Computer Science 246 Advanced Computer ArchitectureSpring 2008 Harvard University

Instructor: Prof. David Brooksdbrooks@eecs.harvard.edu

Why worry about power dissipation?

Battery life

Thermal issues: affect cooling, packaging, reliability, timing

Environment

Power-Aware Needed across all computing platforms

- • **Mobile/portable (cell phones, laptops, PDA)**
	- \bullet **Battery life is critical**
- \bullet **Desktops/Set-Top (PCs and game machines)**
	- •**Packaging cost is critical**
- • **Servers (Mainframes and compute-farms)**
	- **Packaging limits**
	- **Volumetric (performance density)**

Modeling + Design

- • **First Component (Modeling/Measurement):**
	- **Come up with a way to:**
		- –**Diagnose where power is going in your system**
		- –**Quantify potential savings**
- • **Second Component (Design)**
	- **Try out lots of ideas**
- • **This class will focus on both of these at many levels of the computing hierarchy**

How CMOS Transistors Work

MOS Transistors are Switches

Static CMOS

PUN and PDN are Dual Networks

Basic Logic Gates

CMOS Water Analogy

Electron: water molecule

Charge: weight of water

Voltage: height

Current: flow rate

Capacitance: container cross-section

(Think of power-plants that store energy by pumping water into towers)

Liquid Inverter

Capacitance at input

•

•

- •**Gates of NMOS, PMOS**
- •**Metal interconnect**
- **Capacitance at output**
	- •**Fanout (# connections) to other gates**
	- •**"Diffusion" capacitance of tx**
	- •**Metal Interconnect**

NMOS conducts when water level is above switching threshold

PMOS conducts below

10No conduction after container full

Inverter Signal Propagation (1)

Inverter Signal Propagation (2)

Delay and Energy Definitions

- \bullet **Propagation Delay**
	- •**Time to fill output container to 50%**
	- •**Time to charge output capacitor to 50%**
- • **Switching Energy**
	- **Weight * height of water moved**
	- \bullet **Charge * voltage of charge transferred**

Delay and Power Observations

- \bullet **Load capacitance increases delay**
	- •**High fanout (gates attached to output)**
	- •**Interconnection**
- • **Higher current can increase speed**
	- • **Increasing transistor width raises currents but also raises capacitance**
- • **Energy per switching event independent of current**
	- •**Depends on amount of charge moved, not rate**

Feedback-based Latch

- • **Pros:**
	- \bullet **Holds data as long as power applied**
	- \bullet **Actively drives output: (can be fast)**
- \bullet **Con: Fairly big (5 transistors)**
- \bullet **Can be used for latches or SRAM cells**

Charge-based Latch

- \bullet **Pros:**
	- \bullet **Small: 1 transistor, 1 capacitor (may be gate of tx)**
- \bullet **Con:**
	- \bullet **Charge "leaks" off capacitor (~1ms)**
	- \bullet **Reads can be destructive (must read follow by write)**
- \bullet **Can be used for latches or DRAM cells**

Power: The Basics

- • **Dynamic power vs. Static power**
	- •**Dynamic: "switching" power**
	- \bullet **Static: "leakage" power**
	- \bullet **Dynamic power dominates, but static power increasing in importance**
	- •**Trends in each**
- •**Static power: steady, per-cycle energy cost**
- •**Dynamic power: capacitive and short-circuit**
- • **Capacitive power: charging/discharging at transitions from 0→1 and 1→0**
- • **Short-circuit power: power due to brief short-circuit current during transitions.**
- \bullet **Most research focuses on capacitive, but recent work on others**

Dynamic (Capacitive) Power Dissipation

 \bullet **Data dependent – a function of switching activity**

Capacitive Power dissipation

Lowering Dynamic Power

- \bullet **Reducing Vdd has a quadratic effect**
	- \bullet **Has a negative (~linear) effect on performance however**
- \bullet **Lowering C L**
	- •**May improve performance as well**
	- • **Keep transistors small (keeps intrinsic capacitance (gate and diffusion) small)**
- \bullet **Reduce switching activity**
	- **A function of signal transition stats and clock rate**
	- **Clock Gating idle units**
	- •**Impacted by logic and architecture decisions**

Short-Circuit Power Dissipation

- • **Short-Circuit Current caused by finite-slope input signals**
- \bullet **Direct Current Path between VDD and GND when both NMOS and PMOS transistors are conducting**

Short-Circuit Power Dissipation

$Power_{SC} \sim t_{sc} VI_{peak}$

- **Power determined by**
	- Duration and slope of input signal, t_{sc}
	- **Ipeak determined by transistor sizes, process technology, C** technology, C₁
- **Short circuit power can be minimized**
	- • **Try to match rise/fall times of input and output signals**
	- **Have not seen many architectural solutions here**
	- Good news: relatively, Power_{sc} is shrinking

Leakage Currents

- • **Subthreshold currents grow exponentially with increases in temperature, decreases in threshold voltage**
	- •**But threshold voltage scaling is key to circuit performance!**
- • **Gate leakage primarily dependent on gate oxide thickness, biases**
- • **Both type of leakage heavily dependent on stacking and input pattern**
- \bullet **More on leakage later in the semester**

Gate vs. Subthreshold Leakage

24From Mukhopadhyay, et al. TVLSI '03

Lowering Static Power

• **Design-time Decisions**

- **Use fewer, smaller transistors -- stack when possible to minimize contacts with Vdd/Gnd**
- **Multithreshold process technology (multiple oxides too!)**
	- – **Use "high-Vt" slow transistors whenever possible**
- **Dynamic Techniques**
	- **Reverse-Body Bias (dynamically adjust threshold)**
		- **Low-leakage sleep mode (maintain state), e.g. XScale**
	- **Vdd-gating (Cut voltage/gnd connection to circuits)**
		- **Near zero-leakage sleep mode**
		- **Lose state, overheads to enable/disable**

What do we mean by Power?

CPU Cycles

- •**Max Power: Artificial code generating max CPU activity**
- •**Worst-case App Trace:** *Practical* **applications worst-case**
- • **Thermal Power: Running average of worst-case app power over a time period corresponding to thermal time constant**
- •**Average Power: Long-term average of typical apps (minutes)**
- •**Transient Power: Variability in power consumption for supply net**

Power vs. Energy

- • **Power consumption in Watts**
	- •**Determines battery life in hours**
	- **Sets packaging limits**
- • **Energy efficiency in joules**
	- •**Rate at which energy is consumed over time**
	- \bullet **Energy = power * delay (joules = watts * seconds)**
	- • **Lower energy number means less power to perform a computation at same frequency**

Power vs. Energy

Power vs. Energy

- • **Power-delay Product (PDP) = Pavg * t**
	- **PDP is the average energy consumed per switching event**
- • **Energy-delay Product (EDP) = PDP * t**
	- • **Takes into account that one can trade increased delay for lower energy/operation**
- • **Energy-delay2 Product (EDDP) = EDP * t**
	- **Why do we need so many formulas?!!?**
	- **We want a voltage-invariant efficiency metric! Why?**
	- **Power ~ ½ CV 2Af, Performance ~ f (and V)**

E vs. EDP vs. ED2 P

- \bullet **Power ~ CV 2f ~ V 3 (fixed microarch/design)**
- \bullet **Performance ~ f ~ V (fixed microarch/design)**
- • **(For the nominal voltage range, f varies approx. linearly with V)**
- • **Comparing processors that can only use freq/voltage scaling as the primary method of power control:**
	- **(perf) 3 / power, or MIPS 3 / W or SPEC 3 /W is a fair metric to compare energy efficiencies.**
	- **This is an ED2 P metric. We could also use: (CPI) 3 * W for a given application**

E vs. EDP vs. ED2 P

- • **Currently have a processor design:**
	- **80W, 1 BIPS, 1.5V, 1GHz**
	- **Want to reduce power, willing to lose some performance**
	- **Cache Optimization:**
		- –**IPC decreases by 10%, reduces power by 20% => Final Processor: 900 MIPS, 64W**
		- –**Relative E = MIPS/W (higher is better) = 14/12.5 = 1.125x**
	- **Energy is better, but is this a "better" processor?**

Not necessarily

- • **80W, 1 BIPS, 1.5V, 1GHz**
	- **Cache Optimization:**
		- **IPC decreases by 10%, reduces power by 20% => Final Processor: 900 MIPS, 64W**
		- **Relative E = MIPS/W (higher is better) = 14/12.5 = 1.125x**
		- **Relative EDP = MIPS2/W = 1.01x**
		- **Relative ED2P = MIPS3/W = .911x**
- \bullet **What if we just adjust frequency/voltage on processor?**
	- •**How to reduce power by 20%?**
	- $P = CV^2F = CV^3 \Rightarrow Drop voltage by 7\% (and also Freq) \Rightarrow$ **.93*.93*.93 = .8x**
	- **So for equal power (64W)**
		- **Cache Optimization = 900MIPS**
		- **Simple Voltage/Frequency Scaling = 930MIPS**

Analysis Abstraction Levels

Power/Performance abstractions

•**Low-level:**

- \bullet **Hspice**
- •**PowerMill**
- • **Medium-Level:**
	- •**RTL Models**
- \bullet **Architecture-level:**
	- \bullet **PennState SimplePower**
	- \bullet **Intel Tempest**
	- •**Princeton Wattch**
	- •**IBM PowerTimer**
	- •**Umich/Colorado PowerAnalyzer**

Low-level models: Hspice

- • **Extracted netlists from circuit/layout descriptions**
	- \bullet **Diffusion, gate, and wiring capacitance is modeled**
- • **Analog simulation performed**
	- •**Detailed device models used**
	- •**Large systems of equations are solved**
	- **Can estimate dynamic and leakage power dissipation within a few percent**
	- •**Slow, only practical for 10-100K transistors**
- \bullet **PowerMill (Synopsys) is similar but about 10x faster**

Medium-level models: RTL

- • **Logic simulation obtains switching events for every signal**
- \bullet **Structural VHDL or verilog with zero or unitdelay timing models**
- • **Capacitance estimates performed**
	- \bullet **Device Capacitance**
		- –**Gate sizing estimates performed, similar to synthesis**
	- **Wiring Capacitance**
		- –**Wire load estimates performed, similar to placement and routing**
- • **Switching event and capacitance estimates provide dynamic power estimates**

Architecture level models

•**Two major classes:**

- • **Cycle/Event-Based: Arch. Level power models interfaced with cycle-driven performance simulation**
- \bullet **Instruction-Based: Measurement/Characterization based on instruction usage and interactions**
- • **Components of Arch. Level power model**
	- • **Could be based on ckt schematic measurements/extrapolation**

Or…

•**Capacitance models**

Both may need to consider…

- \bullet **Circuit design styles**
- \bullet **Clock gating styles & Unit usage statistics**
- •**Signal transition statistics**

Paper Readings

•**Background Material (available on website)**

- **Power-Aware Microarchitecture: Design and Modeling Challenges for Next-Generation Microprocessors," IEEE MICRO.**
- **"Power: A First-Class Architectural Design Constraint," IEEE Computer.**