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Lecture Outline 

•  Tomasulo’s Algorithm Review (3.1-3.3) 
•  Pointer-Based Renaming (MIPS R10000) 
•  Dynamic Branch Prediction (3.4) 
•  Other Front-end Optimizations (3.5) 

–  Branch Target Buffers/Return Address Stack 
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Tomasulo Review 

•  Reservation Stations 
–  Distribute RAW hazard detection 
–  Renaming eliminates WAW hazards 
–  Buffering values in Reservation Stations removes WARs 
–  Tag match in CDB requires many associative compares 

•  Common Data Bus 
–  Achilles heal of Tomasulo 
–  Multiple writebacks (multiple CDBs) expensive 

•  Load/Store reordering 
–  Load address compared with store address in store buffer 



Tomasulo Organization 

FP adders 

Add1 
Add2 
Add3 

FP multipliers 

Mult1 
Mult2 

From Mem FP Registers 

Reservation  
Stations 

Common Data Bus (CDB) 

To Mem 

FP Op 
Queue 

Load Buffers 

Store  
Buffers 

Load1 
Load2 
Load3 
Load4 
Load5 
Load6 
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Tomasulo Review 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

LD F0, 0(R1) Iss M1 M2 M3 M4 M5 M6 M7 M8 Wb 

MUL F4, F0, F2 Iss Iss Iss Iss Iss Iss Iss Iss Iss Ex Ex Ex Ex Wb 

SD 0(R1), F0 Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss M1 M2 M3 Wb 

SUBI R1, R1, 8 Iss Ex Wb 

BNEZ R1, Loop Iss Ex Wb 

LD F0, 0(R1) Iss Iss Iss Iss M Wb 

MUL F4, F0, F2 Iss Iss Iss Iss Iss Ex Ex Ex Ex Wb 

SD 0(R1), F0 Iss Iss Iss Iss Iss Iss Iss Iss Iss M1 M2 M3 Wb 

SUBI R1, R1, 8 Iss Ex Wb 

BNEZ R1, Loop Iss Ex Wb 

LD F0, 0(R1) Iss M1 M2 M3 M4 M5 M6 M7 M8 Wb 

MUL F4, F0, F2 Iss Iss Iss Iss Iss 

SD 0(R1), F0 Iss Iss Iss Iss 
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Register Renaming: Pointer-Based 

•  MIPS R10K, Alpha 21264, Pentium 4, POWER4 
•  Mapper/Map Table: Hardware to hold these 

mappings 
–  Register Writes: Allocate new location, note mapping in 

table 
–  Register Reads: Look in map table, find location of most 

recent write 
•  Deallocate mappings when done 
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Register Renaming: Example 
–  Mapper/Map Table: Hardware to hold these mappings 

•  Register Writes: Allocate new location, note mapping in table 
•  Register Reads: Look in map table, find location of most recent write 

–  Deallocate mappings when done 
•  Assume 

–  4 Architected/Logical Registers (F1,F2,F3,F4) “names” 
–  8 Physical/Rename Registers (P1—P8) “locations” 

•  Code – Lots of Potential WAR/WAW, also RAWs 
ADD  R1, R2, R4 
SUB  R4, R1, R2 
ADD  R3, R1, R3 
ADD  R1, R3, R2 
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Register Renaming: Example 

ADD  R1, R2, R4 
SUB  R4, R1, R2 
ADD  R3, R1, R3 
ADD  R1, R3, R2 

ADD  P5, P2, P4 
SUB  P6, P5, P2 
ADD  P7, P5, P3 
ADD  P8, P7, P2 

Map Table 

R1 R2 R3 R4 

P1 P2 P3 P4 

P5 P2 P3 P4 

P5 P2 P3 P6 

P5 P2 P7 P6 

P8 P2 P7 P6 

Initial Mapping 
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Control Hazards 

•  Key to performance in current microprocessors 
•  Almost every design decision changes if we 

assume “perfect” rather than realistic branch 
prediction 
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Strategies to reduce control hazards 

•  Compiler techniques reduce branch frequency 
•  Hardwired strategies for responding to branches – 

“assume not taken” 
•  Delayed branches 
•  Nullifying branches 
•  Compiler hints to suggest likely outcomes 
•  Dynamic hardware branch prediction 
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Branch prediction methods 

•  When is information about branches gathered/
applied? 
–  When the machine is designed 
–  When the program is compiled (“compile-time”) (ch.4) 
–  When a “training run” of the program is executed 

(“profile-based”) 
–  As the program is executing (“dynamic”) 
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Why predict? Speculative Execution 

•  Execute beyond branch boundaries before the 
branch is resolved 

•  Correct Speculation 
–  Avoid stall, result is computed early, performance++ 

•  Incorrect Speculation 
–  Abort/squash incorrect instructions, complexity+ 
–  Undo any incorrect state changes, complexity++ 

•  Performance gain is weighed vs. penalty 
•  Speculation accuracy = branch prediction accuracy 
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Dynamic Hardware Branch 
Prediction 

•  Branch behavior is monitored during program execution 
–  History data can influence prediction of future executions of 

the branch instruction 

•  Branches instruction execution has two tasks/predictions 
–  Condition evaluation (taken or not-taken) 
–  Target address calculation (where to go when taken) 

•  Target prediction also applies to unconditional branches 
•  Branch Direction Prediction: 3 levels of complexity 

–  Branch history tables, Two-level tables, hybrid predictors 
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Branch Direction Prediction 

•  Basic idea: Hope that future behavior of the 
branch is correlated to past behavior 
–  Loops 
–  Error-checking conditionals 

•  For a single branch PC 
–  Simplest possible idea: Keep 1 bit around to indicate 

taken or not-taken 
–  2nd simplest idea: Keep 2 bits around, saturating counter 
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Two-bit Saturating Counters 

•  2-bit FSMs mean prediction must miss twice before change 
•  N-bit predictors are possible, but after 2-bits not much benefit 

Predict  Not Taken 

   Predict Taken 

Predict  Not Taken 

   Predict Taken 
11 10 

01 00 
Taken 

Taken 

Taken 

Taken 

Not Taken 

Not Taken 

Not Taken 

Not Taken 

“strongly 
taken” 

“strongly 
not taken” 
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Example: Two-bit vs. 1-bit 
Branch Prediction 

•  2-bit “hysterisis” helps 

Branch Outcome  T T T N T T T N T T T N % predict rate 

1-bit Prediction N T T T N T T T N T T T 

1-bit Mis-Predict? Y Y Y Y Y Y ~50% 

2-bit Prediction n T T t T T T t T T T t 

2-bit Mis-Predict? Y Y Y Y ~75% 
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Branch Prediction Buffer 
(branch history table, BHT) 

•  Small memory indexed with low bits of the 
branch instruction’s address 
–  Why the low bits? 

•  Implementation 
–  Separate memory accessed during IF phase 
–  2-bits attached to each block in the Instruction 

Cache 
•  Caveats: Cannot separately size I-Cache and BHT 
•  What about multiple branches in a cache line? 

–  Does this help our simple 5-stage pipeline? 

PC 
12-bits 

212 = 4K Entries 

Taken or 
Not-taken? 
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Correlating Predictors 

•  2-bit scheme only looks at branch’s own history to 
predict its behavior 

•  What if we use other branches to predict it as well? 

if (aa==2)aa=0; 
if (bb==2)bb=0; 

if (aa!=bb){..} 

•  Clearly branch #3 depends on outcome of #1 and #2 
•  Prediction must be a function of own branch as well as 

recent outcomes of other branches 

// Branch #1 
// Branch #2 
// Branch #3 
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Two-level Adaptive Branch 
Prediction (Correlating Predictor) 

•  Two-level BP requires two 
main components 
–  Branch history register (BHR):  

recent outcomes of branches (last 
k branches encountered) 

–  Pattern History Table (PHT): 
branch behavior for last s 
occurrences of the specific pattern 
of these k branches 

–  In effect, we concatenate BHR 
with Branch PC bits 

•  Can also XOR (GSHARE), etc 

PC 
12-bits 

212 = 4K Entries each (PHTs) 

Taken or 
Not-taken? 

2-bit BHR 0 0 
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Branch History Register 

•  Simple shift register 
–  Shift in branch outcomes as they occur 
–  1 => branch was taken 
–  0 => branch was not-taken 
–  k-bit BHR => 2k patterns 
–  Use these patterns to address into the Pattern History Table 
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Pattern History Table 

•  Has 2k entries 
•  Usually uses a 2-bit counter for the prediction 
•  Each entry summarizes branch results for the last s 

times that BHR pattern was seen 
–  Not a shift register, usually a FSM 

•  BHR is used to address the PHT along with PC 
bits 
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Variations on 2-Level BP 

•  Variations depend on 
–  How many branches share a BHR 
–  How many branches share a PHT 

•  3 possibilities for each: global, per-address, per-set 
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2-level Branch History 

•  Global history -- 1 Branch History Register (BHR) 
•  Per-address/set history 

–  Per-Address/set Branch History Table holds many BHRs 

k-bits  
k-bits  

k-bits  
k-bits  
k-bits  

k-bits  

PC 

Taken or 
Not-taken? 

K-bits 
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Hardware Costs of 2-level 
predictions 

•  (m,n) predictor  m-bits of global history, n-bit 
predictor 

•  2m*n*Number of prediction entries 
•  Say you have m-bits of history (m=2) 
•  n-bits of predictor per entries (n=2) 

(2,2) predictor with 1K prediction entries 
 22*2*1024 = 8K-bits 
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Variations on the basics -- 
GSHARE 

•  Gshare a variant on GAg 
•  Don’t use BHR directly to address PHT 
•  Instead, XOR bits of BHR with bits of 

PC (branch address) and use that to 
index PHT 

•  Tries to separate out the behaviors/
predictions associated with different 
branches, without extra hardware of PA 
and SA schemes 

PC 
12-bits 

BHR 

XOR 
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Hybrid Branch Predictors 

•  Tournament predictors: Adaptively combine local 
and global predictors 

•  Different schemes work better for different branches 

Local 
Predictor 

Global 
Predictor 

Chooser 
Predictor 

Taken or 
Not-taken? 

Could be  
G-share 

Could be  
2-bit BHT 
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Branch Predictor Performance 
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Branch Target Prediction 

•  So far we have only talked about predicting 
direction 

•  We still need to predict the address 
–  Branch Target Buffer (BTB) 

•  Useful for conditional/unconditional branches 

–  Return Address Stack (RAS) 
•  Useful for procedure returns 
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Branch Target Buffer 
•  Simple pipeline resolves stages in ID 

–  We’d really like to know by the end of IF so we can proceed 
without a bubble 

•  Idea: 
–  As part of IF use the instruction address (every instruction) to do a 

lookup in the BTB 
–  For N recently executed branches, hold the predicted PC value 

(may also hold additional prediction bits) 
–  If instruction is not a branch, don’t add to BTB 
–  If BTB fails revert to earlier method 

•  Either instruction is not a branch 
•  Or, there is no predictor entry for that branch 

–  Many more bits per entry than BHT 
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Branch Target Buffer 
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Branch Target Cache 

•  Similar to BTB, but we also want to know the 
target instruction! 
–  Prediction returns not just the direction address, but 

also the instruction stored there 
–  Allows zero-cycle branches (branch-folding) 

•  Send target-instruction to ID rather than branch 
•  Branch is not sent into pipe 
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Return Address Stack 

•  Included in many recent processors 
–  Alpha 21264 => 12 entry RAS 

•  Procedure returns account for ~85% of indirect jumps 
•  Like a hardware stack, LIFO 

–  Procedure Call => Push Return PC onto stack 
–  Procedure Return => Prediction off of top of stack, Pop it 

•  RAS tends to work quite well since call depths are 
typically not large 
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Return Address Stack 

•  Say foo() is called from many different locations in a 
program 

•  It will then return to many different locations! 
•  RAS can predict which location to return to because 

it stores the caller PC 
•  This is faster than having to load up indirect jumps 

(jump r31) 
•  If the call-depth doesn’t exceed the size of the RAS, 

this prediction will always be correct 
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Putting things together 
•  Talked about these things independently… 
•  Instruction Fetch 

–  Branch Prediction (fill scheduler with instruction + multiple 
instruction per cycle) 

•  Scheduling/Hazard elimination 
–  Dynamic Scheduling with Tomasulo (RAW Hazards) 
–  Register Renaming (WAR and WAW Hazards) 

•  Multiple functional units, register file ports 
–  Potentially can reduce CPI < 1 

•  Speculative Execution 
•  Precise Interrupts 
•  Memory systems (later this semester) 
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Focus on Speculation/Interrupts 

•  Precise Interrupts 
–  All instructions before interrupt must complete 
–  All instructions after interrupt must seem to never start 

•  Speculation (similar problem!) 
–  If branch prediction is wrong, could update state 

incorrectly leading to wrong program behavior 
•  Out-of-Order completion 

–  Post-interrupt/mispredict writebacks change state 
–  Does Out-of-Order scheduling require this? 
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Solving both problems with one 
solution 

•  Need the ability to squash/restart any instruction 
–  Gives us precise state 

•  Need for memory ops (page faults, etc) 
•  Need for FP ops (divide by 0) 

–  Gives us ability to recover mis-speculations 
•  Need for branches 

•  Providing precise state solves both these problems 
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How to get precise state? 

•  Imprecise state 
–  As we’ve said this is a bad idea  
–  For speculation it is unacceptable 

•  Force in-order completion at WB (stall when 
necessary) 

•  Precise state in software: save recovery info for traps 
–  Traps on all faulting memory, FP, and mis-predicted 

branch ops? 
•  Precise state in hardware: save recovery info online 
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Solution: Writeback and Commit 

•  Allow out of order issue/writeback 
–  Require in-order commit when instruction is no longer 

speculative 
–  Prevent speculative changes from changing state 

•  e.g. memory write or register write 

•  Collect pre-commit instructions  
–  in a reorder buffer 

•  holds completed but not committed instruction 
–  Effectively contains a set of virtual registers 

•  similar to a reservation station 
•  and becomes a bypass (forwarding) source 
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Reorder Buffer: HW buffer for 
results of uncommitted instructions 
–  3 fields: instr, destination, value 
–  Reorder buffer can be operand source 

=> more registers like RS 
–  Use reorder buffer number instead of 

reservation station when execution 
completes 

–  Supplies operands between execution 
complete & commit 

–  Once operand commits,  
result is put into register 

–  Instructions commit 
–  As a result, its easy to undo speculated 

instructions  
on mispredicted branches  
or on exceptions 

Reorder 
Buffer 

FP Regs 

FP 
Op 

Queue 

FP Adder FP Adder 

Res Stations Res Stations 



Computer Science 246 
David Brooks 

Four Steps of Speculative 
Tomasulo Algorithm 

1. Issue—get instruction from FP Op Queue 
  If reservation station and reorder buffer slot free, issue instr & send operands 

& reorder buffer no. for destination (this stage sometimes called “dispatch”) 
2. Execution—operate on operands (EX) 

  When both operands ready then execute; if not ready, watch CDB for result; 
when both in reservation station, execute; checks RAW (sometimes called 
“issue”) 

3. Write result—finish execution (WB) 
  Write on Common Data Bus to all awaiting FUs & reorder buffer; mark 

reservation station available. (tags are now ROB #s not RS #s) 
4. Commit—update register with reorder result 

  When instr. at head of reorder buffer & result present, update register with 
result (or store to memory) and remove instr from reorder buffer. Mispredicted 
branch flushes reorder buffer (sometimes called “graduation”) 
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Tomasulo With Reorder Buffer - Cycle 0 
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Tomasulo With Reorder Buffer - Cycle 1 
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Tomasulo With Reorder Buffer - Cycle 2 

head 
tail 
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Tomasulo With Reorder Buffer - Cycle 3 

head 

tail 
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Tomasulo With Reorder Buffer - Cycle 4 

head 

tail 
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Tomasulo With Reorder Buffer - Cycle 5 

head 

tail 
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Tomasulo With Reorder Buffer - Cycle 6 

head 

tail 
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Tomasulo With Reorder Buffer - Cycle 7 

head 

tail 
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Tomasulo With Reorder Buffer - Cycle 8 

head 

tail 
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Tomasulo With Reorder Buffer - Cycle 9 

head 

tail 
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Tomasulo With Reorder Buffer - Cycle 10 

head 

tail 
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Tomasulo With Reorder Buffer - Cycle 11 

head 

tail 
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Tomasulo With Reorder Buffer - Cycle 12 

head 

tail 
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Tomasulo With Reorder Buffer - Cycle 13 

Figure 3.30 

P 230 

head 

tail 
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Tomasulo With Reorder Buffer - Cycle 14 

head 

tail 
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Tomasulo With Reorder Buffer - Cycle 15 

head 
tail 
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Tomasulo With Reorder Buffer - Cycle 16 

Need 36 more 
EX cycles for 

DIV to finish…  

head 
tail 
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Tomasulo With Reorder Buffer: 
Summary 

Instruction Issue Exec Comp Writeback Commit 

LD   F6, 34(R2) 1 2 3 4 

LD   F2, 45(R3) 2 3 4 5 

MULT F0, F2, F4 3 12 13 14 

SUBD F8, F6, F2 4 6 7 15 

DIVD  F10, F0, F6 5 52 53 54 

ADDD F6, F8, F2 6 8 9 55 

In-order Issue/Commit, Out-of-Order Execution/Writeback 



Computer Science 246 
David Brooks 

Precise State with ROB 

•  ROB maintains precise state and allows 
speculation 
–  Waits until precise condition reaches retire/commit 

stage 
–  (Or until branch is noted mis-predicted) 
–  Clear ROB, RS, and register status table (Flush) 
–  Service exception/Restart from True Branch target 

•  Need to do similar things with memory ops 
–  Called Memory Ordering Buffer (MOB) 

•  Completed stores write to MOB then complete (write to 
memory) in-order (when they reach head of buffer) 
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Example of Speculative State of Reorder Buffer 

First 
loop 

Second 
loop 

Multiply has just reached commit, so other instructions can start committing 
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Multiple Issue 

•  Goal: Sustain a CPI of less than 1 by issuing and 
processing multiple instructions per cycle 

•  SuperScalar 
–  Issue varying number of instructions per clock 

•  Statically Scheduled 
•  Dynamically Scheduled 

•  VLIW (EPIC) 
–  Issue a fixed number of instructions formatted as one 

large instruction or instruction “packet” 
–  Similar to static-scheduled superscalar 
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Multiple Issue Choices 

Common 
Name 

Issue 
Structure 

Hazard 
Detection 

Scheduling Examples 

Superscalar 
(static) 

Dynamic Hardware Static Sun UltraSPARC II/III 

Superscalar 
(dynamic) 

Dynamic Hardware Dynamic IBM POWER2 

Superscalar 
(speculative) 

Dynamic Hardware Dynamic with 
speculation 

Pentium III/4, MIPS 
R10K, Alpha 21264, IBM 
POWER4, HP PA8500 

VLIW Static Software Static Trimedia, i860 

EPIC “mostly” 
static 

mostly 
software 

mostly static Itanium (IA64) 
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Multiple Issue Example 

•  Maybe 1 ALU + 1 FP 
•  2 ALU + 2 LD/ST + 2 FP 
•  Many combinations possible – restriction ease implementation 

Single Issue Clock Cycle 
1 2 3 4 5 6 7 8 9 10 

i IF ID EX M WB 

i+1 IF ID EX M WB 

i+2 IF ID EX M WB 

i+3 IF ID EX M WB 

i+4 IF ID EX M WB 

i+5 IF ID EX M WB 

           Multiple Issue Clock Cycle 
1 2 3 4 5 6 7 

IF ID EX M WB 

IF ID EX M WB 

IF ID EX M WB 

IF ID EX M WB 

IF ID EX M WB 

IF ID EX M WB 
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Multiple Issue: Hazards 

•  As usual, we have to deal with the big three 
hazards: 
–  Structural Hazards 
–  Data Hazards 
–  Control Hazards 

•  Multiple issue gives: 
–  More opportunity for hazards (why?) 
–  Larger performance hit from hazards (why?) 
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Structural Hazards 

•  If both instructions per cycle are int/float we may 
need two int ALUs and two FP ALUs 

•  What about register files? 
•  This may lead to issue restrictions 

–  Compiler/hardware has to manage these restrictions 
•  2-issue machines typically do 1 INT/1 FP per cycle 

–  Good performance for many apps (+) 
–  Hazard Detection is easy (+) 
–  No performance boost for non-FP apps (-) 



Computer Science 246 
David Brooks 

Data Hazards 
ADD R1, R2, R3 

ADD R4, R5, R6 

ADD R8, R1, R7 
ADD R10, R9, R1 

•  Assume full-bypassing 
–  How many stalls for single issue? 
–  How many stalls for dual issue? 

•  Full bypassing? 
–  Not easy… 
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Control Hazards 

•  Branch stalls bubbles are compounded in n-way 
machines 

Multiple Issue Clock Cycle 
1 2 3 4 5 6 7 8 9 10 

i IF ID EX M WB 

i+1 IF ID EX M WB 

i+2 IF ID EX M WB 

i+3 IF ID EX M WB 

i+4 IF ID EX M WB 

i+5 IF ID EX M WB 

Branch 

3 Branch 
Delay Slots 
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Example: Pipeline Problem 
IF1  First part of instruction fetch (TLB access) 

IF2  Instruction fetch completes (I-cache accessed) 

RF  Instruction decoded and register file read 

EX  Perform Operation; compute memory address 
 (base+displacement); compute branch target 
 address; compute branch condition 

M1  First part of memory access (TLB access) 

M2  Memory access completes (D-cache accessed) 

WB  Write back results into register file 

•  How many read/write ports needed? 
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Pipeline Problem Cont. 
Single Issue Clock Cycle 

1 2 3 4 5 6 7 8 9 10 

i IF1 IF2 ID EX M1 M2 WB 

i+1 IF1 IF2 ID EX M1 M2 WB 

i+2 IF1 IF2 ID EX M1 M2 WB 

i+3 IF1 IF2 ID EX M1 M2 WB 

i+4 IF1 IF2 ID EX M1 M2 

i+5 IF1 IF2 ID EX M1 

•  What is the branch delay? 
•  What is the load delay? 
•  How many adders are needed to prevent structural hazards? 
•  How many destination RegIDs and comparators are needed for forwarding? 
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Pipeline Problem Cont. 
Multiple Issue Clock Cycle 

1 2 3 4 5 6 7 8 9 10 

i IF1 IF2 ID EX M1 M2 WB 

i+1 IF1 IF2 ID EX M1 M2 WB 

i+2 IF1 IF2 ID EX M1 M2 WB 

i+3 IF1 IF2 ID EX M1 M2 WB 

i+4 IF1 IF2 ID EX M1 M2 WB 

i+5 IF1 IF2 ID EX M1 M2 WB 

i+6 IF1 IF2 ID EX M1 M2 WB 

i+7 IF1 IF2 ID EX M1 M2 WB 

i+8 IF1 IF2 ID EX M1 M2 

i+9 IF1 IF2 ID EX M1 M2 

Branch Delay? Load Delay? Forwarding IDs? Read/Write ports? 
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Tomasulo + ROB Summary 

•  Many implementations are very similar 
–  Pentium III, PowerPC, etc 

•  Some limitations 
–  Too many value copy operations 

•  Register file => RS => ROB => Register File 

–  Too many muxes/busses (CDB) 
•  Values are coming from everywhere to everywhere else! 

–  Reservation Stations mix values(data) and tags(control) 
•  Slows down the max clock frequency 


