Computer Science 246 Advanced Computer Architecture Spring 2008 Harvard University

Instructor: Prof. David Brooks dbrooks@eecs.harvard.edu

#### Why worry about power dissipation?

#### Battery life





Thermal issues: affect cooling, packaging, reliability, timing

#### Environment



#### **Power-Aware Needed across all computing platforms**

- Mobile/portable (cell phones, laptops, PDA)
  - Battery life is critical
- Desktops/Set-Top (PCs and game machines)
  - Packaging cost is critical
- Servers (Mainframes and compute-farms)
  - Packaging limits
  - Volumetric (performance density)

# Modeling + Design

- First Component (Modeling/Measurement):
  - Come up with a way to:
    - Diagnose where power is going in your system
    - -Quantify potential savings
- Second Component (Design)
  - Try out lots of ideas
- This class will focus on both of these at many levels of the computing hierarchy

#### **How CMOS Transistors Work**



#### **MOS Transistors are Switches**



#### **Static CMOS**



**PUN and PDN are Dual Networks** 

# **Basic Logic Gates**



# **CMOS Water Analogy**

**Electron: water molecule** 

**Charge: weight of water** 

Voltage: height

**Current: flow rate** 

**Capacitance: container cross-section** 

(Think of power-plants that store energy by pumping water into towers)

# **Liquid Inverter**



- Capacitance at input
  - Gates of NMOS, PMOS
  - Metal interconnect
- Capacitance at output
  - Fanout (# connections) to other gates
  - "Diffusion" capacitance of tx
  - Metal Interconnect

NMOS conducts when water level is above switching threshold

**PMOS conducts below** 

No conduction after container full

### **Inverter Signal Propagation (1)**



# **Inverter Signal Propagation (2)**



# **Delay and Energy Definitions**

- Propagation Delay
  - Time to fill output container to 50%
  - Time to charge output capacitor to 50%
- Switching Energy
  - Weight \* height of water moved
  - Charge \* voltage of charge transferred

# **Delay and Power Observations**

- Load capacitance increases delay
  - High fanout (gates attached to output)
  - Interconnection
- Higher current can increase speed
  - Increasing transistor width raises currents but also raises capacitance
- Energy per switching event independent of current
  - Depends on amount of charge moved, not rate

#### **Feedback-based Latch**



- Pros:
  - Holds data as long as power applied
  - Actively drives output: (can be fast)
- Con: Fairly big (5 transistors)
- Can be used for latches or SRAM cells

# **Charge-based Latch**



- Pros:
  - Small: 1 transistor, 1 capacitor (may be gate of tx)
- Con:
  - Charge "leaks" off capacitor (~1ms)
  - Reads can be destructive (must read follow by write)
- Can be used for latches or DRAM cells

#### **Power: The Basics**

- Dynamic power vs. Static power
  - Dynamic: "switching" power
  - Static: "leakage" power
  - Dynamic power dominates, but static power increasing in importance
  - Trends in each
- Static power: steady, per-cycle energy cost
- Dynamic power: capacitive and short-circuit
- Capacitive power: charging/discharging at transitions from 0→1 and 1→0
- Short-circuit power: power due to brief short-circuit current during transitions.
- Most research focuses on capacitive, but recent work on others

#### **Dynamic (Capacitive) Power Dissipation**



 Data dependent – a function of switching activity

#### **Capacitive Power dissipation**



# Lowering Dynamic Power

- Reducing Vdd has a quadratic effect
  - Has a negative (~linear) effect on performance however
- Lowering C<sub>L</sub>
  - May improve performance as well
  - Keep transistors small (keeps intrinsic capacitance (gate and diffusion) small)
- Reduce switching activity
  - A function of signal transition stats and clock rate
  - Clock Gating idle units
  - Impacted by logic and architecture decisions

#### **Short-Circuit Power Dissipation**



- Short-Circuit Current caused by finite-slope input signals
- Direct Current Path between VDD and GND when both NMOS and PMOS transistors are conducting

# **Short-Circuit Power Dissipation**

# $Power_{SC} \sim t_{sc}VI_{peak}$

- Power determined by
  - Duration and slope of input signal, t<sub>sc</sub>
  - I<sub>peak</sub> determined by transistor sizes, process technology, C<sub>L</sub>
- Short circuit power can be minimized
  - Try to match rise/fall times of input and output signals
  - Have not seen many architectural solutions here
  - Good news: relatively, Power<sub>sc</sub> is shrinking

# Leakage Currents



- Subthreshold currents grow exponentially with increases in temperature, decreases in threshold voltage
  - But threshold voltage scaling is key to circuit performance!
- Gate leakage primarily dependent on gate oxide thickness, biases
- Both type of leakage heavily dependent on stacking and input pattern
- More on leakage later in the semester

#### Gate vs. Subthreshold Leakage



From Mukhopadhyay, et al. TVLSI<sub>24</sub>03

# **Lowering Static Power**

#### Design-time Decisions

- Use fewer, smaller transistors -- stack when possible to minimize contacts with Vdd/Gnd
- Multithreshold process technology (multiple oxides too!)
  - Use "high-Vt" slow transistors whenever possible
- Dynamic Techniques
  - Reverse-Body Bias (dynamically adjust threshold)
    - Low-leakage sleep mode (maintain state), e.g.
      XScale
  - Vdd-gating (Cut voltage/gnd connection to circuits)
    - Near zero-leakage sleep mode
    - Lose state, overheads to enable/disable

# What do we mean by Power?



#### **CPU Cycles**

- Max Power: Artificial code generating max CPU activity
- Worst-case App Trace: *Practical* applications worst-case
- Thermal Power: Running average of worst-case app power over a time period corresponding to thermal time constant
- Average Power: Long-term average of typical apps (minutes)
- Transient Power: Variability in power consumption for supply net

# Power vs. Energy

- Power consumption in Watts
  - Determines battery life in hours
  - Sets packaging limits
- Energy efficiency in joules
  - Rate at which energy is consumed over time
  - Energy = power \* delay (joules = watts \* seconds)
  - Lower energy number means less power to perform a computation at same frequency

#### **Power vs. Energy**



# **Power vs. Energy**

- Power-delay Product (PDP) = P<sub>avg</sub> \* t
  - PDP is the average energy consumed per switching event
- Energy-delay Product (EDP) = PDP \* t
  - Takes into account that one can trade increased delay for lower energy/operation
- Energy-delay<sup>2</sup> Product (EDDP) = EDP \* t
  - Why do we need so many formulas?!!?
  - We want a voltage-invariant efficiency metric! Why?
  - Power ~ <sup>1</sup>/<sub>2</sub> CV<sup>2</sup>Af, Performance ~ f (and V)

# E vs. EDP vs. ED<sup>2</sup>P

- Power ~ CV<sup>2</sup>f ~ V<sup>3</sup> (fixed microarch/design)
- Performance ~ f ~ V (fixed microarch/design)
- (For the nominal voltage range, f varies approx. linearly with V)
- Comparing processors that can only use freq/voltage scaling as the primary method of power control:
  - (perf)<sup>3</sup> / power, or MIPS<sup>3</sup> / W or SPEC<sup>3</sup> /W is a fair metric to compare energy efficiencies.
  - This is an ED<sup>2</sup> P metric. We could also use: (CPI)<sup>3</sup> \* W for a given application

# E vs. EDP vs. ED<sup>2</sup>P

- Currently have a processor design:
  - 80W, 1 BIPS, 1.5V, 1GHz
  - Want to reduce power, willing to lose some performance
  - Cache Optimization:
    - –IPC decreases by 10%, reduces power by 20% => Final Processor: 900 MIPS, 64W
    - -Relative E = MIPS/W (higher is better) = 14/12.5 = 1.125x
  - Energy is better, but is this a "better" processor?

# Not necessarily

- 80W, 1 BIPS, 1.5V, 1GHz
  - Cache Optimization:
    - IPC decreases by 10%, reduces power by 20% => Final Processor: 900 MIPS, 64W
    - Relative E = MIPS/W (higher is better) = 14/12.5 = 1.125x
    - Relative EDP =  $MIPS^2/W = 1.01x$
    - Relative  $ED^2P = MIPS^3/W = .911x$
- What if we just adjust frequency/voltage on processor?
  - How to reduce power by 20%?
  - P = CV<sup>2</sup>F = CV<sup>3</sup> => Drop voltage by 7% (and also Freq) => .93\*.93\*.93 = .8x
  - So for equal power (64W)
    - Cache Optimization = 900MIPS
    - Simple Voltage/Frequency Scaling = 930MIPS

#### **Analysis Abstraction Levels**



#### **Power/Performance abstractions**

#### • Low-level:

- Hspice
- PowerMill
- Medium-Level:
  - RTL Models
- Architecture-level:
  - PennState SimplePower
  - Intel Tempest
  - Princeton Wattch
  - IBM PowerTimer
  - Umich/Colorado PowerAnalyzer

### Low-level models: Hspice

- Extracted netlists from circuit/layout descriptions
  - Diffusion, gate, and wiring capacitance is modeled
- Analog simulation performed
  - Detailed device models used
  - Large systems of equations are solved
  - Can estimate dynamic and leakage power dissipation within a few percent
  - Slow, only practical for 10-100K transistors
- PowerMill (Synopsys) is similar but about 10x faster

# Medium-level models: RTL

- Logic simulation obtains switching events for every signal
- Structural VHDL or verilog with zero or unitdelay timing models
- Capacitance estimates performed
  - Device Capacitance
    - -Gate sizing estimates performed, similar to synthesis
  - Wiring Capacitance
    - -Wire load estimates performed, similar to placement and routing
- Switching event and capacitance estimates provide dynamic power estimates

# **Architecture level models**

#### • Two major classes:

- Cycle/Event-Based: Arch. Level power models interfaced
  with cycle-driven performance simulation
- Instruction-Based: Measurement/Characterization based on instruction usage and interactions
- Components of Arch. Level power model
  - Could be based on ckt schematic measurements/extrapolation

Or...

Capacitance models

Both may need to consider...

- Circuit design styles
- Clock gating styles & Unit usage statistics
- Signal transition statistics

## **Paper Readings**

#### Background Material (available on website)

- Power-Aware Microarchitecture: Design and Modeling Challenges for Next-Generation Microprocessors," IEEE MICRO.
- "Power: A First-Class Architectural Design Constraint," IEEE Computer.