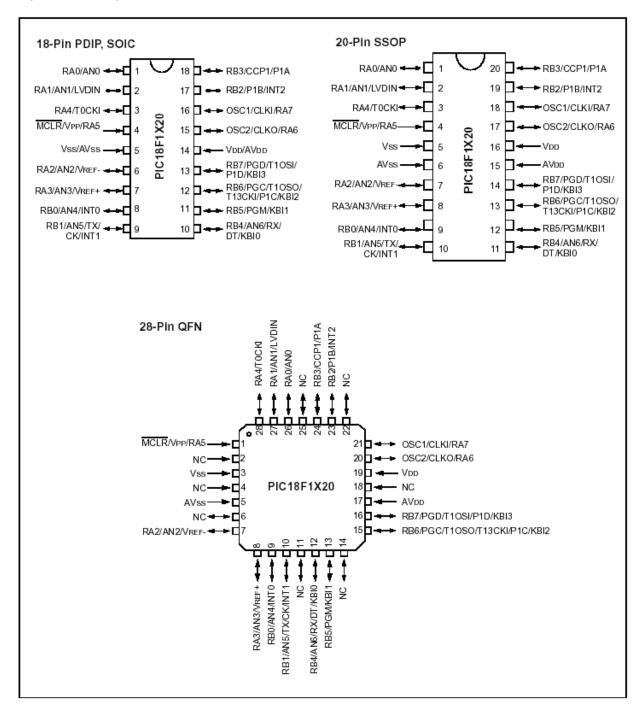
- a=1 "Default" with BSR =0 GPR address → 0x080 – 0x0FF SFR address → 0xF80 – 0xFFF
- ; GPRs are available at two ranges 0x80-0x0FF or 0x00-0x7F ; SFR range is always from F80 to FFH
- a=1 "Default" with BSR =3 GPR address → 0x380 – 0x3FF ; GPRs are available at two ranges 0x380-0x3FF or 0x00-0x7F SFR address → 0xF80 – 0xFFF ; SFR range is always from F80 to FFH

2.7. Additional Resources

- Microchip Staff. <u>Microchip PIC 18F1220/1320 Data Sheet</u>. (2004) Microchip Technology Incorporated.
- Huang,. PIC Microcontroller: An Introduction to Software & Hardware Interfacing, (2004) Thomson.
- Reese. <u>Microprocessor: From Assembly Language to C using the PIC18Fxxx2</u>. (2003) Course Technology.
- Peterson. <u>Computer Organization and Design</u>, (2007) Elsevier Service.

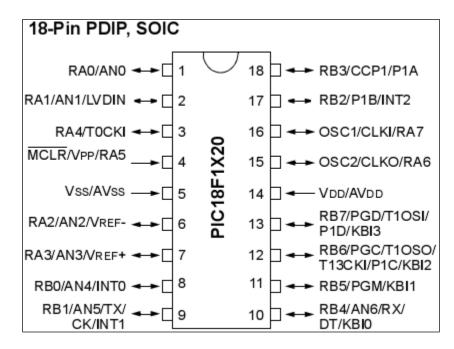
2.8. Problems

Refer to <u>www.EngrCS.com</u> or online course page for complete solved and unsolved problem set.


CHAPTER 3. INPUT/OUTPUT ORGANIZATIONS

Key concepts and Overview

- Pinout and Packaging
- ✤ Accessing I/O Devices
- ✤ Additional Resources


3.1. Pinout and Packaging

PICmicro is available in three types of packaging. It is important to note that each package has a different pin layout. Plastic Dual In-Line Package (PDIP) is the most common type of packaging for prototyping where automated systems are not available. On the other hand, Quad Flat No-Lead (QFN) package and Shrink Small Outline Package (SSOP) are most commonly used for high volume production where automation can handle small sizes and cost is important. SSOP is able to handle a wider range of temperatures compared to QFN.

Prototype Packaging

As discussed earlier PDIP is the most common packaging used for prototyping. PICmicro (PIC18F1220) pin out is shown below:

Each pin can be configured to perform a variety of functions, for example Pin 8 may be an I/O port (RB0), I/O port (AN4), or external Interrupt 0 (INT0). This type of multi-use is common in microcontroller with high level of functionality, but it is less common in general purpose microprocessors.

The two pins whose definition is constant are pins 5 and 14 which are ground and power.

- Pin 5 Ground (0 V)
- Pin 14 Power (2 to 5.5 V)

Full PIN Descriptions PICmicro's pin definition is outlined in the following two tables:

	Pi	n Numb	er	D:	Duffer	
Pin Name	PDIP/ SOIC	SSOP	QFN	Pin Type	Buffer Type	Description
MCLR/VPP/RA5 MCLR	4	4	1	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.
VPP RA5				P I	 ST	Programming voltage input. Digital input.
OSC1/CLKI/RA7 OSC1	16	18	21	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode, CMOS otherwise.
CLKI				I	CMOS	EXTERNAL CONTRESS OF THE EXTERNAL STREET STREET EXTERNAL COST IN THE EXTERNAL STREET EXTERNAL STREET,
RA7				I/O	ST	General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	15	17	20	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or
CLKO				0	_	resonator in Crystal Oscillator mode. In RC, EC and INTRC modes, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes instruction cycle rate.
RA6				I/O	ST	General purpose I/O pin.
						PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	1	1	26	1/O 1	ST Analog	Digital I/O. Analog input 0.
RA1/AN1/LVDIN RA1 AN1 LVDIN	2	2	27	1/0 	ST Analog Analog	Digital I/O. Analog input 1. Low-Voltage Detect input.
RA2/AN2/VREF- RA2 AN2	6	7	7	1/O	ST Analog	Digital I/O. Analog input 2.
VREF- RA3/AN3/VREF+	7	8	8		Analog	A/D reference voltage (low) input.
RA3 AN3 VREF+	,	0	0	1/0 	ST Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.
RA4/T0CKI RA4 T0CKI	3	3	28	1/O 1	ST/OD ST	Digital I/O. Open-drain when configured as output. Timer0 external clock input.
RA5						See the MCLR/VPP/RA5 pin.
RA6						See the OSC2/CLKO/RA6 pin.
RA7						See the OSC1/CLKI/RA7 pin.
ST = So O = Ou	hmitt İri utput	atible inp igger inp n (no P d	ut with (evels	CMOS = CMOS compatible input or output I = Input P = Power

	Pin Number							
Pin Name	PDIP/ SOIC	SSOP	QFN	Pin Type	Buffer Type	Description		
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.		
RB0/AN4/INT0 RB0 AN4 INT0	8	9	9	1/0 	TTL Analog ST	Digital I/O. Analog input 4. External interrupt 0.		
RB1/AN5/TX/CK/INT1 RB1 AN5 TX CK INT1	9	10	10	1/0 0 /0	TTL Analog — ST ST	Digital I/O. Analog input 5. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT). External interrupt 1.		
RB2/P1B/INT2 RB2 P1B INT2	17	19	23	1/0 0 1	TTL — ST	Digital I/O. Enhanced CCP1/PWM output. External interrupt 2.		
RB3/CCP1/P1A RB3 CCP1 P1A	18	20	24	1/0 1/0 0	TTL ST	Digital I/O. Capture 1 input/Compare 1 output/PWM 1 output. Enhanced CCP1/PWM output.		
RB4/AN6/RX/DT/KBI0 RB4 AN6 RX DT KBI0	10	11	12	1/0 - /0 -	TTL Analog ST ST TTL	Digital I/O. Analog input 6. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK). Interrupt-on-change pin.		
RB5/PGM/KBI1 RB5 PGM KBI1	11	12	13	1/0 1/0	TTL ST TTL	Digital I/O. Low-Voltage ICSP Programming enable pin. Interrupt-on-change pin.		
RB6/PGC/T1OSO/ T13CKI/P1C/KBI2 RB6 PGC T10SO T13CKI P1C KBI2	12	13	15	1/0 1/0 - 0 -	TTL ST ST ST TTL	Digital I/O. In-Circuit Debugger and ICSP programming clock pin. Timer1 oscillator output. Timer1/Timer3 external clock output. Enhanced CCP1/PWM output. Interrupt-on-change pin.		
RB7/PGD/T1OSI/ P1D/KBI3 RB7 PGD T1OSI P1D KBI3	13	14	16	10 10 10 10 10	TTL ST CMOS — TTL	Digital I/O. In-Circuit Debugger and ICSP programming data pin. Timer1 oscillator input. Enhanced CCP1/PWM output. Interrupt-on-change pin.		
Vss	5	5,6	3, 5	Ρ	—	Ground reference for logic and I/O pins.		
VDD	14	15, 16	17, 19	Ρ	_	Positive supply for logic and I/O pins.		
NC	I — [—	18	—	—	No connect.		

ST = Schmitt Trigger input with CMOS levels O = Output OD = Open-drain (no P diode to VDD)

l = Input P = Power

3.2. Accessing I/O Devices

PICmicro programs are able to read from and write to external devices by using the Special Function registers (SFRs). SFRs are used to configure the external pins as input/output, and the internal peripheral modules such as the Analog to Digital converter and the Pulse Width Modulator.

SFRs can be classified as relating to either the core functions or the peripheral functions. The registers related to the "core" are described in this section, and the others will be covered in the latter part of the text. Note that the unused SFR locations will be signified by "___" and are read as '0's.

Hint: all the names and values have been predefined in header file "p18f1220.inc" for assembly programming and in "p18f1220.h" for C programming.

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽²⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2 ⁽²⁾	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2(2)	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽²⁾	FBCh	_	F9Ch	_
FFBh	PCLATU	FDBh	PLUSW2 ⁽²⁾	FBBh	_	F9Bh	OSCTUNE
FFAh	PCLATH	FDAh	FSR2H	FBAh	_	F9Ah	_
FF9h	PCL	FD9h	FSR2L	FB9h	-	F99h	_
FF8h	TBLPTRU	FD8h	STATUS	FB8h	_	F98h	_
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	PWM1CON	F97h	_
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	ECCPAS	F96h	_
FF5h	TABLAT	FD5h	T0CON	FB5h		F95h	_
FF4h	PRODH	FD4h	—	FB4h	_	F94h	_
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	_
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	_
FEFh	INDF0 ⁽²⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	—
FEEh	POSTINC0(2)	FCEh	TMR1L	FAEh	RCREG	F8Eh	—
FEDh	POSTDEC0(2)	FCDh	T1CON	FADh	TXREG	F8Dh	_
FECh	PREINC0 ⁽²⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	_
FEBh	PLUSW0 ⁽²⁾	FCBh	PR2	FABh	RCSTA	F8Bh	—
FEAh	FSR0H	FCAh	T2CON	FAAh	BAUDCTL	F8Ah	LATB
FE9h	FSROL	FC9h	—	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	—	FA8h	EEDATA	F88h	—
FE7h	INDF1 ⁽²⁾	FC7h	—	FA7h	EECON2	F87h	—
FE6h	POSTINC1(2)	FC6h	—	FA6h	EECON1	F86h	_
FE5h	POSTDEC1(2)	FC5h	—	FA5h	-	F85h	_
FE4h	PREINC1 ⁽²⁾	FC4h	ADRESH	FA4h	_	F84h	—
FE3h	PLUSW1 ⁽²⁾	FC3h	ADRESL	FA3h	-	F83h	_
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	_
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

Below is a list of Special Function Registers (SFR):

Note: 1) Unimplemented registers are read as '0' 2) Not a physical register

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR		
TOSU	—	_	_	Top-of-Stack	Upper Byte (TOS<20:16>)			0 0000		
TOSH	Top-of-Stack	High Byte (T	OS<15:8>)						0000 0000		
TOSL	Top-of-Stack	Low Byte (TC)S<7:0>)						0000 0000		
STKPTR	STKFUL	STKUNF	_	Return Stack	Pointer				00-0 0000		
PCLATU	_	_	bit 21 ⁽³⁾	Holding Reg	ister for PC<2	0:16>			0 0000		
PCLATH	Holding Regi	ster for PC<1	5:8>						0000 0000		
PCL	PC Low Byte	C Low Byte (PC<7:0>)									
TBLPTRU	_	_	bit 21	Program Me	mory Table Po	ointer Upper B	yte (TBLPTR	<20:16>)	00 0000		
TBLPTRH	Program Mer	mory Table Po	ointer High By	rte (TBLPTR<	15:8>)				0000 0000		
TBLPTRL	Program Mer	mory Table Po	ointer Low Byt	te (TBLPTR<7	(:0>)				0000 0000		
TABLAT	Program Mei	mory Table La	itch						0000 0000		
PRODH	Product Regi	ster High Byte	9						XXXX XXXX		
PRODL	Product Regi	ster Low Byte)						XXXX XXXX		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x		
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1		
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00		
INDF0	Uses content	ts of FSR0 to	address data	memory – val	ue of FSR0 n	ot changed (n	ot a physical i	register)	N/A		
POSTINC0	Uses content	ts of FSR0 to	address data	memory – val	ue of FSR0 p	ost-increment	ed (not a phys	sical register)	N/A		
POSTDEC0	Uses content	ts of FSR0 to	address data	memory-valu	ue of FSR0 po	st-decrement	ed (not a phys	sical register)	N/A		
PREINC0	Uses content	ts of FSR0 to	address data	memory – val	ue of FSR0 pi	re-incremente	d (not a physi	ical register)	N/A		
PLUSW0	Uses content	ts of FSR0 to	address data	memory – val	ue of FSR0 of	ffset by W (no	t a physical re	egister)	N/A		
FSR0H	_	_	_	_			ress Pointer 0		0000		
FSR0L	Indirect Data	Memory Add	ress Pointer () Low Byte				-	XXXX XXXX		
WREG	Working Reg	-							XXXX XXXX		
INDF1	Uses content	ts of FSR1 to	address data	memory – val	ue of FSR1 n	ot changed (n	ot a physical i	register)	N/A		
POSTINC1	Uses content	ts of FSR1 to	address data	memory – val	ue of FSR1 p	ost-in cre ment	ed (not a phys	sical register)	N/A		
POSTDEC1	Uses content	s of FSR1 to a	address data	memory – val	ue of FSR1 po	ost-decremen	ted (not a phy	sical register)	N/A		
PREINC1					ue of FSR1 p				N/A		
PLUSW1					ue of FSR1 of				N/A		
FSR1H	_	_	_	_	Indirect Data	Memory Add	ress Pointer 1	High	0000		
FSR1L	Indirect Data	Memory Add	ress Pointer 1	1 Low Byte				-	XXXX XXXX		
BSR	_	_	_	_	Bank Select	Register			0000		
INDF2	Uses content	ts of FSR2 to	address data	memory – val	ue of FSR2 n	ot changed (n	ot a physical i	register)	N/A		
POSTINC2					ue of FSR2 p				N/A		
POSTDEC2	Uses content	s of FSR2 to	address data	memory – val	ue of FSR2 po	ost-decremen	ted (not a phy	sical register)	N/A		
PREINC2				-	ue of FSR2 p				N/A		
PLUSW2					ue of FSR2 of				N/A		
FSR2H	_	_	_	_			ress Pointer 2	-	0000		
FSR2L	Indirect Data	Memory Add	ress Pointer 2	2 Low Byte				-	XXXX XXXX		
STATUS	_	_	_	N	ov	Z	DC	С	x xxxx		
TMR0H	Timer0 Regis	ster High Byte			-	. –		-	0000 0000		
TMR0L	Timer0 Regis	~ .							XXXX XXXX		
T0CON	TMR00N	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	1111 1111		
OSCCON	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0	0000 q000		
LVDCON	_	_	IVRST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101		
WDTCON	_	_	_	_	_	_	_	SWDTEN	0		
	IPEN	_	_	RI	то	PD	POR	BOR	01 11q0		

Special Function Register (SFR) Summary Table 1 of 2

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		ie on , BOR		
TMR1H	Timer1 Regis	ster High Byte							xxxx	xxxx		
TMR1L	Timer1 Regis	ster Low Byte							xxxx	xxxx		
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	0000	0000		
TMR2	Timer1 Register Low Byte RD16 T1RUN T1CKPS1 T1OKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON Timer2 Register T TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 A/D Result Register High Byte TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 A/D Result Register High Byte TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 A/D Result Register Low Byte CHS2 CHS1 CHS0 GO/DONE ADON											
PR2	Timer2 Perio	d Register							1111	1111		
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR20N	T2CKPS1	T2CKPS0	-000	0000		
ADRESH	A/D Result R	legister High I	3yte						xxxx	XXXX		
ADRESL	A/D Result R	legister Low B	lyte						xxxx	XXXX		
ADCON0	VCFG1	VCFG1 VCFG0 - CHS2 CHS1 CHS0 GO/DONE ADON 0								0000		
ADCON1	_	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCF G0	-000	0000		
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00	0000		
CCPR1H	Capture/Corr	npare/PWM R	egister 1 High	n Byte					xxxx	XXXX		
CCPR1L	Capture/Corr	npare/PWM R	egister 1 Low	Byte					xxxx	XXXX		
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000	0000		
PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000	0000		
ECCPAS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000	0000		
TMR3H	Timer3 Regis	ster High Byte							XXXX	XXXX		
TMR3L	Timer3 Regis	ster Low Byte							xxxx	XXXX		
T3CON	RD16	_	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0-00	0000		
SPBRGH	EUSART Ba	ud Rate Gene	rator High By	te				•	0000	0000		
SPBRG	EUSART Ba	ud Rate Gene	rator Low By	e					0000	0000		
RCREG	EUSART Re	ceive Registe	r						0000	0000		
TXREG	EUSART Tra	insmit Registe	r						0000	0000		
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	T X9D	0000	0010		
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	000x		
BAUDCTL	_	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	-1-1	0-00		
EEADR	EEPROM Ad	dress Registe	er						0000	0000		
EEDATA	EEPROM Da	ata Register							0000	0000		
EECON2	EEPROM Co	ontrol Registe	r 2 (not a phys	sical register)					0000	0000		
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	xx-0	x000		
IPR2	OSCFIP	—	—	EEIP	—	LVDIP	TMR3IP	—	11	-11-		
PIR2	OSCFIF	_	_	EEIF	_	LVDIF	TMR3IF	_	00	-00-		
PIE2	OSCFIE	_	_	EEIE	_	LVDIE	TMR3IE	—	00	-00-		
IPR1	—	ADIP	RCIP	TXIP	—	CCP1IP	TMR2IP	TMR1IP	-111	-111		
PIR1	_	ADIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	-000	-000		
PIE1	—	ADIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	-000	-000		
OSCTUNE	—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00	0000		
TRISB	Data Directio	n Control Reg	jister for POR	TB					1111	1111		
TRISA	TRISA7 ⁽²⁾	TRISA6 ⁽¹⁾	—	Data Directio	on Control Reg	ister for POR	TA		11-1	1111		
LATB	Read/Write F	PORTB Data L	atch						xxxx	xxxx		
LATA	LATA<7>(2)	LATA<6>(1)	—	Read/Write F	PORTA Data L	atch			xx-x	XXXX		
PORTB	Read PORT	B pins, Write I	PORTB Data I	atch					XXXX	XXXX		
PORTA	RA7 ⁽²⁾	RA6 ⁽¹⁾	RA5 ⁽⁴⁾	Read PORT	A pins, Write F	ORTA Data I	atch		xx0x	0000		

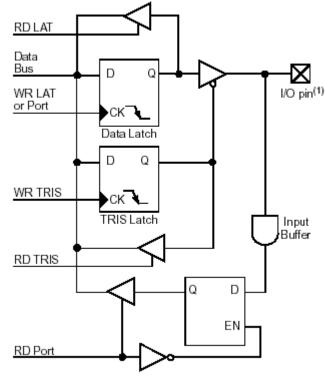
Special Function Register (SFR) Summary Table 2 of 2

- Legend: x = unknown, u = unchanged, = unimplemented, q = value depends on condition Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read '0' in all other oscillator modes.

 - RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read '0' in all other modes.
 Bit 21 of the PC is only available in Test mode and Serial Programming modes.
 The RA5 port bit is only available when MCLRE fuse (CONFIG3H<7>) is programmed to '0'. Otherwise, RA5 reads '0'. This bit is read-only.

✤ I/O Port Set up

As discussed earlier, microprocessors typically consist only of a Central Processing Unit (CPU) while all other functionality is implemented externally through specialized integrated circuits. All of these modules are accessed and controlled as if they were memory locations by reading and writing to their respective locations.


PICmicro is a microcontroller which means that, in addition to the CPU, a number of additional functional modules are contained onboard the chip. These additional functional modules include:

- > As many as 16 external PICmicro pins that can be configured as input or output ports.
- Analog to digital converter module
- Pulse Width Modulator (PWM) which is used to control the speed of DC motors and other devices that may be controlled with amount of energy delivered.

Later in this chapter, all three of these modules will be discussed.

- External Pin Set up as general purpose I/O Ports Some pins of the I/O ports are multiplexed with an alternate function from other modules on the PICmicro. In general, when a peripheral is enabled, the pins used by the peripheral may not be used as general purpose I/O pins. Each port has three registers for its operation. These registers are:
 - TRIS register (data direction register)
 - PORT register (reads the levels on the pins of the device)
 - LAT register (output latch)

A simplified model of a generic I/O port without the interfaces to other peripherals is shown below:

Note 1: I/O pins have diode protection to VDD and VSS.

PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch.

	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
Port A Register:	b7	b6	b5	b4	b3	b2	b1	b0
I/O Pins:	p16	p15	p4	р3	р7	р6	p2	p1
Alternative Uses:	refer	to pin d	efinitio		gured fo er in the pin.			

The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input. When the pin is set to input it will be in a high-impedance mode. Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output. In this mode the contents of the corresponding bit in the output latch (LATA) will be available on the selected external I/O pin.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value from and to PORTA.

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. It is important to consider the impact of a read on the configuration before using read-modify-write instructions.

Example of initializing PortA

CLRF	PORTA	; Initialize PORTA by clearing output data latches
CLRF	LATA	; Alternate method to clear output data latches
MOVLW	0x7F	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVLW	0xF0	; Value used to initialize data direction
MOVWF	TRISA	; Set RA<3:0> as outputs and RA<7:4> as inputs

Port A Functions Summary

Bit#	Buffer	Function
bit 0	ST	Input/output port pin or analog input.
bit 1	ST	Input/output port pin, analog input or Low-Voltage Detect input.
bit 2	ST	Input/output port pin, analog input or VREF
bit 3	ST	Input/output port pin, analog input or VREF+.
bit 4	ST	Input/output port pin or external clock input for Timer0. Output is open-drain type.
bit 5	ST	Master Clear input or programming voltage input (if MCLR is enabled); input only port pin or programming voltage input (if MCLR is disabled).
bit 6	ST	OSC2, clock output or I/O pin.
bit 7	ST	OSC1, clock input or I/O pin.
	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6	bit 0 ST bit 1 ST bit 2 ST bit 3 ST bit 4 ST bit 5 ST bit 6 ST

Legend: TTL = TTL input, ST = Schmitt Trigger input

Port A Associated Registers Summary

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value all oth Rese	her
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5 ⁽²⁾	RA4	RA3	RA2	RA1	RA0	xx0x 0000	uu0u 0	0000
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	_	LATA Dat	LATA Data Output Register					uu-u u	iuuu
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	_	PORTA D	PORTA Data Direction Register					11-1 1	1111
ADCON1	_	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	-000 0000	-000 0	0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.
 Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

2: RA5 is an input only if MCLR is disabled.

> PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. Reading the PORTB register reads the status of the pins, whereas writing to it will write to the port latch.

	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
Port B Register:	b7	b6	b5	b4	b3	b2	b1	b0
I/O Pins:	p13	p12	p11	p10	p18	p17	p9	p8
Alternating Uses:	Each I/O pin may be configured for multiple uses, refer to pin definitions earlier in the chapter for a list of alternative uses for each pin.							

The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input. When the pin is set to input it will be in a high-impedance mode. Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output. In this mode the contents of the corresponding bit in the output latch (LATB) on the selected pin.

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value from and to PORTB.

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. It is important to consider the impact of a read on the configuration before using read-modify-write instructions.

Example of initializing PortB

CLRF	PORTB	; Initialize PORTB by clearing output data latches
CLRF	LATB	; Alternate method to clear output data latches
MOVLW	0x70	; Set RB0 , RB1, RB4 (Pins 8, 9 &10) as
MOVWF	ADCON1	; digital I/O pins
MOVLW MOVWF	0xCF TRISB	; Value used to initialize data direction ; Set RB<3:0> as inputs, RB<5:4> as outputs and ; RB<7:6> as inputs

Port B Functions Summary

Name	Bit#	Buffer	Function
RB0/AN4/INT0	bit 0	TTL ⁽¹⁾ /ST ⁽²⁾	Input/output port pin, analog input or external interrupt input 0.
RB1/AN5/TX/CK/INT1	bit 1	TTL ⁽¹⁾ /ST ⁽²⁾	Input/output port pin, analog input, Enhanced USART Asynchronous Transmit, Addressable USART Synchronous Clock or external interrupt input 1.
RB2/P1B/INT2	bit 2	TTL ⁽¹⁾ /ST ⁽²⁾	Input/output port pin or external interrupt input 2. Internal software programmable weak pull-up.
RB3/CCP1/P1A	bit 3	TTL ⁽¹⁾ /ST ⁽³⁾	Input/output port pin or Capture1 input/Compare1 output/ PWM output. Internal software programmable weak pull-up.
RB4/AN6/RX/DT/KBI0	bit 4	TTL ⁽¹⁾ /ST ⁽⁴⁾	Input/output port pin (with interrupt-on-change), analog input, Enhanced USART Asynchronous Receive or Addressable USART Synchronous Data.
RB5/PGM/KBI1	bit 5	TTL ⁽¹⁾ /ST ⁽⁵⁾	Input/output port pin (with interrupt-on-change). Internal software programmable weak pull-up. Low-Voltage ICSP enable pin.
RB6/PGC/T1OSO/T13CKI/ P1C/KBI2	bit 6	TTL ⁽¹⁾ /ST ^(5,6)	Input/output port pin (with interrupt-on-change), Timer1/ Timer3 clock input or Timer1oscillator output. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD/T10SI/P1D/KBI3	bit 7	TTL ⁽¹⁾ /ST ⁽⁵⁾	Input/output port pin (with interrupt-on-change) or Timer1 oscillator input. Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a TTL input when configured as a port input pin.

2: This buffer is a Schmitt Trigger input when configured as the external interrupt.

3: This buffer is a Schmitt Trigger input when configured as the CCP1 input.

4: This buffer is a Schmitt Trigger input when used as EUSART receive input.

5: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

6: This buffer is a TTL input when used as the T13CKI input.

Port B Associated Registers Summary

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxd dddd	uuuu uuuu
LATB Data	Output Regi	ster						XXXX XXXX	uuuu uuuu
PORTB Data Direction Register						1111 1111	1111 1111		
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	x000 000x	0000 000u
RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	—	RBIP	1111 -1-1	1111 -1-1
INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF	11-0 0-00	11-0 0-00
	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	-000 0000	-000 0000
	RB7 LATB Data PORTB Dat GIE/GIEH RBPU	RB7 RB6 LATB Data Output Regi PORTB Data Direction I GIE/GIEH RBPU INTEDG0 INT2IP	RB7 RB6 RB5 LATB Data Output Register PORTB Data Direction Register PORTB Data Direction Register GIE/GIEH PEIE/GIEL GIE/GIEH PEIE/GIEL TMR0IE RBPU INTEDG0 INTEDG1 INT2IP INT1IP —	RB7 RB6 RB5 RB4 LATB Data Output Register PORTB Data Direction Register GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBPU INTEDG0 INTEDG1 INTEDG2 INT2IP INT1IP — INT2IE	RB7 RB6 RB5 RB4 RB3 LATB Data Output Register PORTB Data Direction Register GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE RBPU INTEDG0 INTEDG1 INTEDG2 — INT2IP INT1IP — INT2IE INT1IE	RB7 RB6 RB5 RB4 RB3 RB2 LATB Data Output Register PORTB Data Direction Register PORTB Data Direction Register GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP INT2IP INT1IP — INT2IE INT1IE —	RB7 RB6 RB5 RB4 RB3 RB2 RB1 LATB Data Output Register RB1 PORTB Data Direction Register <td>RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 LATB Data Output Register RB0 PORTB Data Direction Register</td> <td>Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0POR, BORRB7RB6RB5RB4RB3RB2RB1RB0xxxq qqqqATB Data Output Registerxxxq qqqqqxxxxxxxxxxxxxxxxPORTB Data Direction RegisterxxxqqqqqxxxxxxxxGIE/GIEHPEIE/GIELTMR0IEINT0IERBIETMR0IFINT0IFRBIF0000000xRBPUINTEDG0INTEDG1INTEDG2—TMR0IP—RBIP1111-11INT2IPINT1IP—INT2IEINT1IE—INT2IFINT1IF11-00-00</td>	RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 LATB Data Output Register RB0 PORTB Data Direction Register	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0POR, BORRB7RB6RB5RB4RB3RB2RB1RB0xxxq qqqqATB Data Output Registerxxxq qqqqqxxxxxxxxxxxxxxxxPORTB Data Direction RegisterxxxqqqqqxxxxxxxxGIE/GIEHPEIE/GIELTMR0IEINT0IERBIETMR0IFINT0IFRBIF0000000xRBPUINTEDG0INTEDG1INTEDG2—TMR0IP—RBIP1111-11INT2IPINT1IP—INT2IEINT1IE—INT2IFINT1IF11-00-00

Legend: x = unknown, u = unchanged, q = value depends on condition. Shaded cells are not used by PORTB.

Example of Basic Input/Output Configuration

As described earlier, configuring external PICmicro pins as input/output is as simple as writing to SFR registers ADCON1, TRISA and TRISB. Below is a sample pin configuration code from a counter program:

The following lines clear the data in PORTA and PORTB.

CLRF	PORTA
CLRF	PORTB

The following line sets the W register (accumulator) to value 0x7F = 01111111 MOVLW 0x7F

The W register is used as a temporary location for values. In this case the value 0x7F has been placed in W register first. The following line copies the value of W register to ADCON1 register. The ADCON1 register is one of three registers that control the operation of the PICmicro's built in Analog to Digital Converter (ADC). Setting the value of ADCON1 to 0x7F tells the PIC that pins 1, 2, 6, 7, 8, 9 and 10 will be used for input/output rather than for the ADC. MOVWF ADCON1

The following line sets the W register (accumulator) to value 0x00 = 00000000 MOVLW 0x00

The following line copies the contents of the W register to the TRISB register. The TRISB register is the control register for PORTB. The bits in TRISB signify which direction the data is flowing in PORTB (1 = Input, 0 = Output). MOVWF TRISB

The following line sets the W register (accumulator) to value 0x01 = 00000001 MOVLW 0x01

The following line copies the contents of the W register to the TRISA register. The TRISA register is the control register for PORTA. The bits in TRISA signify which direction data is flowing in PORTA (1 = Input, 0 = Output). MOVWF TRISA

Now that the input/output pins have been configured, the user can write to or read from these input/output pins by writing and reading from PORTA and PORTB registers. For example, the following code writes data (0xAB) to the 8 pins of PortA:

MOVLW	0xAB
MOVWF	PORTA

3.3. Additional Resources

- Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology Incorporated.
- Huang,. <u>PIC Microcontroller: An Introduction to Software & Hardware Interfacing</u>, (2004) Thomson.
- Reese. <u>Microprocessor: From Assembly Language to C using the PIC18Fxxx2</u>. (2003) Course Technology.
- Peterson. <u>Computer Organization and Design</u>, (2007) Elsevier Service.

3.4. Problems

Refer to <u>www.EngrCS.com</u> or online course page for complete solved and unsolved problem set.

CHAPTER 4. PROGRAM FLOW, EVENT HANDLING AND CONTROL

Key concepts and Overview

- Overview
- Stack Operations
- Procedure Call and Return Instructions
- Interrupt/exception handling
- Clock and Oscillator
- Timers
- Power Management
- Reset
- Analog-to-Digital Converter
- Pulse Width Modulation (PWM)
- Additional Resources

4.1. Overview

As discussed earlier, the CPU executes instructions in a sequential fashion. PICmicro will execute the instruction in the word (2 bytes) that is pointed to by the Program Counter (PC). Upon completion of the current instruction, PC is incremented by 2 and executes the next instruction word pointed to by the PC. There are a number of instructions and events that are designed to move PC to another location other than PC+2. The following are the most common of these instructions and events:

Branch instructions

As seen in earlier chapters, branch instructions redirect the PC to a location in memory other than (PC + 2). Each branch instruction may test a specific condition. For example: "BC n" will cause the PC to move to n if the Carry flag is set, otherwise it will continue executing the next instruction word pointed to by PC+2. Branch instructions are used to develop high-level language "If-then-else" statements, other conditional statements, and loop constructs.

- Procedure Call and Return Instructions The Call instruction directs the PC to a new location similar to the Branch instructions. Additionally, it keeps tracks of the original (PC+4) so that it may return to this location after completing a set of instructions at the new location. The Return instruction is used to return to the location of the instruction immediately following the Call instruction. The implementation of high-level language functions and procedures rely on these types of instructions.
- Interrupts and exceptions

Interrupts and exceptions are required for implementation of event detection and handling. Exception refers to a software-initiated interrupt. We will use interrupt to refer to both exceptions and interrupts. Interrupts may occur at any time during the program execution. Once an Interrupt is detected, the PC will be changed to point to a pre-determined location in the memory corresponding to the detected interrupt. The code that starts at this new location is written to handle the interrupt or exception.

Timers

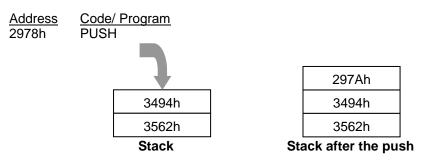
There are situations where the CPU has to wait for a specified amount of time. Although the processor may be placed in a wait loop by executing NOP instructions, this approach has a number of disadvantages:

- The actual time has to be experimentally determined since calculations based on instruction cycle time may be difficult to make.
- In a multiprocessing system, the loop only counts the time allocated to the process executing the wait loop and not the time used by other processes.
- The processor is not able to perform other tasks while it is in the wait loop.
- Timers solve these issues by allowing the CPU to continue with normal task execution until a timer timeout interrupt has occurred. The Timer timeout is able to generate a timer interrupt after a specified time duration which would result in redirecting the PC to a new location in the memory to execute the code that handles the timed event.
- Power managed Modes

Increasingly, most processors have the power management capability in order to save power. The key feature is the ability to transition from sleep to active mode driven by an external event. For example: When the user presses a key on a computer, or upon detection of network activity. Using this functionality, the CPU may be put into a standby or low power mode until it is needed.

4.2. Stack Operations

Stacks are special memory locations used to store return addresses and other information that will need to be retrieved later. This space is called a stack since one can visualize data being stacked on the top of each other. There are specific operations for adding and removing words from stack.


STKPTR Special Function Register contains information about the stack status (empty or full) and stack point as shown below:

Bit 7	Bit 6	Bit5	Bit4	
STKFU {1: Stack is		oty} —	Stack Points 1-31 {0 is not valid}	STKPTR

The most common use of the stack is for subroutines. When a CALL instruction is executed, the current value of (PC+4) is added (or "pushed") on to the stack so that it can be recovered (or "popped") during a RETURN instruction. The value recovered by RETURN is used as the location of the next instruction.

PUSH Instruction

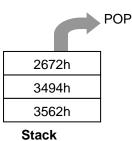
Adding a word to the stack is called pushing a word onto the stack which is shown below:

Below are the specifications for the PUSH instruction:

PUSH	Push Top of Return Stack							
Syntax:	[label]	PUSH						
Operands:	None	None						
Operation:	(PC + 2) -	$\rightarrow TOS$						
Status Affected:	None							
Encoding:	0000	0000	0000	0101				
Description:	of the retu TOS valu stack. This instru ing a soft TOS and	The PC + 2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack. This instruction allows implement- ing a software stack by modifying TOS and then pushing it onto the return stack.						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	3	Q4				
Decode	Push PC + 2 onto return stack	No opera		No peration				
Example:	PUSH							
Before Instru TOS PC	ction	-	x00345A x000124					
After Instruction PC TOS Stack (1 level down)		= 0	x000126 x000126 x00345A					

Note

- 21-bit value for the content of the top of stack (TOS) is located at TOSU, TOSH and TOSL Special Function Registers (Top Of Stack Upper, High, Low).
- Bits 6 and 7 of STKPTR Special Function Register indicate whether stack is empty and full, respectively.


Before attempting to add data to the stack, it is important to check bit 7 of STKPTR to ensure that the stack is not full.

Similarly, before attempting to remove data from the stack, it is important to check bit 6 of STKPTR to ensure that the stack is not empty.

• Program Counter (PC) is the address of the next instruction to be executed.

Pop Instruction

The removal operation is called popping a word from the stack which is shown below:

3494h 3562h

Stack after the pop

Below is the specification for the pop instruction:

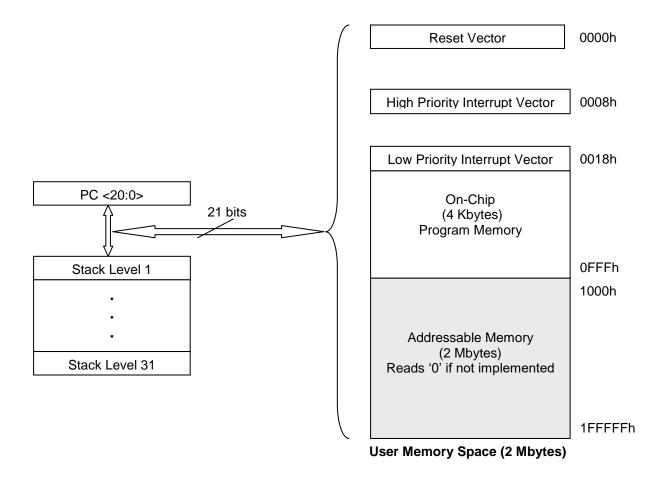
POP	РорТоро	Pop Top of Return Stack						
Syntax:	[label]	POP						
Operands:	None	None						
Operation:	$(TOS) \rightarrow I$	bit bucke	et					
Status Affected:	None							
Encoding:	0000	0000	000	0 0110				
Description:	return stad TOS value previous v onto the re This instru enable the the return	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	,	Q4				
Decode	No operation	Pop T valu		No operation				
Example:	POP GOTO	NEW						
Before Instru TOS Stack (1 I	ction evel down)		x0031/ x0143					
After Instruct TOS PC	ion		x0143 JEW	32				

<u>Note</u>

- 21-bit value for the content of the top of stack (TOS) is located at TOSU, TOSH and TOSL Special Function Registers (Top Of Stack Upper, High, Low).
- Bits 6 and 7 of STKPTR Special Function Register indicate whether stack is empty and full, respectively.

Before attempting to add data to the stack, it is important to check bit 7 of STKPTR to ensure that the stack is not full.

Similarly, before attempting to remove data from the stack, it is important to check bit 6 of STKPTR to ensure that the stack is not empty.


• Program Counter (PC) is the address of the next instruction to be executed.

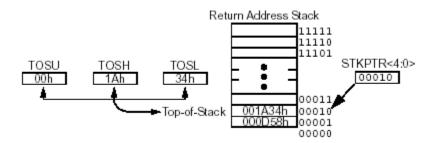
Stack Usage

PICmicro has 31 stack levels (Level 1 - 31) which are most commonly used for saving data between procedure calls or interrupts. In most cases, stack stores the value of key registers or PC locations that may be needed later.

Stack memory space does not occupy any of the available program or data memory. However, the designer may decide to use specific memory to extend stack space beyond the 31 levels.

The following diagram depicts an overview of PICmicro stack and user memory space:

Return Address Stack


The return address stack allows any combination of up to 31 program calls and interrupts to occur before a RETURN is needed. The Program Counter (PC) for next instruction is pushed onto the stack when a CALL or RCALL instruction is executed, or an interrupt is acknowledged. The PC value for next instruction is pulled off the stack on a RETURN, a RETLW or a RETFIE instruction. PCLATU and PCLATH registers are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit memory and a 5-bit stack pointer, with the Stack Pointer initialized to 00000b after all Resets. There is no memory location is associated with Stack Pointer, 00000b. This is only a Reset value. During a CALL type instruction, the Stack Pointer is first incremented, and then the PC value of the next instruction is written to the memory location pointed to by the Stack Pointer (STKPTR) register.

During a RETURN type instruction, the contents of the memory location pointed to by the Stack Pointer are written to the PC, and then the Stack Pointer is decremented. RETURN type instruction causes the contents of the memory location pointed to by the Stack Pointer to be transferred to the PC followed by Stack Pointer decrement (which is the same as a pop from the stack). The Stack Pointer is readable and writable, and the address on the top of the stack is readable and writable through the Top-Of-Stack (TOS) Special File Registers. Data can also be pushed to or popped from the stack using the TOS Special Function Registers. As mentioned earlier, the STKPTR register also contains status bits indicating if the stack is full or empty.

Top-Of-Stack Access

The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL (Top-Of-Stack Upper, High, and Low), hold the contents of the stack location pointed to by the STKPTR register as shown below:

Access to top of stack allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and TOSL registers. These values can be copied to a user-defined software stack. At return time, the software can replace TOSU, TOSH and TOSL with the values saved on the software stack, and then do a return.

The user must disable the global interrupt enable bits while accessing the stack to prevent inadvertent stack corruption (refer to the interrupt section for more detail).

Example – Determine the value of TOSU, TOSH and TOSL after the following instruction has been executed:

Address	Instruction	
07FEh	PUSH	

Solution:

Pushed on stack (PC + 2 = 0x800) TOSU=0x00, TOSH=0x08, TOSL=0x00

Example – Determine the value of TOSU, TOSH and TOSL after the following instruction has been executed:

<u>Address</u>	Instruction	<u>.</u>
001890h	POP	

Solution:

Unknown (insufficient information)

Example – Determine the value of data memory locations 0xFFF, 0xFFE and 0xFFD after the execution of:

<u>Address</u>	Instruction	
0x292	PUSH	

Solution:

4.3. Procedure Call and Return Instructions

Procedure call and return instructions are important in a programmer's ability to create blocks of codes that could be shared by multiple parts of one program or multiple programs, eliminating the need to rewrite the same code multiple times. The major benefits of this type of reuse are reduction in code size and ease of maintenance since any fix only requires change to one code segment.

Procedure call and return instructions have this advantage over Branch and Goto instructions because of their ability to return the PC to the code immediately following the CALL instruction. Again, the high level language functions and procedures are implemented using Procedure CALL and RETURN instructions.

PICmicro provides CALL, RCALL, RETURN and RETLW in support of procedures as described below:

✤ CALL n,s

CAL	L	Subroutine Call					
Synt	ax:	[label]	CALL k	[,s]			
Оре	rands:	$0 \le k \le 10$ s $\in [0,1]$)48575				
Ope	ration:	$(PC) + 4 \rightarrow TOS,$ $k \rightarrow PC<20:1>,$ if $s = 1$ $(W) \rightarrow WS,$ $(Status) \rightarrow STATUSS,$ $(BSR) \rightarrow BSRS$					
Statu	is Affected:	None					
1st v	oding: vord (k<7:0>) word(k<19:8;		110s k ₁₉ kkk	kykkk kkkk	kkkk _o kkkk ₈		
Description: Subroutine call of entire 2-Mbyte memory range. First, return address (PC + 4) is pushed onto the return stack. If 's' = 1, the W, Status and BSR registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs (default). Then, the 20-bit value 'k' is loaded into PC<20:1>. CALL is a two-cycle instruction.							
Wor	ds:	2					
Cycl	es:	2					
QC	ycle Activity:						
	Q1	Q2	Q3	3	Q4		
	Decode	Read literal 'k'<7:0>,	Push P stac	ж "к	ad literal <19:8>, rite to PC		
	No operation	No operation	No opera		No peration		

Example:

CALL THERE, FAST

Before Instruction

PC = address (HERE) After Instruction PC = address (THERE TOS = address (URDE)

HERE

PC = address (THERE) TOS = address (HERE + 4) WS = W BSRS = BSR STATUSS = Status Notes:

RCALL n

RCA	LL	Relative (Call					
Synt	ax:	[<i>label</i>] R	CALL	n				
Oper	rands:	-1024 ≤ n	≤ 1023					
Oper	ration:	(PC) + 2 - (PC) + 2 +		с				
Statu	is Affected:	None						
Enco	oding:	1101	1nnn	nnnn	nnnn			
Desc	cription:	from the c return add onto the s compleme Since the to fetch the address w	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction.					
Wore	s:	1						
Cycl	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	,	Q4			
	Decode	Read literal 'n' Push PC to stack	Proce Dat		rite to PC			
	No operation	No operation	No operat		No peration			
Exar	<u>nole</u> : Before Instru	HERE	RCALL	յստթ				

PC = Address (HERE) After Instruction PC = Address (Jump) TOS = Address (HERE + 2) Notes:

•

✤ RETLW

RETLW	Return Literal to W					
Syntax:	[label]	RETLW	k			
Operands:	$0 \le k \le 28$	55				
Operation:	$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged					
Status Affected:	None					
Encoding:	0000	1100	kkkk	kkkk		
Description:	W is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.					
Words:	1					
Cycles:	2					
Q Cycle Activity:						
Q1	Q2	Q3	3	Q4		

Q1	Q2	Q3	Q4
Decode	Read literal 'k'	Process Data	Pop PC from stack, Write to W
No operation	No operation	No operation	No operation

Example:

Notes:

•

✤ RETURN

RET	URN	Return fr	Return from Subroutine					
Synt	ax:	[label]	RETUR	N [s]				
Ope	rands:	$s \in [0,1]$						
Ope	ration:	$(TOS) \rightarrow PC,$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged						
Statu	us Affected:	None						
Enco	oding:	0000	0000	0001	001 <i>s</i>			
Description: Return from subroutine. The stat is popped and the top of the stat is loaded into the program count of 's'= 1, the contents of the shace registers, WS, STATUSS and BSRS, are loaded into their corn sponding registers, W, Status and BSR. If 's' = 0, no update of the registers occurs (default).					ie stack counter. shadow ind ir corre- tus and			
Wore	ds:	1	1					
Cycl	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	No	Proce		Pop PC			
		operation	Dat		om stack			
	No	No	No		No			
	operation	operation	opera	tion o	peration			

Example: RETURN

After Interrupt PC = TOS Example - For the following code segment:

<u>Address</u> 52h	Instruction CALL add_one DECF 0x81				
75h	 add_one:	INCF	0x81		
		 RETUF			

a) Are all the shown addresses valid? If not, what is the next valid address for any invalid address?

b) Determine location of instruction "DECF".

c) Determine machine Code for each shown instruction.

d) Determine top of stack value after each instruction. Assuming TOS is 0x1298 before code execution starts.

Solution:

Example - Function CALL and Return

- a) Write an assembly code function "diff" that subtracts two 8-bit operands and returns the result.
- b) Write the equivalent machine code.
- c) Call Diff from location 0x128 when Top of Stack (TOS) is set to 0x1232. Show value of PC and TOS immediately before CALL, before Return, and after Return.

Solution:

a) diff function

	op1	equ	0x80
	op2	equ	0x81
	result	equ	0x82
diff:	org ; diff functic MOVF SUBWF MOVWF RETURN	0x200 on returns re op2, W op1, W result 1	sult=op1 – op2

b)

4.4. Interrupt/exception handling

As discussed earlier, interrupts are required for event detection and handling. Interrupts may occur at anytime. When they do, the location of the next instruction is pushed onto the stack, and the PC is changed to point to a pre-determined location in the memory. The code that starts at this new location is written to handle the interrupt or exception.

PICmicro handles interrupts from multiple sources. Additionally, the ability to assign interrupt (INT1 & INT2) priority enables the designer to assign a low or high priority to each interrupt source. The high priority interrupt events can override any low priority interrupts that may be in progress. The high priority interrupt vector is at 000008h program memory location, and the low priority interrupt vector is at 000018h program memory location that PC will be set to after an interrupt has occurred and has been acknowledged.

The following four SFR registers are used to control interrupt operations (there are another six SFR registers that will be discussed later):

RCON Register

Bit 7	0						Bit0	
IPEN			RI'	TO'	PD'	POR'	BOR'	RCON
bit 7	IPEN: Interru							-
	1 = Enable (o = Disable	-			CXXX Comp	atibility mo	de)	
bit 6-5								
bit 4	RI: RESET IN	struction Fla	ag bit					
	 1 = The RESET instruction was not executed (set by firmware only) 0 = The RESET instruction was executed causing a device Reset 							
	(must be	e set in softv	ware after a	Brown-out	Reset occur	s)		
bit 3	TO: Watchdo	-	-					
	1 = Setbyp o = AWDT1			uction or <i>s</i> Li	EEP instruct	ion		
bit 2	PD: Power-d	lown Detect	ion Flag bit					
	1 = Set by p o = Cleared	•	-					
bit 1	POR: Power	_						
	1 = A Power	r-on Reseth	nas not occu	urred (set by	firmware o	nly)		
	o = A Powe	r-on Reset o	occurred (m	ust be set ir	i software a	fter a Powe	r-on Reset o	occurs)
bit 0	BOR: Brown	-out Reset :	Status bit					
	1 = A Brown 0 = A Brown				<i>,</i>	27	n-out Reset	occurs)

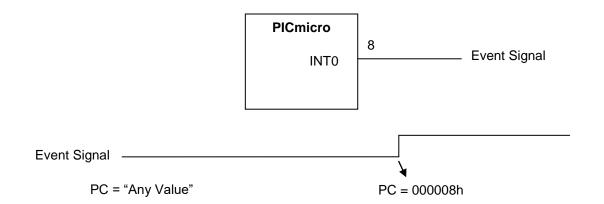
INTCON Register

ITCON Re	egister							
Bit 7		-					Bit0	
GIE/ GIEH	PEIE/ GIEL	TMR0 IE	INT0 IE	RBIE	TMR0 IF	INT0 IF	RB IF	INTCON
	GIE/GIEH: (When IPEN		upt Enable	bit				
	1 = Enables 0 = Disables When IPEN 1 = Enables 0 = Disables	s all interrup <u>= 1:</u> all high pric s all interrup	ts prity interrup ts	ts				
	PEIE/GIEL:	•	nterrupt En	able bit				
	When IPEN 1 = Enables 0 = Disables	all unmask						
	When IPEN 1 = Enables 0 = Disables	all low prior						
bit 5	TMROIE: TN	/IR0 Overflo	w Interrupt	Enable bit				
	1 = Enables 0 = Disables							
bit 4	INTOIE: INT	0 External I	nterrupt Ena	able bit				
	1 = Enables 0 = Disables							
	RBIE: RB P 1 = Enables	-	•					
	o = Disables	s the RB por	t change in	terrupt				
	TMR0IF: TN		•	-				
	1 = TMR0 re 0 = TMR0 re			must be cle	ared in soft	ware)		
bit 1	INTOIF: INT	0 External li	nterrupt Flag	gbit				
	1 = The INT 0 = The INT				be cleared	in software)		
bit O	RBIF: RB P	ort Change	Interrupt Fla	ag bit				
	1 = At least 0 = None of					be cleared	in software)	
		A mismatch mismatch co					PORTB will	end the

✤ INTCON2 Register

	U							
Bit 7							Bit0	
RBPU'	INTE DG0	INTE DG1	INTE DG2		TMR0 IP		RBIP	INTCON2
bit 7	 7 RBPU: PORTB Pull-up Enable bit 1 = All PORTB pull-ups are disabled o = PORTB pull-ups are enabled by individual port latch values 							
bit 6	 INTEDG0: External Interrupt 0 Edge Select bit 1 = Interrupt on rising edge 0 = Interrupt on falling edge 							
bit 5	INTEDG1: External Interrupt 1 Edge Select bit 1 = Interrupt on rising edge o = Interrupt on falling edge							
bit 4	1 = Intern	: External In upt on rising upt on falling	edge	lge Select b	it			
bit 3	Unimplem	nented: Rea	ad as 'o'					
bit 2	TMR0IP: TMR0 Overflow Interrupt Priority bit 1 = High priority o = Low priority							
bit 1	Unimplen	nented: Rea	ad as 'o'					
bit O	Unimplemented: Read as 'o' RBIP: RB Port Change Interrupt Priority bit 1 = High priority o = Low priority							

✤ INTCON3


Bit 7							Bit0				
INT2 IP	INT1 IP		INT2 IE	INT1 IE		INT2 IF	INT1 IF	INTCON3			
bit 7 II	INT2IP: INT2 External Interrupt Priority bit										
	1 = High priority										
	= Low price	-									
bit 6 II	NT1IP: INT	1 External Ir	nterrupt Pric	ority bit							
	. = High prid										
) = Low pric	-									
bit 5 U	Jnimpleme	nted: Read	as 'o'								
bit 4 🛛 II	NT2IE: INT2	2 External Ir	nterrupt Ena	able bit							
	. = Enables										
0) = Disables	s the INT2 e	xternal inte	rrupt							
bit 3 II	NT1IE: INT	1 External Ir	nterrupt Ena	able bit							
	. = Enables			•							
0) = Disables	s the INT1 e	xternal inte	rrupt							
bit 2 U	Jnimplemer	nted: Read	as 'o'								
bit 1 II	NT2IF: INT2	2 External Ir	nterrupt Flag	g bit							
1	= The INT	2 external i	nterrupt occ	urred (must	be cleared	in software))				
0) = The INT	2 external i	nterrupt did	not occur							
bit 0 🛛 🛛	NT1IF: INT1	External Ir	nterrupt Flag	g bit							
1	. = The INT	1 external i	nterrupt occ	urred (must	be cleared	in software))				
) = The INT						~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
					t be cleared	in software))				

It is also recommended that the Microchip header files supplied with MPLAB® IDE be used for the symbolic bit names in these and other registers. This allows the assembler/compiler to automatically take care of the placement of these bits within the specified register. For Assembly code, use the following statement at the top of your assembly code to include all SFR addresses and bit names as specified in the appendix:

include p18f1220.inc

There are three external interrupts available on PICmicro (INT0-Pin 8, INT1-Pin9 and INT2-Pin 17 on the PDIP package), three timers capable of generating interrupt and others to be discussed in the future.

Below is an example of connecting interrupt INT0 to Event Signal. Anytime Event Signal goes from low to high, a high priority interrupt is caused and PC is set to 000008h.

In general, each interrupt source has three bits to control its operation. The functions of these bits are:

- > Flag bit to indicate that an interrupt event occurred.
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set.
- Priority bit to select high priority or low priority (INTO has no priority bit and is always high priority)

The following 6 registers are used to configure Interrupt Enable, Flag and Priority:

$\dot{\mathbf{v}}$	IPR1,	PIE1.	PIR1
•		,	1 11 1 1

– • •	_
Bit	1

Bit 7			-	 		Bit0	
	ADIP	RCIP	TXIP	 CCP1 IP	TMR2 IP	TMR1 IP	IPR1
	ADIE	RCIE	TXIE	 CCP1 IE	TMR2 IE	TMR1 IE	PIE1
	ADIF	RCIF	TXIF	 CCP1 IF	TMR2 IF	TMR1 IF	PIR1

✤ IPR2, PIE2, PIR2

_	Bit 7					Bit0	
	OSCF IP	_	 EEIP	 LVD IP	TMR3 IP		IPR2
	OSCF IE	_	 EEIE	 LVD IE	TMR3 IE		PIE2
	OSCF IF		 EEIF	 LVD IF	TMR3 IF		PIR2

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 000008h or 000018h, depending on the priority bit setting. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PICmicro mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit, which enables/disables all peripheral interrupt sources. INTCON<7> is the GIE bit, which enables/disables all interrupt sources. All interrupts branch to address 000008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High priority interrupt sources can interrupt a low priority interrupt. Low priority interrupts are not processed while high priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (000008h or 000018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before reenabling interrupts to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL, if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bit or the GIE bit.

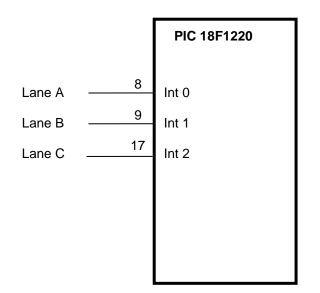
Note: Do not use the MOVFF instruction to modify any of the interrupt control registers while any interrupt is enabled. Doing so may cause erratic microcontroller behavior.

Returning from interrupt handling code

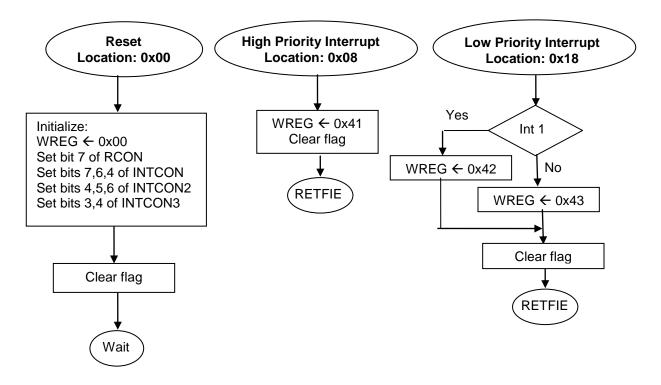
At the time of interrupt, the value PC+2 (pointer to the next instruction) is pushed on the stack. Once the interrupt handling code has finished, it can return to the instruction the program was at before the interrupt occurred by popping the stack and using the top of stack value as the PC.

The instruction RETFIE, when executed, will automatically enable all interrupts and return the program back to the location of the next instruction before the interrupt.

✤ RETFIE Instruction


RETFIE	Return fro	om Interrupt	:	Notes:
Syntax:	[label]	RETFIE [s]		 Example – High priority interrupt and return
Operands:	$s \in [0,1]$			code.
Operation:		⊃C, GIEH or PEIE	JGIEL,	Solution:
Status Affastadı	(BSRS) → PCLATU,	S) → Status, → BSR, PCLATH are	unchanged.	Address Content . 0x008 MOVLW 23 . 0x00A ADDWF 0x90, 1, 0 . 0x00C CLRF 0x89 . 0x00E RETFIE .
Status Affected:		, PEIE/GIEL.		
Encoding:	0000	0000 000		J
loaded into the PC. Interrupts are enabled by setting either the high			0x126 MOVLW 23 0x128 ADDWF 0x90, 1, 0 0x12A CLRF 0x89	
	(default).			
Words:	1			
Cycles:	2			
Q Cycle Activity:	00	00	~	STKPTR<4:0> 0x12A "Value of PC before
Q1 Decode	Q2 No	Q3 No	Q4 Pop PC	interrupt"
Decode	operation	operation	from stack	
			Set GIEH or GIEL	
No	No	No	No	STACK
operation	operation	operation	operation	
Example: After Interrup PC W BSR	RETFIE : t	= TOS = WS = BSRS		
Status	I, PEIE/GIEL	= STATU = 1	ISS	

Example – Event Handling using Interrupts


Write an interrupt handling code to implement a 3-way intersection traffic light controller. Inputs are Lane A (highest priority), Lane B, and Lane C (lowest priority) where "1" indicates presence of a car in the lane... Set WREG to ASCII A (0x41), ASCII B (0x42) or ASCII C (0x43) indicating the highest Priority Lane that is occupied.

Solutions:

Partial Schematic

Flow Chart for Reset, Int0, Int 1 and Int 2 handling

Sample code for Reset, Int0, Int 1 and Int 2 handling Refer to Lab documentation.

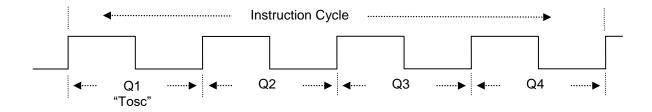
4.5. Clock and Oscillator

PICmicro is much more flexible than typical microprocessors when it comes to selecting the system clock. It provides over 10 different options. Most processors have a range of speed, and an external oscillator will be required for proper operation and generation of system clock. PICmicro allows for external crystal, RC or internal oscillators.

PICmicro's internal oscillator block can generate two different clock signals; either one can be used as the system clock.

The main output (INTOSC) is an 8 MHz clock source, which can be used to directly drive the system clock. It also drives a post scalar, which can provide a range of clock frequencies from 125 kHz to 4 MHz. The INTOSC output is enabled when a system clock frequency from 125 kHz to 8 MHz is selected.

The other clock source is the internal RC oscillator (INTRC), which provides a 31 kHz output. The INTRC oscillator is enabled by selecting the internal oscillator block as the system clock source, or when one of the following is enabled: Power-up Timer, Fail-Safe Clock Monitor, Timer or Two-Speed Start-up.


✤ INTIO Modes

Using the internal oscillator as the clock source can eliminate the need for up to two external oscillator pins, which can then be used for digital I/O. Two distinct configurations are available:

- In INTIO1 mode (Default Setting), the OSC2 pin outputs FOSC/4, while OSC1 functions as RA7 for digital input and output.
- In INTIO2 mode, OSC1 functions as RA7 and OSC2 functions as RA6, both for digital input and output.

Default oscillator setting, INTIO1 mode, will be assumed throughout the remainder of this document. In this mode, the internal oscillator is used as the system clock. Additionally, the clock (FOSC/4) is accessible via OSC2 pin (pin# 15 on PDIP package). It is important to note that this pin will not be available for other uses such as RA6.

Another point to consider is that each instruction cycle is made up of 4 system clock or Oscillator cycles (Tosc) as shown below:

As discussed earlier, the internal clock frequency is set at 31 kHz which means each clock period is $Tosc = 1/f = 32 \ \mu sec$. Therefore, an instruction cycle is 4*Tosc = 128 μsec .

OSCCON Register

This SFR register is used to configure the oscillator and the system clock.

R/W-0	R/W-0	R/W-0	R/W-0	R(1)	R-0	R/W-0	R/W-0
IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0
bit 7							bit 0

bit 7 IDLEN: Idle Enable bits

1 = Idle mode enabled; CPU core is not clocked in power managed modes
 0 = Run mode enabled; CPU core is clocked in Run modes, but not Sleep mode

bit 6-4 IRCF2:IRCF0: Internal Oscillator Frequency Select bits

- 111 = 8 MHz (8 MHz source drives clock directly)
- 110 = 4 MHz
- 101 = 2 MHz
- 100 = 1 MHz
- 011 = 500 kHz
- 010 = 250 kHz
- 001 = 125 kHz

000 = 31 kHz (INTRC source drives clock directly)

- bit 3 OSTS: Oscillator Start-up Time-out Status bit
 - 1 = Oscillator Start-up Timer time-out has expired; primary oscillator is running
 0 = Oscillator Start-up Timer time-out is running; primary oscillator is not ready
- bit 2 IOFS: INTOSC Frequency Stable bit
 - 1 = INTOSC frequency is stable
 - o = INTOSC frequency is not stable
- bit 1-0 SCS1:SCS0: System Clock Select bits
 - 1x = Internal oscillator block (RC modes)
 - o1 = Timer1 oscillator (Secondary modes)
 - oo = Primary oscillator (Sleep and PRI_IDLE modes)
- Example PIC micro is running with a 32 µsec internal clock. How long would it take to execute "CALL Delay"? Given:

eg
eg
L

Solution:

			<u>Cycle</u>
Delay	:		
-	CLRF	Wreg	1
intL:	INCF	Wreg	1
	BNZ	intL	2 when branching, 1 otherwise
	RETURN	١	2

Total Time = { $(4^{*}32) * [1 + 255^{*}(1+2) + (1+1) + 2]$ } = 98,560 usec → Approx 0.1 Sec.

Example - PIC micro is running with a 32 µsec internal clock. How long would it take to execute the following function?

Delay:	MOVLW	0x00
	MOVWF	0x80
Loop:	MOVFF	PORTB, PORTA
	NOP	
	INCF	0x80
	BNC	Loop
	RETURN	-

Solution:

4.6. Timers

Timers allow the designer to set a duration which, at its end, the timer will set a flag and cause an interrupt if configured. PICmicro has four timer modules (Timer0 through Timer3). Each with a set of unique features which are outlined in the next few pages.

Timers may be configured to generate either low or high priority interrupt. In general, configuring a timer is a three-step process:

- 1) Configure the interrupt registers
- 2) Set the value of Timer's Low and High registers
- 3) Configure the timer control registered.

The following pages outline each timer module and associated registers.

Timer0 Module

Timer0 may be set to 8-bit or 16-bit mode. In 8-bit mode, interrupt is generated on overflow from FFh to 00h. In 16-bit mode, interrupt is generated on overflow from FFFFh to 0000h.

TOCON register controls all aspects of Timer0. TOCON is readable and writable.

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	RW-1	R/W-1	R/W-1					
	TMR0ON	T08BIT	T0CS	TOSE	PSA	T0PS2	T0PS1	T0PS0					
	bit 7							bit 0					
bit 7		imer0 On/Of	f Control bit										
	1 = Enable:												
bit 6	o = Stops Timer0 T08BIT: Timer0 8-bit/16-bit Control bit												
DILO	1 = Timer0 is configured as an 8-bit timer/counter												
	 1 = Timer0 is configured as an 8-bit timer/counter 0 = Timer0 is configured as a 16-bit timer/counter 												
bit 5		2	urce Select b										
	1 = Transiti	on on T0CKI	pin										
	0 = Internal	instruction o	ycle clock (C	LKO)									
bit 4			lge Select bi										
			o-low transiti										
1 : 0			-high transiti		pin								
bit 3			Assignment b										
			NOT assigne assigned. Tir										
bit 2-0		-	Prescaler Sel		parcomea	nom pressa	nor output.						
DIT 2 O		Prescale va		001 010									
		Prescale va											
		Prescale va											
		Prescale va Prescale va											
		Prescale va											
	001 = 1:4	Prescale va											
	000 = 1:2	Prescale va	lue										
	Legend:												
	R = Readab		W = Writ		U = Unimpl								
	-n = Value a	at POR	'1' = Bit i:	s set	ʻ0'= Bit is c	leared	x = Bit is u	nknown					
Timer0	Block Diagr	am in 8-bit:	:										
			h				Data B	Bus					
RA4/T0 pin		4 — D		1	\searrow		1	8					
	דנ	$\sim $				nc with		,					
	┛╶╤╢	ノン				nternal Clocks	TMR	0					
		- 1		ammable scaler	9 L								

Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI maximum prescale. Note:

T0PS2, T0PS1, T0PS0

TOCS

It is important to write TMRnH before writing TMRnL when configuring Timers in 16-bit mode

PSA

(2 Toy Delay)

TOSE

Set Interrupt

Flag bit TMR0IF

on Overflow

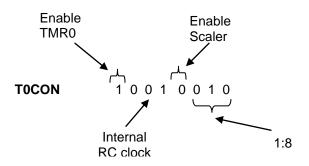
Example - In a PICmirco system, TIMER0 is set to 8-bit mode with pre-scale 1:256 using internal RC clock. What values of T0CON, TMR0L & TMR0H results in approximately one second to next TIMER 0 interrupt?

Solution:

T0CON = "110x 0111"

Time/Count = 32 µsec/ Tosc X 4 cycle/Tins X 256 = 32,768 µsec

counts for one second = 1,000,000 μ sec / 32,768 μ sec = 30.5 \rightarrow 31 counts


TMR0L = $(256 - 31) = 225 \Rightarrow$ "1110 0001" TMR0H \Rightarrow "xxxx xxxx"

Extension – How would the value of T0CON and TMR0 change if we want to use TIMER 0 in 16bit mode.

Solutions:

Example – In a PICmicro system, register T0CON is set to 0x92, TMR0H is set to 0xFF and TMR0L is set to 0xF0. How long in seconds before Timer 0 interrupt occurs?

Solution:

Timer is set to "0xFFF0" \rightarrow 16 count to interrupt Which means that the values of high timer 0 register (TMR0H) is set to 0xFF and low timer 0 register (TMR0L) is set to 0xF0.

Each Count = 32 µsec/Tosc X 4 cycle/Tins X 8 = 1024 µsec.

Duration to next interrupt = 16 count x 1,024 µsec / count = 16,384 µsec. = 0.016384 seconds

Example –Given that T0CON is set to "0x87", how long does it take to increment TMR0 by 1 (a single tick) and what value should be loaded in TMR0L and TMR0H if interrupt is expected in 640 msec?

Solutions:

- Given that Timer0 is enabled and T0CON is set to "10010100", TMR0L is set to "10000000" and TMR0H is set to "11110000", Find:
 - a) How long does each tick (TMR0L increment) takes in seconds?
 - b) How many ticks before TMR0 interrupts?
 - c) How many seconds before TMR0 Interrupt?

Timer1 Module

Timer1 is a 16-bit timer/count using two 8-bit registers (TMR1H and TMR1L). Both registers are readable and writable.

T1CON register controls all aspects of Timer1. T1CON is readable and writable.

	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N				
	bit 7							bit 0				
bit 7	RD16: 16-	bit Read/W	/rite Mode E	nable bit								
					ne 16-bit ope							
		0 = Enables register read/write of Timer1 in two 8-bit operations T1RUN: Timer1 System Clock Status bit										
bit 6		-			ator							
		 1 = System clock is derived from Timer1 oscillator 0 = System clock is derived from another source 										
bit 5-4	T1CKPS1	T1CKPS0	: Timer1 Inp	ut Clock Pres	scale Select b	its						
	11 = 1:8 P											
		rescale va rescale va										
		rescale va										
bit 3			scillator Ena	ible bit								
			is enabled is shut off									
				edback resist	tor are turned	off to elimir	nate power o	lrain.				
bit 2	T1SYNC:	Timer1 Ext	ternal Clock	Input Synchr	onization Sele	ect bit						
	When TMP		ze external o	-la - la innut								
			rnal clock in									
	When TM											
L2.4		-			ock when TMf	R1CS = 0.						
bit 1			ock Source S om pip RB6/		T13CKI/P1C	/KBI2 (on th	e rising edg	e)				
		al clock (Fo		100/11000	110010/110		ic haing edg	0)				
bit 0	TMR1ON:	Timer1 Or	n bit									
	1 = Enabl 0 = Stops											
	v = Stops	Timeri										
Timer1 Blo	ck Diagran	า:										
	R1IF			cc	P Special Even	t Trigger						
	erflow errupt	-	IMR1		r		Synchroniz	ed				
Fla	gbit		CL	₽┛ ──		-	Clock Inp	ut				
		TMR1H	TMR1L		ı l	1	1					
				TMF Or	10N ו/Off <u>דז</u> פ	5YNC						
T13CKI/	T1050 🔽	T1OSC		<u> </u>	- <u>-</u>							
TISCKI/		¦ ≱ μ	T1OSCEN Enable		Pr	escaler 2, 4, 8	Synch	. 🛛				
	T10SI	┢╺╌╺╸╺┙	Oscillator ⁽¹⁾) Fosc/4 Internal – Clock	-land ^{La} ,	<u>, , , , , , , , , , , , , , , , , , , </u>		let				

Clock

TMR1CS

Peripheral Clocks

T1CKPS1.T1CKPS0

Timer2 Module

Timer2 can be used as the Pulse Width Modulator (PWM) time base in the PWM mode of the CCP module. The TMR2 register is readable and writable and is cleared by any device Reset. The input clock (FOSC/4) has pre-scale options of 1:1, 1:4 or 1:16, selected by control bits, T2CKPS1:T2CKPS0 (T2CON<1:0>). Additionally, there are post scalar options of 1:1 to 1:16 selected by bits, TOUTPS3:TOUTPS0 (T2CON<6:3>), that are applied to input clock in order to increment TMR2 register content. Once TMR2 register reaches its maximum count, a Timer 2 interrupt (latched in flag bit, TMR2IF (PIR1<1>)) is generated..

The pre-scalar and post-scalar counters are cleared when any of the following occurs:

- A write to the TMR2 register
- A write to the T2CON register
- Any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written. T2CON is the Timer2 Control Register and is described below:

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

- bit 7 Unimplemented: Read as '0'
- bit 6-3 TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits
 - 0000 = 1:1 Postscale 0001 = 1:2 Postscale • • • 1111 = 1:16 Postscale
- bit 2 TMR2ON: Timer2 On bit
 - 1 = Timer2 is on
 - 0 = Timer2 is off
- bit 1-0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits
 - 00 = Prescaler is 1
 - 01 = Prescaler is 4
 - 1x = Prescaler is 16

Example – Timers

T2CON is set to 45 hex. and is using internal RC clock.

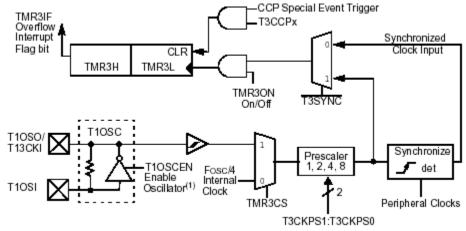
- a) How long does it take for a single timer tick, or to increment TMR2 by 1?
- b) What value TMR2 (Low & High bytes) will cause Timer 2 interrupt after 60 msec?

Solution:

Timer3 Module

Timer3 is a 16-bit timer/counter using two 8-bit registers (TMR3H and TMR3L). Both registers are readable and writable.

Timer3 can operate in one of these modes:


- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>).

When TMR3CS = 0, Timer3 increments every instruction cycle. When TMR3CS = 1, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RB7/PGD/T1OSI/P1D/KBI3 and RB6/PGC/ T1OSO/T13CKI/P1C/KBI2 pins become inputs. That is, the TRISB7:TRISB6 value is ignored and the pins are read as '0'.

Below is a block diagram of Timer3:

T3CON register controls all aspects of Timer3. T3CON is readable and writable.

	R/W-0	U-0	R/W-0	RW-0	R/W-0	R/W-0	R/W-0	R/W-0	
	RD16	_	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	
	bit 7							bit 0	
bit 7	RD16: 16-1	bit Read/Wi	rite Mode En	able bit					
	 Enables register read/write of Timer3 in one 16-bit operation Enables register read/write of Timer3 in two 8-bit operations 								
bit 6	Unimplem	ented:Rea	id as '0'						
bit 5-4	T3CKPS1:	T3CKPS0:	Timer3 Inpu	t Clock Pres	cale Select I	oits			
	11 = 1:8 Pr	oooalo fall							
	10 = 1:4 Pr 01 = 1:2 Pr								
	00 = 1:1 Pr								
bit 3	T3CCP1: 1	imer3 and	Timer1 to C(CP1 Enable I	oits				
				compare/cap					
				compare/cap					
bit 2				nput Synchro					
	When TMR	-	em clock cor	nes from Tirr	ier I/ Timers.)			
			e external cl	ock input					
			nal clock inp	ut					
	When TMF					D000 -			
1.5.4				e internal clo	ck when TM	R3CS = 0.			
bit 1			ck Source Se		T420KI				
				er1 oscillator rst falling edg					
		al clock (Fo		or raining oug	,0,				
bit 0	TMR3ON:	Timer3 On	bit						
	1 = Enable								
	0 = Stops	Timer3							

Other Timer Related Registers

Other Registers that affect the performance of Timers are shown below (See Interrupt Section for more detail):

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT01E	RBIE	TMR0IF	INTOIF	RBIF	X000 0000	0000 0001
PIR1		ADIF	RCIF	TXIF	Ι	CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	_	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1		ADIP	RCIP	TXIP	Ι	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
TMR2	Timer2 Module Register								0000 0000	0000 0000
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
PR2	Timer2 Per	iod Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

✤ Example – Timers

Use Timer 0 to flash an LED once every 2 seconds (1 second on, 1 second off).

Solution:

✤ Example – Timers

Write pseudo code and assembly code to set up Timer 0 to interrupt after 256 msec & upon interrupt, set Wreg to 35 and disable timers. (set Timer 0 for highest possible precision).

Solution:

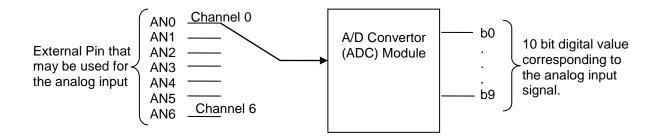
4.7. Power Management

In addition to normal operation, PICmicro, like most of today's processors, has low-power modes to save power. Below are the three categories of power management:

- Sleep mode
- Idle modes
- Run modes

Each of these modes disables or reduces the clock speed for a given portion of the processor circuits in order to reduce power. The Run and Idle modes may use any of the three available clock sources (primary, secondary or INTOSC multiplexer); the Sleep mode does not use a clock source.

4.8. Reset

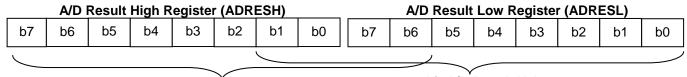

Reset is required to start the processor into a known state. You can use the hardware or software reset to return the processor to a known state. PICmicro handles resets from various sources which are listed below:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- Watchdog Timer (WDT) Reset (during execution)
- Programmable Brown-out Reset (BOR)
- RESET Instruction
- Stack Full Reset
- Stack Underflow Reset

Most registers are unaffected by a Reset which means the status of registers are unknown during Power On Reset (POR). Therefore, it is important to initialize registers during the reset handling section of the start up to ensure known starting values. Some registers are forced to a "Reset state", depending on the type of Reset that occurred.

4.9. Analog-to-Digital Converter

PICmicro has one 10-bit Analog-to-Digital (A/D) converter (ADC) module. The ADC will accept an analog input signal and convert the value of the input signal voltage to a 10-bit number. This functionality allows the user to relate analog signal to a digital value. The following figure is a graphical representation of the ADC operation:


Notice that there is only one ADC, but the user may acquire an analog input signal from one of seven different pins (AN0 through AN6).

PICmicro ADC has a programmable acquisition time which means that the amount of time required to convert from analog to digital value can be changed.

GO/DONE bit (bit 1 of ADCON0) is used to indicate whether ADC is in the process of conversion or it has completed the conversion. So the user has to wait until the conversion is completed as indicated by GO/DONE before reading the value of the results.

The ADC module is controlled and monitored through five SFR registers as shown below:

A/D Result High Register (ADRESH) & A/D Result Low Register (ADRESL) Hold the value resulting from the A/D conversion.

10-bit A/D Result Value When Left Justified

10-bit A/D Result Value When Right Justified

Note that the contents of ADRESH/ADRESL registers are not modified during Power-on Reset which means the contents of ADRESH and ADRESL are unknown after a Power-on Reset. The user has to ensure that an acquisition has been completed before reading the contents of these registers.

- A/D Control Register 0 (ADCON0) ADCON0 controls the operation of the A/D module.
- A/D Control Register 1 (ADCON1) ADCON1 configures the functions of the external port pins.
- A/D Control Register 2 (ADCON2) ADCON2 configures the A/D clock source, programmed acquisition time and justification.

The following pages offer more detailed descriptions of the three control registers:

ADCON0 "A/D Control Register 0"

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
VCFG1	VCFG0	_	CHS2	CHS1	CHS0	GO/DONE	ADON	
bit 7							bit 0	

bit 7-6 VCFG<1:0>: Voltage Reference Configuration bits

	A/D VREF+	A/D VREF-		
00	AVDD	AVss		
01	External VREF+	AVss		
10	AVDD	External VREF-		
11	External VREF+	External VREF-		

bit 5 Unimplemented: Read as '0'

- bit 4-2 CHS2:CHS0: Analog Channel Select bits
 - 000 = Channel 0 (AN0)
 - 001 = Channel 1 (AN1)
 - 010 = Channel 2 (AN2)
 - 011 = Channel 3 (AN3) 100 = Channel 4 (AN4)
 - 101 = Channel 5 (AN5)
 - 110 = Channel 6 (AN6)
 - 111 = Unimplemented⁽¹⁾
- bit 1 GO/DONE: A/D Conversion Status bit When ADON = 1:

1 = A/D conversion in progress 0 = A/D Idle

- bit 0 ADON: A/D On bit
 - 1 = A/D converter module is enabled
 - 0 = A/D converter module is disabled

Note 1: Performing a conversion on unimplemented channels returns full-scale results.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

✤ ADCON1 "A/D Control Register 1"

U-0	R/W-0							
	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	
bit 7							bit 0	

bit 7 Unimplemented: Read as '0'

	on in plemented. Read as 0
bit 6	 PCFG6: A/D Port Configuration bit – AN6 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'
bit 5	 PCFG5: A/D Port Configuration bit – AN5 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'
bit 4	 PCFG4: A/D Port Configuration bit – AN4 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'
bit 3	 PCFG3: A/D Port Configuration bit – AN3 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'
bit 2	 PCFG2: A/D Port Configuration bit – AN2 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'
bit 1	 PCFG1: A/D Port Configuration bit – AN1 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'
bit 0	PCFG0: A/D Port Configuration bit – AN0 1 = Pin configured as a digital port

0 = Pin configured as an analog channel – digital input disabled and reads '0'

✤ ADCON2 "A/D Control Register 2"

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	
bit 7							bit 0	

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified

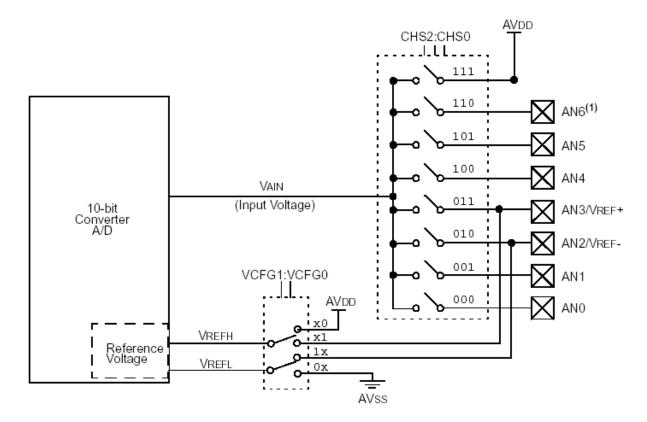
0 = Left justified

bit 6 Unimplemented: Read as '0'

bit 5-3 ACQT2:ACQT0: A/D Acquisition Time Select bits

- $000 = 0 \text{ TAD}^{(1)}$
- 001 = 2 TAD
- 010 = 4 TAD
- 011 = 6 TAD
- 100 = 8 TAD
- 101 = 12 TAD 110 = 16 TAD
- 110 = 16 TAD 111 = 20 TAD

bit 2-0 ADCS2:ADCS0: A/D Conversion Clock Select bits


- 000 = Fosc/2
- 001 = Fosc/8
- 010 = Fosc/32
- 011 = FRC (clock derived from A/D RC oscillator)⁽¹⁾
- 100 = Fosc/4
- 101 = Fosc/16
- 110 = Fosc/64
- 111 = FRC (clock derived from A/D RC oscillator)⁽¹⁾
 - Note: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D clock starts. This allows the SLEBP instruction to be executed before starting a conversion.
- Configuring ADC Module for Conversion

The analog reference voltage is software selectable. Meaning the user can set the high and low voltage level range to either the supply voltage (AVDD and AVSS), or the voltage levels on the RA3/AN3/VREF+ and RA2/AN2/VREF- pins. See the figure on the next page for a graphical representation.

The ADC has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the ADC clock must be derived from the ADC's internal RC oscillator.

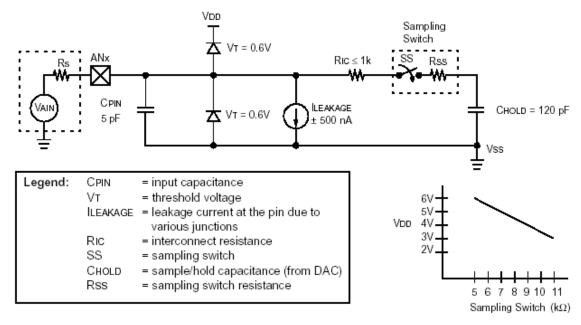
ADC module operates by sampling the analog input and holding that value during the conversion time. This is referred to as "sample and hold". The output of the "sample and hold" is the input to the converter, which generates the digital results by successive approximation. Note that a power-on reset will abort the conversion which means after a power-on reset the digital value in the results registers is not valid.

Each external pin associated with the ADC can be configured as an analog input, or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ADRESL registers, the GO/DONE bit (ADCON0 register) is cleared and A/D Interrupt Flag bit, ADIF, is set. The following figure shows the block diagram of the A/D module:

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE' bit and the actual start of the conversion.

Below are the steps to configure the A/D Converter:

- 1. Configure the A/D module:
 - Select external pin (channel) that will be used as the analog (use bits 2 to 4 of ADCON0)
 - Configure analog pins as input (Bits 0-6 of TRISA)
 - Set the voltage reference (Bits 6 and 7 of ADCON0)
 - Select A/D acquisition time (Bits 3-5 of ADCON2)
 - Select A/D conversion clock (Bits 0-2 of ADCON2)
 - Turn on A/D module (Bit 0 of ADCON0)
- 2. Configure A/D interrupts (if desired):


In registers INTCON, IPR1, PIR1 and PIE1, perform the following modifications:

- Set GIE bit
- Clear ADIF bit
- Set ADIE bit
- Set ADIP bit

3. Wait the required acquisition time (refer to next section "A/D Acquisition Requirements" for more detail).

- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE' bit to be cleared
 - Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF if required.
- 7. For the next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.
- > A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown below:

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

The source impedance (R_s) and the internal sampling switch (R_{ss}) impedance directly affect the time required to charge the capacitor C_{HOLD} . The sampling switch (R_{ss}) impedance varies over the device voltage (V_{DD}). The source impedance affects the offset voltage at the analog input (due to pin leakage current). **The maximum recommended impedance for analog sources is** $R_s = 2.5 \text{ k}$. After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

A/D acquisition time and minimum charging time are calculated as shown on the following page:

• System configuration for the calculation:

Oystorn coningt		
C _{HOLD}	=	120 pF
R _s	=	2.5 kΩ
Conversion Err	ror ≤	1/2 LSb
V_{DD}	=	$5V \rightarrow RSS = 7 \ k\Omega$
Temperature	=	50°C (system max.)
V _{HOLD}	=	0V @ time = 0

 Acquisition Time (T_{ACQ}) T_{ACQ} = Amplifier Settling Time + Holding Cap. Charging Time + Temp. Coefficient T_{ACQ} = T_{AMP} + T_C + T_{COFF}

Note: This equation assumes that 1/2 LSb error is used (10-bits or 1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution

- A/D Minimum Charging Time $V_{HOLD} = (\Delta V_{REF} - (\Delta V_{REF}/2048)) \cdot (1 - e^{(-TC/CHOLD(RIC + RSS + RS))})$ or $T_{C} = -(C_{HOLD})(RIC + RSS + RS) \ln(1/2048)$
- Calculating Minimum Required Acquisition Time $T_{ACQ} = T_{AMP} + T_C + T_{COFF}$ $T_{AMP} = 5 \ \mu s$ $T_{COFF} = (Temp - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C) = (50^{\circ}C - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C) = 1.25 \ \mu s$

Temperature coefficient is only required for temp. > 25°C. Below 25°C, $T_{COFF} = 0 \ \mu s$. $T_C = -(C_{HOLD})(RIC + RSS + RS) \ln(1/2047) \ \mu s$ $-(120 \ pF) (1 \ k\Omega + 7 \ k\Omega + 2.5 \ k\Omega) \ln(0.0004883) \ \mu s$ $9.61 \ \mu s$

 $T_{ACQ} = 5 \ \mu s + 1.25 \ \mu s + 9.61 \ \mu s = 12.86 \ \mu s$ "minimum acquisition time"

> A/D V_{REF+} and V_{REF-} References

PICmicro may be configured to use external voltage references instead of the internal AVDD and AVSS sources. If external sources are used, the source impedance of the VREF+ and VREF- voltage sources must be considered. The maximum recommended impedance of the VREF+ and VREF+ and VREF- external reference voltage sources is 250Ω .

Automatic Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the 'GO/DONE' bit is set. When the 'GO/DONE' bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE' bit. This occurs when the ACQT2:ACQT0 bits (ADCON2<5:3>) remain in their Reset state ('000') and is compatible with devices that do not offer programmable acquisition times.

If desired, the ACQT bits can be set to select a programmable acquisition time for the A/D module. When the GO/DONE' bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE' bit. For cases in which the GO/DONE' bit is cleared when the conversion is completed, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

Selecting A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

A/D Clock (T _{AD})	ADCS2:ADSC0 Bits	Max. F _{osc} =1/T _{osc}
2 * Tosc	000	1.25 Mhz
4 * Tosc	100	2.50 Mhz
8 * Tosc	001	5.00 Mhz
16 * Tosc	101	10.0 Mhz
32 * Tosc	010	20.0 Mhz
64 * Tosc	110	40.0 Mhz
RC ⁽¹⁾	x11	1.00 Mhz

Note: ⁽¹⁾The internal RC source has a typical TAD time of 4 μ s.

Operation in Low-Power Modes

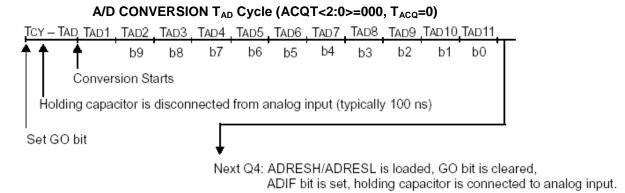
The selection of the automatic acquisition time and the A/D conversion clock is determined, in part, by the low-power mode clock source and frequency while in a low-power mode.

If the A/D is expected to operate while the device is in a low-power mode, the ACQT2:ACQT0 and ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the low-power mode clock that will be used. After the low-power mode is entered (from either of the Run modes), an A/D acquisition or conversion may be started. Once an acquisition or conversion is started, the device should continue to be clocked by the same low-power mode clock source until the conversion has been completed. If desired, the device may be placed into the corresponding low-power (ANY)_IDLE mode during the conversion.

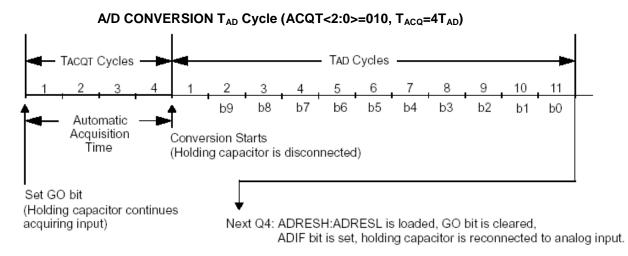
If the low-power mode clock frequency is less than 1 MHz, the A/D RC clock source should be selected. Operation in the Low-Power Sleep mode requires the A/D RC clock to be selected. If bits ACQT2:ACQT0 are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Low-Power Sleep mode. The IDLEN and SCS bits in the OSCCON register must have already been cleared prior to starting the conversion.

Configuring Analog Port Pins

The ADCON1, TRISA and TRISB registers are used to configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.


The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

Notes:


- 1) When reading the Port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input to a high or a low level.
- 2) Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

> A/D Conversion timing

The following diagram shows the operation of the A/D converter after the GO bit has been set and the ACQT2:ACQT0 bits are cleared:

The following diagram shows the operation of the A/D converter after the GO bit has been set, the ACQT2:ACQT0 bits have been set to '010' and a 4 TAD acquisition time has been selected before the conversion starts:

Clearing the GO/DONE' bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).

After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE' bit should NOT be set in the same instruction that turns on the A/D.

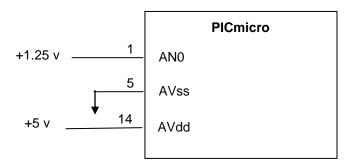
➢ Use of the CCP1 Trigger

An A/D conversion can be started by the "special event trigger" of the CCP1 module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE' bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset

to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH/ADRESL to the desired location). The appropriate analog input channel must be selected, and the minimum acquisition period is either timed by the user, or an appropriate T_{ACQ} time selected before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 0000	0000 0000
PIR1	—	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	-000 -000	-000 -000
PIE1	—	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	-000 -000	-000 -000
IPR1	—	ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111 -111	-111 -111
PIR2	OSCFIF	_	—	EEIF	_	LVDIF	TMR3IF	—	00 -00-	00 -00-
PIE2	OSCFIE	_	—	EEIE	—	LVDIE	TMR3IE	—	00 -00-	00 -00-
IPR2	OSCFIP	_	—	EEIP	—	LVDIP	TMR3IP	—	11 -11-	11 -11-
ADRESH	A/D Result	Register Hi	gh Byte						XXXX XXXX	uuuu uuuu
ADRESL	A/D Result	Register Lo	w Byte						XXXX XXXX	uuuu uuuu
ADCON0	VCFG1	VCFG0	_	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	00-0 0000
ADCON1	_	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	-000 0000	-000 0000
ADCON2	ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000	0-00 0000
PORTA	RA7 ⁽³⁾	RA6 ⁽²⁾	RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	0000 x0pp	uu0u 0000
TRISA	TRISA7 ⁽³⁾	TRISA6 ⁽²⁾	_	PORTA Dat	a Direction	n Register			qq-1 1111	11-1 1111
PORTB	Read PORTB pins, Write LATB Latch						XXXX XXXX	uuuu uuuu		
TRISB	PORTB Dat	PORTB Data Direction Register						1111 1111	1111 1111	
LATB	PORTB Ou	tput Data La	itch						XXXX XXXX	uuuu uuuu


Summary of A/D Registers

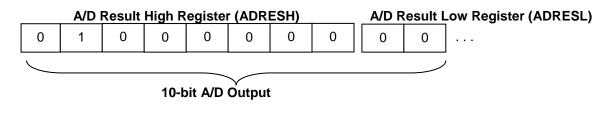
Note 1: RA5 port bit is available only as an input pin when the MCLRE bit in the configuration register is '0'.

RA6 and TRISA6 are available only when the primary oscillator mode selection offers RA6 as a port pin; otherwise, RA6 always reads '0', TRISA6 always reads '1' and writes to both are ignored (see CONFIG1H<3:0>).

3: RA7 and TRISA7 are available only when the internal RC oscillator is configured as the primary oscillator in CONFIG1H<3:0>; otherwise, RA7 always reads '0', TRISA7 always reads '1' and writes to both are ignored.

Example – Channel 0 is enabled, PICmicro is configured as an A/D convertor and the range is set from AVss to AVdd. What is the value of the A/D convertor output?

Solution:


A/D has 10-bit output which means there are 2^{10} counts between 0 and 5 v.

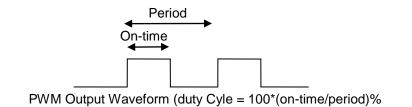
voltage/count = (5-0) / (2¹⁰) = 5 / (2¹⁰)


Output count at $1.25 = 1.25 / \{ 5 / (2^{10}) \} = 256$

10 bit A/D output → "01 0000 0000"

When 10-bit A/D Result is Left Justified:

When 10-bit A/D Result is Right Justified:



4.10. Pulse Width Modulation (PWM)

Pulse Width Modulation(PWM) uses a square wave whose duty cycle is modulated resulting in the variation of the average power delivered by the waveform. Modulating duty cycle means changing the percentage of the period that is at high voltage (not zero). This technique is used to control power levels in electrical devices such as light sources, motors, heaters and other devices.

For example, in the following diagram, waveform A delivers twice as much average power as waveform B. This is useful in modulating electrical device performance. One of the important uses of PWM is in DC motor speed control.

PWM Output pulse Definition:

Examples:

Waveform A. 50% Duty Cycle

Waveform B. 25% Duty Cycle

PWM is implemented in PICmicro as one of the three features of the Enhance Capture/Compare/PWM (ECCP) module. Below is a list of ECCP key features::

- One, two or four PWM outputs
- Selectable polarity
- Programmable dead time (Low)
- Auto-Shutdown and Auto-Restart
- Capture is 16-bit, max resolution 6.25 ns (T_{CY}/16)
- Compare is 16-bit, max resolution 100 ns (T_{CY})

Below are high-level steps to set up a Pulse-Wide-Modulation

- 1) Set PR2 (PWMperiod = ((PR2)+1)*4 * TOSC * (TMR2 Prescale Value))
- 2) Configure and Clear Timer2 (T2CON, 2)
- 3) Set up PWM Duty Cyle (CCPR1L & CCP1CON)
- 4) Set mode (CCP1CON)

CCP1CON register controls ECCP operation

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0

bit 7-6 P1M1:P1M0: PWM Output Configuration bits

If CCP1M<3:2> = 00, 01, 10;

- xx = P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins If CCP1M<3:2> = 11:
- 00 = Single output; P1A modulated; P1B, P1C, P1D assigned as port pins
- 01 = Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive
- 10 = Half-bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins
- 11 = Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive
- bit 5-4 DC1B1:DC1B0: PWM Duty Cycle Least Significant bits

Capture mode:

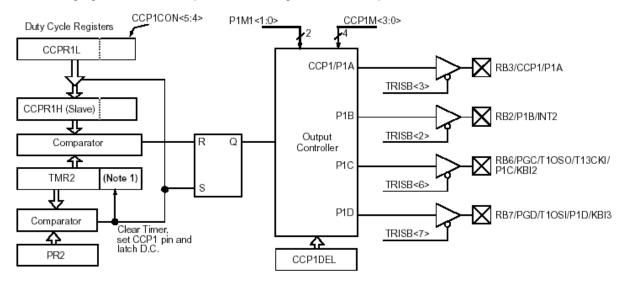
Unused.

Compare mode:

Unused.

PWM mode:

These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.


bit 3-0 CCP1M3:CCP1M0: ECCP1 Mode Select bits

- 0000 = Capture/Compare/PWM off (resets ECCP module)
- 0001 = Unused (reserved)
- 0010 = Compare mode, toggle output on match (ECCP1IF bit is set)
- 0011 = Unused (reserved)
- 0100 = Capture mode, every falling edge
- 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode, set output on match (ECCP1IF bit is set)
- 1001 = Compare mode, clear output on match (ECCP1IF bit is set)
- 1010 = Compare mode, generate software interrupt on match (ECCP1IF bit is set, ECCP1 pin returns to port pin operation)
- 1011 = Compare mode, trigger special event (ECCP1IF bit is set; ECCP resets TMR1 or TMR3 and starts an A/D conversion if the A/D module is enabled)
- 1100 = PWM mode; P1A, P1C active-high; P1B, P1D active-high
- 1101 = PWM mode; P1A, P1C active-high; P1B, P1D active-low
- 1110 = PWM mode; P1A, P1C active-low; P1B, P1D active-high
- 1111 = PWM mode; P1A, P1C active-low; P1B, P1D active-low

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: PWM only uses Timer2.

The Enhanced PWM Mode provides additional PWM output options for a broader range of control applications. The module is an upwardly compatible version of the standard CCP module and offers up to four outputs, designated P1A through P1D. Users are also able to select the polarity of the signal (either active-high or active-low). The module's output mode and polarity are configured by setting the P1M1:P1M0 and CCP1M3:CCP1M0 bits of the CCP1CON register (CCP1CON<7:6> and CCP1CON<3:0>, respectively).

The following figure shows a simplified block diagram of PWM operation.

Note: The 8-bit TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit time base.

All control registers are double-buffered and are loaded at the beginning of a new PWM cycle (the period boundary when Timer2 resets) in order to prevent glitches on any of the outputs. The exception is the PWM Delay register, ECCP1DEL, which is loaded at either the duty cycle boundary or the boundary period (whichever comes first). Because of the buffering, the module waits until the assigned timer resets instead of starting immediately. This means that Enhanced PWM waveforms do not exactly match the standard PWM waveforms, but are instead offset by one full instruction cycle (4 TOSC).

As before, the user must manually configure the appropriate TRIS bits for output.

> PWM Period

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the equation:

PWM Period = [(PR2) + 1] • 4 • TOSC • (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is copied from CCPR1L into CCPR1H

Note that The Timer2 postscaler is not used in the determination of the PWM frequency.

> PWM Duty Cycle

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the equation:

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) • TOSC • (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitch-less PWM operation. When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or two bits of the TMR2 pre-scalar, the CCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

PWM Resolution =
$$\frac{\log\left(\frac{F_{osc}}{F_{PWM}}\right)}{\log(2)}bits$$

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

- PWM Output Configuration The P1M1:P1M0 bits in the CCP1CON register allow one of four configurations:
 - Single Output
 - Half-Bridge Output
 - Full-Bridge Output, Forward mode
 - Full-Bridge Output, Reverse mode

Example – Determine register values to set up PWM of PICmicro to generate a signal on P1A pin (use internal RC clock) that has a period of 6 msec. and 30% duty cycle.

Solution:

Signal to be generated

1) Use the following equations:

PWM Period = [(PR2) + 1] • 4 • TOSC • (TMR2 Prescale Value) Tosc = 32 µsec. for internal RC clock

- to set the values of PR2 and the TMR2 Prescale.
- 2) Use the following equation:

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) • TOSC • (TMR2 Prescale Value)

to Calculate and set the value for registers CCPR1L:CCP1CON<5:4>.

- 3) Configure & Clear Timer 2 TMR2 = 0 and PIR1=0 and TMR2IF=0
- Example Write a code segment to configure and use a single channel PWM to control a DC motor.

Solution: Refer to Lab documentation.

4.11. Additional Resources

- Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology Incorporated.
- Huang,. <u>PIC Microcontroller: An Introduction to Software & Hardware Interfacing</u>, (2004) Thomson.
- Reese. <u>Microprocessor: From Assembly Language to C using the PIC18Fxxx2</u>. (2003) Course Technology.
- Peterson. <u>Computer Organization and Design</u>, (2007) Elsevier Service.

4.12. Problems

Refer to <u>www.EngrCS.com</u> or online course page for complete solved and unsolved problem set.

CHAPTER 5. ARITHMETIC & LOGIC OPERATIONS

Key concepts and Overview

- Arithmetic Operations
- ✤ Move, Set and Clear Operations
- ✤ Logic Operations
- Branch Operations
- Specialty Operations
- ✤ IEEE Standards for Floating Point
- Additional Resources

5.1. Arithmetic Operations

PICmicro offers a wide range of arithmetic operations as do the majority of the processors on the market. In this section each of the arithmetic instructions are described in detail.

It is recommended that the reader utilize the PICmicro development and simulation tools to verify and explore the full operation of these instructions.

The remainder of this section covers Add, Increment, Multiply and Subtract operations.

ADDLW	ADD liter	al to W		
Syntax:	[<i>label</i>] A	DDLW	k	
Operands:	$0 \le k \le 25$	5		
Operation:	(W) + k \rightarrow	W		
Status Affected:	N, OV, C,	DC, Z		
Encoding:	0000	1111	kkk	k kkkk
Description:	The conte 8-bit litera placed in 1	l 'k' and		idded to the esult is
Words:	1			
Cydes:	1			
Q Cycle Activity:				
Q1	Q2	Q3	5	Q4
Decode	Read literal "k"	Proce Dat		Write to W
Example:	ADDLW 0	x15		
Before Instruction				
W =	0x10			
After Instruct	ion			
W =	0x25			

✤ ADDLW literal and WREG

Example – Given Wreg=25 and the following statement is executed:

ADDLW 0xF5

What are the status bit values?

Solution:

N OV C DC Z 0 1 1 1 0

Note: DC is carry over from lower nibble.

What value of Wreg and K will cause "Z" & "C" to be set to zero when ADDLW instruction is executed.

Solution:

✤ Add WREG and f

ADDWF	ADD W to	f			
Syntax:	[<i>label</i>]AD	DWF	f [,(d[,a]]
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5			
Operation:	(W) + (f) –	→ dest			
Status Affected:	N, OV, C,	DC, Z			
Encoding:	0010	01da	fff	ſ	ffff
Description:	Add W to register 'f. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected. If 'a' is '1', the BSR is used.				s '1', the ster 'f' cess
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	5		Q4
Decode	Read register 'f'	Proce Dat		-	Vrite to stination
Example:	ADDWF	REG,	W		
Before Instruction					
W REG	= 0x17 = 0xC2				
After Instruct	tion				
W REG	= 0xD9 = 0xC2				

Notes:

•

Computer Organization and Microprocessors

Page 123

✤ Add WREG and Carry bit to f

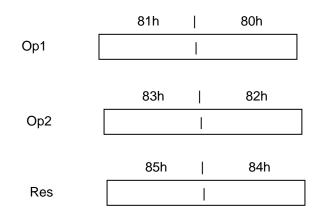
ADDWFC	ADD W and Carry bit to f					
Syntax:	[<i>label</i>]A[DDWFC f	[,d [,a]]			
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5				
Operation:	(W) + (f) +	$(C) \rightarrow dest$				
Status Affected:	N, OV, C,	DC, Z				
Encoding:	0010	0010 00da ffff ffff				
Description:	memory lo result is pl location ୩ Bank will t	aced in data . If 'a' is '0', '	d'is '0', the f 'd'is '1', the memory the Access If 'a'is '1', the			
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f	Process Data	Write to destination			
Example:	ADDWFC	REG, W				
Before Instru	ction					
Carry bit REG W	= 1 = 0x02 = 0x4D					
After Instruct	ion					
Carry bit REG W	= 0 = 0x02 = 0x50					

Notes:

Write an Assembly code segment that add A (location 0x10) and B (location 0x12) and stores the results in C(location 0x14).

Solution:

Write a C code segment that uses pointers to add A (location 0x10) and B (location 0x12) and stores the results in C(location 0x14).


//Hint:

//The following code declares and // initializes px to 0x12 and pointer // to integer (16 bit)

Int *px =0x12;

px = 25; //set reg. 0x12 to 25

Example – Write a function "Add16" that accepts two 15-bit input (Op1 and Op2) and places the 16-bit result from the addition of Op1 & Op2 into res:

Write pseudo code before writing the assembly code for the function "Add16".

Solution:

Decrement f

DECF	Decremen	nt f		
Syntax:	[<i>label</i>] [)ECF_f[,d	[,a]]	
Operands:	$0 \le f \le 255$	i		
	d ∈ [0,1]			
- ·	a∈ [0,1] m. 1			
Operation:	$(f) - 1 \rightarrow c$			
Status Affected:	C, DC, N,			
Encoding:	0000		rrr	rrrr
Description:	Decremen			
	the result i the result i			
		. If 'a' is '0		
		e selected		
	the BSR v	alue. If 'a' : e selected		
	BSR value		ав ре	ai ule
Words:	1	· /		
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read	Process		Vrtle to
	register 'f	Data	de	stination
Example:	DECF (ърт-		
<u>Exampe</u> . Before Instru				
GNT	= 0x01			
Z	= 0			
After Instruct	10n = 0x00			
z	= 1			

Notes:

Decrement f, Skip if 0

DECFSZ		Decremen	ntf,skipif0	
Syntax:		[label] D)ECFSZ f[,	d [,a]]
Operands:		0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	i	
Operation:		$(f) - 1 \rightarrow d$ skip if resu		
Status Affe	cted:	None		
Encoding:		0010	llda fff	f ffff 1
Description	1:	decrement is placed it (default). If the resul- tion, which discarded instead, m instruction Bank will b the BSR v	nts of regista ted. If 'd' is ' oack in regist it is '0', the n is already fi and a NOP is aking it a two . If 'a' is '0', 1 be selected, i alue. If 'a' = e selected a	o", the result 1", the result er if extinstruc- atched, is executed o-cycle he Access overriding 1, then the
Words:		1	(deladit).	
Cycles:		1(2)		
,		Note: 3 c	ydes if skip :	
		-	a 2-word inst	ruction.
Q Cyde A	ctivity:			
-	-	~	~	~
0	1	Q2	Q3 Process	Q4 Wrthato
-	1	Q2 Read register 'f	Q3 Process Data	Q4 Write to destination
0	1	Q2 Read	Process	Write to
Dec If skip:	nde 1	Q2 Read register 17 Q2	Process Data Q3	Write to destination Q4
G Dec If skip: Q	node 1	Q2 Read register 1" Q2 No	Process Data Q3 No	Write to destination Q4 No
Dec Dec If skip: Q	1 ode 1 ation	Q2 Read register " Q2 No operation	Process Data Q3 No operation	Write to destination Q4 No operation
Dec Dec If skip: Q	1 ode 1 ation follow	Q2 Read register " Q2 No operation red by 2-word	Process Data Q3 No operation d instruction:	Write to destination Q4 No operation
Dec If skip: Q Opera If skip and	1 ode ation follow	Q2 Read register " Q2 No operation	Process Data Q3 No operation	Write to destination Q4 No operation
Dec If skip: Q Opera If skip and Q	1 ode ation follow 1 o	Q2 Read register 'f Q2 No operation ved by 2-word Q2 No operation	Process Data Q3 No operation d instruction: Q3	Write to destination Q4 No operation Q4
Dec If skip: Q Opera If skip and Q	1 ode 1 ation 1 follow 1 o ation o	Q2 Read register " Q2 No operation red by 2-word Q2 No	Process Data Q3 No operation d instruction: Q3 No	Write to destination Q4 No operation Q4 No
Dec Dec If skip: Q Opera If skip and Q Opera	1 ode 1 ation 1 follow 1 o ation o	Q2 Read register 'f' Q2 No operation ved by 2-word Q2 No operation No	Process Data Q3 No operation d instruction: Q3 No operation No	Write to destination Q4 No operation Q4 No operation No
If skip: Operation Operation Operation Operation Operation	1 ode ation follow ation ation e Instru	Q2 Read register 'T Q2 No operation ved by 2-work Q2 No operation No operation HERE CONTINUE	Process Data Q3 No operation Q3 No operation No operation DECFSZ	Write to destination Q4 No operation No operation No operation
Dec Dec If skip: Q N opera If skip and Q If skip and Q Example: Example: Before P(After I C If	1 ode ation follow 1 o ation o ation	Q2 Read register 'T Q2 No operation ved by 2-word Q2 No operation HERE CONTINUE HERE CONTINUE	Process Data Q3 No operation d instruction: Q3 No operation No operation DECFSZ G0T0	Write to destination Q4 No operation No operation

 Example - Write an Assembly code segment to implement the functionality of the following C code segment:

Unsigned char * pcount; pcount = (unsigned char *) 0x80;

Solution

pcount equ 0x80;

L1: DECFSZ pcount,1 CLRF pcount Done:

Decrement f, Skip if Not 0

DCF	SNZ	Decremer	ntf, skip ifn	ot 0	
Synt	ax:	[label] D)CFSNZ f[,d [,a]]	
Оре	rands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	i		
Оре	ration:	(f) – 1 → d skip if resu			
State	us Affected:	None			
Ence	oding:	0100	llda fff	f ffff	
Des	cription:	The contents of register 'f are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a two- cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).			
Wor	ds:	1		,	
Cycl	es:	1(2)			
QC	yde Activity:	by	ydes if skip : a 2-word ins		
	Q1	Q2	Q3	Q4	
	Decode	Read register "l"	Process Data	Write to destination	
lf sk	cin:	legister i	Daa	destriation	
	Q1	Q2	Q3	Q4	
	No	No	No	No	
lf cl	operation cip and follow	operation and by 2-word	operation	operation	
1 6	Q1	02	Q3	Q4	
	No	No	No	No	
	operation	operation	operation	operation	
	No operation	No operation	No operation	No operation	
Exa	<u>mple</u> :	HERE I ZERO : NZERO :		1	
	Before Instru TEMP	iction =	7		
	After Instruct TEMP If TEMP PC If TEMP PC	ion = = = #	TEMP – 1, 0; Address (2 0; Address (8		

 Example - Write an Assembly code segment that uses DCFSNZ to implement the functionality of the following C code segment:

> Unsigned char *pcount, i; pcount = (unsigned char *) 0x80;for (i=50; i ≥ 0 ; i--) { *pcount = i;

}

Solution

✤ Increment f

INCF	Increment	tf		
Syntax:	[label]	NCF f[,d	[,a]]	
Operands:	0 ≤ f≤ 255 d ∈ [0,1] a ∈ [0,1]	5		
Operation:	$(f) + 1 \rightarrow 0$	lest		
Status Affected:	C, DC, N,	ov, z		
Encoding:	0010	10da ff	rr rrrf	
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).			
Words:	1	. ,		
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	Q4	
Decode	Read register "f	Process Data	Write to destination	
Example: Before Instru CNT Z DC After Instruct CNT Z DC	= 0xFF = 0 = ? = ?	сит		

Notes:

•

Increment f, Skip if 0

INC	FSZ	Incremen	tf,skip	if O		
Synt	ax:	[label]	NCFSZ	f [,d	[,a]]	
Оре	rands:	0 ≤ f ≤ 258	;			
		d ∈ [0,1]				
~ ~		a∈ [0,1]	1			
Ope	ration:	(f) + 1 → c skip if resu				
Stat	us Affected:	None				
	oding:	0011	11da	ffff	rrrr	
	cription:	The conte				
		increment	ed. If 'd'	is '0", t	he result	
		is placed i is placed b				
		default).	ack in re	egister	T	
		If the resu				
		tion, which discarded				
		instead, m				
		instruction				
		Bank will b the BSR v				
		bank will b	e select	ed as p		
		BSR value	default	t).		
Wor		1				
Cycl	es:	1(2) Note: 2 m	und and life of	lin and	المعالمين ما	
			Note: 3 cycles if skip and followed by a 2-word instruction.			
			a z-word	instru	ction.	
QC	yde Activity		a 2-word	instru	ction.	
QC	yde Activity Q1		a 2-word Q3	instru	ction. Q4	
QC	yde Activity Q1 Decode	Q2 Read	Q3 Proces	55	Q4 Write to	
	Q1 Decode	02	Q3	55	Q4	
Q C If sk	Q1 Decode	Q2 Read	Q3 Proces	55	Q4 Write to	
	Q1 Decode tip: Q1 No	Q2 Read register 1" Q2 No	Q3 Proces Data Q3 No	ss i c	Q4 Write to Jestination Q4 No	
lfsk	Q1 Decode (ip: Q1 No operation	Q2 Read register 'f Q2 No operation	Q3 Proces Data Q3 No operati	on o	Q4 Write to Jestination	
lfsk	Q1 Decode cip: Q1 No operation cip and follow	Q2 Read register 'T Q2 No operation red by 2-wor	Q3 Proces Data Q3 No operati d instruc	on o	Q4 Write to Jestination Q4 No operation	
lfsk	Q1 Decode (ip: Q1 No operation	CJ2 Read register 'T CJ2 No operation ved by 2-worr CJ2 No	Q3 Proces Data Q3 No operati d instruc Q3 No	on on	Q4 Write to Jestination Q4 operation Q4 No	
lfsk	Q1 Decode Q1 No operation kip and follow Q1 No operation	CI2 Read register 'f CI2 No operation Ved by 2-wor CI2 No operation	Q3 Proces Data Q3 No operati d instruc Q3 No operati	on on	Q4 Write to lestination Q4 No operation Q4 No operation	
lfsk	Q1 Decode Q1 No operation cip and follow Q1 No operation No	CJ2 Read register 'T CJ2 No operation CJ2 No operation No	Q3 Proces Data Q3 No operati d instruc Q3 No operati No	on on on	Q4 Write to lestination Q4 No operation Q4 No operation No	
lfsk	Q1 Decode Q1 No operation kip and follow Q1 No operation	CI2 Read register 'f CI2 No operation Ved by 2-wor CI2 No operation	Q3 Proces Data Q3 No operati d instruc Q3 No operati	on on on	Q4 Write to lestination Q4 No operation Q4 No operation	
lfsk lfsk	Q1 Decode Q1 No operation cip and follow Q1 No operation No	Q2 Read register 1 Q2 No operation ved by 2-wor Q2 No operation No operation	Q3 Proces Data Q3 No operati No operati No operati	on on on	Q4 Write to lestination Q4 No operation Q4 No operation No	
lfsk lfsk	Q1 Decode cip: Q1 No cperation Q1 No cperation No cperation	CI2 Read register " CI2 No operation ved by 2-work CI2 No operation No operation No operation	Q3 Proces Data Q3 No operati No operati No operati	on o	Q4 Write to lestination Q4 No operation Q4 No operation No	
lfsk lfsk	Q1 Decode (ip: Q1 No operation No operation No operation Mole: Before Instru- PC	C/2 Read register 1 Q2 No operation ved by 2-work Q2 No operation No operation No operation HERE ZERO	Q3 Proces Data Q3 No operati No operati No operati	on o	Q4 Write to lestination Q4 No operation Q4 No operation No	
lfsk lfsk	Q1 Decode (ip: Q1 No operation Q1 No operation No operation No operation Mo operation No operation After Instruc CNT If CNT	CI2 Read register 'T CI2 No operation Ved by 2-work CI2 No operation No operation No operation No operation RERE MIXERO ZERO ZERO CI2 No operation No operation No operation RERE MIXERO ZERO ZERO CI2 No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation No operation RERE ZERO ZERO ZERO ZERO SERO	Q3 Proces Data Q3 No operati No operati No operati	on o	Q4 Write to lestination Q4 No operation Q4 No operation No	
lfsk lfsk	Q1 Decode (ip: Q1 No operation Q1 No operation No operation Mole: Before Instruc PC After Instruc	CQ2 Read register " CQ2 No operation ved by 2-work QQ2 No operation Ved by 2-work QQ2 No operation EXERCISE MERE MERE MERE SERCISE SERCISE Address # 0; # 0;	Q3 Proces Data Q3 No operati No operati No operati	on o	Q4 Write to lestination Q4 No operation Q4 No operation No	

Notes:

 Write an Assembly code segment to implement the functionality of the following C code segment:

Unsigned char *pcount; int i; pcount = (unsigned char *) 0x80; for (i=25; i<256 ; i++) { *pcount++ =(unsigned char)i; }

Solution

pcount	equ	0x80;
	VLW VWF	25 pcount

L1: INFSZ pcount,1 BRA L1 DECFpcount

Increment f, Skip if Not 0

INF	SNZ	Incremen	tf, skip if n	ot 0	
Synt	ax:	[label]	NFSNZ f	[,d [,a]]	
Оре	rands:	0 ≤ f ≤ 259 d ∈ [0,1] a ∈ [0,1]	5		
Ope	ration:	(f) + 1 → c skip if resu			
Statu	us Affected:	None			
Enco	oding:	0100	10da ff	rr rrrr	
Des	cription:	The contents of register 'f are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the			
Wor	ds:	BSR value 1	,,-		
Cycl		by	ycles if skip a 2-word in:	and followed struction.	
QU	yde Activity: Q1	02	02	04	
	Decode	Read	Process	Write to	
		register "	Data	destination	
lf sk		~~	~~	~ .	
	Q1 No	Q2 No	Q3 No	Q4 No	
	operation	operation	operation	operation	
lf sk	tip and follow				
	Q1	Q2	Q3	Q4	
	No operation	No operation	No operation	No operation	
	No	No	No	No	
	operation	operation	operation	operation	
Exar	mple:	HERE I ZERO MZERO	INFSNZ REG		
	PC	= Address	(HERE)		
	After Instruct REG If REG PC If REG PC	= REG + 1 ≠ 0; = Address = 0;	1 5 (NZERO) 5 (ZERO)		

✤ Multiply WREG with f

MULLW	Multiply Literal with W			
Syntax:	[<i>label</i>] MULLW k			
Operands:	0 ≤ k ≤ 255			
Operation:	$(W) \: x \: k \to PRODH : PRODL$			
Status Affected:	None			
Encoding:	0000 1101 kkkk kkk	k		
Description:	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this opera- tion. A Zero result is possible but not detected.			
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2 Q3 Q4			
Decode	Read Process Write literal 'k' Data register PRODH PRODL	:		
Example:	MULLW 0xC4			
Before Instru W PRODH PRODL After Instructi	= 0xE2 = 7 = 7			
After Instructi W PRODH PRODL	on = 0xE2 = 0xAD = 0x08			

Notes:

Multiply WREG with f

MULWF	Multiply W with f				
Syntax:	[<i>label</i>] MULWF f[,a]				
Operands:	0 ≤ f≤ 255 a ∈ [0,1]				
Operation:	$(W) \mathrel{x} (f) \to PRODH:PRODL$				
Status Affected:	None				
Encoding:	0000 001a ffff ffff				
Description:	0000001affffffffAn unsigned multiplication is carried out between the contents of W and the register file location T. The 16-bit result is stored in 				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
<u>Q1</u>	Q2 Q3 Q4				
Decode	Read Process Witte register T Data registers PRODH: PRODL				
Example:	NULWF REG				
Before Instruction					

 W
 =
 0xC4

 REG
 =
 0xB5

 PRODH
 =
 7

 PRODL
 =
 7

 After Instruction
 W
 =
 0xC4

 REG
 =
 0xB5

 PRODH
 =
 0xC4

 REG
 =
 0xB5

 PRODH
 =
 0x8A

 PRODL
 =
 0x94

Notes:

Subtract f from WREG with borrow

SUBFWB	Subtr	act f from W wi	ith borrow		
Syntax:	[label	[<i>label</i>] SUBFWB f[,d[,a]]			
Operands:		0≤f≤255			
	d ∈ [0				
0	a ∈ [0	-			
Operation:		$(f) - (\overline{C}) \rightarrow dest$			
Status Affected:		, C, DC, Z			
Encoding:	0101				
Description:	(borro metho stored fo", the select If fa' is	Subtract register 'f and Carry flag (borrow) from W (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored in register 'f (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value			
Words:	1	ny.			
Cycles:	1				
Q Cycle Activity:					
Q1	02	Q3	Q4		
Decode	Read register *	Process f Data	Write to destination		
			destration		
Example 1:	SUBFW	B REG			
Before Instru REG	= 0x00	1			
W	= 0x00 = 0x01	2			
After Instruct		•			
REG	= 0xFl = 0x00				
C	= 0x00)			
ZN	= 0x00 = 0x01		gative		
Example 2;	SUBFW	B REG, 0, 0			
Before Instru	ction				
REG	= 2 = 5				
С	= 1				
After Instruct REG					
W	= 3				
C Z	= 1 = 0				
N	= 0	; result is p	ostive		
Example 3:	SUBFW	B REG, 1, 0			
Before Instru REG					
W	= 2				
C After Instruct	= 0				
REG	= 0				
w c	= 2 = 1				
Z	= 1	; result is ze	ito		
	-				

Notes:

✤ Subtract WREG from f

SUBWF	s	ubtract	t W from	f	
Syntax:	[label]	SUBWF	f [,	d [,a]]
Operands:	d	≤f≤29 ∈ [0,1] ∈ [0,1]	55		
Operation:	(f) – (W)	\rightarrow dest		
Status Affected:	N	, ov, c	, DC, Z		
Encoding:	Г	0101	11da	rr:	t tttt
Description:	cr th 1 re A or 1	Subtract W from register 'f (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).			
Words:	1	•			
Cycles:	1				
Q Cycle Activity:					
Q1		Q2	Q3		Q4
Decode		≹ead Ister 1"	Proces Data		Write to destination
Example 1:	s	UBWF RI	BG		
Before Instru	ction	ı			
REG	=	3 2			
C After Instruct	=	7			
REG	=	1			
w	=	2 1 : P	esuit is po	stitve	
Ž	=	0 .			
Example 2:	s	UBWF RI	BG, W		
Before Instru	ction	1			
REG	=	2			
w c	=	2			
After Instruct REG	ion =	-			
W	=	2			
C Z	=	1	; result is	zero)
N	=	0			
Example 3:		UBWF RI	BG		
Before Instru REG	ctior	0x01			
W	=	0x02			
C After Instruct	= ion	7			
REG	=	0xFFh	;(2's com	plem	ent)
w c	=	0x02 0x00	;result is i	nega	tive
Z N	=	0x00 0x01		-	

Notes:

Subtract WREG from f with borrow

SUBWFB	Subtract \	W from f with	h Borrow	
Syntax:	[label] S	UBWFB f[,d [,a]]	
Operands:	0 ≤ f ≤ 255	i		
	d ∈ [0,1]			
Onesting	a∈ [0,1]	(C) v de et		
Operation:		(C) → dest		
Status Affected:	N, OV, C, I			
Encoding:	0101	10da fff		
Description:		/ and the Carr om register 'f		
		od). If 'd' is '0'	-	
		/. If 'd' is '1', t		
		k in register 'f' e Access Ban		
		verriding the B		
		en the bank w		
	(default).	s per the BSR	value	
Words:	1			
Cycles:	1			
Q Cycle Activity				
Q1	Q2	Q3	Q4	
Decode	Read	Process	Write to	
	register 'f'	Data	destination	
Example 1:	SUBWFB	REG, 1, 0		
Before Instru REG	= 0x19	(0001 100)1)	
w	= 0x0D = 0x01	(0000 110		
After Instruct				
REG W	= 0x0C = 0x0D	(0000 101		
ç	= 0x01 = 0x00			
N	= 0x00	; result is po	ositive	
Example 2:	SUBWFB	REG, 0, 0		
Before Instru REG	uction = 0x1B	(0001 101	1)	
w c	= 0x1A = 0x00	(0001 101		
After Instruc				
REG W	= 0x1B = 0x00	(0001 101	1)	
ç	= 0x01 = 0x01	; result is ze		
Ň	= 0x00	, result is ze	10	
Example 3: SUBWFB REG, 1, 0				
Before Instru				
REG W	= 0x03 = 0x0E	(0000 001		
C After Instruc	= 0x01			
REG	= 0xF5	(1111 010		
w	= 0x0E	;[2's comp] (0000_110		
C Z N	= 0x00 = 0x00			
N	= 0x01	; result is ne	egative	

✤ Subtract WREG from literal

SUBLW	Subtract	W from lite	ral
Syntax:	[label]	SUBLW k	
Operands:	$0 \le k \le 2$	55	
Operation:	k – (W) –	→W	
Status Affected:	N, OV, C	, DC, Z	
Encoding:	0000	1000 kk	kk kkkk
Description:		tracted from The result is	the eight-bit placed
Words:	1		
Cycles:	1		
Q Cycle Activity	:		
Q1	Q2	Q3	Q4
Decode	Read literal 'k'	Process Data	Write to W
Example 1:	SUBLW	0x02	
Before Instru W C After Instruc W C Z N	= 1 = ? tion = 1	esult is positiv	e
Example 2:	SUBLW	0x02	
Before Instru	_		
w c	= 2 = ?		
After Instruc W C Z N	= 0	esult is zero	
Example 3:	SUBLW	0x02	
Before Instru	uction		
w	= 3 = ?		
After Instruc			
W C Z N		2's compleme esult is negati	

Notes:

5.2. Move, Set and Clear Operations

Most applications require an efficient movement of data from one memory location to another. Processors in general have instructions dedicated to this type of operation. PICmicro also offers a wide range of operations to move, set and clear data as do other processors.

The remainder of this section provides detailed description of Clear, Complement, Compare, Move, Negate, Set, Table (block move) and Swap instructions.

✤ Clear f

CLRF	Clear f			
Syntax:	[label] C	LRF f	[,a]	
Operands:	0 ≤ f ≤ 25	5		
Operation:	a∈ [0,1] 000 h→ f			
	$1 \rightarrow Z$			
Status Affected:	Z			
Encoding:	0110	101a	ffff	rrrr
Description:	Clears the register. I Bank will the BSR to bank will BSR valu	f 'a' is '0 be selec value. If be selec	', the Acc sted, over 'a' = 1, th ted as pe	xess rriding nen the
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q	3	Q4
Decode	Read register "l"	Proce Dat		Write gister 'f
Example: Before Instru			REC	
FLAG_REG = 0x5A After Instruction FLAG_REG = 0x00				

Notes:

Complement f

COMF	Complement f			
Syntax:	[label] C	OMF	f [,d [,a]]
Operands:	$0 \le f \le 255$	5		
	d ∈ [0,1]			
	a∈ [0,1]			
Operation:	$(f) \rightarrow dest$			
Status Affected:	N, Z			
Encoding:	0001	11da	ffff	rrrr
Description:	The conte			
	compleme			
	result is st			
	result is st (default). It			
	Bank will b			
	the BSR v			
	bank will b			er the
	BSR value	(defau	lt).	
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	5	Q4
Decode	Read	Proce		Vrtle to
_ ட	register 'f	Dab		stination
Example:	COMP	REG, I	w.	
Before Instru				
REG	= 0x13			
After Instruct REG	ion = 0x13			
W	= 0xEC			

Notes:

✤ Compare f with WREG, skip

CPF	SEQ	Compare	fwith W,sk	cipiff=W			
Synt	ax:	[label] (CPFSEQ f	[,a]			
Оре	rands:	0 ≤ f ≤ 258 a∈ [0,1]	5				
Оре	ration:	(f) – (W), skip if (f) = (W) (unsigned comparison)					
Statu	Status Affected: None						
Ence	oding:	0110	0110 001a ffff ffff				
Des	eription:	memory lo of W by pe subtraction instruction is execute two-cycle Access Ba overriding then the b	Compares the contents of data memory location 'f to the contents of W by performing an unsigned subtraction. If 'f = W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).				
Wor	dis:	1					
Cycl	es:		cycles if skip a 2-word in	and followed struction.			
QC	yde Activity:						
	Q1 Decode	Q2 Read	Q3 Process	Q4 No			
	Decode	register "	Data	operation			
lf sk	tip:						
	Q1	Q2	Q3	Q4			
	No	No	No	No operation			
lfsk	operation tip and follow	operation red by 2-wor	operation direstruction				
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
	No operation	No operation	No operation	No operation			
Exar	nde:	HERE NEQUAL BQUAL	CPFSEQ RE :	2			
Before Instruction PC Address = HERE W = 7 REG = 7							
	After Instruct If REG PC If REG PC	= W; = Ad ≠ W;	diess (EQUA				

Notes:

Compare f with WREG, skip if >

CPF	SGT	Compare f with W, skip if f > W				
Syntax:		[label] C	[<i>label</i>] CPFSGT f[,a]			
Operands:		0 ≤ f ≤ 259 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]			
Operation:						
Status Affected:			None			
Encoding:			0110 010a ffff ffff			
	Description: Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).					
		•	1			
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity:						
Q1		Q2	Q3	Q4		
Decode		Read	Process	No		
		register "	Data	operation		
lfskip: Q1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q3	Q4		
	No	No	No	No		
	operation	operation				
If skip and followed by 2-word instruction:						
Q1		Q2	Q3	Q4		
		No	No	No		
	operation	operation	operation	operation		
No operation		No operation	No operation	No operation		
I			and a second second	distant of		
Example: HERE CPFECT REG MCREATER : GREATER :						
Before Instruction						
	PC = Address (HERE) W = ?					
After Instruction If REG > W; PC = Address (GREATER) If REG ≤ W; PC = Address (NGREATER)				-		

Notes:

Compare f with WREG, skip if

CPFSLT		Compare f with W, skip if f < W				
Syntax:		[label] C	CPFSLT f[,	a]		
Operands:		0 ≤ f ≤ 259 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ 10.11			
Operation:						
Status Affected:		None				
Encoding:		0110	0110 000a ffff ffff			
-	Description: Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected. If 'a' is '1', the BSR will not be overridden (default).					
Words:		1				
Cycles: 1(2) Note: 3 cycles if skip and followe by a 2-word instruction.						
Q Cyde Ac	tivity:	-				
Q1		Q2	Q3	Q4		
Decode		Read register "f	Process Data	No operation		
lf skip:		legisler i	Daa	operation		
1 akip. Q1		02	Q3	Q4		
No		No	No	No		
opera		operation	operation	operation		
lf skip and i	follow	ed by 2-wor	d instruction:			
	Q1		Q3	Q4		
No operation		No operation	No operation	No operation		
No		No	No	No		
operation		operation	operation	operation		
<u>Example</u> :		HERE (MLESS				
Before Instruction PC = Address (HERE) W = ? After Instruction If REG < W; PC = Address (LEEE) If REG ≥ W; PC = Address (NLEEE)						

Notes:

✤ Move f

MOVE	Move f				
Syntax: [label] MOVF f [,d [,a]]					
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]				
Operation:	$f \to \text{dest}$				
Status Affected:	N, Z				
Encoding:	0101 00da f		ffff	ffff	
Description:	The contents of register 'f are moved to a destination dependent upon the status of 'd'. If 'd' is 'f', the result is placed in W. If 'd' is 'f', the result is placed back in register 'f' (default). Location 'f' can be any- where in the 256-byte bank. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	3	Q4	
Decode	Read register "f	Proce Dat		Write W	
Example: NOVE REC, W Before Instruction REG = 0x22 W = 0xFF					

After Instruction REG = 0x22 W = 0x22 Notes:

Selecting the destination register:

// If d=0, the value in register 0x21 is placed in W register "(W) ← (0x21)" MOVF 0x21, 0

// If d=1, the value in register 0x21 is placed back in the same register "(0x21) \leftarrow (0x21)"" MOVF 0x21, 1

// If d is not specified, it defaults to 1, so the value in register 0x21 is placed back in the same register " $(0x21) \leftarrow (0x21)$ "" MOVF 0x21

MOVEF	Move f to	f			Notes:
Syntax:	[label]	MOVFF	f _s ,f _d		•
Operands:	$0 \le f_s \le 40$ $0 \le f_d \le 40$				
Operation:	$(f_s) \to f_d$	$(f_s) \to f_d$			
Status Affected:	None				_
Encoding: 1st word (source) 2nd word (destin		1111 1111	ffff ffff	rrrf _s rrrf _d	
Description:The contents of source register 'f_s' are moved to destination register 'f_d'. Location of source 'f_s' can be anywhere in the 4096-byte data space (000h to FFFh) and location of destination 'f_d' can also be anywhere from 000h to FFFh. Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port).The MOVFF instruction cannot use the QCL, TOSU, TOSH or TOSL as the destination register.The MOVFF instruction should not be used to modify interrupt settings while any interrupt is enabled (see page 73).					
Words:	2				
Cycles:	2 (3)				
Q Cycle Activity:	:				
Q1	Q2	Q3		Q4	_
Decode	Read register 'f' (src)	Proces Data		No peration	
Decode	No operation No dummy read	No operatio	on re	Witte gister 'f' (dest)	
Example: MOVFF REG1, REG2					
Before Instruction REG1 = 0x33 REG2 = 0x11 After Instruction REG1 = 0x33, REG2 = 0x33					

✤ Move fs (source) to 1st word, fd (destination) 2nd word

✤ Move literal to BSR<3:0>

MOVLB	Move lite	Move literal to low nibble in BSR					
Syntax:	[label]	MOVLB	k				
Operands:	$0 \le k \le 25$	5					
Operation:	$k \to BSR$						
Status Affected:	None						
Encoding:	0000	0001	kkkk	kkkk			
Description:		The 8-bit literal 'k' is loaded into the Bank Select Register (BSR).					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read literal 'K'	Proce Data		Write ral 'K' to BSR			
Example: NOVLB 5 Before Instruction							

Before Instruction BSR register = 0x02 After Instruction BSR register = 0x06

✤ Move literal to WREG

MOVLW	Move lite	eral to W	,	
Syntax:	[label]	MOVLW	/k	
Operands:	$0 \le k \le 28$	55		
Operation:	$k \to W$			
Status Affected:	None			
Encoding:	0000	1110	kkkk	kkkk
Description:	The eight into W.	bit litera	l 'k' is lo:	aded
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	5	Q4
Decode	Read literal 'k'	Proce		rite to W
Example: After Instructi	MONTM OU	0x5A		

Notes:

Notes:

•

W = 0x5A

Move WREG to f

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f[,a]
Operands:	0 ≤ f≤ 255 a∈ [0,1]
Operation:	$(W) \rightarrow f$
Status Affected:	None
Encoding:	0110 111a ffff ffff
Description:	Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank. If 'a' is '0', the Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	Read Process Write register if Data register if
Example:	MOUNF REG
Before Instru	ction
W REG	= 0x4F = 0xFF
After Instruct	ion
W REG	= 0x4F = 0x4F

Negate f

NEGF	Negate f				
Syntax:	[label]	NEGF	f [,a]		
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5			
Operation:	(f) + 1 → f				
Status Affected:	N, OV, C,	DC, Z			
Encoding:	0110	110a	fff	r rrrr	
Description:	compleme the data m '0', the Ao	ent. The nemory cess Ba overridir hen the	result locatic ink wi ng the bank	BSR value. will be	
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	3	Q4	
Decode	Read register "l"	Proce Dat		Write register 'f'	
Example: NECF RE2, 1					
Before Instruction					
REG		010	:3A]		

After Instruction REG = 1100 0110 [0xC6] Notes:

Notes:

•

Set f

SETF	Set f					
Syntax:	[<i>label</i>]S	ETF f	[,a]			
Operands:	0 ≤ f ≤ 25 a∈ [0,1]	5				
Operation:	$\text{FFh} \to f$					
Status Affected:	None					
Encoding:	0110	100a	ffff	rrrr		
Description:	register a the Acces overriding '1', then t	The contents of the specified register are set to FFh. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q	3	Q4		
Decode	Read register "l	Proce Dat		Witte gister 'f		
Example: SETF REG Before Instruction REG = 0x5A						

= 0xFF

After Instruction REG Notes:

Table Read "TBLRD" \div

The **Memory-Block Transfer** reads and/or writes to a range of memory locations. The following two bullets show all the various options for table read "TBLRD" and table write "TBLWT".

TBLRD	Table Read			TBLRD	Table Read (Co	ontinued)
Syntax:	[<i>label</i>] TBLR	D (*; *+; *•	; +*)	Example 1:	TBLRD *+ ;	
Operands:	None			Before Inst		
Operation:	if TBLRD *,			TABLAT TBLPTF	r = २ =	0x55 0x00A356
	(Prog Mem (T TBLPTR – No		→ TABLAT;		RY(0x00A356) =	0x34
	if TBLRD *+,	onange,		After Instru TABLAT		0x34
	(Prog Mem (T (TBLPTR) + 1			TBLPT		0x00A357
	if TBLRD *-,		κ,	Example 2:	TBLRD +* ;	
	(Prog Mem (T			Before Inst		
	(TBLPTR) – 1 if TBLRD +*,		к,	TABLAT TBLPTF		0xAA 0x01A357
	(TBLPTR) + 1			MEMOR	RY(0x01A357) = RY(0x01A358) =	0x12 0x34
C1 1 4 7	(Prog Mem (T	BLPTR)) -	→ IABLAI;	After Instru		0.001
Status Affec			· · · ·	TABLAT		0x34
Encoding:	0000 0000	0000	10nn nn = 0*	TBLPTF	· -	0x01A358
			= 1*+			
			= 2*- = 3+*			
Description	This instruction	n is used tr		Note:		
Decomption.	contents of Pro	gram Men	nory (P.M.). To	"TBLPTF	R" value is stored	in three registers:
	address the pr called Table Pr					
	The TBLPTR			/ TBLP	TRU TBLPTR	H TBLPTRL
	to each byte in			/		
	TBLPTR has a range.	a z-mbyte	address	/		
	-		st Significant	/	Program me	mory
			of Program nory Word			
	TBLPTR		st Significant			
		Byte	of Program		▶	
	The TBLRD in:		nory Word			$ \rightarrow $
	value of TBLP					
	 no change 					
	 post-increm post-decrem 					/
	 pre-increme 					
Words:	1				TABLAT	
Cycles:	2]
Q Cycle Ac	tivity:				executing of TBL ent of TBLPTR loc	RD instruction, the
Q1	Q2	Q3	Q4	TABI		alion is stored in
Deco	le No operation	No operation	No operation			
No	No operation	No	No operation			
operat		operation	(Write TABLAT)			
	iviemory)		IABLAI)	l		

\div Table Write "TBLWT"

TBLWT instruction performs the reverse of the TBLRD instruction by moving the content of register TABLAT to the location pointed to by the TBLPTR in memory.

Q4

No

operation

No

operation

(Write to

Holding Register)

TBLWT	Table W	rite			TBLWT		Table Write	e (Continued)
Syntax:	[label]	TBLWT (*; *+; *-;	+*)	Words:	1		
Operands:	None				Cycles:	2		
Operation:	if TBLW1	r*,			Q Cycle	Activity:		
) → Hold – No Ch	ing Regis ange:	ter;		Q1	Q2	Q3
	if TBLW1		ange,			Decode	No	No
			ing Regis	ter;			operation	operation
	if TBLW1	R)+1→` Γ*-,	IDLPTR;			No operation	No operation	No operation
			ing Regis	ter;		operation	(Read	operation
	if TBLW1	₹) – 1 → ` [+*.	IBLPIR;				TABLAT)	
	(TBLPTF	?)+่1→`			Evenel			
	-	$) \rightarrow Hold$	ing Regis	ter;	Example		TBLWT *+;	
Status Affected:					Bei	ore Instructio		= 0x55
Encoding:	0000	0000	0000	11nn nn = 0*		TBLPTR HOLDING R		= 0x00A356
				= 1*+		(0x00A356)		= 0xFF
				= 2*- = 3+*	Afte			e completion) = 0x55
Description:	This inst	nuction us	ses the 3			TABLAT TBLPTR	:	= 0x55 = 0x00A357
Description.			nine whic			HOLDING R (0x00A356)		= 0x55
			s the TAB		Example	e 2:	TBLWT +*;	
			ding regis		Bef	ore Instructio	on	
			he conter (P.M.). (F			TABLAT		= 0x34
	to Sectio	on 6.0 "F	lash Prog	gram		TBLPTR HOLDING R	EGISTER	= 0x01389A
	-		tional det			(0x01389A) HOLDING R		= 0xFF
		-	sh memor 1-bit poin	y.) ter) points		(0x01389B)		= 0xFF
				memory.	Afte	TABLAT		completion) = 0x34
			Mbyte ad			TBLPTR HOLDING R	:	= 0x01389B
			fthe TBLI e ofthe pr			(0x01389A)	:	= 0xFF
			o access.			HOLDING R (0x01389B)		= 0x34
	TBL	PTR[0] =		Significant				
			-	f Program				
	ты	DTDM -		ry Word Significant				
	IDL	PIR[0] -		f Program				
				ry Word				
				modify the				
			as follows	3:				
	 no cha no st in 	ange acrement						
	-	ecrement	ł					
	 posi-u pre-ind 		L					
	prestru							

✤ Swap nibbles in f

SWAPF	Swap f			
Syntax:	[label]	SWAPF	f [,d [,a	a]]
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5		
Operation:	(f<3:0>) - (f<7:4>) -			
Status Affected:	None			
Encoding:	0011	10da	ffff	rrrr
Description:	The upper register 'f' '0', the rea '1', the rea (default). Bank will the BSR v bank will the BSR value	'are exc sult is pla sult is pla lf 'a' is 't be selec value. If be selec	hanged aced in 1 aced in 1)', the A ted, ove 'a' is '1', ted as p	. If 'd' is W. If 'd' is register 'f' ccess erriding , then the
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register "f	Proce Data		Write to estination
Example:	EWADE 3	REG		
Before Instruction REG = 0x53 After Instruction				
REG	= 0x35			

Notes:

5.3. Logical Operation

Programs require the ability to test for validity of certain conditions based on the last operation executed or the contents of two memory locations, so processors provide a set of logical instructions that may be used to test validity of certain conditions.

PICmicro also offers a wide range of logical operations. These operations are used for modifying data as well as setting flags based on the results. These flags can be used later for decision making.

The remainder of this section will describe in detail the logical operation of AND, Bit Set/Clear/Test, OR, XOR, Rotate and Test for PICmirco.

Notes:

ANDLW	AND litera	al with V	V	
Syntax:	[<i>label</i>] A	NDLW	k	
Operands:	$0 \le k \le 25$	5		
Operation:	(W) .AND.	$k \to W$		
Status Affected:	N, Z			
Encoding:	0000	1011	kkkk	kkkk
Description:	The conte the 8-bit lit placed in \	eral 'k'. '		
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read literal 'k'	Proce: Data		rite to W
Example:	ANDLW	0x5F		
Before Instru	uction			
W	= 0xA3			
After Instruct	tion			

✤ AND Literal with WREG

✤ AND WREG with f

ANDWF	AND W wi	ith f		
Syntax:	[label] A	NDWF f	[,d [,;	a]]
Operands:	$0 \le f \le 255$	5		
	d∈ [0,1] a∈ [0,1]			
Operation:		(f) \rightarrow dest		
Status Affected:	N. Z	(1) / 4001		
Encoding:	0001	01da f	EEE	ffff
Description:		nts of War		
	stored in V stored bac If 'a' is '0', selected. I	If 'd' is 'o', V. If 'd' is 'ı k in registe the Access f 'a' is 'ı', tl midden (de	∴, the r 'f' (o s Ban he BS	resultis default). k will be SR will
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Process Data		Vrite to stination
Example:	ANDWF	REG, W		
Before Instru	ction			
W REG	= 0x17 = 0xC2			
After Instruct	ion			
W REG	= 0x02 = 0xC2			

Notes:

✤ Bit Clear f

BCF	Bit Clear	Bit Clear f				
Syntax:	[<i>label</i>] B	BCF f,	b[,a]			
Operands:	0 ≤ f ≤ 25 0 ≤ b ≤ 7 a ∈ [0,1]	5				
Operation:	$0 \rightarrow \text{f}$					
Status Affected:	None					
Encoding:	1001	bbba	ffff	ffff		
Description:	is '0', the selected, lf 'a' = 1, t	Bit 'b' in register 'f' is cleared. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	3	Q4		
Decode	Read register 'f	Proce Dat		Write gister 'f		
Example:		FLAG_RE	G, 7			

Before Instruction FLAG_REG = 0xC7 After Instruction FLAG_REG = 0x47 Notes:

✤ Bit Set f

BSF	Bit Set f					
Syntax:	[<i>label</i>] B	BSF f,b	[,a]			
Operands:	0 ≤ f≤ 25 0 ≤ b ≤ 7 a∈ [0,1]	5				
Operation:	$1 \rightarrow f{<}b{>}$					
Status Affected:	None					
Encoding:	1000	bbba	ffff	rrrr		
Description:	Bit 'b' in register 'f' is set. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	3	Q4		
Decode	Read register 'f	Proce Dat		Witte gister 'f		
Example: BSF FLAG_REG, 7 Before Instruction FLAG_REG = 0x0A						
After Instruction						

FLAG_REG = 0x8A

Notes:

✤ Bit Test f, Skip if Clear

BTF	sc	Bit Test F	ile, Skip if (Clear
Synt	ax:	[<i>label</i>] B	TFSC f,b[,:	a]
Oper	ands:	0 ≤ f≤ 255 0 ≤ b ≤ 7 a∈ [0,1]	5	
Oper	ation:	skip if (f <b< td=""><td>>) = 0</td><td></td></b<>	>) = 0	
Statu	is Affected:	None		
Enco	ding:	1011	bbba :	1111 1111
Desc	ription:	next instru If bit 'b' is ' instruction instruction and a NOP making thi 'a' is '0', th selected, o 'a' = 1, the	ction is skip o', then the fetched dur execution i is executed s a two-cycl the Access B overriding th	next ing the current s discarded d instead, e instruction. If ank will be e BSR value. If will be selected
Word	ls:	1		
Cycl			cycles if skip a 2-word in	and followed struction.
QC	yde Activity: Q1	~	Q3	~
1	Decode	Read	Process	No
		register 'f	Data	operation
lf sk	ip:			
	Q1	Q2	Q3	Q4
	No operation	No operation	No operation	No operation
lfsk	ip and follow			
	Q1	Q2	Q3	Q4
	No operation	No operation	No operation	No operation
	No	No	No	No
	operation	operation	operation	operation
Exar	nde:	HERE B FALSE : TRUE :		AG, 1
	Before Instru PC		dress (HERE)	1
	After Instruct If FLAG< PC If FLAG< PC	1> = 0; = adi 1> = 1;	dress (TRUE dress (FALE	-

Notes:

✤ Bit Test f, Skip if Set

Notes:

BTF	ss	Bit Test Fil	le, Skip if Se	et
Synt	ax:	[<i>label</i>] BT	FSS f,b[,a]	
Oper	ands:	0 ≤ f ≤ 255		
		0≤b<7		
		a∈ [0,1]		
•	ration:	skip if (f 	•) = 1	
Statu	is Affected:	None		
Enco	oding:	1010	bbba ff	tt tttt
Desc	cription:		egister 'f' is '	
			tion is skipp	
			l', then the n	ext g the current
			execution is	
			is executed i	
				instruction. If
			e Access Bar	nk will be BSR value. If
				I be selected
			BSR value (d	
Wor	ds:	1		
Cycl	es:	1(2)		
-				and followed
		Бу	a 2-word ins	truction.
00				
90	yde Activity:	~~	~~	~ .
90	Q1	Q2 Page	Q3 Brocces	Q4
90		Read	Q3 Process Data	Q4 No operation
lf sk	Q1 Decode		Process	No
	Q1 Decode	Read	Process	No
	Q1 Decode ip: Q1 No	Read register 'f Q2 No	Process Data Q3 No	No operation Q4 No
lf sk	Q1 Decode ip: Q1 No operation	Read register 'f Q2 No operation	Process Data Q3 No operation	No operation Q4
lf sk	Q1 Decode ip: Q1 No operation ip and follow	Read register 'f Q2 No operation ed by 2-word	Process Data Q3 No operation instruction:	No operation Q4 No operation
lf sk	Q1 Decode Q1 No operation ip and follow Q1	Read register 'f Q2 No operation ed by 2-word Q2	Process Data Q3 No operation instruction: Q3	No operation Q4 No operation Q4
lf sk	Q1 Decode ip: Q1 No operation ip and follow	Read register 'f Q2 No operation ed by 2-word	Process Data Q3 No operation instruction:	No operation Q4 No operation
lf sk	Q1 Decode .ip: Q1 No operation Q1 No operation No	Read register 'f Q2 No operation ed by 2-word Q2 No operation No	Process Data Q3 No operation Q3 No operation No	No operation Q4 No operation Q4 No operation No
lf sk	Q1 Decode ip: Q1 No operation ip and follow Q1 No operation	Read register " Q2 No operation ed by 2-word Q2 No operation	Process Data Q3 No operation instruction: Q3 No operation	No operation Q4 No operation Q4 No operation
lfsk Ifsk	Q1 Decode Q1 No operation ip and follow Q1 No operation No operation	Read register 'f Q2 No operation Q2 No operation No operation	Process Data Q3 No operation Q3 No operation No operation	No operation Q4 No operation Q4 No operation No operation
lf sk	Q1 Decode Q1 No operation ip and follow Q1 No operation No operation	Read register 'f Q2 No operation Q2 No operation No operation	Process Data Q3 No operation Q3 No operation No	No operation Q4 No operation Q4 No operation No operation
lfsk Ifsk <u>Exa</u> r	Q1 Decode ip: Q1 No operation Q1 No operation No operation	Read register 'f Q2 No operation ed by 2-word Q2 No operation No operation HERE B7 FALSE : TRUE :	Process Data Q3 No operation Q3 No operation No operation	No operation Q4 No operation Q4 No operation No operation
lfsk Ifsk <u>Exa</u> r	Q1 Decode ip: Q1 No operation Q1 No operation No operation No operation	Read register 'f Q2 No operation Q2 No operation No operation HERE B7 FALSE : TRUE : tton	Process Data Q3 No operation Q3 No operation No operation	No operation Q4 No operation Q4 No operation No operation
lfsk Ifsk <u>Exar</u>	Q1 Decode ip: Q1 No operation Q1 No operation No operation No operation No operation	Read register 'f Q2 No operation ed by 2-word Q2 No operation No operation HERE B7 FALSE : TRUE : Ction = add	Process Data Q3 No operation Q3 No operation No operation	No operation Q4 No operation Q4 No operation No operation
lfsk Ifsk <u>Exar</u>	Q1 Decode ip: Q1 No operation Q1 No operation No operation No operation No operation No operation After Instructi If FLAG<	Read register 'f Q2 No operation ed by 2-word Q2 No operation No operation HERE B7 FALSE : TRUE : true : ction = add on (> = 0;	Process Data Q3 No operation Q3 No operation No operation	No operation Q4 No operation Q4 No operation No operation
lfsk Ifsk <u>Exar</u>	Q1 Decode ip: Q1 No operation ip and follow Q1 No operation No operation Mole: Before Instruction PC After Instruction If FLAG< PC	Read register 'f Q2 No operation ed by 2-word Q2 No operation No operation HERE B7 FALSE : TRUE : truE : ction = add on = add	Process Data Q3 No operation Q3 No operation No operation	No operation Q4 No operation Q4 No operation No operation
lfsk Ifsk <u>Exar</u>	Q1 Decode ip: Q1 No operation Q1 No operation No operation No operation No operation No operation After Instructi If FLAG<	Read register 'f Q2 No operation ed by 2-word Q2 No operation No operation No operation HERE B7 FALSE : TRUE : Ction = add ion [> = 0; = add > = 1;	Process Data Q3 No operation Q3 No operation No operation	No operation Q4 No operation Q4 No operation No operation

Bit Toggle f

Bit Toggl	e f		
[<i>label</i>] B	STG f,b[,a	i]	
	5		
	f 		
None			
0111	bbba	ffff	rrrr
inverted. will be sel value. If 'a	lf 'a' is '0', ected, ov a' = 1, the	the Acce erriding to n the bar	ss Bank he BSR krwill be
1			
1			
Q2	Q3	(24
Read register 'f	Proces Data	-	/rtte ster 't'
tion: = 0111 on:	0101 [Ox7	5]	
	[label] E $0 \le f \le 25$ $0 \le b < 7$ $a \in [0,1]$ (f < b >) → None Dill Bit b' in of inverted. will be sel value. If % selected a (default). 1 1 Q2 Read register 'f BTC 2 tion: = 0111 pr:	$\begin{array}{c} 0 \leq f \leq 255\\ 0 \leq b < 7\\ a \in [0,1]\\ (f < b >) \rightarrow f < b >\\ \hline \\ None\\ \hline \\ \hline \\ 0111 & bbba\\ \hline \\ Bit b' in data memory inverted. If 'a' is '0', will be selected, ow value. If 'a' = 1, the selected as per the (default).\\ 1\\ \hline \\ Q2 & Q3\\ \hline \\ Read & Proces register 'T & Data\\ \hline \\ ETC & PORTE, \\ tion:\\ = & 0111 & 0101 & [0x7] \\ on: \end{array}$	$\begin{bmatrix} label \end{bmatrix} BTG f,b[,a] \\ 0 \le f \le 255 \\ 0 \le b < 7 \\ a \in [0,1] \\ (f < b >) → f < b > \\ \hline None \\ \hline 0111 $

Notes:

Exclusive OR literal with WREG

XORLW	Exclusiv	/e OR lit	eral wit	h W
Syntax:	[label])	XORLW	k	
Operands:	$0 \le k \le 2$	55		
Operation:	(W) XOF	(W) XOR. $k \rightarrow W$		
Status Affected:	N, Z			
Encoding:	0000	1010	kkkk	kkkk
Description:	The cont with the is placed	8-bit liter		
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read literal 'k'	Proce Dab		irite to W
Example:	XORLW	0xAF		
Before Instru	iction			
w	= 0xB5			
After Instruct	ion			

Notes:

.

After Instruction W = 0x1A Exclusive OR WREG with f

XORWF	Exclusive	e OR W	with f	
Syntax:	[label]	XORWF	f [,d	[,a]]
Operands:	$0 \leq f \leq 25$	5		
	d∈ [0,1] a∈ [0,1]			
Operation:	(W) XOR	$(0 \rightarrow c)$	est	
Status Affected:	N.Z		Co.	
	<u> </u>			
Encoding:	0001	10da	ffff	rrrr
Description:	is stored i is stored l (default). Bank will	ter ff. If in W. If 5 back in t If 'a' is 'i be selec value. If be selec	d' is '0' d' is '1', he regi)', the / :ted, ov 'a' is '1 ted as	, the result the result ster 'f' Access erriding ', then the
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q	5	Q4
Decode	Read register "f	Proce Dat		Write to destination
	legisler i	Da	a	esuration
Example:	XORWF	REG		
Before Instruct REG W	= 0xAF = 0xB5			
After Instruction REG	on = 0x1A			
	= 0xB5			

Notes:

Inclusive OR literal with WREG

IORLW	Inclusive	0R lite	ral w	ith \	N
Syntax:	[label]	IORLW	k		
Operands:	$0 \le k \le 25$	5			
Operation:	(W) .OR. k	$W \to W$			
Status Affected:	N, Z				
Encoding:	0000	1001	kk3	x.	kkkk
Description:	The conte the eight-b placed in l	oit literal			
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	3		Q4
Decode	Read literal 'k'	Proce Dat		Wi	tte to W
Example:	IORLW	0x35			
Before Instru	ction				
W	= 0x9A				
After Instructi	on				

W = 0xBF

Notes:

✤ Inclusive OR WREG with f

Notes:

IORWF	Inclusive	OR W with	f	
Syntax:	[label]	ORWF f	[,d [,:	a]]
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	i		
Operation:	(W) .OR. (f) \rightarrow dest		
Status Affected:	N, Z			
Encoding:	0001	00da fi	11	rrrr
Description:	'd' is '0', th 'd' is '1', th register 'f' Access Ba riding the 8	OR W with r e result is p (default). If onk will be s BSR value. vill be select (default).	laced laced 'a' is elect If 'a' :	din W. If dbackin "0", the ted, over- = 1, then
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f	Process Data		Vrile to stination
Example:	LORNF RES	ULT, W		
Before Instru RESULT W				
After Instructi RESULT W				

Rotate Left f through Carry

Notes:

.

RLCF	Rotate L	Rotate Left f through Carry				
Syntax:	[label]	RLCF f[,d [,a]]			
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	5				
Operation:	$(f < n >) \rightarrow$ $(f < 7 >) \rightarrow$ $(C) \rightarrow de$		•,			
Status Affected:	C, N, Z					
Encoding:	0011	01da f	rrr rrrr			
Description:	rotated or the Carry is placed is stored (default). Bank will the BSR bank will	flag. If 'd' is in W. If 'd' is back in regi If 'a' is '0', t be selected	left through (*0', the result ster f' he Access , overriding = 1, then the as per the			
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 11	Process Data	Write to destination			
<u>Example</u> : Before Instruc	= 1110 0	REG, 5	r			
After Instructio REG W	- 0					

Rotate Left f (No Carry)

Notes:

•

RLNCF	Rotate L	eft f (no	carry)			
Syntax:	[label]	RLNCF	f[,d [,	a]]		
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	5				
Operation:		(f <n>) → dest<n +="" 1="">, (f<7>) → dest<0></n></n>				
Status Affected:	N, Z					
Encoding:	0100	01 da	ffff	ffff		
Description:	The conta rotated of the result ff (defaul Bank will the BSR bank will BSR valu	he bitto f is place is store t). If 'a' is be selec value. If be selec e (defau	the left. If d in W. If d back in s '0', the sted, over fa' is '1', ted as pa	"d" is "0", "d" is "1", register Access rriding then the		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
<u>q</u> 1	Q2	Q3		Q4		
Decode	Read register 11	Proces Data		inte to tination		
<u>Example</u> : Before Instru-		REG				

REG = 1010 1011 After Instruction REG = 0101 0111

Rotate Right f through Carry

RRCF	Rotate Right f through Carry				
Syntax:	[<i>label</i>] RRCF f[,d[,a]]				
Operands:	0 ≤ f ≤ 255				
	d∈ [0,1] a∈ [0,1]				
Operation:	a ∈ [0, i] (f <n>) → dest<n 1="" –="">,</n></n>				
Operation.	$(f<0>) \rightarrow C$,				
	$(C) \rightarrow dest < 7 >$				
Status Affected:	C, N, Z				
Encoding:	0011 00da ffff ffff				
Description:	The contents of register 'f' are				
	rotated one bit to the right through the Carry flag. If 'd' is '0', the result				
	is placed in W. If 'd' is '1', the result				
	is placed back in register 'f'				
	(default). If 'a' is '0', the Access Bank will be selected, overriding				
	the BSR value. If 'a' is '1', then the				
	bank will be selected as per the BSR value (default).				
	DOR VAIUE (GEIAUIO.				
Words:					
Words: Cycles:	C register f				
	C register f				
Cycles:	C register f				
Cycles: Q Cycle Activity:	C register r 1 1 Q2 Q3 Q4 Read Process Write to				
Cycles: Q Cycle Activity: Q1	1 1 2 22 23 24				
Cycles: Q Cycle Activity: Q1	C register r 1 1 Q2 Q3 Q4 Read Process Write to				
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instru	C register r 1 1 Q2 Q3 Q4 Read Process Write to register 'T Data destination RRCF REG, W ction				
Cycles: Q Cycle Activity: Q1 Decode Example:	C register f 1 1 Q2 Q3 Q4 Read Process Write to register 'f Data destination RRCF REG, W				
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instru REG	C register f 1 1 1 Q2 Q3 Q4 Read Process Write to register 'f Data destination RRCF REG, W ction = 1110 0110 = 0				
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instru REG C	C register f 1 1 1 Q2 Q3 Q4 Read Process Write to register 'f Data destination RRCF REG, W ction = 1110 0110 = 0				

Notes:

Rotate Right f (No Carry)

RRNCF	Rotate Rig	ght f (no c	arry)	
Syntax:	[label] F	RRNCF f	[,d [,s	a]]
Operands:	0 ≤ f≤ 255 d ∈ [0,1] a ∈ [0,1]			
Operation:	$(f \le n >) \rightarrow d$ $(f \le 0 >) \rightarrow d$		•,	
Status Affected:	N, Z			
Encoding:	0100	00da f	fff	rrrr
Description:	The conter rotated one '0', the res '1', the res register 'f Access Ba overriding '1', then th as per the	e bit to the ult is place ult is place (default). I nk will be the BSR v e bank wil	right. d in V d bac f 'a' is select alue. l be se e (defa	If 'd' is V. If 'd' is 'k in '0', the ed, If 'a' is elected
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f	Process Data		Vrile to stination
Example 1;	RRNCF R	BG, 1, 0		
Before Instru REG	ction = 1101 0	111		
After Instructi REG	on = 11101	011		
Example 2:	RENCE E	EG, W		
Before Instru	ction			

Notes:

•

 W
 =
 ?

 REG
 =
 1101
 0111

 After Instruction
 W
 =
 110
 0011

W = 1110 1011 REG = 1101 0111

Test f, skip if 0

тят	FSZ	Test f, ski	pif0	
Synt	ax:	[label] T	STFSZ f[,	3]
Оре	rands:	0 ≤ f ≤ 255	5	
		a∈ [0,1]		
Ope	ration:	skip if f = ()	
State	us Affected:	None		
Enc	oding:	0110	011a ff	ff ffff
Des	cription:	lf 'f' = 0, th	e next instr	uction.
		fetched du	ring the cur	rent
			execution i	
				l, making this . If 'a' is '0',
			s Bank will b	
			the BSR va	
			e bank will	
		•	BSR value	(default).
Wor		1		
Cycl	es:	1(2) Note: 2 a	under all all in	م حما الحال من م
			a 2-word ins	and followed truction
0.0	yde Activity:			
-	01	02	Q3	Q4
	Decode	Read	Process	No
		Read register 'f	Process Data	No operation
lf sk	cip:		Data	operation
lf sk	cip: Q1	register " Q2	Data Q3	operation Q4
lf sk	cip: Q1 No	register " Q2 No	Data Q3 No	Q4 No
	cip: Q1 No operation	register 'f Q2 No operation	Q3 Q3 No operation	Q4 Q4 No operation
	cip: Q1 No	register 'f Q2 No operation	Q3 Q3 No operation	Q4 Q4 No operation
	cip: Q1 Operation cip and follow Q1 No	register 1 Q2 No operation ved by 2-worn Q2 No	Data Q3 No operation d instruction Q3 No	Q4 No operation : Q4 No
	cip: Q1 No operation cip and follow Q1 No operation	register " Q2 No operation ved by 2-work Q2 No operation	Data Q3 No operation d instruction Q3 No operation	Q4 No operation : Q4 No operation
	cip: Q1 Operation cip and follow Q1 No operation No	register 1 Q2 No operation ved by 2-wor Q2 No operation No	Data Q3 No operation d instruction Q3 No operation No	Q4 No operation : Q4 No operation No
	cip: Q1 No operation cip and follow Q1 No operation	register " Q2 No operation ved by 2-work Q2 No operation	Data Q3 No operation d instruction Q3 No operation	Q4 No operation : Q4 No operation
lf sk	cip: Q1 Operation cip and follow Q1 No operation No	register 1 Q2 No operation Q2 No operation No operation	Data Q3 No operation d instruction Q3 No operation No	Q4 No operation : Q4 No operation No
lf sk	cip: Q1 Operation cip and follow Q1 No operation No	register " Q2 No operation Q2 No operation No operation HERE T NZERO :	Data Q3 No operation Q3 No operation No operation	Q4 No operation : Q4 No operation No
lf sk	cip: Q1 Operation cip and follow Q1 No operation No operation	register " Q2 No operation ved by 2-work Q2 No operation No operation HERE T MIXERO : ZERO :	Data Q3 No operation Q3 No operation No operation	Q4 No operation : Q4 No operation No
lf sk	cip: Q1 Operation cip and follow Q1 No operation No	register " Q2 No operation ved by 2-worn Q2 No operation No operation No operation HERE T NZERO : ZERO :	Data Q3 No operation Q3 No operation No operation	Q4 No operation : Q4 No operation No operation
lf sk	cip: Q1 Operation cip and follow Q1 No operation No operation mole: Before Instru	register " Q2 No operation Q2 No operation No operation HERE T MZERO : ZERO : JERO :	Data Q3 No operation Q3 No operation No operation	Q4 No operation : Q4 No operation No operation
lf sk	cip: Q1 No operation cip and follow Q1 No operation No operation Mo eration PC After Instruct If CNT	register " Q2 No operation Q2 No operation No operation HERE T NZERO : ZERO : JERO : JERO : DISTRO : D	Data Q3 No operation Q3 No operation No operation STFEZ CMT dress (HERE 00,	Q4 No operation : Q4 No operation No operation
lf sk	cip: Q1 No operation cip and follow Q1 No operation No operation Mole: Before Instruct PC	register " Q2 No operation ved by 2-work Q2 No operation No operation HERE T NZERO : ZERO : ZERO : uction = Ad tion = Qx(y Qx)	Data Q3 No operation Q3 No operation No operation STFES CNT dress (HERE 00, dress (ZERO	Q4 No operation : Q4 No operation No operation

Notes:

 Write a C code segment and an Assembly code segment that sort the content of locations 0x120, 0x122, and 0x124 such that 0x120 contains the smallest value and 0x124 contains the largest value.

Solution

5.4. Branch Operations

Processors execute one instruction after another unless interrupted or redirected. In order to implement high level language constructs such as conditional statements (i.e. If-Then-Else, Switch) or loop statements (i.e. For, While), processors provide an ability to branch to other locations in program memory based on conditions. Branch instructions allow the PC value to be redirected to locations in memory other than the next instruction (PC + 2). In other words, in normal execution, once an instruction is executed, the PC is changed to PC+2. But if the condition for the branch is true, then the PC will be changed to the new location specified by the branch instruction.

PICmicro provides a set of branch and GOTO instructions. The remainder of this section covers branch instructions that redirect PC based on status of Carry, Overflow, Negative, Zero flags, or unconditionally.

Branch if Carry

вс		Branch if	Carry		Notes:		
Syntax:		[<i>label</i>] B	Сп		•		
Operands	:	-128 ≤ n ≤	127				
Operation	:	if Carry bit (PC) + 2	is '1' + 2n → PC				
Status Affe	ected:	None					
Encoding:		1110	0010 nnr	n nnnn			
Descriptio	n:	program w The 2's co added to th have incre instruction PC + 2 + 2	If the Carry bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.				
Words:		1					
Cycles:		1(2)					
Q Cycle / If Jump:	Activity						
	21	Q2	Q3	Q4			
De	code	Read literal 'n'	Process Data	Write to PC			
· · ·	No ration	No operation	No operation	No operation			
If No Jurr		operation	operation	operation	I		
	21	Q2	Q3	Q4			
De	code	Read literal	Process	No			
		'n	Data	operation			
<u>Example</u> : Befor	e Instru	HERE	BC JUMP				
	С		dress (HERE)	1			
lf	Carry Carry PC Carry PC	= 1; = ade = 0;	dress (JUMP) dress (HERE				

Branch if Negative

BN		Branch if	Branch if Negative					
Synta	x:	[<i>label</i>] B	N n					
Opera	ands:	-128 ≤ n ≤	-128 ≤ n ≤ 127					
Opera	ation:		if Negative bit is '1' (PC) + 2 + 2n → PC					
Status	Affected:	None						
Encod	ding:	1110	0110	nnnn	nnnn			
Descr	iption:	If the Negative bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.						
Words	s:	1	1					
Cycle	s:	1(2)						
Q Cycle Activity: If Jump:								
_	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Proces: Data	s Wr	ite to PC			
	No operation	No operation	No operatio	on op	No peration			
lf No	Jump:							
-	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Proces: Data	-	No peration			
_	<u>ple</u> : PC fter Instruct If Negativ PC If Negativ PC	= add tion ve = 1; = add ve = 0;	EN JI dress (HE dress (Ju dress (HE	mp))			

Notes:

Branch if Not Carry

BNC		Branch if Not Carry					
Synta	ax:	[<i>label</i>] B	NC n				
Oper	ands:	-128 ≤ n ≤	-128 ≤ n ≤ 127				
Operation:			if Carry bit is 'o' (PC) + 2 + 2n → PC				
Statu	is Affected:	None					
Enco	ding:	1110	0011	nnnn	nnnn		
Desc	ription:	If the Carr program w			he		
		The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Word	is:	1					
Cycle	es:	1(2)					
	yele Activity: imp:	:					
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n'	Proce: Data		rite to PC		
	No operation	No operation	No operati	ion o	No peration		
lf No	o Jump:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n	Proce: Data		No peration		
Exar	n <u>ple</u> :	HERE	BNC J	ſump			
	Before Instruc PC After Instruc If Carry PC If Carry PC	= ad tion = 0; = ad = 1;	dress (H dress (Ju dress (H	1mp)	2)		

Notes:

Branch if Not Negative

Branch if	Branch if Not Negative					
[<i>label</i>] B	NN n					
-128 ≤ n ≤	127					
None						
1110	0111 nnr	nn nnnn				
If the Nega	If the Negative bit is '0', then the					
program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.						
1						
Cycles: 1(2)						
02	03	Q4				
	-	Write to PC				
'n	Data					
No operation	No operation	No operation				
Q2	Q3	Q4				
Read literal 'n'	Process Data	No operation				
HERE ction = add	BNN Jump dress (HERE)	I				
	[<i>label</i>] B -128 ≤ n ≤ if Negative (PC) + 2 + None 1110 If the Nega program w The 2's co added to th have incree instruction PC + 2 + 2 a two-cycle 1 1(2) Q2 Read literal 'n' No operation Q2 Read literal 'n' HERE ction = add	[/abe/] BNN n -128 ≤ n ≤ 127 if Negative bit is '0' if Negative bit is '0' (PC) + 2 + 2n → PC None 1110 0111 If the Negative bit is '0' program will branch. The 2's complement nu added to the PC. Since have incremented to fe instruction, the new add PC + 2 + 2n. This instruction. 1 1(2) Q2 Q3 Read literal nu operation Process operation Q2 Q3 Read literal No No Q2 Q3 Read literal nu Process operation Q3 Read literal nu Q4 Q5 Q5 Q6 </td				

Notes:

.

Branch if Not Overflow

BNOV		Branch if Not Overflow					
Syntax	:	[<i>label</i>]B	NOV n				
Operar	nds:	-128 ≤ n ≤	-128 ≤ n ≤ 127				
Operat	ion:		if Overflow bit is 'o' (PC) + 2 + 2n → PC				
Status	Affected:	None					
Encodi	ng:	1110	0101 nn	nn nnnn			
Descriț	otion:	If the Overflow bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Words:		1					
Cycles	:	1(2)					
Q Cyc If Jum	le Activity: p:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No operation	No operation	No operation	No operation			
lf No J	lump:						
_	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	No operation			
	le: PC ter Instruct If Overflo PC If Overflo PC	= ade tion w = 0; = ade w = 1;	BNOV Jump dress (HERE dress (Jump dress (HERE	:)			

Notes:

Branch if Not Zero

BNZ		Branch if	Branch if Not Zero				
Syntax:		[<i>label</i>] B	NZ n				
Operands:		-128 ≤ n ≤	127				
Operation:		if Zerobit (PC) + 2 +					
Status Affecte	d:	None					
Encoding:		1110	0001 nn:	nn nnnn			
Description:		If the Zero bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					
Words:		1					
Cycles:		1(2)					
Q Cycle Activ If Jump:	ity:						
Q1		Q2	Q3	Q4			
Decode		Read literal 'n'	Process Data	Write to PC			
No operatio	n	No operation	No operation	No operation			
If No Jump:							
Q1		Q2	Q3	Q4			
Decode		Read literal	Process	No			
		'n	Data	operation			
<u>Example</u> : Before In: PC		= ad	BNZ Jump				
lf Zen F If Zen	PC = address (HERE) After Instruction If Zero = 0; PC = address (Jump) If Zero = 1; PC = address (HERE + 2)						

Notes:

Branch if Overflow

BOV Branch if Overflow Syntax: [label] BOV n Operands: -128 ≤ n ≤ 127 Operation: if Overflow bit is '1' $(PC) + 2 + 2n \rightarrow PC$ Status Affected: None Encoding: 1110 0100 nnn nnnn If the Overflow bit is '1', then the Description: program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction. 1 Words: Cycles: 1(2) Q Cycle Activity: If Jump: Q1 02 Q3 Q4 Decode Read literal Process Write to PC 'n Data No No No No operation operation operation operation If No Jump: Q1 02 Q3 Q4 Decode Read literal Process No 'n Data operation Example: HERE DOV JUND Before Instruction PC = address (HERE) After Instruction If Overflow = 1: address (JUNP) PC = If Overflow = 0: PC address (HERE + 2) =

Notes:

Branch Unconditionally

BRA	\	Uncondit	Unconditional Branch					
Synt	ax:	[<i>label</i>]B	RA n				•	
Ope	rands:	-1024 ≤ n	≤ 1023					
Ope	ration:	(PC) + 2 +	$(PC) + 2 + 2n \rightarrow PC$					
Statu	us Affected:	None	None					
Enco	oding:	1101	1101 Onnn nnnn nnnn					
Des	cription:	[•] 2n' to the have incre instruction PC + 2 + 2	Add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction.					
Wor	ds:	1						
Cycl	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	3		Q4		
	Decode	Read literal 'n'	Proce Dat		Wr	ite to PC		
	No operation	No operation	No opera		op	No peration		
<u>Exar</u>	mple:	HERE	BRA	Jump				

			1	
Before Instructi	on			
PC	=	address	(HERE)	
After Instruction	1 I			
PC	=	address	(Jump)	

Branch if Zero

BZ	Branch if					
Syntax:	[label] B	Zn				
Operands:	-128 ≤ n ≤	127				
Operation:	if Zero bit i (PC) + 2 +					
Status Affected:	None					
Encoding:	1110	0000 mm	un noon			
Description:	If the Zero	bit is '1', the	n the			
	The 2's co added to the have increase instruction PC + 2 + 2	If the Zero bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.				
Words:	1					
Cycles:	1(2)					
Q Cycle Activity If Jump:	:					
	Q2	Q3	Q4			
If Jump:		Q3 Process Data	Q4 Write to PC			
If Jump: Q1	Q2 Read literal	Process				
If Jump: Q1 Decode No	Q2 Read literal Tr No	Process Data No	Write to PC			
If Jump: Q1 Decode No operation	Q2 Read literal Tr No	Process Data No	Write to PC			
If Jump: Q1 Decode No operation If No Jump:	Q2 Read literal Tr No operation Q2 Read literal	Process Data No operation Q3 Process	Write to PC No operation Q4 No			
If Jump: Q1 Decode No operation If No Jump: Q1	Q2 Read literal Tr No operation Q2	Process Data No operation Q3	Write to PC No operation Q4			
If Jump: Q1 Decode No operation If No Jump: Q1	Q2 Read literal Tr No operation Q2 Read literal	Process Data No operation Q3 Process	Write to PC No operation Q4 No			
If Jump: Q1 Decode No operation If No Jump: Q1 Decode Example: Before Instru- PC	Q2 Read literal m No operation Q2 Read literal m HERE uction = ad	Process Data No operation Q3 Process Data	Write to PC No operation Q4 No operation			
If Jump: Q1 Decode No operation If No Jump: Q1 Decode Example: Before Instru	Q2 Read literal m No operation Q2 Read literal m HERE uction = ad tion = 1;	Process Data No operation Q3 Process Data 82 Jump	Write to PC No operation Q4 No operation			

Notes:

✤ Go to address 1st word, 2nd word

Notes:

•

GOTO	Unconditional Branch					
Syntax:	[label] (GOTO k				
Operands:	$0 \le k \le 10$	48575				
Operation:	$k \to PC{<}2$	0:1>				
Status Affected:	None					
Encoding: 1st word (k<7:0> 2nd word(k<19:8			kkk kkkk _o ckk kkkk _o			
Description: GOTO allows an unconditional branch anywhere within the entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.						
Words:	2					
Cycles:	2					
Q Cycle Activity	:					
Q1	C(2	Q3	Q4			
Decode	Read literal 'K'<7:0>,	No operation	Read literal 'K'<19:8>, Write to PC			
No operation	No operation	No operation	No operation			

Example: COTO THERE

After Instruction

PC = Address (THERE)

5.5. Specialty Operations

This section contains detailed descriptions of PICmicro instructions that are useful, but do not fit into any of the tradition instruction categories. The three instructions discussed here are "Decimal Adjust WREG, DAW", "No Operation, NOP" and "Software Device Reset, RESET".

Notes:

Decimal Adjust WREG

DAW	Decimal Adjust W Register
Syntax:	[label] DAW
Operands:	None
Operation:	If $[W<3:0> > 9]$ or $[DC = 1]$ then $(W<3:0>) + 6 \rightarrow W<3:0>;$ else $(W<3:0>) \rightarrow W<3:0>;$
Status Affected: Encoding: Description:	If $[W<7:4> > 9]$ or $[C = 1]$ then $(W<7:4>) + 6 \rightarrow W<7:4>;$ else $(W<7:4>) \rightarrow W<7:4>;$ C, DC DAW adjusts the eight-bit value in
	W, resulting from the earlier addi- tion of two variables (each in packed BCD format) and produces a correct packed BCD result. The Carry bit may be set by DAW regard- less of its setting prior to the DAW instruction.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	Read Process Witte register W Data W
Example 1:	DAW
Before Instruct W C DC	ction = 0xA5 = 0 = 0
After Instructi	
W C DC	= 0x06 = 1 = 0
Example 2:	
Before Instruct W C DC	ction = 0xCE = 0 = 0
After Instructi	_
W C DC	= 0x34 = 1 = 0

No Operation

NOP		No Operation							
Synt	ax:	[label]	NOP						
Oper	ands:	None	None						
Oper	ation:	No operation							
Status Affected: None									
Enco	oding:	0000	0000	000		0000	1		
		1111	XXXX	300	cx	XXXX			
Desc	ription:	No opera	tion.				-		
Word	ds:	1							
Cycl	es:	1							
QC	yde Activity:								
	Q1	Q2	Q3	3		Q4			
	Decode	No operation	No opera		op	No veration]		

Example:

None.

Software Device Reset

RESET	Reset				Notes:			
Syntax:	[label]	RESET			•			
Operands:	None							
Operation:		Reset all registers and flags that are affected by a MCLR Reset.						
Status Affected:	AL							
Encoding:	0000	0000	1111	1111				
Description:		This instruction provides a way to execute a MCLR Reset in software.						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	5	Q4				
Decode	Start No Reset opera			No xeration				
Example:	RESET							

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value

Notes:

5.6. IEEE Standards for Floating Point

As much as we like integers, real world problems have fractions and decimals so we have to learn to deal with real numbers. Here are a few real numbers.

 $\begin{array}{rcl} \pi \rightarrow 3.14159265...\\ e \rightarrow 2.71828....\end{array}$

There are also large numbers that are not fractions, but still cannot be represented using the normal variable sizes (i.e. 32-bit) to store them. For example:

 $436,972,000,000,000 \rightarrow 4.36972 \times 10^{17}$

This number is the normalized (no leading 0) scientific notation (d.ddddd x 10ⁿ).

The need to represent real numbers and extremely large or small numbers has lead to the need for floating point representation. IEEE 754 floating-point standards, which are found in virtually every computer system since 1980, address these requirements.

Some microprocessors have floating point instructions built-in standard, while in others it has to been implemented in software. PICmicro does not have built-in floating point support, but the floating point operation may be implemented using the available instructions.

The remainder of this section discusses the IEEE 754 floating-point standards.

- Computer representation
 - Real numbers are represented as binary Floating Point format which is shown below: $1.ffffffff x 2^{eeeee}$
 - Where:

fffffff is the binary number representing the fractions eeee is the binary number representing the exponent

The 1 before the decimal point is assumed in floating point and it is not explicitly stored.

The benefits of always using Floating Point (Normalized Scientific notation in binary) are:

- Simplifies exchange of data no conversion required
- Simplifies arithmetic algorithms no conversion required
- Increases the accuracy of the stored number
- Single Precision Floating Point (Float) Representation

The Floating Point designer must make tradeoffs between the size of the fraction and the size of the exponent since word size is limited. In other words, the trade off is between precision (fraction), and range (exponent).

In both Single and Double Precision Floating Point format a single bit is used to represent the sign of fraction, where s=1 is negative and s=0 is positive.

Single Precision Format

Exponent				Fraction				
31	30	29		23	22		1	0
S	8 bit (Bia	s of si s = 12	gned exponei 7)	nts	2 ⁻¹	23 bits of fraction	2 ⁻²²	2 ⁻²³

Note: If we number the fraction bits from left to right $f_1, f_2, f_3, ...$ (-1)^s x (1 + fraction) x 2^(exponent - bias) = (-1)^s x {1 + (f_1 x 2⁻¹) + (f_2 x 2⁻²) + (f_3 x 2⁻³) + ...} x 2^(exponent-bias)

Example of binary word equivalent to floating point numbers:

 $-1.25x2^{18} \rightarrow 1$ 10010001 01000000000000000000 or (C8 90 00 00)_{hex} 1.25x2⁻¹ $\rightarrow 0$ 01111110 010000000000000000 or (3F 10 00 00)_{hex}

Note: The 1 left of decimal point (1.fff) is implicit and is not represented in the binary format.

In floating point, the programmer has to watch out for errors with a focus on the exponents. Below are the two error cases:

- Overflow
 - A situation in which a positive exponent becomes too large to fit in the exponent field.
- Underflow
 A situation in which a negative exponent becomes too large to fit in the exponent field.
- Example Given a single precision floating point "FEA0 0000h" write its equivalent decimal real number.

Solution: 1) Write in Binary equivalent → 1 111 1110 1010 ... 0 2) convert to Decimal → - 1.25 x 2^{126}

Double Precision Format

In order to represent larger numbers with more precision (reducing the possibility of underflow or overflow), IEEE 754 double precision floating point format is used. Here is an outline of double precision floating point format:

	32-bit word						32-bit word			
63	62	61		52	51		32	31		0
s 11 bits of exponents (Bias = 1023)			2^{-1} 52 bits of fraction 2^{-20} 2^{-21}				ิวท	2 ⁻⁵²		

Note: If we number the fraction bits from left to right $f_1, f_2, f_3, ...$ (-1)^s x (1 + fraction) x 2^(exponent - bias) = (-1)^s x {1 + (f_1 x 2⁻¹) + (f_2 x 2⁻²) + (f_3 x 2⁻³) + ...} x 2^(exponent-bias)

Summary of IEEE 754 Floating-Point Standards

Since the 1 to the left of the decimal is implicit we could say that the precision is 24 bit for single precision and 53 bits for the double precision floating point arithmetic.

For example, if we number the fraction bits from left to right f_1 , f_2 , f_3 , the value may be represented by: (-1)^s x (1 + fraction) x 2^{exponent} = (-1)^s x {1 + (f1 x 2⁻¹) + f2 x 2⁻²) + f3 x 2⁻³) + . . .} x 2^(exponent-bias) The following table outlines number ranges (valid and invalid) when using IEEE 754 floating point format:

Single Precision		Double Precision		Object Represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	nonzero	0	nonzero	\pm de-normalized number
1-254	anything	1-2046	anything	± floating –point number
255	0	2047	0	± infinity
255	nonzero	2047	nonzero	Nan (Not a Number)

Example - Single Precision

Convert -.75 to MIPS single precision binary format

$$-0.75 = (-1)^{1}x(1+1x2^{-1})(2^{-1}) = (-1)^{s}x\{1 + (f1 \times 2^{-1}) + f2 \times 2^{-2}) + f3 \times 2^{-3} + \ldots\} \times 2^{(exponent-bias)}$$

for single precision bias is $127 \rightarrow \text{exponent} - \text{bias} = -1 \rightarrow \text{exponent} = 126 = (0111 \ 1110)_2$

Therefore:

1	0111 1110	100 0000 0000 0000 0000 0000
s	8 bits of signed exponents (Bias = 127)	2^{-1} 23 bits of fraction 2^{-22} 2^{-23}

Example - Double Precision

Convert -.75 to MIPS Double precision binary format

$$-0.75 = (-1)^{1}x(1+1x2^{-1})(2^{-1}) = (-1)^{s}x\{1 + (f1 \times 2^{-1}) + f2 \times 2^{-2}) + f3 \times 2^{-3}\} + \dots \} \times 2^{(exponent-bias)}$$

for double precision bias is $1023 \rightarrow \text{exponent} - \text{bias} = -1 \rightarrow \text{exponent} = 1022 = (011 \ 1111 \ 1110)_2$

Therefore:

1	011 1111 1110	100 0000 0000 0000 0000 0000
s	11 bits of signed exponents (Bias = 1023)	2 ⁻¹ 52 bits of fraction 2 ⁻⁵²

> Example – Convert -5.25 $x2^{-2}$ to double precision floating point binary format.

Solution: "student exercise" > Example – Covert 1.25 $\times 10^{-1}$ to double precision floating point binary format.

Solution: "student exercise"

> Example – Write the decimal equivalent of the single precision floating point "C5D8 0000".

Solution: "student exercise"

"Ans: -6912"

Example – Write the single precision floating point binary equivalent for the decimal number "258.6875".

Solution: "student exercise"

"Ans: 0100 0011 1000 0000 0000 0000 010 1011"

- Example What's the largest and smallest possible number in:
 a) Single Precision Floating point format.
 b) Double Precision Floating point format.
 - Solution: "student exercise"

Floating-Point Addition

Here are the steps in the example of adding .1 and -.4375

Step 1. Adjust the smaller exponent to match the largest exponent (Fraction digit at the right place)

 Unmodified

Step 2. Add the adjusted significant (1.ffff)

Result Significant = 1.0 - 0.111 = 0.001

Step 3. Normalize the result

results = $(1.000 \times 2^{-3})_2$

Step 4. Round any additional fraction to the number of bits available

♦ Floating-Point Multiply Here are the steps in the example of multiplying $.1 \rightarrow (1.000 \times 2^{-1})_2$ and $..4375 \rightarrow (-1.110 \times 2^{-2})_2$.

Step 1. Add the exponents

If you are working with biased exponents that after adding subtract one bias out to correct for having double amount of bias in the result.

-1 + (-2) = -3

Step 2. Multiply the significant (1.ffff)

Result Significant = $1.000 \times (1.110) = 1.110$

Step 3. Normalize the result & Check for overflow

results = $(1.110 \times 2^{-3})_2$

Step 4. Round any additional fraction to the number of bits available

No changes

Step 5. Figure out the sign (if the operands' signs are the same then the product is positive and if the operands' signs are different then the product is negative)

results = $(-1.110 \times 10^{-3})_2$

5.7. Additional Resources

- Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology Incorporated.
- ◆ Huang,. PIC Microcontroller: An Introduction to Software & Hardware Interfacing, (2004) Thomson.
- Reese. <u>Microprocessor: From Assembly Language to C using the PIC18Fxxx2</u>. (2003) Course Technology.
- Peterson. <u>Computer Organization and Design</u>, (2007) Elsevier Service.
- IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754-1985), (1985 with 2008 revision) Institute of Electrical and Electronics Engineers.

5.8. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

CHAPTER 6. C/ASSEMBLY/MACHINE LANGUAGE EQUIVALENCIES

Key concepts and Overview

- Introduction
- Indirect Addressing
- Functions/Procedures
- Data Types
- Program Flow Controls
- Additional Resources

6.1. Introduction

In previous chapters, the underlying processor structure, instructions and logical design has been discussed. The objective of this chapter is to explore the compile process with specific focus on the equivalency between high level language (C language) and Assembly language.

We will be using PICmicro as the target processor and MPLAB's C18 as the compiler and development environment, which will be used to demonstrate examples of programming environment and build process. Refer to chapter 3 for step-by-step guide to installing, configuring and development using MPLAB's C18 IDE. Additional information regarding MPASM, C18 compiler and MPLAB IDE is available through the "Help>Topics" menu of the MPLAB IDE.

As discussed earlier, the high level language is compiled to Assembly and then to Machine language. The object code is combined with other pre-existing object codes to create the executable code that can be downloaded to the processor's program memory for execution. Although the steps described are common across the various systems, each processor and development environment would have its own unique file name and may combine one or more steps. Below are files that are generated during the build process of a C program in PICmicro environment:

• file.c

C program file containing the C language code. Although it is shown here as a single file, the C program commonly consists of many files and directories.

C code typically includes files that define data and references required by the C program. In PICmicro environment, each processor is defined through one such file. We are using processor P18F1220 therefore including file "p18f1220.h" (default location is C:\MCC18\h) would provide the register names, constants and other required definitions.

• file.lst

Listing file is generated after the compilation process and includes the c program and the corresponding assembly code. The listing file is placed in the same directory as the project by default. A text editor such as notepad may be best tool to view file.lst files.

Disassembly Listing which can be accessed from MPLAB IDE menu "View > Disassembly Listing" is a good tool for viewing the relationship between C and corresponding Assembly code. The rest of this chapter relies on this file to discuss the relationship between C and Assembly code.

- file.map Map file is generated by the linker and contains the symbols (variables, functions, ...) and their value. This file provides detailed information about the allocation of data and code.
- file.o

Object file is generated after the assembly program and contains the machine code (Binary). This code is combined with other object files required by the program to create the executable code that is downloaded to program memory for execution.

In the next few pages, an example of each of the above files for a simple C program is presented. The longer files have been truncated to show the type of content, and the reader is encouraged to use MAPLAB ID to view each file in its entirety and become familiar with type of information provided by each of these files.

C program file (c2asm_into.c)

"p18f1220.h" include file (default location is C:\MCC18\h).

```
/*_____
* $Id: p18f1220.h,v 1.11.2.1 2005/07/25 18:23:27 nairnj Exp $
* MPLAB-Cxx PIC18F1220 processor header
* (c) Copyright 1999-2005 Microchip Technology, All rights reserved
*-----*/
#ifndef __18F1220_H
#define __18F1220_H
extern volatile near unsigned char PORTA;
extern volatile near union {
 struct {
  unsigned RA0:1;
  unsigned RA1:1;
  unsigned RA2:1;
  unsigned RA3:1;
  unsigned RA4:1;
  unsigned RA5:1;
  unsigned RA6:1;
  unsigned RA7:1;
 };
 struct {
  unsigned AN0:1;
  unsigned AN1:1;
  unsigned AN2:1;
  unsigned AN3:1;
  unsigned :1;
  unsigned MCLR:1;
  unsigned CLKO:1;
  unsigned CLKI:1;
        MIDDLE SECTION OF THIS FILE HAS BEEN DELETED >>>>>
  <<<<<
/*-----
* CONFIG6H (0x30000b)
*-----*/
```

```
#define _CONFIG6H_DEFAULT 0xE0
#define _WRTB_ON_6H 0xBF
#define _WRTB_OFF_6H 0xFF
                  0xDF
#define _WRTC_ON_6H
#define _WRTC_OFF_6H
                    0xFF
#define _WRTD_ON_6H
                    0x7F
#define _WRTD_OFF_6H
                    0xFF
/*-----
* CONFIG7L (0x30000c)
*_____*/
#define _CONFIG7L_DEFAULT 0x03
#define _EBTR0_ON_7L 0xFE
#define _EBTR0_OFF_7L 0xFF
#define _EBTR1_ON_7L
#define _EBTR1_OFF_7L
                    0xFD
                    0xFF
/*-----
* CONFIG7H (0x30000d)
*-----*/
#define _CONFIG7H_DEFAULT 0x40
#define _EBTRB_ON_7H 0xBF
#define _EBTRB_OFF_7H 0xFF
#endif
```

Address	Value	Disassem	bly	Source
				/* \$Id: c018i.c,v 1.3.14.1 2006/01/24 14:50:12 rhinec
Exp \$ */				/* Copyright (c)1999 Microchip Technology */ /* MPLAB-C18 startup code, including initialized data
/				<pre>/ external reference to the user's main routine */ extern void main (void); /* prototype for the startup function */ void _entry (void); void _startup (void); /* prototype for the initialized data setup */ void _do_cinit (void);</pre>
				extern volatile near unsigned long short TBLPTR; extern near unsigned FSR0; extern near charFPFLAGS; #define RND 6
				<pre>#pragma code _entry_scn=0x000000 void entry (void)</pre>
000000	ef81 f000	GOTO	0x102	{ _asm goto _startup _endasm
000004	0012	RETURN	0x0	} #pragma code _startup_scn void _startup (void)
000102 000104	ee10 f080	LFSR	0x1,0x80	asm // Initialize the stack pointer lfsr 1, _stack
	ee20 f080	LFSR	0x2,0x80	lfsr 2, _stack
00010a POR	6af8	CLRF	0xf8,0x0	clrf TBLPTRU, 0 // 1st silicon doesn't do this on
00010c for floa	9c01 ting poir	BCF nt libs	0x1,0x6,0x0	<pre>bcfFPFLAGS,RND,0 // Initialize rounding flag</pre>
00010e 000110	ec16 f000	CALL	0x2c,0x0	_endasm _do_cinit ();
				loop:
000112 000114	ec65 £000	CALL	0xca,0x0	<pre>// Call the user's main routine main ();</pre>
000116 000118	d7fd 0012	BRA RETURN	0x112 0x0	<pre>goto loop; } /* end _startup() */</pre>
		~~~~	MIDDLE SECTION	OF THIS FILE HAS BEEN DELETED >>>>>
0000ba 0000bc	c0c9 fff8	MOVFF	0xc9,0xff8	
0000be 0000c0 0000c2 0000c4	0100 07c5 0e00 5bc6	MOVLB DECF MOVLW SUBWFB	0x0 0xc5,0x1,0x1 0x0 0xc6,0x1,0x1	<pre>/* next entry */ curr_entry;</pre>
0000c6	d7bf	BRA	0x46	goto test; done:

0000c8	0012	RETURN	0x0	; }
/*****	* * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * * * * *	****
				* File: c2asm_into.
				* Project: c to Assembly Language * Author:
				* Updated: 2/14/
******	******	* * * * * * * * * * *	* * * * * * * * * * * * * * * *	******
				//Process Specific definitions #include <p18f1220.h></p18f1220.h>
				-
		eturn param		<pre>// main() is the entry point to the program and does</pre>
0000ca 0000cc	cfd9 ffe6	MOVFF	0xfd9,0xfe6	void main(void)
0000ce 0000d0	cfel ffd9	MOVFF	0xfel,0xfd9	
0000d2	0e02 26e1	MOVLW	0x2	
0000d4	2001	ADDWF	0xe1,0x1,0x0	{
				int count;
0000d6 0000d8	cfde f002	MOVFF	0xfde,0x2	<pre>count = count + 1;</pre>
0000da 0000dc	cfdd f003	MOVFF	0xfdd,0x3	
0000de	0e01	MOVLW	0x1	
0000e0	2602	ADDWF	0x2,0x1,0x0	
0000e2	0e00 2203	MOVLW	0x0	
0000e4 0000e6	c002	ADDWFC MOVFF	0x3,0x1,0x0 0x2,0xfde	
0000e8	ffde	110 1 1	UNL / UNL GO	
0000ea	c003	MOVFF	0x3,0xfdd	
0000ec	ffdd			
0000ee	0e02	MOVLW	0x2	} //main()
0000£0 0000£2	5ce1 e202	SUBWF BC	0xe1,0x0,0x0 0xf8	
0000f4	6ae1	CLRF	0xel,0x0	
0000f6	52e5	MOVF	0xe5,0x1,0x0	
0000f8	6eel	MOVWF	0xe1,0x0	
0000fa	52e5	MOVF	0xe5,0x1,0x0	
0000fc 0000fe	cfe7 ffd9	MOVFF	0xfe7,0xfd9	
000100	0012	RETURN	0x0	
				LIST P=18F1220
				END
04:11:25	nairnj	Exp \$		; RCS Header \$Id: cmath18.asm,v 1.4.12.1 2006/01/13
	2	-		; CMATH18 DATA DEFINITION FILE
;******	* * * * * * * *	******	* * * * * * * * * * * * * * * * * *	**************************************
******	******	****	* * * * * * * * * * * * * * *	*****
MOD				MATH_DATA UDATA_ SIGN RES 1 ; save location for sign ir
MSB				FPFLAGSbits
exceptic	n flags			FPFLAGS RES 1 ; floating point library
				GLOBAL SIGN,FPFLAGS,

 Disassembly Listing - MPLAB IDE menu "View > Disassembly Listing" The remainder of this chapter, Disassembly Listing will be used to discuss the C program build process and resulting machine code.

	MCC18\src	c\traditional\startup\c018i.c
1:		/* \$Id: c018i.c,v 1.3.14.1 2006/01/24 14:50:12 rhinec Exp \$ */
2:		
3:		/* Copyright (c)1999 Microchip Technology */
4:		
5:		/* MPLAB-C18 startup code, including initialized data */
		/ Milab cit startup code, including initialized data /
6:		
7:		/* external reference to the user's main routine */
8:		extern void main (void);
9:		/* prototype for the startup function */
10:		void entry (void);
11:		void startup (void);
12:		/* prototype for the initialized data setup */
13:		<pre>void _do_cinit (void);</pre>
14:		
15:		extern volatile near unsigned long short TBLPTR;
16:		extern near unsigned FSR0;
17:		extern near char FPFLAGS;
18:		#define RND 6
19:		
20:		<pre>#pragma code _entry_scn=0x000000</pre>
21:		void
22:		_entry (void)
23:		Ī
24:		asm goto startup endasm
000	EF81	GOTO 0x102
002	F000	NOP
25:		
26:		}
004	0012	RETURN 0
27:		#pragma code startup scn
28:		void
29:		
		_startup (void)
30:		ł
31:		_asm
32:		// Initialize the stack pointer
33:		lfsr 1, stack
102	EE10	LFSR 0x1, 0x80
104	F080	NOP
34:	1000	
	<b>EE</b> 20	lfsr 2, stack
106	EE20	LFSR $0x2$ , $0x\overline{8}0$
108	F080	NOP
35:		
36:		clrf TBLPTRU, 0 // 1st silicon doesn't do this on POR
10A	6AF8	CLRF 0xff8, ACCESS
37:	-	
38:		bof EDELACS DND 0 // Initialize rounding flag for flasting
		<pre>bcfFPFLAGS,RND,0 // Initialize rounding flag for floating</pre>
point li		
10C	9C01	BCF 0x1, 0x6, ACCESS
39:		
40:		endasm
41:		do cinit ();
	· · · · · ·	
<<<	<< M.	IDDLE SECTION OF THIS FILE HAS BEEN DELETED >>>>>
F·\	1Mvdata\1	.ab\MPLAB\c2asm_intro\test.c
		····· ···· ···· ···· ··· ··· ··· ··· ·
L	-	

1: * File: c2asm into.c 2: 3: * Project: c to Assembly Language Equivalency 4: * Author: Class 5: * Updated: 2/14/10 **** 6: 7: 8: //Process Specific definitions 9: #include <p18f1220.h> 10: 11: // main() is the entry point to the program and does not accept or return parameters. void main(void) 12: 0CA CFD9 MOVFF 0xfd9, 0xfe6 0CC FFE6 NOP 0CE MOVFF 0xfe1, 0xfd9 CFE1 0 D 0 FFD9 NOP MOVLW 0x2 0D2 0E02 0D4 26E1 ADDWF 0xfe1, F, ACCESS 13: { 14: int count; 15: 16: count = count + 1;0D6 CFDE MOVFF 0xfde, 0x2 0D8 F002 NOP 0 da CFDD MOVFF 0xfdd, 0x3 0 DC F003 NOP 0 de 0E01 MOVLW 0x1 ADDWF 0x2, F, ACCESS 0E0 2602 0E2 0E00 MOVLW 0 ADDWFC 0x3, F, ACCESS 0E4 2203 0E6 C002 MOVFF 0x2, 0xfde 0E8 FFDE NOP MOVFF 0x3, 0xfdd 0EA C003 0EC FFDD NOP 17: } //main() 18: 0E02 MOVLW 0x2 0ee SUBWF 0xfe1, W, ACCESS 0F0 5CE1 0F2 E202 BC 0xf8 CLRF 0xfe1, ACCESS 0F4 6AE1 0F6 52E5 MOVF 0xfe5, F, ACCESS MOVWF 0xfel, ACCESS 0F8 6EE1 0FA 52E5 MOVF 0xfe5, F, ACCESS MOVFF 0xfe7, 0xfd9 0FC CFE7 OFE FFD9 NOP 100 0012 RETURN 0

# Map file (c2asm_into.map)

MPLINK 4.02, Linker					
Linker Map File - Created	Sun Feb 28 1	15:10:08 203	10		
		ion Info	· ·		
Section	Туре	Address	Location	Size(Bytes)	
entry scn	code	0x000000	program	0x000006	
cinit	romdata	0x00002a		0x000002	
cinit scn	code	0x00002c		0x00009e	
.code test.o	code	0x0000ca		0x000038	
startup scn	code	0x000102		0x000018	
.idata c018i.o i	romdata	0x00011a		0x000000	
.romdata_c018i.o	romdata	0x00011a	program	0x000000	
.code_c018i.o	code	0x00011a	program	0x000000	
.idata_test.o_i	romdata	0x00011a	program		
.romdata_test.o	romdata	0x00011a	program		
MATH_DATA	udata	0x000000	data		
.tmpdata	udata	0x000002	data		
.stack	udata	0x000080	data		
.udata_c018i.o	udata	0x0000c0	data data		
.idata_c018i.o	idata udata	0x0000ca 0x0000ca	data data		
.udata_test.o .idata test.o	idata	0x0000ca	data		
SFR UNBANKEDO	udata	0x000f80	data		
246 out of 437				n memory utilizat	tion is 5%
Name	Symbols Address	- Sorted by Location	y Name Storage	Filo	
return_lb100000	0x000004	program	static		
return_lb100001	0x000118	program	static		
return_lbl00002	0x0000c8	program	static		
<<<< MIDDLE SE	ECTION OF	' THIS FI	le has e	BEEN DELETED	>>>>>
TBLPTRL	0x000ff6	data	extern		
TBLPTR	0x000ff6	data	extern		
TBLPTRH	0x000ff7	data	extern		
TBLPTRU	0x000ff8	data	extern		
	0x000ff9	data	extern		
PCL					
PC	0x000ff9	data	extern		
PC PCLATH	0x000ffa	data	extern		
PC PCLATH PCLATU	0x000ffa 0x000ffb	data data	extern extern		
PC PCLATH PCLATU STKPTRbits	0x000ffa 0x000ffb 0x000ffc	data data data	extern extern extern		
PC PCLATH PCLATU STKPTRbits STKPTR	0x000ffa 0x000ffb 0x000ffc 0x000ffc	data data data data	extern extern extern extern		
PC PCLATH PCLATU STKPTRbits STKPTR TOSL	0x000ffa 0x000ffb 0x000ffc 0x000ffc 0x000ffd	data data data data data	extern extern extern extern extern		
PC PCLATH PCLATU STKPTRbits STKPTR	0x000ffa 0x000ffb 0x000ffc 0x000ffc	data data data data	extern extern extern extern		

## 6.2. Indirect Addressing (INDFn)

Compliers use Indirect addressing to generate relocatable code and dynamically change the memory address to be accessed. This section outlines indirect addressing based on PICmicro's implementation.

Indirect addressing uses three FSRn registers (FSR0, FSR1, FSR2) as pointers to the data memory location that is to be read or written. These register contain the address of the data memory being affected. The size of memory on PICmicro is 4096 bytes which means an address is 12 bits and requires two bytes to store. The three sets of indirect addressing subsystems are addressed by:

- FSR0: composed of FSR0H:FSR0L "FEA : FE9"
- FSR1: composed of FSR1H:FSR1L "FE2 : FE1"
- FSR2: composed of FSR2H:FSR2L "FDA : FD9"

Typically, FSRn is initialized by LFSR instruction as shown by the following example:

LFSR FSR0, 0x1065 ;Sets the initial address of indirect addressing subsystem 0 to 1065h

The data is read or written by accessing one of the special function registers associated with each FSRn. The following list provides an overview of each of the special registers and their corresponding activity:

- Indirectly access register (pointed to by FSRn), then do nothing else (no change) INDFn
- Indirectly access register, then auto-decrement FSRn (post-decrement) POSTDECn
- Indirectly access register, then auto-increment FSRn (post-increment) POSTINCn
- Auto-increment FSRn, then indirectly access register (pre-increment) PREINCn
- Use the value in the WREG register as an offset to FSRn. It will not modify the value of the WREG or the FSRn register after an indirect access (nochange) – PLUSWn

Summary of all the Special Function Registers associated with each Indirect Addressing Subsystem (IASn):

IAS 0	IAS 1	IAS 2
FSR0H : FSR0L	FSR1H : FSR1L	FSR2H :FSR2L
INDF0	INDF1	INDF2
POSTDEC0	POSTDEC1	POSTDEC2
POSTINC0	POSTINC1	POSTINC2
PREINC0	PREINC1	PREINC2
PLUSW0	PLUSW1	PLUSW2

**Example -** Describe the function performed by the following Code Segment.

	LFSR	FSR0,0x100
NEXT:	SETF	POSTINC0
	BTFSS	FSR0H, 1
	GOTO	NEXT
CONT:	BRA	CONT

#### Solution:

Sets locations 0x100 through 0x1FF to the value 0xFF

Example - Write a PICmicro code segment using indirect addressing to move content from location 100-150h to 2050-2000h.

#### Solution:

LFSR FSR0, 0x100 LFSR FSR1, 0x2050 MOVLW 0x51 MOVWF 0x80

MOVE_IT:

MOVFF POSTINC0, POSTDEC1 DECF 0x80 BNZ MOVE_IT

 Example - Show the content of memory that has been changed by the following code segment and their new contents.

MOVLW	12h
MOVWF	FSR0L
MOVLW	23h
MOVWF	FSR0H
MOVLW	15h
MOVWF	POSTDEC0
ADDLW	2h
MOVWF	POSTINC0
ADDLW	5
MOVWF	INDF0

# Solution:

Location and content in Hex  $\rightarrow$ 

Location	<u>Content</u>
2311	17h
2312	1Ch

#### 6.3. Functions / Procedures

- Code Entry Point, main()
  - Syntax
     // entry into the code void main (void)
     {
     Statements

}

Example - Disassembly Listing

```
/*****
1:
                  * File: c2asm_into.c
2:
3:
                  * Project: c to Assembly Language Equivalency
                  * Author: Class
4:
5:
                  * Updated: 2/14/10
                            *****
6:
7:
8:
                 //Process Specific definitions
                 #include <p18f1220.h>
9:
10:
11:
                 // main() is the entry point to the program and does not accept or return
parameters.
12:
                 void main (void)
  0CA
        CFD9
                 MOVFF 0xfd9, 0xfe6
  0CC
        FFE6
                 NOP
  0CE
       CFE1
                 MOVFF 0xfel, 0xfd9
  0D0
         FFD9
                 NOP
                 MOVLW 0x2
  0D2
         0E02
  0D4
         26E1
                 ADDWF 0xfel, F, ACCESS
13:
                 {
14:
                    int count;
15:
16:
                    count = count + 1;
  0D6
         CFDE
                 MOVFF 0xfde, 0x2
        F002
  0D8
                 NOP
        CFDD
                 MOVFF 0xfdd, 0x3
  0 da
  0DC
        F003
                 NOP
  ODE
         0E01
                 MOVLW 0x1
  0E0
                 ADDWF 0x2, F, ACCESS
         2602
  0E2
         0E00
                 MOVLW 0
  0E4
         2203
                 ADDWFC 0x3, F, ACCESS
  0E6
         C002
                 MOVFF 0x2, 0xfde
  0E8
        FFDE
                 NOP
                 MOVFF 0x3, 0xfdd
  0EA
        C003
  0ec
         FFDD
                 NOP
17:
18:
                 } //main()
  0ee
         0E02
                 MOVLW 0x2
                 SUBWF 0xfe1, W, ACCESS
  0F0
         5CE1
                 BC 0xf8
  0F2
         E202
         6AE1
                 CLRF 0xfe1, ACCESS
  0F4
  0F6
         52E5
                 MOVF 0xfe5, F, ACCESS
                 MOVWF 0xfel, ACCESS
  0F8
         6EE1
  OFA
         52E5
                 MOVF 0xfe5, F, ACCESS
  OFC
         CFE7
                 MOVFF 0xfe7, 0xfd9
  OFE
         FFD9
                 NOP
  100
         0012
                 RETURN 0
```

# Function/Procedures

SyntaxCal

Call name(argument list, if any);

 Definition name(argument list, if any) argument declarations, if any { declarations and statements, if any }

# Example - Disassembly Listing

	ne - Disassembly Listing
F:\1Mydat	a\lab\MPLAB\c2asm_intro\test.c
14:	void main(void)
OCA CFD9	MOVFF 0xfd9, 0xfe6
OCC FFE6	
OCE CFE1	
0D0 FFD9	
0D2 0E02	
0D4 26E1	
15:	{
16:	int count;
17:	
18:	
19:	<pre>fun add(count); // Call</pre>
0D6 CFDE	
0D0 CFBE	
ODA CFDE	
ODC FFE6	
0DE D80C	
0E0 52E5	MOVF 0xfe5, F, ACCESS
0E2 52E5	
20:	
21:	} //main()
0E4 0E02	
0E6 5CE1	
0E8 E202	
0EA 6AE1	
OEE 6EE1	
0F0 52E5	
OF2 CFE7	
OF4 FFD9	NOP
0F6 0012	RETURN 0
22:	
23:	<pre>// function definition</pre>
24:	int fun add(int op)
0F8 CFD9	MOVFF 0xfd9, 0xfe6
OFA FFE6	
0FC CFE1	
OFE FFD9	
25:	{
26:	-
	op = op + 1;
100 0E01	
102 6EE7	
104 OEFC	
106 CFDE	
108 F002	NOP
10A 0EFE	MOVLW 0xfe
10C CFDE	MOVFF 0xfdb, 0x3
10E F003	
110 50E7	
112 2602	
114 0E00	
116 2203	
110 2203	MUDWEC UAS, E, ACCESS

118	OEFD	MOVLW 0xfd
11A	C002	MOVFF 0x2, 0xfdb
11C	FFDB	NOP
11E	OEFE	MOVLW 0xfe
120	C003	MOVFF 0x3, 0xfdb
122	FFDB	NOP
27:		return (op);
124	0efd	MOVLW 0xfd
126	CFDB	MOVFF 0xfdb, 0x2
128	F002	NOP
12A	OEFE	MOVLW 0xfe
12C	CFDB	MOVFF 0xfdb, 0x3
12E	F003	NOP
130	C002	MOVFF 0x2, 0xff3
132	FFF3	NOP
134	C003	MOVFF 0x3, 0xff4
136	FFF4	NOP
138	D000	BRA 0x13a
28:		} // fun_add
13A	52E5	MOVF 0xfe5, F, ACCESS
13C	CFE7	MOVFF 0xfe7, 0xfd9
13E	FFD9	NOP
140	0012	RETURN 0

## 6.4. Data Types

*	Co ≽	nstant Syntax #define	CONSTANT_I	NAME	Value
	۶	Assembly Equiv		Value	
		Examples C Example #define #define	CONST_EX CHAR_EX	10 'h'	
		<ul> <li>Assembly E CONST_EX CHAR_EX</li> </ul>		10 'h'	
*		aracter			

> Syntax char ch_ex;

Example – .lst file

17:		char ch ex;
18: 19:		_
19:		ch ex = 'h';
0ec	0E68	MOVLW 0x68
OEE	6EDF	MOVWF 0xfdf, ACCESS

#### > String

String is a list of characters terminated by a null character '\0'. C language does not support string declaration as type different from Character.

#### ✤ Integer

> Syntax int int_ex;

// typically size of int is equal to processor word size

> Example – Disassembly Listing (PIC micro implements integer in 16 bits)

14:		int int_ex;
14: 15: 16:		
16:		int ex = 0x29;
0D6	0E29	MOVLW 0x29
0D8	6EDE	MOVWF 0xfde, ACCESS
0 da	6ADD	CLRF 0xfdd, ACCESS
17:		

 Float "single-precision floating point" & Double "double-precision floating point" PICmicro has implemented float and double based on IEEE single precision format discussed in Chapter 5. The float range is shown below:

 $2^{-126} = 1.17549435 E - 38$  to  $2^{128} * (2 - 2^{-15}) = 6.80564693 E + 38$ 

- Syntax float float_ex; // uses IEEE Single precision format double double_ex; // uses IEEE Single precision format
- Example Disassembly Listing

Float		
14:		float flt ex;
15:		_
16:		flt ex = $29.35;$
0D6	0ECD	MOVLW 0xcd
0D8	6EDE	MOVWF 0xfde, ACCESS
0 da	0ECC	MOVLW 0xcc
0DC	6EDE	MOVWF 0xfde, ACCESS
0 de	OEEA	MOVLW 0xea
0E0	6EDE	MOVWF 0xfde, ACCESS
0E2	0E41	MOVLW 0x41
0E4	6EDD	MOVWF 0xfdd, ACCESS
0E6	52DD	MOVF 0xfdd, F, ACCESS
0E8	52DD	MOVF 0xfdd, F, ACCESS
17:		

#### Double

	double dbl ex;
	_
	dbl_ex = 29.35;
0ECD	MOVLW 0xcd
6EDE	MOVWF 0xfde, ACCESS
0ECC	MOVLW 0xcc
6EDE	MOVWF 0xfde, ACCESS
0eea	MOVLW 0xea
6EDE	MOVWF 0xfde, ACCESS
0E41	MOVLW 0x41
6EDD	MOVWF 0xfdd, ACCESS
52DD	MOVF 0xfdd, F, ACCESS
52DD	MOVF 0xfdd, F, ACCESS
	6EDE 0ECC 6EDE 0EEA 6EDE 0E41 6EDD 52DD

# Pointers

Syntax type *var_p; type var;	<pre>// declares pointer to a variable of declared type // declaring a variable of declared type</pre>
var= *var_p; var_p = &var	<ul><li>// Assign the content of the address pointed to by a pointer to a variable</li><li>// Assign address of variable to the pointer variable</li></ul>

# > Example – Disassembly Listing

13:		ł	
14:		char chv;	// decalre a variable
15:		char *chp;	// declare a pointer
16:		<u>-</u> -,	
17:		chv = 'h';	// set variable to h
0D6	0E68	MOVLW 0x68	
0D8	6EDF	MOVWF 0xfdf, ACCESS	
18:		chp = &chv	<pre>// move content of pointer to variable</pre>
0 da	CFD9	MOVFF 0xfd9, 0x2	-
0DC	F002	NOP	
0 de	CFDA	MOVFF 0xfda, 0x3	
0E0	F003	NOP	
0E2	0E01	MOVLW 0x1	
0E4	C002	MOVFF 0x2, 0xfdb	
0E6	FFDB	NOP	
0E8	0E02	MOVLW 0x2	
0EA	C003	MOVFF 0x3, 0xfdb	
0EC	FFDB	NOP	
19:		*chp = 'g';	<pre>// set the location pointed to by chp to g</pre>
OEE	0E01	MOVLW 0x1	
0F0	CFDB	MOVFF 0xfdb, 0xfe9	
0F2	FFE9	NOP	
0F4	0E02	MOVLW 0x2	
0F6	CFDB	MOVFF 0xfdb, 0xfea	
0F8	FFEA	NOP	
OFA	0E67	MOVLW 0x67	
OFC	6EEF	MOVWF 0xfef, ACCESS	
20:		chv = *chp;	<pre>// move content of pointer to variable</pre>
OFE	0E01	MOVLW 0x1	
100	CFDB	MOVFF 0xfdb, 0xfe9	
102	FFE9	NOP	
104	0E02	MOVLW 0x2	
106	CFDB	MOVFF 0xfdb, 0xfea	
108	FFEA	NOP	
10A	CFEF	MOVFF 0xfef, 0xfdf	
10C	FFDF	NOP	
21:			
			-

- ✤ Arrays
  - Syntax type ar_name[size dim1]; // declare an array
  - Example Disassembly Listing

```
0CA
         CFD9
                  MOVFF 0xfd9, 0xfe6
   0CC
         FFE6
                  NOP
                  MOVFF 0xfel, 0xfd9
   0CE
         CFE1
   0D0
                  NOP
         FFD9
  0D2
                  MOVLW 0xa
         0E0A
  0D4
                  ADDWF 0xfel, F, ACCESS
         26E1
13:
                  {
                         char ch[10];
                                             // decalre a variable
14:
15:
                         ch[0] = 'a';
                                               // set the first element to a
16:
  0D6
         0E61
                  MOVLW 0x61
                 MOVWF 0xfdf, ACCESS
  0D8
         6EDF
                         ch[9] = 'j';
17:
                                             // set the last element to j
         0E6A
                 MOVLW 0x6a
  0 da
   0DC
         6EF3
                  MOVWF 0xff3, ACCESS
                  MOVLW 0x9
   0 de
         0E09
   0E0
         CFF3
                  MOVFF 0xff3, 0xfdb
   0E2
         FFDB
                  NOP
18:
```

- Structures
  - > Syntax
    - Defining a new type

// new type struct new-type{ list of declarations };

struct new_type new_struct; // defines a variable new_struct of the type new_type

Defining a new structure
 // new type
 struct {
 list of declarations
 } new_struct1, new_struct2;

#### Example – Disassembly Listing

12:		void main(void)	
0CA	CFD9	MOVFF 0xfd9, 0xfe6	
0CC	FFE6	NOP	
0CE	CFE1	MOVFF 0xfe1, 0xfd9	
0D0	FFD9	NOP	
0D2	OEOF	MOVLW 0xf	
0D4	26E1	ADDWF 0xfel, F, ACCESS	
13:		{	
14:		char name;	
15:		struct record	
16:		{	
17:		int id;	
18:		char name[10];	
19:		int grade;	
20:		};	
21:		<pre>struct record student = {1,"Great", 100};</pre>	
0D6	0E01		
0D8	6EF3		
0DA	CFF3		
0DC	FFDB	NOP	
0DE	0E02		
0E0	6ADB		
0E2	50D9		
0E4	0F03	ADDLW 0x3	
0E6	6EE9		
0E8	CFDA	MOVFF 0xfda, 0xfea	
0EA	FFEA	NOP	
0EC	0E47	MOVLW 0x47	
OEE	6EEE	MOVWF 0xfee, ACCESS	
OFO	0E72	MOVLW 0x72	
0F2	6EEE	MOVWF 0xfee, ACCESS	
0F4	0E65	MOVLW 0x65	
0F6	6EEE	MOVWF 0xfee, ACCESS	
0F8	0E61	MOVLW 0x61	
OFA	6EEE	MOVWF 0xfee, ACCESS	
OFC	0E74		
OFE	6EEE		
100	6AEE	CLRF 0xfee, ACCESS	
102	0E3E	MOVLW 0x3e	
104	6EEE		
106	6EEE		
108	6EEE		
10A	6EEE	MOVWF 0xfee, ACCESS	
10C	0E64	MOVLW 0x64	
10E	6EF3	MOVWF 0xff3, ACCESS	

110	0E0D	MOVLW 0xd
112	CFF3	MOVFF 0xff3, 0xfdb
114	FFDB	NOP
116	OEOE	MOVLW 0xe
118	6ADB	CLRF 0xfdb, ACCESS
22:		
23:		} //main()
11A	OEOF	MOVLW 0xf
11C	5CE1	SUBWF 0xfel, W, ACCESS
11E	E202	BC 0x124
120	6AE1	CLRF 0xfe1, ACCESS
122	52E5	MOVF 0xfe5, F, ACCESS
124	6EE1	MOVWF 0xfel, ACCESS
126	52E5	MOVF 0xfe5, F, ACCESS
128	CFE7	MOVFF 0xfe7, 0xfd9
12A	FFD9	NOP
12C	0012	RETURN 0

Note: NOP instructions listed above are actually the second word of two-word instruction.

// 1 byte/char

// integer is 2 bytes

- **Example** The following C program segment:
  - // Available data memory start at 0x80

Struct { char name[30]; int sid; char grade[2];

} Students [20];

a) Find the location of student[2].grade[1].b) Find the location for student [9].sid;

# Solutions

## 6.5. Program Flow Controls

If-Then-Else

```
Syntax
if (condition) {
statements
}
else {
statements
```

}

 $\geq$ 

Example – Disassembly Listing

```
12:
                 void main (void)
  0CA
         CFD9
                 MOVFF 0xfd9, 0xfe6
  0CC
         FFE6
                 NOP
                 MOVFF 0xfel, 0xfd9
  0CE
         CFE1
  0D0
         FFD9
                 NOP
  0D2
         0E02
                 MOVLW 0x2
                 ADDWF 0xfel, F, ACCESS
  0D4
         26E1
13:
                 {
14:
                        int count=8;
  0D6
         0E08
                 MOVLW 0x8
                 MOVWF 0xfde, ACCESS
  0D8
         6EDE
         6ADD CLRF 0xfdd, ACCESS
  0DA
15:
16:
                        if (count < 5) {
  0DC
                 MOVFF 0xfde, 0x2
        CFDE
         F002
  0 de
                 NOP
         CFDD
                 MOVFF 0xfdd, 0x3
  0E0
  0E2
                 NOP
         F003
  0E4
         90D8
                 BCF 0xfd8, 0, ACCESS
         5003
  0E6
                 MOVF 0x3, W, ACCESS
  0E8
         E604
                 BN 0xf2
  0ea
         0E05
                MOVLW 0x5
  0ec
         5C02 SUBWF 0x2, W, ACCESS
  0ee
         0E00
                 MOVLW 0
  0F0
         5803
                 SUBWFB 0x3, W, ACCESS
       E20D BC 0x10e
  0F2
17:
                               count = count + 5;
  0F4
         CFDE
                 MOVFF 0xfde, 0x2
  0F6
         F002
                 NOP
         CFDD
  0F8
                 MOVFF 0xfdd, 0x3
  OFA
         F003
                 NOP
  OFC
         0E05
                 MOVLW 0x5
         2602
                ADDWF 0x2, F, ACCESS
  OFE
               MOVLW 0
  100
         0E00
  102
         2203
                 ADDWFC 0x3, F, ACCESS
                MOVFF 0x2, 0xfde
  104
        C002
  106
       FFDE
              NOP
  108
         C003
                 MOVFF 0x3, 0xfdd
  10A
         FFDD
                 NOP
18:
                        }
                        else{
19:
  10C
       D00C
              BRA 0x126
                              count = count - 5;
20:
  10E
        CFDE
                 MOVFF 0xfde, 0x2
  110
         F002
                 NOP
                 MOVFF 0xfdd, 0x3
  112
         CFDD
  114
         F003
                 NOP
  116
         0E05
                 MOVLW 0x5
  118
         5E02
                 SUBWF 0x2, F, ACCESS
  11A
         0E00
                 MOVLW 0
  11C
         5A03
                 SUBWFB 0x3, F, ACCESS
  11E
         C002
                 MOVFF 0x2, 0xfde
  120
         FFDE
                 NOP
```

122	C003	MOVFF 0x3, 0xfdd
124	FFDD	NOP
21:		}
22:		
23:		} //main()
126	0E02	MOVLW 0x2
128	5CE1	SUBWF 0xfe1, W, ACCESS
12A	E202	BC 0x130
12C	6AE1	CLRF 0xfe1, ACCESS
12E	52E5	MOVF 0xfe5, F, ACCESS
130	6EE1	MOVWF 0xfel, ACCESS
132	52E5	MOVF 0xfe5, F, ACCESS
134	CFE7	MOVFF 0xfe7, 0xfd9
136	FFD9	NOP
138	0012	RETURN 0

**Example** – Write the following C code in its equivalent PICmicro assembly:

Solution

# ✤ While Loop

Syntax while (condition){ statements

# > Example – Disassembly Listing

11:		// main() is the entry point to the program and does not accept or return
paramete	rs.	
12:		void main(void)
0CA	CFD9	MOVFF 0xfd9, 0xfe6
0CC	FFE6	NOP
0CE	CFE1	MOVFF 0xfe1, 0xfd9
0D0	FFD9	NOP
0D2	0E02	MOVLW 0x2
0D4	26E1	ADDWF 0xfel, F, ACCESS
13:		{
14:		int count;
15:		while (count <= 10) {
0D6	CFDE	MOVFF 0xfde, 0x2
0D8	F002	NOP
0 DA	CFDD	MOVFF 0xfdd, 0x3
0DC	F003	NOP
0 DE	3403	RLCF 0x3, W, ACCESS
0E0	E204	BC 0xea
0E2	5002	MOVF 0x2, W, ACCESS
0E4	080A	SUBLW 0xa
0E6	0E00	MOVLW 0
0E8	5403	SUBFWB 0x3, W, ACCESS
0EA	E305	BNC 0xf6
0F4	D7F0	BRA 0xd6
16:		count++;
0ec	2ADF	INCF 0xfdf, F, ACCESS
0ee	0E01	MOVLW 0x1
0F0	E301	BNC 0xf4
0F2	2ADB	INCF 0xfdb, F, ACCESS
17:		}
18:		
19:		
20:		} //main()
0F6	0E02	MOVLW 0x2
0F8	5CE1	SUBWF 0xfe1, W, ACCESS
OFA	E202	BC 0x100
OFC	6AE1	CLRF 0xfe1, ACCESS
OFE	52E5	MOVF 0xfe5, F, ACCESS
100	6EE1	MOVWF 0xfe1, ACCESS
102	52E5	MOVF 0xfe5, F, ACCESS
104	CFE7	MOVFF 0xfe7, 0xfd9
106	FFD9	NOP
108	0012	RETURN 0

# For Loop

```
Syntax
for (Intialization<sub>optional</sub>; Condition<sub>optional</sub>; Action<sub>optional</sub>){
statements
```

}

Example – Disassembly Listing

12:		void main(void)
0CA	CFD9	MOVFF 0xfd9, 0xfe6
0CC	FFE6	NOP
OCE	CFE1	MOVFF 0xfe1, 0xfd9
0D0	FFD9	NOP
0D2	0E02	MOVLW 0x2
0D4	26E1	ADDWF 0xfel, F, ACCESS
13:		{
14:		int count;
15:		<pre>for (count=0; count&lt;10 ; count++) {</pre>
0D6	6ADE	CLRF 0xfde, ACCESS
0D8	6ADD	CLRF 0xfdd, ACCESS
0 da	CFDE	MOVFF 0xfde, 0x2
0 DC	F002	NOP
0 DE	CFDD	MOVFF 0xfdd, 0x3
0E0	F003	NOP
0E2	90D8	BCF 0xfd8, 0, ACCESS
0E4	5003	MOVF 0x3, W, ACCESS
0E6	E604	BN 0xf0
0E8	0E0A	MOVLW 0xa
0EA	5C02	SUBWF 0x2, W, ACCESS
0EC	0E00	MOVLW 0
OEE	5803	SUBWFB 0x3, W, ACCESS
0F0	E205	BC 0xfc
0F2	2ADF	INCF 0xfdf, F, ACCESS
0F4	0E01	MOVLW 0x1
0F6	E301	BNC Oxfa
0F8	2ADB	INCF 0xfdb, F, ACCESS
0FA	D7EF	BRA Oxda
16:		}
17:		
18:		
19:		} //main()

# 6.6. Additional Resources

- Kernighan & Ritchie. <u>The C Programing Language</u>, (1978) Prentice-Hall
- Peterson. <u>Computer Organization and Design</u>, (2007) Elsevier Service.
- Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology Incorporated.

## 6.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

# CHAPTER 7. PERFORMANCE

# Key concepts and Overview

- CPU Performance and Relating Factors
- Evaluating Performance and Bench Marking
- Performance Bench Marking Design
- Additional Resources

## 7.1. CPU Performance and Relating Factors

As discussed earlier, performance is growing in importance as criteria of microprocessor design. As the memory size and functionality have grown, performance becomes one of the most important factors in design of computer system.

The first step in understanding, analyzing and designing a system with respect to performance is to agree on these key definitions.

Defining Performance

Depending on your application, you may emphasize a subset of performance attributes in your selection or design of computer systems. For example, if you are designing an enterprise system for a fortune 500 corporation, you will have different needs than if you are designing a gaming computer system for a hobbyist.

Here are a few terminologies to consider:

Performance and Execution Time

It is common to use Performance and Execution Time to refer to the overall performance of a system. The total time required for the computer to complete a task, including disk access, memory access, I/O activities, Operating system overhead, CPU execution time and others may be referred to as the execution time. As shown below, execution time is inversely proportional to the performance as shown below:

$$Performance = \frac{1}{Execution Time}$$

To maximize performance is to minimize the Execution time. If computer X runs faster than Y, then it is said that computer X is n time faster than Y, when:

$$n = \frac{Performance_{X}}{Performance_{Y}} = \frac{Execution Time_{Y}}{Execution Time_{X}}$$

It can be confusing to use the terms "increasing" and "decreasing" in conjunction with "performance" and "execution time" since they denote the opposites. For example, an increase in performance is desirable. On the other hand, increased execution time is undesirable. So to remove this confusion, the industry typically uses the words "Improve performance" or "Improve Execution time " instead of the terms "increase performance" or "decrease execution time"

#### Measuring Performance

Computer performance is measured in term of execution time in seconds per program.

Elapsed Time

Elapsed Time is defined by the wall-clock time, elapsed time, also called "response time," refers to the time a program takes to execute from the start to the end of as is observed by the user. This includes all aspects of activities such as memory, execution and delays.

 CPU Execution Time or CPU Time (corresponding to CPU performance) A processor is typically shared amongst multiple programs. CPU execution time or CPU time, is the time the processor, is actually executing the program. Note that in this case, CPU time does not include activities such as memory access, disk access and others.

CPU time can be further classified as:

- User CPU Time CPU time spent on the program
- System CPU Time CPU time spent on the operating system performing tasks on behalf of the program.
- Clock or System Clock Computer systems have a main clock. The Clock's frequency (f) and period (T=1/f) are used in discussion of bottom up performance.

As mentioned earlier, measuring performance depends on many factors and the type of applications being considered. Therefore, there are a variety of techniques in measuring performance. In some cases, the designer has to consider CPU performance in terms of number of instructions and number of cycles per instruction. This method is referred to as the bottom up method.

On the other hand, there are cases when the underlying application and system code are not available or are too complex for an instruction by instruction performance measurement. In these type cases, benchmark performance measure will be used.

CPU Performance Factors

When we have access to the code and the application is not too complex, we are able to do a detailed analysis of the number of clock cycles the CPU takes to perform a specific task.

> CPU time in terms of CPU Clock is one the most basic measurements of performance.

CPU Execution time for a program = (# of CPU Clock Cycle for a Program) * (Clock Cycle Time)

or

CPU Execution time for a program = (# of CPU Clock Cycle for a Program) / (Clock freq. or rate)

So, to improve performance is to either use less clock cycles or reduce clock cycle time. But many techniques to reduce number of clock cycles will also increase the clock cycle time.

Example

Let's say your computer is running GTW (Good Time Waster) game with a 1.2 second response time.

Company VGC (Very Good Computer) is claiming that their new computer, VIC, instruction set requires only half the clock cycles of your computer and the Clock Frequency is 20% higher.

What would you expect the GTW game response time to be on VIC.

Solution: For your computer, we have CPU Execution time = A / B = 1.2 seconds where: A is # of CPU cycles and B is the CPU clock frequency

For VIC, we have CPU execution time = (A/2) / (1.2 B)= (A/B)(1/2.4) = (1.2 sec)(1/2.4) = 0.5 Sec. As a result, VIC would be a higher-performing computer compared to the current computer.

 Example – What's the execution time of PIC micro system with 10 Mhz clock running the following code:

	CLRF	0x30
Loop:	MOVWF	0x29
-	DECF	0x30
	ADDWF	0x31
	BNZ	Loop

Solution:

Average Clock Cycle per Instruction

If you have access to the code but the application is becoming more complex, you can simplify have your performance measure by using average Clock Cycles per Instruction (CPI) measure. At the core, CPI is the average number of cycles to execute an instruction in a code segment. CPI allows one to count # of instruction and not have the responsibility to know the number of cycles required by each instruction.

Using the above Definition we can write the following relationships:

# CPU Clock Cycles =

(# of instructions for a program) * (Average Clock Cycle Per Instruction, CPI)

Using the above relationship we can find the CPU Time:

CPU Time = (# CPU Clock Cycles) *(Clock Period) = (# CPU Clock Cycles) / (Clock Frequency)

Therefore

CPU Time = (# Instruction per program) * (CPI) * (Clock Period)

Another way to write the same thing:

CPU Time = (# Instruction per program) * (CPI) / (Clock Frequency)

The above equation is especially useful, since it separates the three key factors (Number of Instructions, CPI and Clock Frequency) that affect performance

Time (CPU Time or CPU Execution Time) is the measure of performance In general the following relationship can be used to figure out the performance:

 $Time = \frac{Seconds}{Program} = \frac{Instructions}{Program} * \frac{Clock \ Cycle}{Instruction} * \frac{Seconds}{Clock \ Cycle}$ 

Where:

Components of Performance	Units of Measure
CPU Execution time for a program (Time)	Seconds per program
Instruction count	Instructions executed for the program
Clock Cycles per instruction (CPI)	Average number of clock cycles per instruction
Clock cycle time	Seconds per clock cycle

Average CPI requires a fair amount of work to determine and it also varies from code segment to code segment. For more accurate calculations at the time, you may need to use the following formula:

$$\label{eq:CPU} \text{CPU Clock Cycle} = \sum_{i=1}^n (CPI_i * C_i) \quad \text{Where}$$

 $C_i$  is the count of the number of instructions in Class i  $CPI_i$  is the average number of cycles per instruction for Class i n is the number of instruction classes

Effect of Software Components on CPU Performance Another way to study performance is understanding the effect of software development components on the performance. The following table attempts to represent the relationship:

Software Components	What is affected?	How it is affected?
Algorithm	Instruction Count CPI	Algorithms say how the work is done at a high level which affect the type of instruction and number of instructions used
Programming Language	Instruction Count CPI	Programming language will directly affect the instructions used.
Compiler	Instruction Count CPI	Complier is the component that writes the assembly code so decisions here would also have an effect on instruction count and CPI.

## Example

An algorithm for sorting has been designed and compiled using Java. The execution code generated include three classes of code:

15 instruction of "A" class with 3 clocks cycles per instruction (3 CPIs) 12 instruction of "B" class with 5 clock cycles per instruction (5 CPIs) 20 instruction of "C" class with 12 clock cycles per instruction (12 CPIs)

The same sorting algorithm has been designed and complied using C. The execution code generated includes three classes of code:

30 instruction of "X" class with 2 clocks cycles per instruction (2 CPIs) 8 instruction of "Y" class with 7 clock cycles per instruction (7 CPIs)

15 instruction of "Z" class with 10 clock cycles per instruction (10 CPIs)

Which solution provide you with a better performance? And what is the total execution time for the better performing solution if the code was running on a PICmicro with the clock speed of 8 MHz.

Solution:

For Java 
$$\rightarrow$$
 CPU Clock Cycles =  $\sum_{i=1}^{n} (CPI_i * C_i) = (15x3) + (12x5) + (20x12) = 345$  clock cycles  
For C $\rightarrow$  CPU Clock Cycles =  $\sum_{i=1}^{n} (CPI_i * C_i) = (30x2) + (8x7) + (15x10) = 266$  clock cycles  
C language solution has better performance  
At clock frequency of f=8 MHz, Cycle time is T = 1/f = 125 * 10⁻⁹ Seconds.

Therefore: Total execution time = (CPU Clock Cycle) * T =  $266 \times (125 \times 10^{-9})$  seconds

Example – Estimate execution time for a PICmicro processor with an 8 MHz external crystal to sort an array with 1000 integers using bubble sort. Below is an example of Bubble Sort C code segment:

```
swapped = 0;

while (swapped == 0){

for (i=0, i \le (1000-2), i++){

            if (A(i) > A[i+1)){

                temp=A(i);

                A(i) = A(i+1);

                A(i+1) = temp;

                swapped = 1;

            }

            // for

            // while
```

Solution: "Student Exercise"

## 7.2. Evaluating Performance

Most users run a set of programs or applications on their computer systems to accomplish their tasks. Their main interested is on the performance of the total system, not each piece individually. Additionally, the user does not have access to the code for analysis, even if the user has the time and interest to do so. Typically in this situation, the instruction by instruction or bottom up performance comparison is not workable due to complexity and lack of access.

Most commonly, the application source code is not available. Even if available, there are multiple layers of application code, which would require the user to run some standard set of tasks and compare the response time of the system. For most types of solutions, there are a set of programs or instruction chosen to predict performance for a particular work load and application. These types of performance measuring codes are called benchmarks. Benchmarks are a good way for users to choose the appropriate type of computers without having to analyze each individual component of the hardware and software.

So if you are planning to select a computer system for a Computer Aided Design (CAD) application, then your benchmark program should include common instructions used in CAD program. On the other hand, if you plan to use the computer system for gaming, you may consider a different set of benchmarks for example emphasis on graphics capability of the system.

One word of caution, companies understand this fact and continually work to show their products in the best possible light. They may knowingly or unintentionally design benchmarks that are not representative of the final performance for your specific need, so "Buyer beware". Fortunately, most industries and application have standard benchmarks which are unbiased.

Benchmarks may focus on a specific portion of the system or attempt to predict end-to-end performance of a system. Some examples of Benchmarks include:

- SPEC23b99 benchmark
   Designed to evaluate Web Server performance
- EEMBC benchmark
   Designed to evaluate Embedded System performance
- SPEC CPU 2000 latest release of SPEC CPU Designed to measure the CPU performance with respect to integer and floating point operations.
- Transaction Processing Performance Council Designed to measure database and transaction processing performance. They even list cost \$/tpmc.

There are thousands of benchmarks. Each is designed for a specific set of applications and use. It is recommended that the user research additional benchmarks.

## 7.3. Performance Bench Marking Design

Bench marking is an important step in understanding performance need and selecting solution that meet the required needs. The following three parameters are integral to the decision:

- Key attributes of application/solution
   Scenarios that exercises key attributes
- > Run benchmark on all solutions

## 7.4. Additional Resources

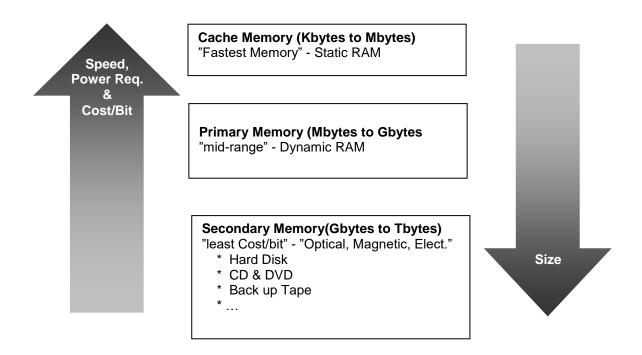
- Stallins. Computer Organization & Architecture: Designing for Performance, (2003) Prentice Hall
- Peterson. <u>Computer Organization and Design</u>, (2007) Elsevier Service.
- Robertazzi. <u>Computer Network and Systems: Queuing Theory & Performance Evaluation</u>, (2008) Springer
- Lilja. <u>Measuring Computer Performance</u>, (2000) Cambridge University Press

## 7.5. Problems

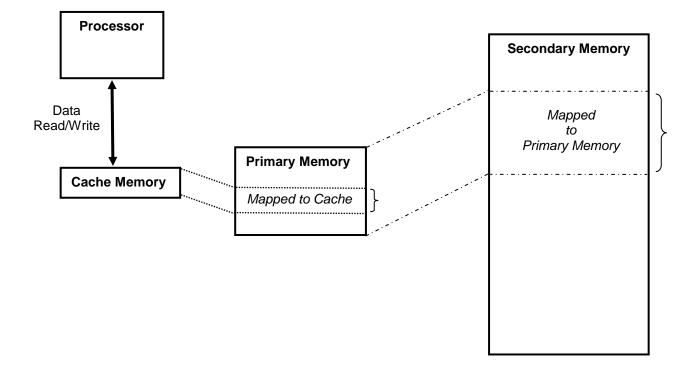
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

# CHAPTER 8. MEMORY & STORAGE HIERARCHY

## Key concepts and Overview


- Memory & Storage Basics
- Cache Memory
- Primary Memory
- Secondary Storage
- Virtual Memory
- Additional Resources

## 8.1. Memory & Storage Overview


Computer memory structure is driven by four main factors: size, speed, power and cost. It is rare if not impossible to find a computer user who does not want the largest and fastest memory available. The factors that limit the users are the cost and power requirements.

These factors has resulted in memory structures which attempt to minimize the size of high speed memory used, while striving to maximize the utilization of the fast memory that's available. Virtual Memory Management attempts to map the slow memory into higher speed memory such as cache for frequently executed instruction of data.

In a typical computer the following memory types are found:



In a typical computer system, these three types of storage are related to each other as shown in the following diagram:



## 8.2. Cache Memory

Cache contains a partial copy of primary memory content that can be accessed by the processor faster than any other type of memory. If the processor can find the code/data needed in Cache (referred to as a cache hit) resulting in improved performance. If the information is not in cache it has to be copied form primary memory which is slower. Therefore, designers continually improve the Caching policy to maximize the Cache hit rate (also known as hit ratio). In addition to policy, Cache type, cost and size is continually changing.

To complete this section, the reader is expected to perform the following exploration exercise:

#### Exploration Exercise

For your current PC, identify the following Cache parameters:

- Memory Type and read/write time
- Cost/bit of the memory
- The size of the cache
- Cache policy

Solution:

## 8.3. Primary Memory

Even though Primary Memory is typically orders of magnitude larger than cache, it only contains a partial copy of secondary storage content. In a typical computer, processor is unable to directly execute code from secondary storage. Virtual Memory Manager (software component) is responsible for ensuring that the required data/program is copied into the primary memory for execution and access by the processor. if the program/data is already in primary memory, the performance would be much better than when information is in secondary memory and has to be copied to primary memory – this condition is referred to as a miss.

To complete this section, the reader is expected to perform the following exploration exercise:

#### Exploration Exercise

For your current PC, Identify the following Primary Memory parameters:

- Memory Type and read/write time
- Cost/bit of the memory
- The size of the Primary Memory (How does it compare to cache size)

Solution:

## 8.4. Secondary Storage

Secondary storage contain all the programs and data that can be used by the computer but first they have to be moved to primary memory and/or cache. Although secondary storage technology is more stable than other memory types, secondary storage has continued to become faster, larger in size and lower cost/bit.

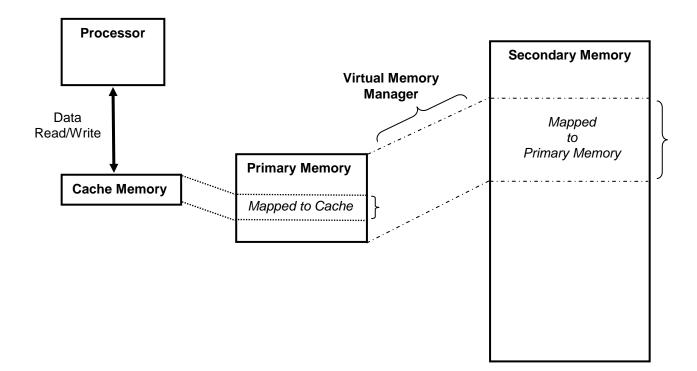
To complete this section, the reader is expected to perform the following exploration exercise:

#### Exploration Exercise

For your current PC, answer the following questions:

- How many secondary storage is installed in your PC?
- What are the cost/bit for each type of secondary storage types in your PC?
- What each of secondary storage types are used for?

Solution:


### 8.5. Virtual Memory Management

Virtual Memory Manager allows each process/program to use all the space that is allocated to it from primary and secondary storage seamlessly. In other words, the application running in a given process can use all the space required without having to explicitly move data between the primary memory and secondary storage. The Virtual Memory Manger does all the work of moving data to create a continuous memory transparently.

The simplest view of Virtual Memory Manager is a system program that bring in blocks of Secondary Storage into primary memory as their content are required by the processor. If the system is running out of primary memory, then a block that is no longer needed is over written by the new block.

The block to be over-written is chosen based on the Virtual Memory Manager's Policy. Some common ones are First-in-First-out (FIFO) or Last-In-First-Out (LIFO). Of course there are much more complex policies based on the need and usage model of the system.

The following diagram shows the role of Virtual Memory Management in the context of memory types:



To complete this section, the reader is expected to perform the following exploration exercise:

#### Exploration Exercise

For your current PC, answer the following questions:

- What is the name of the Virtual Memory Manager and the vendor?
- What is the smallest block size that is copies?
- What is the replacement policy when Primary Memory is full?

Solution:

## 8.6. Additional Resources

- Peterson. <u>Computer Organization and Design</u>, (2007) Elsevier Service.
- Gorman. <u>Understanding the Linux Virtual Memory Manager</u>, (2004) Prentice Hall
- Staff. Microchip PIC 18F1220/1320 Data Sheet, (2004) Microchip Technology In.

## 8.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

# CHAPTER 9. CONCURRENCY IN COMPUTING

## Key concepts and Overview

- Overview of Parallelism
- Pipelining
- Multi-processing
- Multi-core Processors
- Multi-Processor Systems
- Additional Resources

## 9.1. Overview of Parallelism

As the performance has become the key parameter used in selecting a computer system, the vendors are increasing investment in development of parallel computing solutions in order achieve higher performance.

One way to characterize the computer system parallelism options is outlined below:

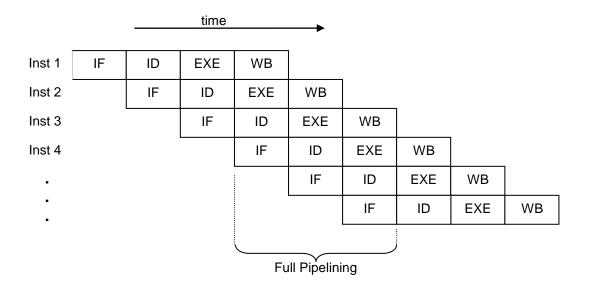
Pipelining

A pipelined processor is able to operate on multiple instruction concurrently. For example a single processor fetching one instruction while executing another instruction.

Multi-processing

A single processor allowing multiple processes to remain active by giving each process a portion of time. A functioning multi-process will provide user with the impression that all processors are running simultaneously.

- Multi-core Processors In this case there are multiple processor cores but still within a single processor which allows for multiple processes to run at the same time. Cores typically share peripherals and memory.
- Multi-Processor Systems Many processors executing one or more programs simultaneously.

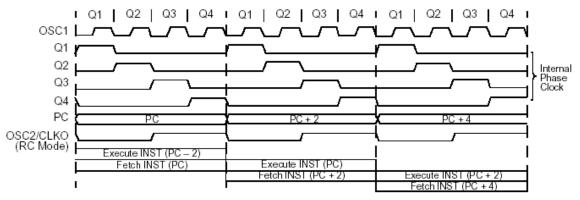

Although parallelism improves speed, it also adds complexity and overhead to the system. It is important that sufficient performance improvement is gained to justify the additional complexity and cost associated with the selected parallelism technique. Also, a given system design may incorporate one or more of the above options.

## 9.2. Pipelining

An instruction pipeline is a technique used in the design of computer systems and processors to increase performance. Pipelining reduces cycle time of a processor which leads to increased instruction throughput, the number of instructions that can be executed in a unit of time. The instruction processing is divided into four distinct phases:

- 1) Instruction fetch (IF)
- 2) Instruction decode (ID)
- 3) Execute (EXE)
- 4) Write Back (WB)

In a non-pipelined system, these phased are completed sequentially while in a pipelined system there is some level of parallelism. If a system is able to execute a new instruction every cycle, it is said to be fully pipelined. The following diagram show a fully pipelined system:




The major Advantages of pipelining is reduction of cycle time of the processor leading to increased instruction processing speed and performance. In achieving this improvement, designer have to be aware and handle three of issues:

- The processor executes only a single instruction at a time. This prevents branch delays (in effect, every branch is delayed) and problems with serial instructions being executed concurrently. Consequently the design is simpler and cheaper to manufacture.
- The instruction latency in a non-pipelined processor is slightly lower than in a pipelined equivalent. This is due to the fact that extra flip flops must be added to the data path of a pipelined processor.
- A non-pipelined processor will have a stable instruction bandwidth. The performance of a pipelined processor is much harder to predict and may vary more widely between different programs.

PICmicro is also a pipelined processor. But before discussing the pipelining, we need to talk about the instruction cycles. The clock input (from OSC1) is internally divided by four to generate four non-overlapping Quarter clocks, namely Q1, Q2, Q3 and Q4. Internally, the Program Counter (PC) is

incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in the following figure:



As mentioned earlier an "Instruction Cycle" consists of four Q cycles (Q1,Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction.

In PICmirco, a fetch cycle begins with the Program Counter (PC) incrementing in Q1. In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

An example of PICmicro pipelined instruction execution is shown in the following figure:

Тсү0	TCY1	TCY2	Тсү3	TCY4	TCY5
1. MOVLW 55h Fetch 1	Execute 1			-	
2. MOVWF PORTB	Fetch 2	Execute 2		_	
3. BRA SUB_1		Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (Forced NOP)			Fetch 4	Flush (NOP)	
5. Instruction $@$ address SUB_1				Fetch SUB_1	Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

When a programmer (or compiler) writes assembly code, they make the assumption that each instruction is executed before execution of the subsequent instruction is begun. This assumption may be invalidated by pipelining. When this causes a program to behave incorrectly, the situation is known as a hazard. Various techniques for resolving hazards such as forwarding and stalling exist.

The instruction cycle is easy to implement, however, it is extremely inefficient. The answer to this inefficiency is pipelining. Pipelining improves performance significantly in program code execution. This is done by decreasing the time that any component inside the CPU is idle. Pipelining does not completely cancel out idle time in a CPU but a significant impact is made. Processors with pipelining are organized inside into (stages) which can semi-independently work on separate jobs. Each stage is organized and linked into a 'chain' so each stage's output is inputted to another stage until the job is done. This organization of the processor allows overall processing time to be significantly reduced.

Unfortunately, not all instructions are independent. In a simple pipeline, completing an instruction may require 5 stages. To operate at full performance, this pipeline will need to run 4 subsequent independent instructions while the first is completing. If 4 instructions that do not depend on the output of the first instruction are not available, the pipeline control logic must insert a stall or wasted clock cycle into the pipeline until the dependency is resolved. Fortunately, techniques such as forwarding can significantly reduce the cases where stalling is required. While pipelining can in theory increase performance over an unpopulated core by a factor of the number of stages (assuming the clock frequency also scales with the number of stages), in reality, most code does not allow for ideal execution.

To complete this section, the reader is expected to perform the following exploration exercise:

- Exploration Exercise
  - For your current PC:
  - Identify the pipeline approach used
  - > Show the content of the full pipeline

Solution: Student Exercise

## 9.3. Multi-processing

Commercially viable computer in today's market including multi-processing capable operating systems where multiple processes and applications may be active. The single available processor is shared amongst the active processes which means at any point in time only one process is being executed. From the user's point of view, it seems that application are running simultaneously (Other the occasional choppiness when the system is over used) since each process is given sufficient time to respond to user commands frequently.

To complete this section, the reader is expected to perform the following exploration exercise:

## Exploration Exercise

For your current PC, answer the following::

- How many processes are active currently and which processor is using the highest percentage of the processor (i.e. task manager on the Microsoft Windows has the needed data)?
- What is the maximum number of processes that can be active at the same time?

Solution:

## 9.4. Multi-core Processors

Today's PCs have multi-core which basically means that there are multiple processor core embedded into a single processor chip. With the help of coordinating software (typically part of operating system), applications and/or processes are divided amongst the cores to execute. Ideally, multiple cores deliver higher performance. This is not guaranteed since the management overhead may consume any gains made from the multi-core set up.

To complete this section, the reader is expected to perform the following exploration exercise:

#### Exploration Exercise

In the current PC market:

- Identify a PC with multi-core processor.
- For the identified processor, what is function of each core and how are the cores managed?
- What is the expected performance improvement from the selected multi-core compared to an equivalent single core system.

Solution:

## 9.5. Multi-Processor Systems

Multi-Processor systems are typically used for specialized application that are highly processor intensive. Over time, there has been various attempts to develop multi-processor systems that are able to efficiently run any program. But we continue to see the best multi-processor performance for applications design specifically for the multi-processor design.

To complete this section, the reader is expected to perform the following exploration exercise:

#### Exploration Exercise

In the current market:

- Identify a multi-processor system and the vendor
- For the identified system, what are the topology of processor (how are the processors connected)?
- Does this system only runs specialized applications or is able to improve performance of general purpose applications.

Solution:

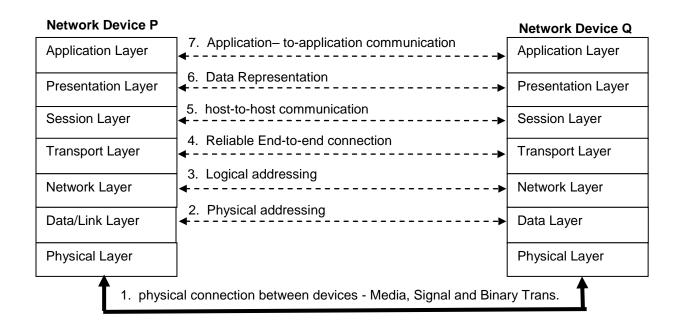
## 9.6. Additional Resources

- ✤ Jordan. <u>Fundamentals of Parallel Processing</u>, (2003) Prentice Hall
- Peterson. <u>Computer Organization and Design</u>, (2007) Elsevier Service.
- Roosta. <u>Parallel Processing and Parallel Algorithms</u>, (1999) Springer-Verlag

## 9.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

# CHAPTER 10. NETWORKING


# Key concepts and Overview

- Networking Overview & OSI Model
- Medial Layers (Physical, Link & Network)
- Host Layers (Transport, Session, Presentation and Application)
- Additional Resources

### 10.1. Networking Overview & OSI Model

Networking is an integral part of computing world and numerous designs have been developed to meet the needs of the computing industry. The best way to discuss networking is to use the abstract Open System Interconnection Reference Model (OSI Model) developed as part of the Open System Interconnection (OSI) initiative in 1970s by the International Organization for Standardization (ISO).

OSI Model groups the network functionality into seven layers. Each layer relies on the layers below to complete its task. In communicating across the network, the two parties to the communication will have defined protocol at each layer of the model as shown below between two networked devices (P & Q):



Layers are typically divided into two groups based on where they are implemented, in the host or the networking interface:

- Media Layers Physical, Data/Link and Network Layers
- Host Layers Transport, Session, Presentation and Application layers

The following sections provide additional description of each of the seven layers in the above two categories with the most common implementation examples of each layer.

## 10.2. Medial Layers (Physical, Data/Link & Network)

Physical layer defines the electromagnetic and physical specifications for device connection to the network. Items included in this description of this layer includes connector, voltage/current, timing and other specifications.

Data/Link layer is responsible for defining and packaging fixed size data that include physical address. Also it has processes to ensure that a packet is reliability delivered by the physical layer to the intended physical address. If not, then it would have steps to either flag an error or attempt to correct the problem by re-transmission.

For examples of Data and Physical layer implementations refer to IEEE 802.3 (Wired LAN), IEEE 802.11 (wireless LAN) and IEEE 902.16 (WiMax ) and IEEE 802.15 (Bluetooth-Personal Network).

Networking layer provides reliable transfer of variable length data sequences from one device to one or more devices on the network. This layer performs the routing function for the devices. Router provides functionality from physical to networking layer. The most commonly known Network layer implementation is the Internet Protocol which is commonly refer to as IP. IP enable variable length data to travel through multiple hops from source to the intended destination. Network layer also serve as the interface with Host layers.

## 10.3. Host Layers (Transport, Session, Presentation and Application)

Transport layer is the lowest layer of the Host layers. It provides reliable data transfer services between end users. It uses flow control, error control, segmentation, retransmission to ensure the end user data has successfully been transmitted and received. Again the best known Transport layer implementation example is Transmission Control Protocol (TCP) which is used in most systems. TCP/IP referring to Transmission Control Protocol and Internet Protocol are one of the most popular implementation of Network and Transport layer in use today.

Session Layer manages the connection between networked devices. Session layer uses the lower layers of OSI to establish, manager and terminate connections between applications. Socket (also called shared socket) is an example of Session layer implementation for TCP/IP environment. Sockets allows devices to connection application across the network or within the same system. A process read from the socket to receive the data from another process and the process sends data by writing into the socket. Communicating processor may be on the same physical computer (Local) or across the network in another physical computer and location (Remote).

Presentation layer allows mapping of different data format to be translated into session protocol data units that can be transmitted through session layer services. MIME Protocol is a Session layer implementation example which is designed to enable sending and receiving emails across variety of email applications.

Application layer is the highest level of OSI layer. As the name implies this is the layer that contain software application which interfaces with the user. Hypertext Transfer Protocol (HTTP) and File Transfer Protocol (FTP) are two examples of Application layer implementation.

The following section provide additional description of each layers into two groups:

- Exploration Exercise
  - In the current market:
    - Identify an network enabled application.
    - Map the functionality/components of the selected application to the OSI model.

Solution:

## 10.4 Additional Resources

- ✤ Kurose. <u>Computing Networking</u>, (2010) Addison-Wesley.
- Peterson. <u>Computer Organization and Design</u>, (2007) Elsevier Service.
- ✤ Lekkus. <u>Network Processors</u>, (2003) McGraw Hill.

### 10.5. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

# APPENDIX A. PICMICRO INSTRUCTION SET SUMMARY

Source: Microchip Data Sheet

Mnemo	onic,	Description	Cycles	16-E	3it Instr	uction V	Nord	Status	Notes
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED	FILE REGISTER OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	ooda	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ		Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff		1, 2, 3, 4
DCFSNZ		Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1.2
INCF	f.d.a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1.2.3.4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff		4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	1	10da		ffff	None	1, 2
IORWF	f,d,a	Inclusive OR WREG with f	1	0001	ooda	ffff	ffff	Z.N	1, 2
MOVE	f, d, a	Move f	1			ffff	ffff		1
MOVEE	f _s , f _d	Move f _s (source) to 1st word	2	1	ffff	ffff	ffff	<i>'</i>	
	·s, ·u	f _d (destination) 2nd word	-		ffff	ffff	ffff		
MOVWF	f.a	Move WREG to f	1		111a		ffff	None	
MULWF	f.a	Multiply WREG with f	1		001a		ffff		
NEGF	f.a	Negate f	1		110a			C, DC, Z, OV, N	12
RLCF		Rotate Left f through Carry	1		01da	ffff		C, Z, N	., -
RLNCF		Rotate Left f (No Carry)	1		01da		ffff		1, 2
RRCF		Rotate Right f through Carry	1		ooda			C, Z, N	., -
RRNCF		Rotate Right f (No Carry)	1		ooda		ffff		
SETF	f.a	Set f	1		100a	ffff	ffff		
SUBFWB	f, d, a	Subtract f from WREG with borrow	1		01da	ffff		C, DC, Z, OV, N	1, 2
SUBWF	f.d.a	Subtract WREG from f	1	01.01	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB	.,,	Subtract WREG from f with borrow	1		10da	ffff		C, DC, Z, OV, N	1, 2
SWAPF	f.d.a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f.a	Test f, skip if 0	1 (2 or 3)	1	011a		ffff		1,2
XORWF	f, d, a	Exclusive OR WREG with f	1		10da	ffff	ffff		1, 2
	, ,	LE REGISTER OPERATIONS		0001	1044			2,	
BCF	f. b. a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	., .,	Bit Set f	1		bbba		ffff		1, 2
BTFSC		Bit Test f, Skip if Clear	1 (2 or 3)		bbba			None	3, 4
BTFSS		Bit Test f, Skip if Set	1 (2 or 3)		bbba	ffff		None	3,4
BTG		Bit Toggle f	1 (2013)	1	bbba		ffff		3,4 1,2
		Bott register is modified as a fund							

Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

 If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

Mnemo	onic,	Description	Cycles					Status	Notes
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
LITERAL	OPERAT	TIONS							
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSRx 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEI	MORY ←	PROGRAM MEMORY OPERAT	IONS	•				• • •	
TBLRD*		Table read	2	0000	0000	0000	1000	None	
TBLRD*+		Table read with post-increment		0000	0000	0000	1001	None	
TBLRD*-		Table read with post-decrement		0000	0000	0000	1010	None	
TBLRD+*		Table read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table write	2 (5)	0000	0000	0000	1100	None	
TBLWT*+		Table write with post-increment		0000	0000	0000	1101	None	
TBLWT*-		Table write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table write with pre-increment		0000	0000	0000	1111	None	

Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

Mnemo	onic			16-E	, Bit Instr	uction V	Vord	Status		
Opera	,	Description	Description Cycles MSb		LSb	Affected	Notes			
CONTROL	OPER	ATIONS								
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None		
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None		
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None		
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None		
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None		
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None		
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None		
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None		
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None		
CALL	n, s	Call subroutine 1st word	2	1110	110s	kkkk	kkkk	None		
		2nd word		1111	kkkk	kkkk	kkkk			
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD		
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С		
GOTO	n	Go to address 1st word	2	1110	1111	kkkk	kkkk	None		
		2nd word		1111	kkkk	kkkk	kkkk			
NOP	_	No Operation	1	0000	0000	0000	0000	None		
NOP	_	No Operation	1	1111	xxxx	XXXX	xxxx	None	4	
POP	_	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None		
PUSH	_	Push top of return stack (TOS)	1	0000	0000	0000	0101	None		
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None		
RESET		Software device Reset	1	0000	0000	1111	1111	All		
RETFIE	s	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,		
								PEIE/GIEL		
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk		None		
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None		
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	TO, PD		

Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

 If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

 If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

# APPENDIX B. PICMICRO OPCODE FIELD DESCRIPTION

Source: Microchip Data Sheet

Field	Description
a	RAM access bit
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7).
BSR	Bank Select Register. Used to select the current RAM bank.
d	Destination select bit
	d = 0: store result in WREG
dest	d = 1: store result in file register f Destination either the WREG register or the specified register file location.
f	8-bit register file address (0x00 to 0xFF).
fs	12-bit register file address (0x00 to 0xFF). This is the source address.
fd	12-bit register file address (0x000 to 0xFFF). This is the source address.
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).
label	
mm	The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions:
	No change to register (such as TBLPTR with table reads and writes)
*+	Post-Increment register (such as TBLPTR with table reads and writes)
*-	Post-Decrement register (such as TBLPTR with table reads and writes)
+*	Pre-Increment register (such as TBLPTR with table reads and writes)
+- n	The relative address (2's complement number) for relative branch instructions, or the direct address for
п	call/branch and return instructions.
PRODH	Product of Multiply High Byte.
PRODL	Product of Multiply Low Byte.
8	Fast Call/Return mode select bit
	s = 0: do not update into/from shadow registers
	s = 1: certain registers loaded into/from shadow registers (Fast mode)
u	Unused or unchanged.
WREG	Working register (accumulator).
x	Don't care ('0' or '1').
	The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all
	Microchip software tools.
TBLPTR	21-bit Table Pointer (points to a program memory location).
TABLAT	8-bit Table Latch.
TOS	Top-of-Stack.
PC	Program Counter.
PCL	Program Counter Low Byte.
PCH	Program Counter High Byte.
PCLATH	Program Counter High Byte Latch.
PCLATU	Program Counter Upper Byte Latch.
GIE	Global Interrupt Enable bit.
WDT	Watchdog Timer.
TO	Time-out bit.
D	Power-down bit.
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.
[]	Optional.
( )	Contents.
<i>→</i>	Assigned to.
< >	Register bit field.
e	In the set of.
italics	User defined term (font is Courier).

## APPENDIX C. REGISTER FILE SUMMARY

Source: Microchip Data Sheet

The following two tables contains the summary of the PICmicro Register file. The following Information will be useful in reading the register summary:

Legends:

x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Notes:

- 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read '0' in all other oscillator modes.
- 2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read '0' in all other modes.
- 3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.
- 4: The RA5 port bit is only available when MCLRE fuse (CONFIG3H<7>) is programmed to '0'. Otherwise, RA5 reads '0'. This bit is read-only.

# Special Function Registers (SFR) Map

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽²⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2(2)	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2(2)	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽²⁾	FBCh	_	F9Ch	_
FFBh	PCLATU	FDBh	PLUSW2 ⁽²⁾	FBBh	_	F9Bh	OSCTUNE
FFAh	PCLATH	FDAh	FSR2H	FBAh	_	F9Ah	_
FF9h	PCL	FD9h	FSR2L	FB9h	_	F99h	_
FF8h	TBLPTRU	FD8h	STATUS	FB8h	_	F98h	—
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	PWM1CON	F97h	_
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	ECCPAS	F96h	—
FF5h	TABLAT	FD5h	TOCON	FB5h	_	F95h	—
FF4h	PRODH	FD4h	—	FB4h	_	F94h	—
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	—
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	—
FEFh	INDF0 ⁽²⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	—
FEEh	POSTINC0(2)	FCEh	TMR1L	FAEh	RCREG	F8Eh	—
FEDh	POSTDEC0(2)	FCDh	T1CON	FADh	TXREG	F8Dh	—
FECh	PREINC0 ⁽²⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	—
FEBh	PLUSW0(2)	FCBh	PR2	FABh	RCSTA	F8Bh	—
FEAh	FSR0H	FCAh	T2CON	FAAh	BAUDCTL	F8Ah	LATB
FE9h	FSR0L	FC9h	—	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	—	FA8h	EEDATA	F88h	—
FE7h	INDF1 ⁽²⁾	FC7h	—	FA7h	EECON2	F87h	—
FE6h	POSTINC1(2)	FC6h	—	FA6h	EECON1	F86h	—
FE5h	POSTDEC1(2)	FC5h	—	FA5h	_	F85h	—
FE4h	PREINC1(2)	FC4h	ADRESH	FA4h	_	F84h	_
FE3h	PLUSW1 ⁽²⁾	FC3h	ADRESL	FA3h	_	F83h	
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	_
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

# General Register Map, 1/2

g Register f w Byte (PC 	Byte (TO TKUNF for PC<15 <7:0>) Table Poi Table Poi Table Poi Table Poi Table Lat High Byte Low Byte IE/GIEL TEDG0 NT1IP FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr	S<7:0>) bit 21 ⁽³⁾ 5:8> bit 21 inter High By inter Low Byt tch TMR0IE INTEDG1  address data address data address data address data	Return Stack Holding Regi Program Me te (TBLPTR< te (TBLPTR<7 INTOIE INTEDG2 INTEDG2 INT2IE memory – val memory – val memory – val memory – val memory – val	RBIE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1	0:16> Dinter Upper B TMR0IF TMR0IP  ot changed (no post-incremente st-decremente st-decremente fiset by W (no	INT0IF INT2IF ot a physical r ed (not a phys ed (not a physi d (not a physi t a physical re	RBIF RBIP INT1IF register) sical register) sical register) ical register) egister)	0 0000 0000 0000 0000 0000 0 0000 0000 0000 00 0000 0000 0000 0000 0000 0000 0000 xxxx xxxx 0000 0000 xxxx xxxx 1111 -1-1 11-0 0-00 N/A N/A N/A N/A N/A N/A						
Stack Low FUL ST g Register 1 w Byte (PC m Memory m Memory m Memory m Memory t Register ct Register	Byte (TO TKUNF for PC<15 <7:0>) Table Poi Table Poi Table Poi Table Poi Table Lat High Byte Low Byte IE/GIEL TEDG0 NT1IP FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr	S<7:0>) bit 21 ⁽³⁾ 5:8> bit 21 inter High By inter Low Byt tch TMR0IE INTEDG1  address data address data address data address data	Holding Regi Program Me te (TBLPTR< te (TBLPTR<7 te (TBLPTR<7 INTOIE INTEDG2 INTEDG2 INT2IE memory – val memory – val memory – val memory – val	RBIE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1	TMR0IF TMR0IF TMR0IP ot changed (no pst-incremente st-decremente re-incremente ffset by W (no	INT0IF INT2IF ot a physical r ed (not a phys ed (not a physi d (not a physi t a physical re	RBIF RBIP INT1IF register) sical register) sical register) ical register) egister)	0000 0000 00-0 0000 0 0000 0000 0000 00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 xxxx xxxx xxxx 0000 000x 1111 -1-1 11-0 0-00 N/A N/A N/A N/A						
FUL ST g Register i w Byte (PC m Memory m Memory m Memory m Memory m Memory t Register ct	TKUNF for PC<15 for PC<15 (Table Poi Table Poi Table Poi Table Lat High Byte Low Byte IE/GIEL TEDG0 NT1IP FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr	bit 21 ⁽³⁾ 5:8> bit 21 inter High By inter Low Byt tch TMR0IE INTEDG1  address data address data address data address data address data	Holding Regi Program Me te (TBLPTR< te (TBLPTR<7 te (TBLPTR<7 INTOIE INTEDG2 INTEDG2 INT2IE memory – val memory – val memory – val memory – val	RBIE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1	TMR0IF TMR0IF TMR0IP ot changed (no pst-incremente st-decremente re-incremente ffset by W (no	INT0IF INT2IF ot a physical r ed (not a phys ed (not a physi d (not a physi t a physical re	RBIF RBIP INT1IF register) sical register) sical register) ical register) egister)	00-0 0000 0 0000 0000 0000 00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 -1-1 11-0 0-00 N/A N/A N/A N/A						
g Register f w Byte (PC 	for PC<15     crosses     crosseses     crosseses     croseses     croses     croseses     croses	5:8> bit 21 inter High By inter Low Byt tch s TMR0IE INTEDG1 — address data address data address data address data address data address data	Holding Regi Program Me te (TBLPTR< te (TBLPTR<7 te (TBLPTR<7 INTOIE INTEDG2 INTEDG2 INT2IE memory – val memory – val memory – val memory – val	RBIE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1IE INT1	TMR0IF TMR0IF TMR0IP ot changed (no pst-incremente st-decremente re-incremente ffset by W (no	INT0IF INT2IF ot a physical r ed (not a phys ed (not a physi d (not a physi t a physical re	RBIF RBIP INT1IF register) sical register) sical register) ical register) egister)	0 0000 0000 0000 00 0000 0000 0000 0000 0000 0000 0000 xxxx xxxx 0000 000x 1111 -1-1 11-0 0-00 N/A N/A N/A N/A						
W Byte (PC W Byte (PC m Memory m Memory m Memory m Memory t Register t Register CT Regis	×7:0>) Table Point	5:8> bit 21 inter High By inter Low Byt tch s TMR0IE INTEDG1 — address data address data address data address data address data address data	Program Me te (TBLPTR< te (TBLPTR<7 INT0IE INTEDG2 INT2IE memory – val memory – val memory – val memory – val memory – val	mory Table Po 15:8>) (D>) RBIE INT1IE ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 po	TMR0IF TMR0IF TMR0IP ot changed (no pst-incremente st-decremente re-incremente ffset by W (no	INT0IF INT2IF ot a physical r ed (not a phys ed (not a physi d (not a physi t a physical re	RBIF RBIP INT1IF register) sical register) sical register) ical register) egister)	00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 2XXXX XXXX 00000 0000X 1111 -1-1 11-0 0-000 N/A N/A N/A N/A						
W Byte (PC W Byte (PC m Memory m Memory m Memory m Memory t Register t Register CT Regis	×7:0>) Table Point	bit 21 inter High By inter Low Byt tch TMROIE INTEDG1 	INTOIE INTEDG2 INTEDG2 INTEIE memory – val memory – val memory – val memory – val memory – val	RBIE INT1IE INT1IE ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 po	TMR0IF TMR0IP — ot changed (no ost-incremente ast-decremente re-incremente ffset by W (no	INT0IF INT2IF ot a physical r ed (not a phys ed (not a physi d (not a physi t a physical re	RBIF RBIP INT1IF register) sical register) sical register) ical register) egister)	0000 0000 00 0000 0000 0000 0000 0000 xxxx xxxx xxxx xxxx 0000 000x 1111 -1-1 11-0 0-00 N/A N/A N/A N/A						
m Memory m Memory m Memory m Memory t Register t Register CIEH PEI IN 2IP IN contents of contents contents of contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents contents cont	Table Poi Table Poi Table Lat High Byte Low Byte IE/GIEL TEDG0 NT1IP FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a	inter High By inter Low Byt tch TMR0IE INTEDG1 — address data address data address data address data address data	INTOIE INTEDG2 INTEDG2 INTEIE memory – val memory – val memory – val memory – val memory – val	RBIE INT1IE INT1IE ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 po	TMR0IF TMR0IP — ot changed (no ost-incremente ast-decremente re-incremente ffset by W (no	INT0IF INT2IF ot a physical r ed (not a phys ed (not a physi d (not a physi t a physical re	RBIF RBIP INT1IF register) sical register) sical register) ical register) egister)	00 0000 0000 0000 0000 0000 xxxx xxxx 0000 000x 1111 -1-1 11-0 0-00 N/A N/A N/A N/A N/A						
m Memory m Memory at Register at Register BIEH PEI DI IN 2IP IN 2012 IN 2012 IN 2014 I	r Table Poi r Table Lat High Byte Low Byte IE/GIEL TEDG0 NT1IP FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr	inter High By inter Low Byt tch TMR0IE INTEDG1 — address data address data address data address data address data	INTOIE INTEDG2 INTEDG2 INTEIE memory – val memory – val memory – val memory – val memory – val	RBIE INT1IE INT1IE ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 po	TMR0IF TMR0IP — ot changed (no ost-incremente ast-decremente re-incremente ffset by W (no	INT0IF INT2IF ot a physical r ed (not a phys ed (not a physi d (not a physi t a physical re	RBIF RBIP INT1IF register) sical register) sical register) ical register) egister)	00000 00000 00000 00000 xxxx xxxxx 00000 0000x 11111 -1-1 11-0 0-000 N/A N/A N/A N/A N/A						
m Memory m Memory at Register at Register BIEH PEI DI IN 2IP IN 2012 IN 2012 IN 2014 I	r Table Poi r Table Lat High Byte Low Byte IE/GIEL TEDG0 NT1IP FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr	TMR0IE TMR0IE INTEDG1 address data address data address data address data address data	INTOIE INTEDG2 INTEDG2 INT2IE memory – val memory – val memory – val memory – val memory – val	RBIE INT1IE ue of FSR0 no ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 po	TMR0IP — ot changed (n ost-incremente st-decremente re-incremente ffset by W (no	INT2IF ot a physical r ed (not a phys ed (not a phys d (not a physi d a physical re	RBIP INT1IF register) sical register) sical register) ical register) egister)	00000 00000 00000 00000 xxxxx xxxxx 00000 0000x 11111 -1-1 11-0 0-000 N/A N/A N/A N/A N/A						
m Memory t Register t Register EIEH PE PU IN 2IP IN contents of contents contents of contents contents co	r Table Lat High Byte Low Byte IE/GIEL TEDG0 NT1IP FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr	TMROIE INTEDG1 	INT0IE INTEDG2 INT2IE memory – val memory – val memory – val memory – val	RBIE INT1IE ue of FSR0 no ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 of	TMR0IP — ot changed (n ost-incremente st-decremente re-incremente ffset by W (no	INT2IF ot a physical r ed (not a phys ed (not a phys d (not a physi d a physical re	RBIP INT1IF register) sical register) sical register) ical register) egister)	00000 00000 XXXX XXXX 00000 0000X 1111 -1-1 11-0 0-000 N/A N/A N/A N/A N/A						
t Register t Register GIEH PEI PU IN 21P IN contents of contents	High Byte Low Byte IE/GIEL TEDG0 NT1IP FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr	TMR0IE INTEDG1 	INTEDG2 INT2IE memory – val memory – val memory – val memory – val memory – val	INT1IE ue of FSR0 no ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 of	TMR0IP — ot changed (n ost-incremente st-decremente re-incremente ffset by W (no	INT2IF ot a physical r ed (not a phys ed (not a phys d (not a physi d a physical re	RBIP INT1IF register) sical register) sical register) ical register) egister)	XXXX XXXX XXXX XXXX 0000 000x 1111 -1-1 11-0 0-00 N/A N/A N/A N/A N/A						
At Register BIEH PEI PU IN 201P IN contents of contents of conte	Low Byte IE/GIEL TEDG0 NT1IP FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr	TMR0IE INTEDG1 — address data address data address data address data address data address data	INTEDG2 INT2IE memory – val memory – val memory – val memory – val memory – val	INT1IE ue of FSR0 no ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 of	TMR0IP — ot changed (n ost-incremente st-decremente re-incremente ffset by W (no	INT2IF ot a physical r ed (not a phys ed (not a phys d (not a physi d a physical re	RBIP INT1IF register) sical register) sical register) ical register) egister)	XXXX XXXX 0000 000x 1111 -1-1 11-0 0-00 N/A N/A N/A N/A N/A						
BIEH PEI PU IN 21P IN contents of contents of conten	IE/GIEL TEDG0 NT1IP FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr	TMR0IE INTEDG1 address data address data address data address data address data address data	INTEDG2 INT2IE memory – val memory – val memory – val memory – val memory – val	INT1IE ue of FSR0 no ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 of	TMR0IP — ot changed (n ost-incremente st-decremente re-incremente ffset by W (no	INT2IF ot a physical r ed (not a phys ed (not a phys d (not a physi d a physical re	RBIP INT1IF register) sical register) sical register) ical register) egister)	00000 000x 11111 -1-1 11-0 0-00 N/A N/A N/A N/A N/A						
PU IN 2IP IN contents of contents of contents of contents of contents of contents of contents of t Data Men	TEDG0 NT1IP FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr	INTEDG1 address data address data address data address data address data address data address data	INTEDG2 INT2IE memory – val memory – val memory – val memory – val memory – val	INT1IE ue of FSR0 no ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 of	TMR0IP — ot changed (n ost-incremente st-decremente re-incremente ffset by W (no	INT2IF ot a physical r ed (not a phys ed (not a phys d (not a physi d a physical re	RBIP INT1IF register) sical register) sical register) ical register) egister)	11111 -1-1 11-0 0-00 N/A N/A N/A N/A N/A						
2IP IN contents of contents of contents of contents of contents of contents of contents of contents of t Data Men	NT1IP FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr		INT2IE memory – val memory – val memory – val memory – val memory – val	ue of FSR0 m ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 of	— ot changed (n ost-increment st-decrement re-incremente ffset by W (no	ot a physical r ed (not a phys ed (not a phys d (not a physi t a physical re	INT1IF register) sical register) sical register) ical register) egister)	11-0 0-00 N/A N/A N/A N/A						
contents of contents of contents of contents of contents of contents of t Data Men	FSR0 to a FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr	address data address data address data address data —	memory – val memory – val memory– val memory – val memory – val	ue of FSR0 m ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 of	ost-increment st-decrement re-incremente ffset by W (no	ot a physical r ed (not a phys ed (not a phys d (not a physi t a physical re	register) sical register) sical register) ical register) egister)	N/A N/A N/A N/A						
contents of contents of contents of contents of - t Data Men	FSR0 to a FSR0 to a FSR0 to a FSR0 to a mory Addr	address data address data address data address data —	memory – val memory – valu memory – val memory – val	ue of FSR0 po ue of FSR0 po ue of FSR0 po ue of FSR0 of	ost-increment st-decrement re-incremente ffset by W (no	ed (not a phys ed (not a phys d (not a physi t a physical re	sical register) sical register) ical register) egister)	N/A N/A N/A N/A						
contents of contents of contents of t Data Men	FSR0 to a FSR0 to a FSR0 to a mory Addr	address data address data address data —	memory- valu memory - val memory - val	ue of FSR0 po ue of FSR0 pi ue of FSR0 of	st-decrement re-incremente ffset by W (no	ed (not a physi d (not a physi t a physical re	sical register) ical register) egister)	N/A N/A N/A						
contents of contents of - t Data Men	FSR0 to a FSR0 to a — mory Addr	address data address data —	memory – val memory – val	ue of FSR0 pi ue of FSR0 of	re-incremente ffset by W (no	d (not a physi t a physical re	ical register) egister)	N/A N/A						
contents of - t Data Men	FSR0 to a —	address data —	memory – val	ue of FSR0 of	ffset by W (no	t a physical re	egister)	N/A						
contents of - t Data Men	FSR0 to a —	address data —	memory – val	ue of FSR0 of	ffset by W (no	t a physical re	egister)							
- t Data Men	- mory Addr	_	-	I										
		ess Pointer 0	) Low Byte		,		—      —      Indirect Data Memory Address Pointer 0 High							
					Indirect Data Memory Address Pointer 0 Low Byte									
5		Working Register												
ontents of		address data	memory - val	ue of FSR1 n	ot changed (n	ot a physical r	register)	N/A						
			memory - val					N/A						
			memory - val					N/A						
			memory - val	-				N/A						
			memory - val					N/A						
-	_	_	_	I	Memory Add			0000						
t Data Men	mory Addr	ess Pointer 1	Low Byte	manoot Data	Monory Add	COST Officer 1	riigii	XXXX XXXX						
		-		Bank Select	Register			0000						
ontents of	ESR2 to a	address data	memory – val			ot a physical r	register)	N/A						
			-					N/A						
								N/A						
			,			· · · ·	2 /	N/A						
							2 /	N/A						
Jontents on	1 31/2 10 8	auuress uata	memory – vai	· · · · · · · · · · · · · · · · · · ·										
t Data Man	- Addr		Low Bute	Indirect Data	Memory Add	CSS FUILLEI 2	. riign	0000						
	nory Addi	caa Fointei 2		01	7	DC								
- Desister L	- Jish Buta	-	N	07	2	DC	C	x xxxx						
-	2 /							0000 0000						
		TACC	TOPE	DCA	TADCO	TADE4	Tapea	XXXX XXXX						
								1111 1111						
	RCF2							0000 q000						
	-	IVRST	LVDEN	LVDL3	LVDL2	LVDL1		00 0101						
-								0						
	contents of contents of contents of contents of t Data Mer d Register I Register I DON T	contents of FSR2 to a contents of FSR2 to a content content content content content content content content content content content content content content content content content content content content content content content	contents of FSR2 to address data contents of FSR2 to address data to the total Memory Address Pointer 2 	contents of FSR2 to address data memory – val contents of FSR2 to address data memory – val to address data memory – val contents of FSR2 to address data memory – val data memory – val contents of FSR2 to address data memory – val data memory – val d	contents of FSR2 to address data memory – value of FSR2 no contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- contents of FSR2 to address data memory – value of FSR2 pro- lindirect Data t Data Memory Address Pointer 2 Low Byte –	contents of FSR2 to address data memory – value of FSR2 post-incrementation tents of FSR2 to address data memory – value of FSR2 post-decrement contents of FSR2 to address data memory – value of FSR2 pre-incremente contents of FSR2 to address data memory – value of FSR2 offset by W (noise in the tent of the tent of the tent of tent o	contents of FSR2 to address data memory – value of FSR2 not changed (not a physical is contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical network of FSR2 to address data memory – value of FSR2 post-decremented (not a physical resonances of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical resonances of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical resonances of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical resonances of FSR2 to address data memory – value of FSR2 offset by W (not a physical resonances of FSR2 to address Pointer 2 value of FSR2 offset by W (not a physical resonances Pointer 2 Low Byte         -       -       Indirect Data Memory Address Pointer 2         t Data Memory Address Pointer 2 Low Byte       -       Indirect Data Memory Address Pointer 2         Register High Byte       -       N       OV       Z       DC         ON       T08BIT       T0CS       T0SE       PSA       T0PS1         EN       IRCF2       IRCF1       IRCF0       OSTS       IOFS       SCS1	contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)         contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)         contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)         contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)         contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)         contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)         contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)         contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)         contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)         contents of FSR2 to address data memory – value of FSR2 offset by W (not a physical register)         contents of FSR2 to address data memory – value of FSR2 offset by W (not a physical register)         contents of FSR2 to address data memory – value of FSR2 offset by W (not a physical register)         contents of FSR2 to address data memory – value of FSR2 offset by W (not a physical register)         contents of FSR2 to address data memory – value of FSR2 offset by W (not a physical register)         contents of FSR2 to address data memory – value of FSR2 offset by W (not a physical register)         contents of FSR2 to address data memory – value of FSR2 offs						

## General Register Map, 2/2

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR				
TMR1H	Timer1 Register High Byte												
TMR1L	Timer1 Regis	Timer1 Register Low Byte											
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000				
TMR2	Timer2 Regis	Timer2 Register											
PR2	Timer2 Perio	Timer2 Period Register											
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000				
ADRESH	A/D Result R	VD Result Register High Byte											
ADRESL	A/D Result R	A/D Result Register Low Byte											
ADCON0	VCFG1	VCFG0	_	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000				
ADCON1	_	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	-000 0000				
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000				
CCPR1H	Capture/Com	pare/PWM R	egister 1 High	n Byte					XXXX XXXX				
CCPR1L	Capture/Con	pare/PWM R	egister 1 Low	Byte					XXXXX XXXXX				
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000				
PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000				
ECCPAS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000				
TMR3H	Timer3 Regis	ster High Byte		!					XXXXX XXXXX				
TMR3L	Timer3 Register Low Byte												
T3CON	RD16	_	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0-00 0000				
SPBRGH		ud Rate Gene				1001110			0000 0000				
SPBRG	EUSART Baud Rate Generator Low Byte												
RCREG	EUSART Receive Register												
TXREG	EUSART Tra	nsmit Registe	r						0000 0000				
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010				
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x				
BAUDCTL	_	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	-1-1 0-00				
EEADR	EEPROM Ad	ldress Registe	er						0000 0000				
EEDATA	EEPROM Da	ta Register							0000 0000				
EECON2	EEPROM Co	ontrol Register	2 (not a phys	sical register)					0000 0000				
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000				
IPR2	OSCFIP	_	_	EEIP	_	LVDIP	TMR3IP	_	11 -11-				
PIR2	OSCFIF	_	_	EEIF	_	LVDIF	TMR3IF	_	00 -00-				
PIE2	OSCFIE	_	_	EEIE	_	LVDIE	TMR3IE	_	00 -00-				
IPR1	_	ADIP	RCIP	TXIP	_	CCP1IP	TMR2IP	TMR1IP	-111 -111				
PIR1	_	ADIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	-000 -000				
PIE1	_	ADIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	-000 -000				
OSCTUNE	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUNO	00 0000				
TRISB	Data Directio	n Control Reg				1		I	1111 1111				
TRISA	TRISA7(2)	TRISA6(1)	_		n Control Red	ister for POR	TA		11-1 1111				
LATB		PORTB Data L	atch	2					XXXX XXXX				
LATA				Read/Write P	PORTA Data I	atch			XX-X XXXX				
	LATA<7> ⁽²⁾ LATA<6> ⁽¹⁾ — Read/Write PORTA Data Latch												
PORTB	Read PORTE	3 pins, Write P	PORTB Data I	Read PORTB pins, Write PORTB Data Latch           RA7 ⁽²⁾ RA6 ⁽¹⁾ RA5 ⁽⁴⁾ Read PORTA pins, Write PORTA Data Latch									

# APPENDIX D. SPECIAL FEATURES OF PICMICRO

PICmicro includes features intended to maximize system reliability, minimize cost through elimination of external components and offer code protection. These are:

- Oscillator Selection
- Resets:
  - Power-on Reset (POR)
  - Power-up Timer (PWRT)
  - Oscillator Start-up Timer (OST)
  - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor
- Two-Speed Start-up
- Code Protection
- ID Locations
- In-Circuit Serial Programming

Although most configurations can be done by modifying the SFR registers, the more central configuration is done by modifying the configuration bits.

The configuration bits can be programmed (read as '0'), or left un-programmed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 300000h which is beyond the program and user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFh). This space can only be accessed using the table read and table write instructions.

Programming the configuration registers is done in a manner similar to programming the Flash memory. The EECON1 register WR bit starts a self-timed write to the configuration register. In normal operation mode, a TBLWT instruction, with the TBLPTR pointing to the configuration register, sets up the address and the data for the configuration register write. Setting the WR bit starts a long write to the configuration register. The configuration registers are written a byte at a time. To write or erase a configuration cell, a TBLWT instruction can write a '1' or a '0' into the cell. For additional details on Flash programming, refer to PICmicro data sheet.

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	IESO	FSCM		_	FOSC3	FOSC2	FOSC1	FOSC0	11 1111
300002h	CONFIG2L	-	—	—	—	BORV1	BORV0	BOR	PWRTEN	1111
300003h	CONFIG2H	_	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDT	1 1111
300005h	CONFIG3H	MCLRE	_	_	_	_	_		_	1
300006h	CONFIG4L	DEBUG	—	—	—	—	LVP	_	STVR	11-1
300008h	CONFIG5L			_	—	_	_	CP1	CP0	11
300009h	CONFIG5H	CPD	CPB	-	_		_			11
30000Ah	CONFIG6L	1			_		-	WRT1	WRT0	11
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	—	_	—		-	111
30000Ch	CONFIG7L		—	_	—	—	—	EBTR1	EBTR0	11
30000Dh	CONFIG7H		EBTRB	_	_	_	_	_	_	-1
3FFFFEh	DEVID1 ⁽¹⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx ⁽¹⁾
3FFFFFh	DEVID2 ⁽¹⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 0111

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as 'o'.

Note 1: See Register 19-14 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.

# APPENDIX E. ADDITIONAL RESOURCES

- Website <u>www.EngrCS.com</u> provide access to additional supporting hardware/software documentation, Microchip PIC 18F1220 Data Sheet and development environment.
- The latest development tools, documentation and tutorial on MPLAB software and other hardware development tools are available at <u>www.Microchip.com</u>.