COMPUTER SCIENCE

Computer Science Courses

C S 111. Computer Science Principles

4 Credits (3+2P)

This course provides a broad and exciting introduction to the field of
computer science and the impact that computation has today on every
aspect of life. It focuses on exploring computing as a creative activity
and investigates the key foundations of computing: abstraction, data,
algorithms, and programming. It looks into how connectivity and the
Internet have revolutionized computing and demonstrates the global
impact that computing has achieved, and it reveals how a new student in
computer science might become part of the computing future.
Prerequisite(s): MATH 1215 or higher.

C S 117. Introduction to Computer Animation

3 Credits (3)

Introductory course for learning to program with computer animation as
well as learning basic concepts in computer science. Students create
interactive animation projects such as computer games and learn to use
software packages for creating animations in small virtual worlds using
3D models. Recommended for students considering a minor/major in
computer science or simply interested in beginning computer animation
or programming.

C S 151. C++ Programming

3 Credits (2+2P)

Introduction to object-oriented programming in the C++ language. The

focus will be on preparing students to use C++ in their own areas. No

prior programming experience is required. Taught with C S 451.

Prerequisite: MATH 1215 or higher.

Learning Outcomes

1. Use various data types and the corresponding operations. Write C

++ programs that contain expressions, program control, functions,
arrays, and input/output Explain basic object-oriented programming
concepts. Demonstrate proficiency in using classes, inheritance,
pointers, streams, and recursion

C S 152. Java Programming

3 Credits (2+2P)

Programming in the Java language. May be repeated up to 3 credits.
Prerequisite(s): MATH 1215 or higher.

Computer Science 1

C S 153. Python Programming |

3 Credits (3)

This course is an introduction to programming in the Python language,

covering fundamental scripts, data types and variables, functions, and

simple object creation and usage. The focus will be on preparing students

to use Python in their own areas. No prior programming experience is

required. Taught with C S 453.

Prerequisite: MATH 1215 or higher.

Learning Outcomes

1. Develop an algorithm to solve a problem Demonstrate the ability to

use Python data types: int, float, strings, and lists; and the built-in
functions associated with those data types Edit and debug programs
using the Spyder IDE for Python Implement algorithms using the
Python features of assignment, input, output, branches, loops, and
functions Explain the fundamental concepts of object-oriented
programming with Python Design and implement Python classes
based on given attributes and behaviors Work with existing Python
modules such as math, random, and os Write Python programs that
input data from files and store results in files

C S 154. Python Programming Il

3 Credits (3)

This course covers advanced Python programming, including classes,
objects, and inheritance, embedded programming in domain applications,
database interaction, and advanced data and text processing. The focus
will be on preparing students to use Python in their own areas.
Prerequisite(s): CS 153 or C S 453.

C S 158. R Programming |

3 Credits (3)

This course is an introduction to data processing in the R language,
covering fundamental script configuration, data types and data
collections, R control structures, and basic creation of graphs and data
visualizations. This course will not focus on the statistical capabilities of
R, though some basic statistical computations will be used.
Prerequisite(s): MATH 1220G.

C S 171G. Introduction to Computer Science

4 Credits (3+2P)

Computers are now used widely in all area of modern life. This course
provides understanding of the theoretical and practical foundations
for how computers work, and provides practical application and
programming experience in using computers to solve problems efficiently
and effectively. The course covers broad aspects of the hardware,
software, and mathematical basis of computers. Weekly labs stress
using computers to investigate and report on data-intensive scientific
problems. Practical experience in major software applications includes
an introduction to programming, word processing, spreadsheets,
databases, presentations, and Internet applications.

Prerequisite(s): MATH 1130G or MATH 1215 or higher.



2 Computer Science

C S 172. Computer Science |

4 Credits (3+2P)

Computational problem solving; problem analysis; implementation of

algorithms using Java. Object-oriented concepts, arrays, searching,

sorting, and recursion. Taught with C S 460

Prerequisite: (A C or better in either MATH 1250G or MATH 1430G) OR (A

C or better in MATH 1220G and a 1 or better in the CS Placement Test).

Learning Outcomes

1. Develop algorithms to solve problems Implement algorithms using

the fundamental programming features of sequence, selection,
iteration, and recursion Apply an understanding of primitive and
object data types Design and implement classes based on given
attributes and behaviors Explain the fundamental concepts of object-
oriented programming,

C S 209. Special Topics.
1-3 Credits
May be repeated for a maximum of 12 credits.

C S 271. Object Oriented Programming

4 Credits (3+2P)

Introduction to problem analysis and problem solving in the object-

oriented paradigm. Practical introduction to implementing solutions in

the C++ language. Pointers and dynamic memory allocation. Hands-on

experience with useful development tools. Taught with C S 462.

Prerequisite: At leastaC-inCS172orEE 112.

Learning Outcomes

1. Develop an algorithm to solve a problem. Implement algorithms using

the C and C++ languages including imperative and object-oriented
language features. Beyond what was learned inCS172,EE 112, 0r E
E 161 demonstrate a noticeable increase in understanding of problem
analysis and program design. Demonstrate proficiency in using
control structures including if statements (single selection), switch
(multiple selection), and loops (repetition). Demonstrate proficiency
in using arrays and functions Create UML class and relationship
diagrams. Design a class to model a real-world person, place, thing,
or event. Use editing and debugging software to create, debug, and
test C and C++ programs. Understand the basic terminology used
in object-oriented programming. 1 Create a make file to build an
executable from a set of C or C++ source files.

C S 272. Introduction to Data Structures

4 Credits (3+2P)

Design, implementation, use of fundamental abstract data types and

their algorithms: lists, stacks, queues, deques, trees; imperative and

declarative programming. Internal sorting; time and space efficiency of

algorithms. Taught with C S 463.

Prerequisite: At least a C-in C S 172, or placement.

Learning Outcomes

1. Be able to implement and use lists Be able to implement and use

stacks Be able to implement and use queues Be able to implement
and use trees Be able to perform the run time analysis of basic
algorithms using Big O notation Be able to implement, use, and
analyze searching algorithms Be able to solve a problem recursively
Take a problem statement from a user and convert it into a Java
program that fulfills the user’s needs Create object oriented Java
classes that effectively separate and hide implementation details
from client applications

C S 273. Machine Programming and Organization

4 Credits (3+2P)

Computer structure, instruction execution, addressing techniques;

programming in machine and assembly languages. Taught with C S 464.

Prerequisite: At leastaC-inCS172orEE112.

Learning Outcomes

1. Describe the architecture of a microcontroller, the interconnections

between the components, and the basic units inside the CPU Use
signed and unsigned numbers, the associated branching instructions,
and the corresponding flags in the status register Explain immediate,
direct, indirect addressing modes, their opcode and operands, and
their utilities Map high-level programming language features to
assembly instructions, including loops, conditionals, procedure calls,
value and reference parameter passing, return values, and recursion
Interface with 1/0 devices including LED and sensors via digital
input and output, and analog-to-digital conversion Program timers/
counters and interrupts to control real-time applications Design an
assembly program

C S 278. Discrete Mathematics for Computer Science

4 Credits (3+2P)

Discrete mathematics required for Computer Science, including

the basics of logic, number theory, methods of proof, sequences,

mathematical induction, set theory, counting, and functions. Taught with

C S 465.

Prerequisite: At least C-inC S 172.

Learning Outcomes

1. Use logic to specify precise meaning of statements, demonstrate

the equivalence of statements, and test the validity of arguments
Construct and recognize valid proofs using different techniques
including the principle of mathematical induction Use summations,
formulas for the sum of arithmetic and geometric sequences
Explain and apply the concepts of sets and functions Apply counting
principles to determine the number of various combinatorial
configurations

C S 343. Algorithm Design & Implementation

3 Credits (3)

Introduction to efficient data structure and algorithm design. Basic graph

algorithms. Balanced search trees. Classic algorithm design paradigms:

divide-and-conquer, greedy scheme, and dynamic programming. Taught

with C S 493.

Prerequisite: At least a C-in C S 272, or consent of instructor.

Learning Outcomes

1. Be able to use and implement sorting algorithms Be able to design

and implement graph algorithms Be able to design and implement
algorithms using the divide-and-conquer technique Be able to design
and implement algorithms using the greedy technique Be able to
design and implement algorithms using the dynamic programming
technique Be able to use and implement balanced search trees Be
able to use and implement hashing techniques Be able to perform the
run time analysis of basic algorithms using Big O notation



C S 370. Compilers and Automata Theory

4 Credits (3+2P)

Methods, principles, and tools for programming language processor

design; basics of formal language theory (finite automata, regular

expressions, context-free grammars); development of compiler

components. Taught with C S 466.

Prerequisite: At leasta C-inC S 271,C S 272,and C S 273.

Learning Outcomes

1. Understand the language theory concepts of regular languages,

context free languages, regular expressions, context free grammars,
and formal language hierarchy Use Thompson's construction to
convert from regular expression to NFA, and subset construction
to convert from NFA to DFA Apply recursive descent parsing in
programming a parser of a small grammar Understand the ideas in LL
and LR parsing of context-free language classes Understand and use
table-driven top-down (LL(1)) and bottom up (SLR) parsing to parse a
sentence

C S 371. Software Development

4 Credits (3+2P)

Software specification, design, testing, maintenance, documentation;

informal proof methods; team implementation of a large project. Taught

with C S 468.

Prerequisite: At leasta C-in C S 271 and C S 272.

Learning Outcomes

1. Understand and explain the activites and structure of different styles

of software development processes, including waterfall, (spiral,)
iterative, and agile methodologies Apply requirements knowledge
and techniques to create functional and non-functional requirements
for a software system Apply high and low level design ideas to
create an object-oriented design of a software system Use good
design and programming ideas to implement individual and team
software systems in compiled OOP languages Apply white and black
box testing techniques and tools to individual and team software
development Use UML class diagrams (and sequence diagrams) to
capture aspects of system design and/or requirements (domain)
Use practical software development tools, including version control
systems, automated build tools, and testing tools

C S 372. Data Structures and Algorithms

4 Credits (3+2P)

Introduction to efficient data structure and algorithm design. Order

notation and asymptotic run-time of algorithms. Recurrence relations and

solutions. Abstract data type dynamic set and red-black trees. Classic

algorithm design paradigms: divide-and-conquer, dynamic programming,

greedy algorithms. Taught with C S 469.

Prerequisite: At least a C-in CS 272 and C S 278.

Learning Outcomes

1. Analyze the growth of functions via asymptotic notation Evaluate

the asymptotic running time of a given algorithm Solve recurrence
relations of the kinds encountered in algorithm analysis Design
algorithms using the divide-and-conquer technique Design algorithms
using the greedy technique Design algorithms using the dynamic-
programming technique Use and analyze balanced binary search
trees Analyze the design, correctness, and time complexity of basic
graph algorithms

Computer Science 3

C S 380. Introduction to Cryptography

3 Credits (3)

The course covers basic cryptographic primitives, such as symmetric,

public-key ciphers, digital signature schemes, and hash functions, and

their mathematical underpinnings. Course helps students understand

basic notions of security in a cryptographic sense: chosen plaintext and

chosen ciphertext attacks, games, and reductions. Course also covers

computational number theory relevant to cryptography. Consent of

Instructor required. Taught with: C S 525.

Prerequisite: C S 278 (or equivalent) with a C or better.

Learning Outcomes

1. Describe basic cryptographic primitives, including symmetric ciphers,

asymmetric ciphers, digital signatures, message authentication
codes, and hash functions. Understand the mathematical,
fundamental underpinnings of cryptography, and how to reason about
the security of crypto primitives: indistinguishability (IND) properties
of ciphertexts, CPA/CCA games, and reductions to fundamental math
assumptions; Be able to discuss number theory/algebra underpinning
the design of cryptographic primitives, in some depth.

C S 382. Modern Web Technologies

3 Credits (3)

In this course, we will take a full-stack approach to modern web

application design. We will start with the fundamentals including HTML5,

CSS3, Javascript, JSON, and the underlying networking concepts

and protocols driving the modern web. We will then move on to more

advanced topics including javascript backend development with Node.js,

NoSQL database design with MongoDB, cloud computing, and re-

sponsive web design. Finally, we cover advanced topics including the

design and im- plementation of browser extensions and real-time web

technologies like WebRTC and WebSockets. Consent of Instructor

required. Taught with: C S 532.

Learning Outcomes

1. Understand the fundamental technologies and operation of the web.

Design and develop responsive interactive web sites. Deploy web
applications on Cloud Computing Platforms. Leverage modern tools
and packages to develop full stack web applications. Be fluent in the
application of emerging web technologies like browser extensions,
WebSockets, and WebRTC. Use existing materials and references on
the web to learn new skills.

C S 409. Independent Study

1-6 Credits (1-6)

Faculty supervised investigation, to culminate in a written report. May be
repeated up to 6 credits.

Prerequisite(s): Written agreement with faculty supervisor.

C S 419. Computing Ethics and Social Implications of Computing

1 Credit (1)

An overview of ethics for computing majors includes: history of

computing, intellectual property, privacy, ethical frameworks, professional

ethical responsibilities, and risks of computer-based systems.

Prerequisite: At least a C-in C S 371.

Learning Outcomes

1. Understand the fundamental technologies and operation of the web.

Design and develop responsive interactive web sites. Deploy web
applications on Cloud Computing Platforms. Leverage modern tools
and packages to develop full stack web applications. Be fluent in the
application of emerging web technologies like browser extensions,
WebSockets, and WebRTC. Use existing materials and references on
the web to learn new skills.



4 Computer Science

C S 448. Senior Project

4 Credits (4)

Capstone course in which C S majors work in teams and apply computer

science skills to complete a large project. Restricted to: C S majors.

Prerequisite: At leasta C-inCS 370 and C S 371.

Learning Outcomes

1. Apply design and development principles in the construction

of software systems of varying complexity Apply mathematical
foundations, algorithmic principles, and computer science theory
in the modeling and design of computer-based systems in a way
that demonstrates comprehension of the tradeoffs involved in
design choices Design, implement, and evaluate a computer-based
system, process, component, or program to meet desired needs
Use current techniques, skills, and tools necessary for computing
practice Analyze a problem, and identify and define the computing
requirements appropriate to its solution Function effectively as teams
to accomplish a common goal Communicate effectively with a range
of audiences

C S 449. Senior Thesis

4 Credits (4)

Capstone course in which C S majors apply computer science skills

to complete a research project, culminating in a written thesis report.

Restricted to: C S majors.

Prerequisite: At least a C-in C S 370 and C S 371.

Learning Outcomes

1. Apply design and development principles in the construction

of software systems of varying complexity Apply mathematical
foundations, algorithmic principles, and computer science theory
in the modeling and design of computer-based systems in a way
that demonstrates comprehension of the tradeoffs involved in
design choices Design, implement, and evaluate a computer-based
system, process, component, or program to meet desired needs Use
current techniques, skills, and tools necessary for computing practice
Analyze a problem, identify, and define the computing requirements
appropriate to its solution Communicate effectively with a range of
audiences via presentations and technical reports

C S 451. C++ Programming

3 Credits (3)

Programming in the C language. Taught with C S 151. Required more

advanced graduate work than C S 151. Recommended for nonmajors

only. Not for CS undergraduate students.

Learning Outcomes

1. Use various data types and the corresponding operations. Write C

++ programs that contain expressions, program control, functions,
arrays, and input/output. Explain basic object-oriented programming
concepts. Demonstrate proficiency in using classes, inheritance,
pointers, streams, and recursion.

C S 452. Java Programming

3 Credits (2+2P)

Programming in the Java language. More advanced than C S 152.
Recommended for nonmajors only. Not for CS undergraduate standing.
May be repeated up to 3 credits.

C S 453. Python Programming |

3 Credits (3)

This course is an introduction to programming in the Python language,

covering fundamental scripts, data types and variables, functions, and

simple object creation and usage. The focus will be on preparing students

to use Python in their own areas. No prior programming experience is

required. Taught with C S 153. More advanced than C S 153.

Learning Outcomes

1. Develop an algorithm to solve a problem Demonstrate the ability to

use Python data types: int, float, strings, and lists; and the built-in
functions associated with those data types Edit and debug programs
using the Spyder IDE for Python Implement algorithms using the
Python features of assignment, input, output, branches, loops, and
functions Explain the fundamental concepts of object-oriented
programming with Python Design and implement Python classes
based on given attributes and behaviors Work with existing Python
modules such as math, random, and os Write Python programs that
input data from files and store results in files

C S 454. Python Programming Il

3 Credits (3)

This course covers advanced Python programming, including classes,
objects, and inheritance, embedded programming in domain applications,
database interaction, and advanced data and text processing. The focus
will be on preparing students to use Python in their own areas. For
graduate students only. Has more advanced work than C S 154, and does
not count towards CS major requirements. Not for CS undergraduate
students. May be repeated up to 3 credits. Restricted to: exclude C S
majors.

Prerequisite(s): CS 153 or C S 453.

C S 458. R Programming |

3 Credits (3)

This course is an introduction to data processing in the R language,
covering fundamental script configuration, data types and data
collections, R control structures, and basic creation of graphs and data
visualizations. This course will not focus on the statistical capabilities of
R, though some basic statistical computations will be used. For graduate
students only. Has more advanced work than C S 158. Does not count
towards CS major requirements. May be repeated up to 3 credits.
Prerequisite(s): Good understanding of college algebra or higher.

C S 460. Computer Science | Transition

3 Credits (3)

Computational problem solving; problem analysis; implementation

of algorithms. Recursive structures and algorithms. For C S graduate

students only; cannot be used to meet a C S student's program of study.

Taught withC S 172.

Learning Outcomes

1. Develop algorithms to solve problems Implement algorithms using

the fundamental programming features of sequence, selection,
iteration, and recursion Apply an understanding of primitive and
object data types Design and implement classes based on given
attributes and behaviors Explain the fundamental concepts of object-
oriented programming



C S 462. Object Oriented Programming Transition

3 Credits (3)

Introduction to problem analysis and problem solving in the object-

oriented paradigm. Practical introduction to implementing solutions in

the C++ language. Hands-on experience with useful development tools.

Cannot be used in a C S student's program of study. Consent of Instructor

required. Taught with C S 271.

Prerequisite: At least a C-in C S 172 or C S 460 or consent of instructor.

Learning Outcomes

1. Develop an algorithm to solve a problem. Implement algorithms

using the C and C++ languages including imperative and object-
oriented language features. Demonstrate a noticeable increase in
understanding of problem analysis and program design beyond
what was learned in C S172, EE 112, or E E 161 Demonstrate
proficiency in using control structures including if statements
(single selection), switch (multiple selection), and loops (repetition).
Demonstrate proficiency in using arrays and functions. Create UML
class and relationship diagrams. Design a class to model a real-world
person, place, thing, or event. Use editing and debugging software to
create, debug, and test C and C++ programs. Understand the basic
terminology used in object-oriented programming. 1Create a make file
to build an executable from a set of C or C++ source files.

C S 463. Introduction to Data Structures Transition

3 Credits (3)

Design, implementation, use of fundamental abstract data types and

their algorithms: lists, stacks, queues, deques, trees; imperative and

declarative programming. Internal sorting; time and space efficiency of

algorithms. Cannot be used in a C S student's program of study. Consent

of Instructor required. Taught with C S 272.

Prerequisite: At least a C-in C S 172 or C S 460 or consent of instructor.

Learning Outcomes

1. Be able to implement and use lists Be able to implement and use

stacks Be able to implement and use queues Be able to implement
and use trees Be able to perform the run time analysis of basic
algorithms using Big O notation Be able to implement, use, and
analyze searching algorithms Be able to solve a problem recursively
Take a problem statement from a user and convert it into a Java
program that fulfills the user's needs Create object oriented Java
classes that effectively separate and hide implementation details
from client applications

Computer Science 5

C S 464. Machine Programming and Organization Transition

3 Credits (3)

Computer structure, instruction execution, addressing techniques;

programming in machine and assembly languages. Cannot be usedina C

S student’s program of study. Consent of Instructor required. Taught with

CS273.

Prerequisite: At least a C-in C S 172 or C S 460 or consent of instructor.

Learning Outcomes

1. Describe the architecture of a microcontroller, the interconnections

between the components, and the basic units inside the CPU Use
signed and unsigned numbers, the associated branching instructions,
and the corresponding flags in the status register Explain immediate,
direct, indirect addressing modes, their opcode and operands, and
their utilities Map high-level programming language features to
assembly instructions, including loops, conditionals, procedure calls,
value and reference parameter passing, return values, and recursion
Interface with 1/0 devices including LED and sensors via digital
input and output, and analog-to-digital conversion Program timers/
counters and interrupts to control real-time applications Design an
assembly program

C S 465. Discrete Math for Computer Science Transition

3 Credits (3)

Logical connectives, sets, functions, relations, graphics, trees, proofs,

induction, and application to computer science. For C S graduate

students only. Cannot be used in a C S student's program of study.

Consent of Instructor required. Taught with C S 278.

Prerequisite: At least a C-in C S 172 or C S 460 or consent of instructor.

Learning Outcomes

1. Use logic to specify precise meaning of statements, demonstrate

the equivalence of statements, and test the validity of arguments
Construct and recognize valid proofs using different techniques
including the principle of mathematical induction Use summations,
formulas for the sum of arithmetic and geometric sequences
Explain and apply the concepts of sets and functions Apply counting
principles to determine the number of various combinatorial
configurations

C S 466. Compilers and Automata Transition

3 Credits (3)

Methods, principles, and tools for programming language processor

design; basics of formal language theory (finite automata, regular

expressions, context-free grammars); development of compiler

components. For C S graduate students only; cannot be used in a

students program of study. Taught with C S 370.

Prerequisite: At least aCin (CS 271 or C S 462),in (CS 272 or C S 463),

in (C S 273 or C S 464), or consent of instructor.

Learning Outcomes

1. Understand the language theory concepts of regular languages,

context free languages, regular expressions, context free grammars,
and formal language hierarchy Use Thompson's construction to
convert from regular expression to NFA, and subset construction
to convert from NFA to DFA Apply recursive descent parsing in
programming a parser of a small grammar Understand the ideas in LL
and LR parsing of context-free language classes Understand and use
table-driven top-down (LL(1)) and bottom up (SLR) parsing to parse a
sentence



6 Computer Science

C S 468. Software Development Transition

3 Credits (3)

Software specification, design, testing, maintenance, documentation;

informal proof methods; team implementation of a large project. For C

S graduate students only. Cannot be used in a C S student's program of

study. Consent of Instructor required. Taught with C S 371.

Prerequisite: At least a C-in CS 271 or CS 462,in CS 272 or C S 463, or

consent of instructor.

Learning Outcomes

1. Understand and explain the activites and structure of different styles

of software development processes, including waterfall, (spiral,)
iterative, and agile methodologies Apply requirements knowledge
and techniques to create functional and non-functional requirements
for a software system Apply high and low level design ideas to
create an object-oriented design of a software system Use good
design and programming ideas to implement individual and team
software systems in compiled OOP languages Apply white and black
box testing techniques and tools to individual and team software
development Use UML class diagrams (and sequence diagrams) to
capture aspects of system design and/or requirements (domain)
Use practical software development tools, including version control
systems, automated build tools, and testing tools

C S 469. Data Structure and Algorithms Transition

3 Credits (3)

Introduction to efficient data structure and algorithm design. Order

notation and asymptotic run-time of algorithms. Recurrence relations and

solutions. Abstract data type dynamic set and red-black trees. Classic

algorithm design paradigms: divide-and-conquer, dynamic programming,

greedy algorithms. For C S graduate students only. Consent of Instructor

required. Taught with C S 372.

Prerequisite: At least a C-in CS 272 or C S 463,in C S 278 or C S 465, or

consent of instructor.

Learning Outcomes

1. Analyze the growth of functions via asymptotic notation Evaluate

the asymptotic running time of a given algorithm Solve recurrence
relations of the kinds encountered in algorithm analysis Design
algorithms using the divide-and-conquer technique Design algorithms
using the greedy technique Design algorithms using the dynamic-
programming technique Use and analyze balanced binary search
trees Analyze the design, correctness, and time complexity of basic
graph algorithms

C S 471. Programming Language Structure |

3 Credits (3)

Syntax, semantics, implementation, and application of programming

languages; abstract data types; concurrency. Not for C S graduate

students.

Prerequisite: At leasta C-inCS 370 and C S 371.

Learning Outcomes

1. Improve the background for choosing appropriate programming

languages for certain classes of programming problems Increase
the ability to learn new programming languages Critically evaluate
what paradigm and language are best suited for a new problem
Demonstrate the use of the primary segments for a running program
Apply the principles of functional programming Apply the principles
of logic programming Program a simple parallel program with threads
Program in at least five different programming languages Program in
C to demonstrate architecture details

C S 473. Architectural Concepts |

3 Credits (3)

Comparison of architectures to illustrate concepts of computer

organization; relationships between architectural and software features.

Not for C S graduate students.

Prerequisite: At least a C-in C S 273 and C S 370.

Learning Outcomes

1. Explain the concepts in instruction set architecture Analyze the

behavior of pipelined CPU data path and control Analyze behavior
and performance of memory hierarchies with different cache designs
Describe the implementation of binary integer and floating point
representation and arithmetic Identify and analyze performance
of instruction level parallelism and multi-core parallelism Describe
virtual memory and architectural support for operating systems
Understand the organization of various kinds of secondary storage
devices, and their performance and tradeoffs Create software that
demonstrates performance of architectural features and evaluate the
effects of software change

C S 474. Operating Systems |

3 Credits (3)

Operating system principles and structures, and interactions with

architectures. Not for C S graduate students.

Prerequisite: At leasta C-inCS 273,C S 371,and C S 372.

Learning Outcomes

1. Explain OS control and management of hardware resources Explain

0S management and execution of processes Explain OS control
and management of real and virtual memory Explain classical
concurrency issues and their solutions Analyze and implement
threads Analyze OS interaction with networks and architecture

C S 475. Artificial Intelligence |

3 Credits (3)

Fundamental principles and techniques in artificial intelligence

systems. Intelligent Agents; solving problems by searching; local search

techniques; game-playing agents; constraint satisfaction problems;

knowledge representation and reasoning. Further selected topics may

also be covered. Not for C S graduate students. Taught with C S 505.

Prerequisite: At leasta C-in CS 272 and C S 278.

Learning Outcomes

1. Use various search algorithms commonly used in problem-solving

Use methods for solving constraint satisfaction problems Use
propositional and first-order logic to represent knowledge Use logical
inference methods to derive conclusions from a knowledge base
Use adversarial search for game-playing agents Analyze the different
search strategies Design and Implement heuristic search for problem-
solving

C S 476. Computer Graphics |

3 Credits (3)

Languages, programming, devices, and data structures for representation

and interactive display of complex objects. Not for C S graduate students.

Taught with C S 506.

Prerequisite: At least C-inC S 370 or C S 371.

Learning Outcomes

1. Techniques used in three-dimensional graphics Computer Graphics

lightning and shading Client-server graphics using WebGL Geometric
and Solid modeling Computer Graphics implementation algorithms



C S 477. Digital Game Design

3 Credits (3)

An introduction to digital game design. Topics include design,

development, and playtesting of games. The course is structured to use

team-based learning. Not for C S graduate students. Taught with C S 517.

Prerequisite/Corequisite: C S 371.

Learning Outcomes

1. Describe, analyze, and/or critique games with a consistent

vocabulary Design, develop, and playtest games Understand the
formal systems of games Communicate game designs through
demonstrations and presentations

C S 478. Computer Security

3 Credits (3)

Introduction to the art and science of computer security. Fundamentals

of computer security including elementary cryptography, authentication

and access control, security threats, attacks, detection and prevention in

application software, operating systems, networks and databases. Not

for C S graduate students. Taught with C S 513.

Prerequisite: At least a C-in C S 272, C S 273 or consent of instructor.

Learning Outcomes

1. Describe fundamental concepts in security and privacy Understand

requirements of security in different contexts Describe practical
implementation challenges in security/privacy system design Explain
at a high-level symmetric and public key cryptography Explain various
access control mechanisms such as authnetication, authorization
Understand aspects of secure system design that a computer
programmer/engineer needs to account for

C S 479. Special Topics

1-12 Credits

Topics announced in the Schedule of Classes. May be repeated under
different subtitles. Not for C S graduate students. May be repeated up to
12 credits.

C S 480. Linux System Administration

3 Credits (3)

Basic system administration for Linux environments. Topics include user

managements, file systems, security, backups, system monitoring, kernel

configuration and other relevant aspects of system administration. Not

for Computer Science graduate students.

Learning Outcomes

1. Be able to properly set up, configure, and maintain a Linux-based

set of networked computers with shared resources Understand the
significance of proper administration of systems and its impact on
users, their data and computational resources, and the security of the
overall installation

C S 481. Visual Programming

3 Credits (3)

Design and implementation of programs using visual (i.e. dataflow or

diagrammatic) programming techniques, with an emphasis on real-time

data processing. Students will learn how to design visual programs,

including how to handle cycles and state maintenance, and will learn to

process audio, video, and other data using visual programs. Not for C S

graduate students. Taught with C S 518.

Prerequisite: At least a C-in CS 272 and C S 278.

Learning Outcomes

1. Develop software in graph-based visual environments Understand

flows of control in visual programming environments Use signals,
digital and analog, to drive software Communicate software design
and evaluation with presentations, demos, and reports

Computer Science 7

C S 482. Database Management Systems |

3 Credits (3)

Database design and implementation; models of database management

systems; privacy, security, protection, recovery. Not for C S graduate

students. Taught with C S 502.

Prerequisite: At leasta C-in C S 272 and C S 278.

Learning Outcomes

1. Utilize the basic concepts of relational database model Utilize

database query languages (e.g. SQL) Identify data integrity and
security requirements Analyze, capture, and model user requirements
for building database systems using conceptual models Design
and normalize relational schemas Apply application development
methods to implement a database system

C S 484. Computer Networks |

3 Credits (3)

Fundamental concepts of computer communication networks: layered

network architecture, network components, protocol stack and service.

Example of application, transport, network and data link layers, protocols

primarily drawn from the Internet (TCP, UDP, and IP) protocol multimedia

networks; network management and security. Not for C S graduate

students. Taught with C S 504.

Prerequisite: At least a C-in C S 272 and CS 273.

Learning Outcomes

1. Explain the layered model of networking using the OSI and TCP/

IP models Describe the purpose and concepts of each layer in
the OSI and TCP/IP models Describe IP as a particular network
layer protocol Describe TCP and UDP as particular transport layer
protocols Describe Ethernet (11) and WiFi (15) as particular data
link layer protocols Describe and analyze routing and routing issues
Describe and analyze data link layer switching Describe the need for
application protocols such as HTTP Explain other network issues
such as multicasting and audio/video data streaming 1 Implement
socket-based network programs

C S 485. Human-Centered Computing

3 Credits (3)

Covers iterative, human-centered interface design, including prototyping

and evaluation. Basics of graphic design and visualization. Not for C S

graduate students. Taught with C S 515.

Prerequisite: At least C-in C S 371.

Learning Outcomes

1. Describe, analyze, and/or critique a device interface using a design

vocabulary Enact a human-centered process of interaction design:
gather data; develop a data-driven design; iterate design through
testing; and evaluate results Conduct human-computer interaction
research by proposing, developing, and conducting experiments;
analyzing data; and developing synthesized results Communicate
design and evaluation with presentations, demos, and reports
Implement a variety of interaction techniques



8 Computer Science

C S 486. Bioinformatics

3 Credits (3)

Introduction to bioinformatics and computational biology. Computational

approaches to sequences analysis, protein structure prediction and

analysis, and selected topics from current advances in bioinformatics.

Not for C S graduate students. Taught with C S 516.

Prerequisite: At leasta C-inCS 272 and C S 278.

Learning Outcomes

1. Explain the biology motivation of a bioinformatics question Formulate

a computational problem and its solution to address a molecular
biology question Implement basic bioinformatics algorithms such
as sequence alignment, pattern matching, and genome assembly
Evaluate the performance of a bioinformatics algorithm on real data
sets Argue the correctness of a bioinformatics algorithm Analyze the
complexity of a bioinformatics algorithm

C S 487. Applied Machine Learning |

3 Credits (3)

An introductory course on practical machine learning. An overview

of concepts for both unsupervised and supervised learning. Topics

include classification, regression, clustering, and dimension reduction.

Classical methods and algorithms such as linear regression, neural

networks, support vector machines, and ensemble approaches. Recent

techniques such as deep learning. Focused on applying of machine

learning techniques in application domains. Not for Graduate Majors.

Taught with: C S 519.

Prerequisite: At least a C-in C S 272, MATH 1511G; or consent of

instructor.

Learning Outcomes

1. Implement and utilize different data processing techniques

Differentiate and assess several dimension reduction techniques
Utilize several classifiers (SVM, Decision tree, k-Nearest Neighbor,
and logistic regression) and differentiate their advantages and
disadvantages Explain and demonstrate regression analysis Describe
and illustrate clustering approaches Apply ensemble learning
approaches

2. Implement several neural network classifiers, including deep learning
models

C S 488. Introduction to Data Mining

3 Credits (3)

Techniques for exploring large data sets and discovering patterns in

them. Data mining concepts, metrics to measure its effectiveness.

Methods in classification, clustering, frequent pattern analysis. Selected

topics from current advances in data mining. Taught with C S 508.

Prerequisite: At leasta C-in C S 272 and C S 278.

Learning Outcomes

1. Explain and recognize different data mining tasks such as data

pre-processing, visualization, classification, regression, clustering,
association rules, and anomaly detection Apply classical data
mining / machine learning algorithms for classification, clustering,
association rules, and anomaly detection Evaluate and compare the
performance of different data mining / machine learning algorithms
Utilize data mining algorithms to analyze data in real applications
using a data mining tool

C S 489. Bioinformatics Programming

3 Credits (3)

Computer programming to analyze high-throughput molecular

biology data including genomic sequences, bulk and single-cell

transcriptome, epigenome, and other omics data. Quality control, library

size normalization, confounding effect removal, clustering, statistical

modeling, trajectory inference, and visualization. Taught with C S 509.

May be repeated up to 3 credits.

Learning Outcomes

1. Write R scripts and functions to manipulate biological sequences,

genome annotation, and gene expression data Perform high-
throughput data analysis with established R packages Detect
differential gene expression on RNA sequencing data Perform
single-cell RNA sequencing data analysis (quality control, library
size normalization, confounding effect removal, modeling) Assess
statistical significance of analytical results Create automatic data
analysis pipeline to link multiple software packages

C S 491. Parallel Programming

3 Credits (3)

Programming of shared memory and distributed memory machines;

tools and languages for parallel programming; techniques for parallel

programming; parallel programming environments. Not for C S graduate

students. Taught with C S 521.

Prerequisite: At least a C-in C S 370 or consent of instructor.

Learning Outcomes

1. Describe existing parallel architectures including shared memory

versus distributed memory platforms Apply basic techniques
for organizing parallel computations Apply basic techniques for
performance measurement and theoretical limitations of parallelism
Explain alternative parallel techniques and hardware Perform
performance Analysis of different parallel programming technices
Program shared memory machines using threads, processes, and
the OpenMP library Program using a message passing paradigm and
obtain working knowledge of the Message Passing Interface (MPI)

C S 493. Algorithm Design and Implementation

3 Credits (3)

This course introduces the basic knowledge of designing classical

algorithms and implementing these algorithms using a programming

language. In particular, the course teaches various data structures,

including graphs and balanced binary search trees, and efficient

schemes to implement these data structures. This course also teaches

basic algorithm design techniques including divide-and-conquer,

greedy scheme, and dynamic programming. This course covers graph

algorithms, including graph traversals (depth-first search and breadth-

first search), connectivity, shortest paths, and minimum spanning trees.

Graduate standing. Not for CS students. Taught with C S 343.

Prerequisite: At least a C-in C S 272, or Consent of Instructor.

Learning Outcomes

1. Be able to use and implement sorting algorithms Be able to design

and implement graph algorithms Be able to design and implement
algorithms using the divide-and-conquer technique Be able to design
and implement algorithms using the greedy technique Be able to
design and implement algorithms using the dynamic programming
technique Be able to use and implement balanced search trees Be
able to use and implement hashing techniques Be able to perform the
run time analysis of basic algorithms using Big O notation



C S 494. Introduction to Smart Grids

3 Credits (3)

This course is an introduction to the technologies and design strategies

associated with the Smart Grid. The emphasis will be on the development

of communications, energy delivery, coordination mechanisms, and

management tools to monitor transmission and distribution networks.

Topics include: Smart grid introduction and evolution; Power systems;

Networking and transport control; Artificial intelligence & agent

coordination; Data mining for smart grids. Taught with C S 514.

Prerequisite: At least a C-in C S 272 and a C- in E E 230; or Consent of

instructor.

Learning Outcomes

1. Get basic understanding of how conventional power system is

operated and protected Understand and use basic knowledge of
communication techniques in smart grids

2. Understand and use basic knowledge for the coordination of the
different units in smart grids Understand and apply data mining
techniques for protecting smart grids

C S 496. Cloud and Edge Computing

3 Credits (3)

The course presents a top-down view of cloud computing, from

applications and administration to programming and infrastructure. Its

main focus is on the concepts of networking and parallel programming

for cloud computing and large scale distributed systems which form the

cloud infrastructure. The topics include: overview of cloud computing,

cloud systems, parallel processing in the cloud, distributed storage

systems, virtualization, security in the cloud, and multicore operating

systems. Students will study state-of-the-art approaches to cloud

computing followed by large cloud corporations, namely Google, Amazon,

Microsoft, and Yahoo. Students will also apply what they learn through

project developments using Amazon Web Services. Not for graduate CS

majors. Taught with: C S 522.

Prerequisite: At least a C-in C S 372; background in C S 484/C S 504 is

preferred or consent of instructor.

Learning Outcomes

1. The emphasis of the course will be on the understanding the

concepts and the engineering trade-offs involved in the design of
cloud computing systems Cloud deployment models, cloud service
models (software-as-a-service, infrastructure- as-a-service, protocol-
as-a-service), cloud architecture, cloud-edge security, service level
agreements, and load balancing in cloud and datacenters Learn about
cloud computing, especially what are their fundamental components,
how these components interact, and how the technology is evolving
for the future (edge computing, cloudlets, mobile edge computing,
etc.).

C S 502. Database Management Systems |

3 Credits (3)

Database design and implementation; models of database management

systems; privacy, security, protection, recovery; taught with C S 482;

requires more advanced graduate work than C S 482. Students are

expected to have solid knowledge of data structures and discrete

mathematics.

Learning Outcomes

1. Utilize the basic concepts of relational database model Utilize

database query languages (e.g. SQL) Identify data integrity and
security requirements Analyze, capture, and model user requirements
for building database systems using conceptual models Design
and normalize relational schemas Apply application development
methods to implement a database system

Computer Science 9

C S 504. Computer Networks |

3 Credits (3)

Fundamental concepts of computer communication networks: layered

network architecture, network components, protocol stack and service.

Example of application, transport, network and data link layers, protocols

primarily drawn from the Internet (TCP, UDP, and IP) protocol suite; local

and wide area networks, wireless and mobile networks, multimedia

networks; network management and security; taught with C S 484,

requires more advanced graduate work than C S 484. Students are

expected to have solid knowledge of data structures, machine-level

programming. Knowledge of statistics (at the level of MATH 371 or MATH

470) is recommended.

Learning Outcomes

1. Explain the layered model of networking using the OSI and TCP/IP

models Describe the purpose and concepts of each layer in the OSI
and TCP/IP models Describe IP as a particular network layer protocol
Describe TCP and UDP as particular transport layer protocols
Describe Ethernet (802-11) and WiFi (802-15) as particular data link
layer protocols Describe and analyze routing and routing issues
Describe and analyze data link layer switching Describe the need for
application protocols such as HTTP Explain other network issues
such as multicasting and audio/video data streaming 1Implement
socket-based network programs

C S 505. Artificial Intelligence |
3 Credits (3)
Fundamental principles and techniques in artificial intelligence systems.
Knowledge representation formalisms; heuristic problem solving
techniques; automated logical deduction; robot planning methods;
algorithmic techniques for natural language understanding, vision
and learning; taught with C S 475; requires more advanced graduate
work than C S 475. Students are expected to have strong knowledge of
algorithms and data structures (at the level of C S 372).
Learning Outcomes
1. Use various search algorithms commonly used in problem-solving
2. Use methods for solving constraint satisfaction problems
3. Use propositional and first-order logic to represent knowledge
4

. Use logical inference methods to derive conclusions from a
knowledge base

[$)]

. Use adversarial search for game-playing agents
. Analyze the different search strategies

~N o

. Design and Implement heuristic search for problem-solving

C S 506. Computer Graphics |
3 Credits (3)
Languages, programming, devices, and data structures for representation
and interactive display of complex objects. Taught with C S 476. Requires
more advanced graduate work than C S 476. Students are expected to
have knowledge of compilers design and software engineering equivalent
toCS370and C S 371.
Learning Outcomes

1. Techniques used in three-dimensional graphics Computer Graphics

lightning and shading Client-server graphics using WebGL

2. Geometric and Solid modeling
3. Computer Graphics implementation algorithms



10 Computer Science

C S 508. Introduction to Data Mining

3 Credits (3)

Techniques for exploring large data sets and discovering patterns in

them. Data mining concepts, metrics to measure its effectiveness.

Methods in classification, clustering, frequent pattern analysis. Selected

topics from current advances in data mining. Students are expected

to have a preparation in Discrete Mathematics and Data Structures

equivalent to C S 272 and C S 278. Requires more advanced graduate

work than C S 488. Taught with: C S 488.

Learning Outcomes

1. Explain and recognize different data mining tasks such as data

pre-processing, visualization, classification, regression, clustering,
association rules, and anomaly detection

2. Apply classical data mining / machine learning algorithms for
classification, clustering, association rules, and anomaly detection

3. Evaluate and compare the performance of different data mining /
machine learning algorithms

4. Utilize data mining algorithms to analyze data in real applications
using a data mining tool

C S 509. Bioinformatics Programming

3 Credits (3)

Computer programming to analyze high-throughput molecular

biology data including genomic sequences, bulk and single-cell

transcriptome, epigenome, and other omics data. Quality control, library

size normalization, confounding effect removal, clustering, statistical

modeling, trajectory inference, and visualization. Taught with C S 489.

Requires more advanced graduate work than C S 489.

Learning Outcomes

1. Write R scripts and functions to manipulate biological sequences,

genome annotation, and gene expression data Perform high-
throughput data analysis with established R packages Detect
differential gene expression on RNA sequencing data Perform
single-cell RNA sequencing data analysis (quality control, library
size normalization, confounding effect removal, modeling) Assess
statistical significance of analytical results Create automatic data
analysis pipeline to link multiple software packages

C S 510. Automata, Languages, Computability

3 Credits (3)

Regular and context-free languages, pushdown and finite-state automata,

Turing machines, models of computation, halting problems. Students

are expected to have knowledge of compilers design and algorithms

equivalentto C S 370 and C S 372.

Learning Outcomes

1. Describe the language accepted by an automaton or generated by

a regular expression or a context-free grammar Design automata,
regular expressions and context-free grammars accepting or
generating a certain language Prove properties of languages,
grammars, and automata with formal mathematical methods
Convert between equivalent deterministic and non-deterministic
finite automata, and regular expressions Convert between equivalent
context-free grammars and pushdown automata Define Turing
machines performing simple tasks

C S 513. Computer Security

3 Credits (3)

Introduction to the art and science of computer security.Fundamentals

of computer security including elementary cryptography, authentication

and access control, security threats, attacks, detection and prevention

in application software, operating systems, networks and databases.

Taught with C S 478. Requires more advanced graduate work than C S

578. Recommended knowledge of materials in C S 272 and C S 273. May

be repeated up to 3 credits.

Prerequisite: At least a Cin C S 273 or consent of instructor.

Learning Outcomes

1. Describe fundamental concepts in security and privacy Understand

requirements of security in different contexts Describe practical
implementation challenges in security/privacy system design Explain
at a high-level symmetric and public key cryptography Explain various
access control mechanisms such as authentication, authorization
Understand aspects of secure system design that a computer
programmer/engineer needs to account for

C S 514. Introduction to Smart Grids
3 Credits (3)
This course is an introduction to the technologies and design strategies
associated with the Smart Grid. The emphasis will be on the development
of communications, energy delivery, coordination mechanisms, and
management tools to monitor transmission and distribution networks.
Topics include: Smart grid introduction and evolution; Power systems;
Networking and transport control; Artificial intelligence & agent
coordination; Data mining for smart grids. Taught with C S 494. Requires
more advanced work than C S 494,
Prerequisite: At least a C-in C S 272 and a C- in E E 230; or Consent of
instructor.
Learning Outcomes
1. Get basic understanding of how conventional power system is
operated and protected
2. Understand and use basic knowledge of communication techniques
in smart grids
3. Understand and use basic knowledge for the coordination of the
different units in smart grids
4. Understand and apply data mining techniques for protecting smart
grids



C S 515. Human-Centered Computing
3 Credits (3)
Covers iterative, human-centered interface design, including prototyping
and evaluation. Basics of graphic design and visualization. Taught with
C S 485. Requires more advanced graduate work than C S 485 with an
emphasis on studying recent research in human-computer interaction.
Students are expected to have knowledge of software engineering
equivalentto C S 371.
Learning Outcomes

1. Describe, analyze, and/or critique a device interface using a design

vocabulary

2. Enact a human-centered process of interaction design: gather data;
develop a data-driven design; iterate design through testing; and
evaluate results

3. Conduct human-computer interaction research by proposing,
developing, and conducting experiments; analyzing data; and
developing synthesized results

4. Communicate design and evaluation with presentations, demos, and
reports

5. Implement a variety of interaction techniques

C S 516. Bioinformatics

3 Credits (3)

Introduction to bioinformatics and computational biology. Computational
approaches to sequences analysis, protein structure prediction and
analysis, and selected topics from current advances in bioinformatics;

taught with C S 486; requires more advanced graduate work than C S 486.

Students are expected to have a knowledge of algorithms and data
structures equivalent to C S 372 or exposure to Biology (equivalent to
BIOL 2310 or BIOL 311).
Learning Outcomes
1. Explain the biology motivation of a bioinformatics question
2. Formulate a computational problem and its solution to address a
molecular biology question

3. Implement basic bioinformatics algorithms such as sequence
alignment, pattern matching, and genome assembly

4. Evaluate the performance of a bioinformatics algorithm on real data
sets

5. Argue the correctness of a bioinformatics algorithm
6. Analyze the complexity of a bioinformatics algorithm

C S 517. Digital Game Design
3 Credits (3)
An introduction to digital game design. Topics include design,
development, and playtesting of games. The course is structured to use
team-based learning. Taught with C S 477. Requires more advanced
graduate work than C S 477 with deeper attention to a team game
project.
Learning Outcomes

1. Describe, analyze, and/or critique games with a consistent

vocabulary

2. Design, develop, and playtest games
3. Understand the formal systems of games

4. Communicate game designs through demonstrations and
presentations

Computer Science 11

C S 518. Visual Programming
3 Credits (3)
Design and implementation of programs using visual (i.e. dataflow or
diagrammatic) programming techniques, with an emphasis on real-time
data processing. Students will learn how to design visual programs,
including how to handle cycles and state maintenance, and will learn to
process audio, video, and other data using visual programs. Students
must be in graduate standing to enroll. Taught with C S 481. Requires
more advanced graduate work than C S 481.
Learning Outcomes

1. Develop software in graph-based visual environments

2. Understand flows of control in visual programming environments
3. Use signals, digital and analog, to drive software
4.

Communicate software design and evaluation with presentations,
demos, and reports

C S 519. Applied Machine Learning |
3 Credits (3)
An introductory course on practical machine learning. An overview
of concepts for both unsupervised and supervised learning. Topics
include classification, regression, clustering, and dimension reduction.
Classical methods and algorithms such as linear regression, neural
networks, support vector machines, and ensemble approaches. Recent
techniques such as deep learning. Focused on applying of machine
learning techniques in application domains. Taught with: C S 487.
Requires more advanced graduate work than C S 487.
Learning Outcomes

1. Implement and utilize different data processing techniques

2. Differentiate and assess several dimension reduction techniques

3. Utilize several classifiers (SVM, Decision tree, k-Nearest Neighbor,
and logistic regression) and differentiate their advantages and
disadvantages

. Explain and demonstrate regression analysis
. Describe and illustrate clustering approaches
. Apply ensemble learning approaches

~N o o A

. Implement several neural network classifiers, including deep learning
models

C S 521. Parallel Programming
3 Credits (3)
Programming of shared memory and distributed memory machines; tools
and languages for parallel programming; parallelizing compilers; parallel
programming environments; taught with C S 491; requires more advanced
graduate work than C S 491. Students are expected to have knowledge
of programming and machine organization equivalent to C S 271 and
C S 273.
Learning Outcomes

1. Describe existing parallel architectures including shared memory

versus distributed memory platforms

2. Apply basic techniques for organizing parallel computations

3. Apply basic techniques for performance measurement and
theoretical limitations of parallelism

4. Explain alternative parallel techniques and hardware

5. Perform performance Analysis of different parallel programming
technices

6. Program shared memory machines using threads, processes, and the
OpenMP library

7. Program using a message passing paradigm and obtain working
knowledge of the Message Passing Interface (MPI)



12 Computer Science

C S 522. Cloud and Edge Computing

3 Credits (3)

The course presents a top-down view of cloud computing, from

applications and administration to programming and infrastructure. Its

main focus is on the concepts of networking and parallel programming

for cloud computing and large scale distributed systems which form the

cloud infrastructure. The topics include: overview of cloud computing,

cloud systems, parallel processing in the cloud, distributed storage

systems, virtualization, security in the cloud, and multicore operating

systems. Students will study state-of-the-art approaches to cloud

computing followed by large cloud corporations, namely Google, Amazon,

Microsoft, and Yahoo. Students will also apply what they learn through

project developments using Amazon Web Services. Might have additional

requirements for graduate students. To enroll in this course a background

in C S 484/C S 504 is preferred or have consent from the instructor.

Taught with: C S 496. Requires more advanced graduate work than

C S 496.

Learning Outcomes

1. The emphasis of the course will be on the understanding the

concepts and the engineering trade-offs involved in the design of
cloud computing systems

2. Cloud deployment models, cloud service models (software-as-a-
service, infrastructure- as-a-service, protocol-as-a-service), cloud
architecture, cloud-edge security, service level agreements, and load
balancing in cloud and datacenters

3. Learn about cloud computing, especially what are their fundamental
components, how these components interact, and how the
technology is evolving for the future (edge computing, cloudlets,
mobile edge computing, etc.).

C S 525. Introduction to Cryptography

3 Credits (3)

The course covers basic cryptographic primitives, such as symmetric,

public-key ciphers, digital signature schemes, and hash functions, and

their mathematical underpinnings. Course helps students understand

basic notions of security in a cryptographic sense: chosen plaintext

and chosen ciphertext attacks, games, and reductions. Course also

covers computational number theory relevant to cryptography. Consent

of Instructor required. Taught with: C S 380. Requires more advanced

graduate work than C S 380.

Prerequisite: C S 278 (or equivalent) with a C or better.

Learning Outcomes

1. Describe basic cryptographic primitives, including symmetric ciphers,

asymmetric ciphers, digital signatures, message authentication
codes, and hash functions. Understand the mathematical,
fundamental underpinnings of cryptography, and how to reason about
the security of crypto primitives: indistinguishability (IND) properties
of ciphertexts, CPA/CCA games, and reductions to fundamental math
assumptions; Be able to discuss number theory/algebra underpinning
the design of cryptographic primitives, in some depth.

C S 531. Principles of Virtual Reality
3 Credits (3)
This course is an introduction to building systems and doing research in /
on virtual reality. We cover system design, development, and evaluation,
with an emphasis on recent research in the space. We cover a range of
methods, qualitative and quantitative, in order to develop insights into
effective VR designs. Students in this class will develop a foundation in
VR development; learn about current topics in VR; and design, develop,
evaluate, and report on a VR system. Consent of Instructor required.
Crosslisted with: C S 381.
Prerequisite(s): CS 485 (or equivalent).
Learning Outcomes

1. Design and develop systems in virtual reality.

2. Understand the variety of development techniques in VR.
3. Understand the state-of-the-art in VR systems.
4.

Communicate understanding of people, designs, and evaluations
through presentations, demos, and/or reports.

C S 532. Modern Web Technologies

3 Credits (3)

In this course, we will take a full-stack approach to modern web

application design. We will start with the fundamentals including HTMLS5,

CSS3, Javascript, JSON, and the underlying networking concepts

and protocols driving the modern web. We will then move on to more

advanced topics including javascript backend development with Node.js,

NoSQL database design with MongoDB, cloud computing, and re-

sponsive web design. Finally, we cover advanced topics including the

design and im- plementation of browser extensions and real-time web

technologies like WebRTC and WebSockets. Consent of Instructor

required. Taught with: C S 382. Requires more advanced graduate work

than C S 382.

Learning Outcomes

1. Understand the fundamental technologies and operation of the web.

Design and develop responsive interactive web sites. Deploy web
applications on Cloud Computing Platforms. Leverage modern tools
and packages to develop full stack web applications. Be fluent in the
application of emerging web technologies like browser extensions,
WebSockets, and WebRTC. Use existing materials and references on
the web to learn new skills.

C S 570. Analysis of Algorithms

3 Credits (3)

Techniques for design and analysis of algorithms; time and space

complexity; proving correctness of programs. Particular algorithms such

as sorting, searching, dynamic programming. NP complete problems.

Students are expected to have knowledge of algorithms and data

structures equivalent to C S 372.

Learning Outcomes

1. Prove algorithm correctness by loop-invariant Prove an algorithm

to be incorrect by counterexamples Develop efficient divide-and-
conquer algorithms Design and analyze binary search tree algorithms
Construct dynamic programming solutions Prove the correctness of
dynamic programming solutions by contraposition Traverse graphs
efficiently Find paths in graphs efficiently Determine if a problem is
NP-Complete or NP-Hard 1Basic concepts of quantum computing



C S 573. Architectural Concepts Il

3 Credits (3)

Advanced topics related to computer architecture, guided by the current

literature. Students are expected to have knowledge of computer

architectures equivalent to C S 473 and of operating systems equivalent

to C S 474. Crosslisted with: E E 564.

Learning Outcomes

1. Be able to explain the features in a modern multicore CPU

architecture Be able to utilize hardware counter features of a CPU
in performance evaluation Be able to explain the architecture of
GPUs and their capabilities and drawbacks Be able to evaluate novel
cutting-edge architectural features and designs Be able to present a
research paper to an advanced audience

C S 574. Operating Systems Il

3 Credits (3)

Advanced topics related to operating system principles, guided by the

current literature. Students are expected to have knowledge of computer

architectures and operating systems equivalent to CS 473 and C S 474.

Learning Outcomes

1. Further an understanding of the principles of operating systems.

Develop insight into process management and scheduling
issues. Understand memory management operation. Develop an
understanding of file system implementation and of multiple levels of
hardware support and management. Develop a deep understanding
of the concepts of cooperating processes, including communication,
synchronization, and deadlock (detection and avoidance). Be able to
evaluate operating system features. Develop an understanding of the
distributed operating system environment.

C S 575. Artificial Intelligence I

3 Credits (3)

Covers advanced theory and application of artificial intelligence.

Concentration on several specific research areas, such as knowledge

representation, problem solving, common-sense reasoning, natural

language understanding, automated tutoring systems, learning systems.

Students are expected to have knowledge of artificial intelligence

equivalent to C S 475.

Learning Outcomes

1. Apply selected planning algorithms in solving problems Identify

problems where knowledge representation and reasoning techniques
are applicable Be able to apply answer set programming in problem
solving Be aware of various advanced research topics in Artificial
Intelligence

C S 579. Special Topics
1-6 Credits
Topic announced in the Schedule of Classes.

Computer Science 13

C S 581. Advanced Software Engineering

3 Credits (3)

Advanced tools and methods for developing large software systems.

Topics include object-oriented modeling and design, component

architectures, templates and generic programming, software

configuration and revision control, static and dynamic analysis tools,

model, checking, advanced testing, and verification. Students are

expected to have knowledge of software engineering equivalent to

CS371.

Learning Outcomes

1. Be able to explain modern software development process ideas Be

able to apply agile software development techniques in a project
Be able to specify, design, and develop a complex software system
in a team Be able to properly utilize both black box and white box
testing techniques Be able to explain how unsound and incomplete
formal methods can aid in system verification and validation Be able
to utilize sound and complete formal methods to prove properties of
a system

C S 582. Database Management Systems Il

3 Credits (3)

Advanced data models and abstractions, dependencies, implementations,

languages, database machines, and other advanced topics. Students

are expected to have knowledge of data base management systems

equivalent to C S 482.

Learning Outcomes

1. Analyze storage and file structures of an RDBMS Analyze and

apply indexing techniques of an RDBMS Analyze query evaluation
approaches of an RDBMS Analyze the mechanisms of transaction
management in an RDBMS

C S 583. Advanced Cryptography

3 Credits (3)

This is an advanced cryptography course, which will cover cryptographic

protocols such as zero-knowledge proofs, secret sharing schemes, secure

two-party/multi-party computation, and more. We will also briefly cover

real-world applications of these protocols. Students will also be exposed

to recent research topics in cryptography (exact topics might vary every

offering).

Prerequisite: At least a C-in C S 465.

Learning Outcomes

1. Understand advanced crypto primitives such as zero-knowledge

proofs, fair exchange, verifiable encryption, k-of-n secret sharing,
etc., and their security properties Understand the theoretical
underpinnings of protocols such as attribute-based encryption/
signatures, two-party/multi-party secure computation Given a real-
world situation, be able to think of what protocols are best applicable
in the scenario, and be able to reason about their security



14 Computer Science

C S 584. Computer Networks Il

3 Credits (3)

Advanced topics in computer networks. Covers advanced topics in

networking, with emphasis on wireless, and IP networks. Students are

expected to have knowledge of computer networks equivalent to C S 484,

and of statistics equivalent to MATH 371 or MATH 470.

Learning Outcomes

1. Understand design of link layer protocols. Understand challenges

and implementations for multimedia streaming. Be able to use
basic security constructs in the networking context. Understand the
concepts of edge and cloud computing Understand the concepts
and challenges of Internet of Things Learn concepts of distributed
networking Learn and evaluate future internet architectures

C S 586. Algorithms in Systems Biology

3 Credits (3)

The course will introduce important algorithms and computational

models used in systems biology to study molecular mechanisms for

cellular dynamics, processes, and systems. Cellular processes, such

as metabolism and signal transduction, are studied as systems and

networks quantitatively from high throughput molecular measurements.

The topics include molecular biological systems, network alignment,

model simulation, network inference, model optimization, and hybrid

models. Students will be able to construct models and analyze their

properties in the context of molecular biological systems. Students are

expected to have knowledge of algorithms and data structures equivalent

to CS372.

Learning Outcomes

1. Create mathematical representation of biological systems Infer

biological network topology from observed omics data set Simulate
the behavior of a biological system using a mathematical model
Characterize behaviors of biological systems Estimate parameters
in a biological system model Validate a model's statistical relevance
given observed data

C S 589. Special Research Problems

1-6 Credits

Faculty-supervised investigation, to culminate in a written report. May
be repeated; maximum of 6 credits may be applied toward M.S. degree.
Restricted to majors.

Prerequisite: written agreement with faculty supervisor.

C S 598. Master's Project

1-6 Credits

Project-oriented capstone course to be completed by M.S. students under
supervision of their advisor. Maximum of 6 credits may be applied toward
M.S. degree. Restricted to C S majors.

Prerequisite: written agreement with instructor.

C S 599. Master's Thesis

1-6 Credits (1-6)

Thesis to be developed by M.S. Students under supervision of their
advisor. May be repeated for a maximum of 6 credits. Restricted to
majors.

Prerequisite: consent of instructor.

C S 600. Pre-dissertation Research

1-15 Credits
Pre-dissertation research.

C S 700. Doctoral Dissertation
1-15 Credits
Dissertation.



