
Computer Science 246
David Brooks

Computer Science 246
Computer Architecture

Spring 2010
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Dynamic Branch Prediction, Speculation,
and Multiple Issue

Computer Science 246
David Brooks

Lecture Outline

•  Tomasulo’s Algorithm Review (3.1-3.3)
•  Pointer-Based Renaming (MIPS R10000)
•  Dynamic Branch Prediction (3.4)
•  Other Front-end Optimizations (3.5)

–  Branch Target Buffers/Return Address Stack

Computer Science 246
David Brooks

Tomasulo Review

•  Reservation Stations
–  Distribute RAW hazard detection
–  Renaming eliminates WAW hazards
–  Buffering values in Reservation Stations removes WARs
–  Tag match in CDB requires many associative compares

•  Common Data Bus
–  Achilles heal of Tomasulo
–  Multiple writebacks (multiple CDBs) expensive

•  Load/Store reordering
–  Load address compared with store address in store buffer

Tomasulo Organization

FP adders

Add1
Add2
Add3

FP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

Computer Science 246
David Brooks

Tomasulo Review
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LD F0, 0(R1) Iss M1 M2 M3 M4 M5 M6 M7 M8 Wb

MUL F4, F0, F2 Iss Iss Iss Iss Iss Iss Iss Iss Iss Ex Ex Ex Ex Wb

SD 0(R1), F0 Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss M1 M2 M3 Wb

SUBI R1, R1, 8 Iss Ex Wb

BNEZ R1, Loop Iss Ex Wb

LD F0, 0(R1) Iss Iss Iss Iss M Wb

MUL F4, F0, F2 Iss Iss Iss Iss Iss Ex Ex Ex Ex Wb

SD 0(R1), F0 Iss Iss Iss Iss Iss Iss Iss Iss Iss M1 M2 M3 Wb

SUBI R1, R1, 8 Iss Ex Wb

BNEZ R1, Loop Iss Ex Wb

LD F0, 0(R1) Iss M1 M2 M3 M4 M5 M6 M7 M8 Wb

MUL F4, F0, F2 Iss Iss Iss Iss Iss

SD 0(R1), F0 Iss Iss Iss Iss

Computer Science 246
David Brooks

Register Renaming: Pointer-Based

•  MIPS R10K, Alpha 21264, Pentium 4, POWER4
•  Mapper/Map Table: Hardware to hold these

mappings
–  Register Writes: Allocate new location, note mapping in

table
–  Register Reads: Look in map table, find location of most

recent write
•  Deallocate mappings when done

Computer Science 246
David Brooks

Register Renaming: Example
–  Mapper/Map Table: Hardware to hold these mappings

•  Register Writes: Allocate new location, note mapping in table
•  Register Reads: Look in map table, find location of most recent write

–  Deallocate mappings when done
•  Assume

–  4 Architected/Logical Registers (F1,F2,F3,F4) “names”
–  8 Physical/Rename Registers (P1—P8) “locations”

•  Code – Lots of Potential WAR/WAW, also RAWs
ADD R1, R2, R4
SUB R4, R1, R2
ADD R3, R1, R3
ADD R1, R3, R2

Computer Science 246
David Brooks

Register Renaming: Example

ADD R1, R2, R4
SUB R4, R1, R2
ADD R3, R1, R3
ADD R1, R3, R2

ADD P5, P2, P4
SUB P6, P5, P2
ADD P7, P5, P3
ADD P8, P7, P2

Map Table

R1 R2 R3 R4

P1 P2 P3 P4

P5 P2 P3 P4

P5 P2 P3 P6

P5 P2 P7 P6

P8 P2 P7 P6

Initial Mapping

Computer Science 246
David Brooks

Control Hazards

•  Key to performance in current microprocessors
•  Almost every design decision changes if we

assume “perfect” rather than realistic branch
prediction

Computer Science 246
David Brooks

Strategies to reduce control hazards

•  Compiler techniques reduce branch frequency
•  Hardwired strategies for responding to branches –

“assume not taken”
•  Delayed branches
•  Nullifying branches
•  Compiler hints to suggest likely outcomes
•  Dynamic hardware branch prediction

Computer Science 246
David Brooks

Branch prediction methods

•  When is information about branches gathered/
applied?
–  When the machine is designed
–  When the program is compiled (“compile-time”) (ch.4)
–  When a “training run” of the program is executed

(“profile-based”)
–  As the program is executing (“dynamic”)

Computer Science 246
David Brooks

Why predict? Speculative Execution

•  Execute beyond branch boundaries before the
branch is resolved

•  Correct Speculation
–  Avoid stall, result is computed early, performance++

•  Incorrect Speculation
–  Abort/squash incorrect instructions, complexity+
–  Undo any incorrect state changes, complexity++

•  Performance gain is weighed vs. penalty
•  Speculation accuracy = branch prediction accuracy

Computer Science 246
David Brooks

Dynamic Hardware Branch
Prediction

•  Branch behavior is monitored during program execution
–  History data can influence prediction of future executions of

the branch instruction

•  Branches instruction execution has two tasks/predictions
–  Condition evaluation (taken or not-taken)
–  Target address calculation (where to go when taken)

•  Target prediction also applies to unconditional branches
•  Branch Direction Prediction: 3 levels of complexity

–  Branch history tables, Two-level tables, hybrid predictors

Computer Science 246
David Brooks

Branch Direction Prediction

•  Basic idea: Hope that future behavior of the
branch is correlated to past behavior
–  Loops
–  Error-checking conditionals

•  For a single branch PC
–  Simplest possible idea: Keep 1 bit around to indicate

taken or not-taken
–  2nd simplest idea: Keep 2 bits around, saturating counter

Computer Science 246
David Brooks

Two-bit Saturating Counters

•  2-bit FSMs mean prediction must miss twice before change
•  N-bit predictors are possible, but after 2-bits not much benefit

Predict Not Taken

 Predict Taken

Predict Not Taken

 Predict Taken
11 10

01 00
Taken

Taken

Taken

Taken

Not Taken

Not Taken

Not Taken

Not Taken

“strongly
taken”

“strongly
not taken”

Computer Science 246
David Brooks

Example: Two-bit vs. 1-bit
Branch Prediction

•  2-bit “hysterisis” helps

Branch Outcome T T T N T T T N T T T N % predict rate

1-bit Prediction N T T T N T T T N T T T

1-bit Mis-Predict? Y Y Y Y Y Y ~50%

2-bit Prediction n T T t T T T t T T T t

2-bit Mis-Predict? Y Y Y Y ~75%

Computer Science 246
David Brooks

Branch Prediction Buffer
(branch history table, BHT)

•  Small memory indexed with low bits of the
branch instruction’s address
–  Why the low bits?

•  Implementation
–  Separate memory accessed during IF phase
–  2-bits attached to each block in the Instruction

Cache
•  Caveats: Cannot separately size I-Cache and BHT
•  What about multiple branches in a cache line?

–  Does this help our simple 5-stage pipeline?

PC
12-bits

212 = 4K Entries

Taken or
Not-taken?

Computer Science 246
David Brooks

Correlating Predictors

•  2-bit scheme only looks at branch’s own history to
predict its behavior

•  What if we use other branches to predict it as well?

if (aa==2)aa=0;
if (bb==2)bb=0;

if (aa!=bb){..}

•  Clearly branch #3 depends on outcome of #1 and #2
•  Prediction must be a function of own branch as well as

recent outcomes of other branches

// Branch #1
// Branch #2
// Branch #3

Computer Science 246
David Brooks

Two-level Adaptive Branch
Prediction (Correlating Predictor)

•  Two-level BP requires two
main components
–  Branch history register (BHR):

recent outcomes of branches (last
k branches encountered)

–  Pattern History Table (PHT):
branch behavior for last s
occurrences of the specific pattern
of these k branches

–  In effect, we concatenate BHR
with Branch PC bits

•  Can also XOR (GSHARE), etc

PC
12-bits

212 = 4K Entries each (PHTs)

Taken or
Not-taken?

2-bit BHR 0 0

Computer Science 246
David Brooks

Branch History Register

•  Simple shift register
–  Shift in branch outcomes as they occur
–  1 => branch was taken
–  0 => branch was not-taken
–  k-bit BHR => 2k patterns
–  Use these patterns to address into the Pattern History Table

Computer Science 246
David Brooks

Pattern History Table

•  Has 2k entries
•  Usually uses a 2-bit counter for the prediction
•  Each entry summarizes branch results for the last s

times that BHR pattern was seen
–  Not a shift register, usually a FSM

•  BHR is used to address the PHT along with PC
bits

Computer Science 246
David Brooks

Variations on 2-Level BP

•  Variations depend on
–  How many branches share a BHR
–  How many branches share a PHT

•  3 possibilities for each: global, per-address, per-set

Computer Science 246
David Brooks

2-level Branch History

•  Global history -- 1 Branch History Register (BHR)
•  Per-address/set history

–  Per-Address/set Branch History Table holds many BHRs

k-bits
k-bits

k-bits
k-bits
k-bits

k-bits

PC

Taken or
Not-taken?

K-bits

Computer Science 246
David Brooks

Hardware Costs of 2-level
predictions

•  (m,n) predictor m-bits of global history, n-bit
predictor

•  2m*n*Number of prediction entries
•  Say you have m-bits of history (m=2)
•  n-bits of predictor per entries (n=2)

(2,2) predictor with 1K prediction entries
 22*2*1024 = 8K-bits

Computer Science 246
David Brooks

Variations on the basics --
GSHARE

•  Gshare a variant on GAg
•  Don’t use BHR directly to address PHT
•  Instead, XOR bits of BHR with bits of

PC (branch address) and use that to
index PHT

•  Tries to separate out the behaviors/
predictions associated with different
branches, without extra hardware of PA
and SA schemes

PC
12-bits

BHR

XOR

Computer Science 246
David Brooks

Hybrid Branch Predictors

•  Tournament predictors: Adaptively combine local
and global predictors

•  Different schemes work better for different branches

Local
Predictor

Global
Predictor

Chooser
Predictor

Taken or
Not-taken?

Could be
G-share

Could be
2-bit BHT

Computer Science 246
David Brooks

Branch Predictor Performance

Computer Science 246
David Brooks

Branch Target Prediction

•  So far we have only talked about predicting
direction

•  We still need to predict the address
–  Branch Target Buffer (BTB)

•  Useful for conditional/unconditional branches

–  Return Address Stack (RAS)
•  Useful for procedure returns

Computer Science 246
David Brooks

Branch Target Buffer
•  Simple pipeline resolves stages in ID

–  We’d really like to know by the end of IF so we can proceed
without a bubble

•  Idea:
–  As part of IF use the instruction address (every instruction) to do a

lookup in the BTB
–  For N recently executed branches, hold the predicted PC value

(may also hold additional prediction bits)
–  If instruction is not a branch, don’t add to BTB
–  If BTB fails revert to earlier method

•  Either instruction is not a branch
•  Or, there is no predictor entry for that branch

–  Many more bits per entry than BHT

Computer Science 246
David Brooks

Branch Target Buffer

Computer Science 246
David Brooks

Branch Target Cache

•  Similar to BTB, but we also want to know the
target instruction!
–  Prediction returns not just the direction address, but

also the instruction stored there
–  Allows zero-cycle branches (branch-folding)

•  Send target-instruction to ID rather than branch
•  Branch is not sent into pipe

Computer Science 246
David Brooks

Return Address Stack

•  Included in many recent processors
–  Alpha 21264 => 12 entry RAS

•  Procedure returns account for ~85% of indirect jumps
•  Like a hardware stack, LIFO

–  Procedure Call => Push Return PC onto stack
–  Procedure Return => Prediction off of top of stack, Pop it

•  RAS tends to work quite well since call depths are
typically not large

Computer Science 246
David Brooks

Return Address Stack

•  Say foo() is called from many different locations in a
program

•  It will then return to many different locations!
•  RAS can predict which location to return to because

it stores the caller PC
•  This is faster than having to load up indirect jumps

(jump r31)
•  If the call-depth doesn’t exceed the size of the RAS,

this prediction will always be correct

Computer Science 246
David Brooks

Putting things together
•  Talked about these things independently…
•  Instruction Fetch

–  Branch Prediction (fill scheduler with instruction + multiple
instruction per cycle)

•  Scheduling/Hazard elimination
–  Dynamic Scheduling with Tomasulo (RAW Hazards)
–  Register Renaming (WAR and WAW Hazards)

•  Multiple functional units, register file ports
–  Potentially can reduce CPI < 1

•  Speculative Execution
•  Precise Interrupts
•  Memory systems (later this semester)

Computer Science 246
David Brooks

Focus on Speculation/Interrupts

•  Precise Interrupts
–  All instructions before interrupt must complete
–  All instructions after interrupt must seem to never start

•  Speculation (similar problem!)
–  If branch prediction is wrong, could update state

incorrectly leading to wrong program behavior
•  Out-of-Order completion

–  Post-interrupt/mispredict writebacks change state
–  Does Out-of-Order scheduling require this?

Computer Science 246
David Brooks

Solving both problems with one
solution

•  Need the ability to squash/restart any instruction
–  Gives us precise state

•  Need for memory ops (page faults, etc)
•  Need for FP ops (divide by 0)

–  Gives us ability to recover mis-speculations
•  Need for branches

•  Providing precise state solves both these problems

Computer Science 246
David Brooks

How to get precise state?

•  Imprecise state
–  As we’ve said this is a bad idea
–  For speculation it is unacceptable

•  Force in-order completion at WB (stall when
necessary)

•  Precise state in software: save recovery info for traps
–  Traps on all faulting memory, FP, and mis-predicted

branch ops?
•  Precise state in hardware: save recovery info online

Computer Science 246
David Brooks

Solution: Writeback and Commit

•  Allow out of order issue/writeback
–  Require in-order commit when instruction is no longer

speculative
–  Prevent speculative changes from changing state

•  e.g. memory write or register write

•  Collect pre-commit instructions
–  in a reorder buffer

•  holds completed but not committed instruction
–  Effectively contains a set of virtual registers

•  similar to a reservation station
•  and becomes a bypass (forwarding) source

Computer Science 246
David Brooks

Reorder Buffer: HW buffer for
results of uncommitted instructions
–  3 fields: instr, destination, value
–  Reorder buffer can be operand source

=> more registers like RS
–  Use reorder buffer number instead of

reservation station when execution
completes

–  Supplies operands between execution
complete & commit

–  Once operand commits,
result is put into register

–  Instructions commit
–  As a result, its easy to undo speculated

instructions
on mispredicted branches
or on exceptions

Reorder
Buffer

FP Regs

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

Computer Science 246
David Brooks

Four Steps of Speculative
Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
 If reservation station and reorder buffer slot free, issue instr & send operands

& reorder buffer no. for destination (this stage sometimes called “dispatch”)
2. Execution—operate on operands (EX)

 When both operands ready then execute; if not ready, watch CDB for result;
when both in reservation station, execute; checks RAW (sometimes called
“issue”)

3. Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting FUs & reorder buffer; mark

reservation station available. (tags are now ROB #s not RS #s)
4. Commit—update register with reorder result

 When instr. at head of reorder buffer & result present, update register with
result (or store to memory) and remove instr from reorder buffer. Mispredicted
branch flushes reorder buffer (sometimes called “graduation”)

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 0

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 1

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 2

head
tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 3

head

tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 4

head

tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 5

head

tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 6

head

tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 7

head

tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 8

head

tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 9

head

tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 10

head

tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 11

head

tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 12

head

tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 13

Figure 3.30

P 230

head

tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 14

head

tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 15

head
tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer - Cycle 16

Need 36 more
EX cycles for

DIV to finish…

head
tail

Computer Science 246
David Brooks

Tomasulo With Reorder Buffer:
Summary

Instruction Issue Exec Comp Writeback Commit

LD F6, 34(R2) 1 2 3 4

LD F2, 45(R3) 2 3 4 5

MULT F0, F2, F4 3 12 13 14

SUBD F8, F6, F2 4 6 7 15

DIVD F10, F0, F6 5 52 53 54

ADDD F6, F8, F2 6 8 9 55

In-order Issue/Commit, Out-of-Order Execution/Writeback

Computer Science 246
David Brooks

Precise State with ROB

•  ROB maintains precise state and allows
speculation
–  Waits until precise condition reaches retire/commit

stage
–  (Or until branch is noted mis-predicted)
–  Clear ROB, RS, and register status table (Flush)
–  Service exception/Restart from True Branch target

•  Need to do similar things with memory ops
–  Called Memory Ordering Buffer (MOB)

•  Completed stores write to MOB then complete (write to
memory) in-order (when they reach head of buffer)

Computer Science 246
David Brooks

Example of Speculative State of Reorder Buffer

First
loop

Second
loop

Multiply has just reached commit, so other instructions can start committing

Computer Science 246
David Brooks

Multiple Issue

•  Goal: Sustain a CPI of less than 1 by issuing and
processing multiple instructions per cycle

•  SuperScalar
–  Issue varying number of instructions per clock

•  Statically Scheduled
•  Dynamically Scheduled

•  VLIW (EPIC)
–  Issue a fixed number of instructions formatted as one

large instruction or instruction “packet”
–  Similar to static-scheduled superscalar

Computer Science 246
David Brooks

Multiple Issue Choices

Common
Name

Issue
Structure

Hazard
Detection

Scheduling Examples

Superscalar
(static)

Dynamic Hardware Static Sun UltraSPARC II/III

Superscalar
(dynamic)

Dynamic Hardware Dynamic IBM POWER2

Superscalar
(speculative)

Dynamic Hardware Dynamic with
speculation

Pentium III/4, MIPS
R10K, Alpha 21264, IBM
POWER4, HP PA8500

VLIW Static Software Static Trimedia, i860

EPIC “mostly”
static

mostly
software

mostly static Itanium (IA64)

Computer Science 246
David Brooks

Multiple Issue Example

•  Maybe 1 ALU + 1 FP
•  2 ALU + 2 LD/ST + 2 FP
•  Many combinations possible – restriction ease implementation

Single Issue Clock Cycle
1 2 3 4 5 6 7 8 9 10

i IF ID EX M WB

i+1 IF ID EX M WB

i+2 IF ID EX M WB

i+3 IF ID EX M WB

i+4 IF ID EX M WB

i+5 IF ID EX M WB

 Multiple Issue Clock Cycle
1 2 3 4 5 6 7

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

Computer Science 246
David Brooks

Multiple Issue: Hazards

•  As usual, we have to deal with the big three
hazards:
–  Structural Hazards
–  Data Hazards
–  Control Hazards

•  Multiple issue gives:
–  More opportunity for hazards (why?)
–  Larger performance hit from hazards (why?)

Computer Science 246
David Brooks

Structural Hazards

•  If both instructions per cycle are int/float we may
need two int ALUs and two FP ALUs

•  What about register files?
•  This may lead to issue restrictions

–  Compiler/hardware has to manage these restrictions
•  2-issue machines typically do 1 INT/1 FP per cycle

–  Good performance for many apps (+)
–  Hazard Detection is easy (+)
–  No performance boost for non-FP apps (-)

Computer Science 246
David Brooks

Data Hazards
ADD R1, R2, R3

ADD R4, R5, R6

ADD R8, R1, R7
ADD R10, R9, R1

•  Assume full-bypassing
–  How many stalls for single issue?
–  How many stalls for dual issue?

•  Full bypassing?
–  Not easy…

Computer Science 246
David Brooks

Control Hazards

•  Branch stalls bubbles are compounded in n-way
machines

Multiple Issue Clock Cycle
1 2 3 4 5 6 7 8 9 10

i IF ID EX M WB

i+1 IF ID EX M WB

i+2 IF ID EX M WB

i+3 IF ID EX M WB

i+4 IF ID EX M WB

i+5 IF ID EX M WB

Branch

3 Branch
Delay Slots

Computer Science 246
David Brooks

Example: Pipeline Problem
IF1 First part of instruction fetch (TLB access)

IF2 Instruction fetch completes (I-cache accessed)

RF Instruction decoded and register file read

EX Perform Operation; compute memory address
 (base+displacement); compute branch target
 address; compute branch condition

M1 First part of memory access (TLB access)

M2 Memory access completes (D-cache accessed)

WB Write back results into register file

•  How many read/write ports needed?

Computer Science 246
David Brooks

Pipeline Problem Cont.
Single Issue Clock Cycle

1 2 3 4 5 6 7 8 9 10

i IF1 IF2 ID EX M1 M2 WB

i+1 IF1 IF2 ID EX M1 M2 WB

i+2 IF1 IF2 ID EX M1 M2 WB

i+3 IF1 IF2 ID EX M1 M2 WB

i+4 IF1 IF2 ID EX M1 M2

i+5 IF1 IF2 ID EX M1

•  What is the branch delay?
•  What is the load delay?
•  How many adders are needed to prevent structural hazards?
•  How many destination RegIDs and comparators are needed for forwarding?

Computer Science 246
David Brooks

Pipeline Problem Cont.
Multiple Issue Clock Cycle

1 2 3 4 5 6 7 8 9 10

i IF1 IF2 ID EX M1 M2 WB

i+1 IF1 IF2 ID EX M1 M2 WB

i+2 IF1 IF2 ID EX M1 M2 WB

i+3 IF1 IF2 ID EX M1 M2 WB

i+4 IF1 IF2 ID EX M1 M2 WB

i+5 IF1 IF2 ID EX M1 M2 WB

i+6 IF1 IF2 ID EX M1 M2 WB

i+7 IF1 IF2 ID EX M1 M2 WB

i+8 IF1 IF2 ID EX M1 M2

i+9 IF1 IF2 ID EX M1 M2

Branch Delay? Load Delay? Forwarding IDs? Read/Write ports?

Computer Science 246
David Brooks

Tomasulo + ROB Summary

•  Many implementations are very similar
–  Pentium III, PowerPC, etc

•  Some limitations
–  Too many value copy operations

•  Register file => RS => ROB => Register File

–  Too many muxes/busses (CDB)
•  Values are coming from everywhere to everywhere else!

–  Reservation Stations mix values(data) and tags(control)
•  Slows down the max clock frequency

