
June 2017

Computer Science
Curricular Guidance

for Associate-Degree
Transfer Programs
with Infused Cybersecurity

Computer Science Transfer Curriculum
2017

Computer Science Curricular Guidance for
Associate-Degree Transfer Programs

with Infused Cybersecurity

June 30, 2017

The Association for Computing Machinery (ACM) Committee
for Computing Education in Community Colleges (CCECC)

ALL RIGHTS RESERVED

Copyright and Reprint Permissions: Permission is granted to use these curriculum guidelines for the
development of educational materials and programs. Other use requires specific permission.

Permission requests should be addressed to: ACM Permissions Dept. at permissions@acm.org.

ISBN: 978-1-4503-5369-4
DOI: 10.1145/3108241

Web link: http://dx.doi.org/10.1145/3108241

Sponsoring Society

This report was made possible with financial support
from the Association for Computing Machinery (ACM)

The CSTransfer2017 Final Report has been endorsed by
Association for Computing Machinery (ACM)

ACM Committee for Computing Education in Community Colleges (CCECC)

Cover art by Linda Wettengel
Printed in the United States

http://dx.doi.org/10.1145/3108241

Computer Science Curricular Guidance for
Associate-Degree Transfer Programs

with Infused Cybersecurity

Final Report
June 2017

Produced by the members of the ACM Committee for Computing Education in
Community Colleges:

Elizabeth K. Hawthorne, Ph.D., Union County College, NJ

Cara Tang, Ph.D., Portland Community College, OR
Cindy S. Tucker, Bluegrass Community and Technical College, KY

Christian Servin, Ph.D., El Paso Community College, TX
Teresa T. Moore, Volunteer State Community College, TN

2

Table of Contents

Acknowledgements .. 4

Introduction .. 5

Overview of the Curricular Development Process ... 5

Survey Input ... 6

Two-Year/Community College Environment ... 6

Diversity in the Computing Profession .. 7

Cybersecurity in Computing Curricula .. 7

Ethics and Professionalism ... 8

Characteristics of Computer Science Graduates .. 9

Internationalization ... 9

Assessment ...10

Articulation and Pathways ...10

Transfer Programs...11

Career Programs ...11

Computer Science Laboratory Experience ..12

Mathematics Requirements ...12

Laboratory Science Requirements ...13

Student Support Services ..14

The Body of Knowledge with Assessment Metrics ..15

Organization of the Body of Knowledge ...15

Assessment of Student Learning Outcomes ..18

Knowledge Areas ..20

Algorithms and Complexity Knowledge Area (AL) ...20

Architecture and Organization Knowledge Area (AR) ..24

Computational Science Knowledge Area (CN) ..27

Cybersecurity Knowledge Area (CYB) – IAS in CS2013 ..28

Discrete Structures Knowledge Area (DS) ...34

Graphics and Visualization Knowledge Area (GV) ...41

Human-Computer Interaction Knowledge Area (HCI) ..43

Information Management Knowledge Area (IM) ...45

Networking and Communications Knowledge Area (NC) ...48

Operating Systems Knowledge Area (OS) ...50

Parallel and Distributed Computing Knowledge Area (PD) ..53

Platform-based Development Knowledge Area (PBD) ...55

Programming Languages Knowledge Area (PL) ..56

Software Development Fundamentals Knowledge Area (SDF) ..59

3

Software Engineering Knowledge Area (SE) ...63

Systems Fundamentals Knowledge Area (SF) ..67

Social Issues and Professional Practice Knowledge Area (SP) ...70

Correlating Programs to the Computer Science Transfer Curriculum ..78

Mapping CS Transfer to Other Curricula and Frameworks ..78

Bibliography ..79

Glossary of Terms ...80

Appendix A Cybersecurity-related Student Learning Outcomes in the Computer Science
Transfer Curriculum ..82

Appendix B Bloom’s Revised Taxonomy ...86

Figures
Figure 1 Pie Chart of Bloom's Revised Taxonomy Levels: All KA LOs19
Figure 2 Pie Chart of Bloom's Revised Taxonomy Levels: AL KA LOs20
Figure 3 Pie Chart of Bloom's Revised Taxonomy Levels: AR KA LOs24
Figure 4 Pie Chart of Bloom's Revised Taxonomy Levels: CN KA LOs27
Figure 5 Pie Chart of Bloom's Revised Taxonomy Levels: CYB KA LOs29
Figure 6 Pie Chart of Bloom's Revised Taxonomy Levels: DS KA LOs34
Figure 7 Pie Chart of Bloom's Revised Taxonomy Levels: GV KA LOs41
Figure 8 Pie Chart of Bloom's Revised Taxonomy Levels: HCI KA LOs43
Figure 9 Pie Chart of Bloom's Revised Taxonomy Levels: IM KA LOs45
Figure 10 Pie Chart of Bloom's Revised Taxonomy Levels: NC KA LOs48
Figure 11 Pie Chart of Bloom's Revised Taxonomy Levels: OS KA LOs50
Figure 12 Pie Chart of Bloom's Revised Taxonomy Levels: PD KA LOs53
Figure 13 Pie Chart of Bloom's Revised Taxonomy Levels: PL KA LOs56
Figure 14 Pie Chart of Bloom's Revised Taxonomy Levels: SDF KA LOs59
Figure 15 Pie Chart of Bloom's Revised Taxonomy Levels: SE KA LOs63
Figure 16 Pie Chart of Bloom's Revised Taxonomy Levels: SF KA LOs67
Figure 17 Pie Chart of Bloom's Revised Taxonomy Levels: SP KA LOs70
Figure 18: Pie Chart of Bloom’s Revised Taxonomy Levels: All Cybersecurity LOs82

Tables
Table 1 Knowledge Areas of the Computer Science Transfer Curriculum15
Table 2 Knowledge Units of the Computer Science Transfer Curriculum16
Table 3 Estimated Contact Hours and percentage by Knowledge Area18
Table 4 Sample Three-Tier Assessment Rubric ..19
Table 5 Number of Student Learning Outcomes in each Knowledge Unit74
Table 6 Measurable Action Verbs of Bloom's Revised Taxonomy, Cognitive Domain86

https://d.docs.live.net/4da3150edb8a9106/Consulting/ACM/ACMCompSciTransfer2017/ACMCompSciTransfer13June2017-ssl3.docx#_Toc485474240

4

Acknowledgements

The members of the ACM Committee for Computing Education in Community Colleges
(CCECC) acknowledge and thank the ACM Education Board for providing funding for this
important project to develop computer science curricular guidance for associate-degree transfer
programs with infused cybersecurity. The CCECC also sincerely thanks each of the team
leaders, task force members, and other contributors (listed below) for his/her time, talent, and
dedication toward making this project a success for the entire computing education community.

ACM CCECC Members Team Leaders

Dr. Elizabeth K. Hawthorne, Union County
College, NJ

Prof. Lambros Piskopos, Wilbur Wright College, IL

Dr. Cara Tang, Portland Community College, OR Dr. Christian Servin, El Paso Community College,
TX

Prof. Cindy S. Tucker, Bluegrass Community and
Technical College, KY

Prof. Teresa T. Moore, Volunteer State
Community College, TN

Dr. Christian Servin, El Paso Community College,
TX

Prof. Teresa T. Moore, Volunteer State
Community College, TN

Task Force Members Other Contributors

Dr. Markus Geissler, Cosumnes River College,
CA

Prof. Bryce Barrie, Saskatchewan Polytechnic,
Canada

Dr. Anne Applin, Southern Maine Community
College, ME

Prof. Michael Bauer, Leeward Community
College, HI

Prof. Kimberly Bertschy, Northwest Arkansas
Community College, AR

Prof. Paul Dadosky, Ivy Tech Community College,
IN

Prof. Colleen Case, Schoolcraft College, MI Prof. Andrea DeMott, Ohio University, OH
Prof. Rafael Escalante, El Paso Community
College, TX

Dean Jamie Edwards, Wytheville Community
College, VA

Dr. Becky Grasser, Lakeland Community College,
OH

Dr. Larry Forman, San Diego City College, CA

Prof. Charles Hardnett, Gwinnett Technical
College, GA

Prof. Guy Garrett, Gulf Coast State College, FL

Prof. Amardeep Kahlon, Austin Community
College District, TX

Prof. Dianne Hill, Jackson College, MI

Prof. James Kolasa, Bluegrass Community and
Technical College, KY

Dr. Nancy Jones, Coastline Community College,
CA

Dr. Shamsi Moussavi, MassBay Community
College, MA

Prof. Marc Nester, Wytheville Community College,
VA

Prof. Pam Schmelz, Ivy Tech Community College,
IN

Dr. Dean Nevins, Santa Barbara City College, CA

Prof. Melissa Stange, Lord Fairfax Community
College, VA

Dr. Michael Posner, Villanova University, PA

Prof. Khallai Taylor, Miami-Dade College, FL Prof. Kristopher Roberts, Ivy Tech Community
College, IN

Prof. Carole Tharnish, Northeast Community
College, NB

Prof. Barry Sullens, Ivy Tech Community College,
IN
Prof. Robert Surton, Columbia Gorge Community
College, OR

5

Introduction

Overview of the Curricular Development Process
During SIGCSE 2017, the ACM CCECC unveiled the last draft version to receive any final
feedback from the broader computing education community. The CCECC engaged the
community through a pre-symposium event, Birds-of-a-Feather and Poster sessions, as well as
individuals stopping by either the Community College Reception or ACM booth in the Exhibit
Hall to talk with members of the CCECC about this curricular guidance.

Starting with the ACM/IEEE-CS CS2013 Curricular Guidelines (ACM and IEEE-CS, 2013), the
members of the CCECC followed an iterative curriculum revision and development process to
update the ACM 2009 Guidelines for Associate-Degree Transfer Curriculum in Computer
Science, which produced this 2017 curricular guidance, Computer Science Curricular Guidance
for Associate-Degree Transfer Programs with Infused Cybersecurity. Two draft versions were
released for public review and comment. Community feedback and survey results from the first
comment period for the initial draft, StrawDog, were processed to produce the second draft,
IronDog. Similarly, feedback on IronDog was used to produce the final draft presented at
SIGCSE2017. Throughout the two-year process, over 70 community college and university
computing educators contributed to the creation of this final version as either members of the
CS-Cyber task force who met virtually in teams over the course of months, or through
participating in a half day workshop at SIGCSE 2016 in Memphis, TN, stopping by the poster
session at ITiCSE 2016 in Arequipa, Peru, or attending one of several sessions at SIGCSE
2017 in Seattle, WA.

The professional societies of the ACM and the IEEE Computer Society have a long history of
collaborating on computing materials for higher education. These organizations have jointly
produced significant volumes of curricular recommendations and guidelines for associate,
baccalaureate and graduate computing programs; these volumes are referred to as the ACM
Computing Curricula series (www.acm.org/education/curricula-recommendations). Likewise, the
ACM CCECC has produced a corresponding set of curricular guidelines that provide similar
guidance for associate-degree granting institutions, in a manner that fosters inter-institutional
cooperation and student articulation. This model curriculum provides discussion on transfer
considerations and discussion on articulation in computer science.

As with most countries, cybersecurity is a national priority in the United States with a formal
action plan (The White House, 2016). Higher education is a key component of the cybersecurity
national action plan. ACM responded by integrating information assurance and security learning
outcomes throughout its most current computer science curricular guidance, CS2013. In 2015,
ACM in association with the Computer Society of the Institute of Electrical and Electronics
Engineers (IEEE-CS), the Association for Information Systems (AIS), the Cyber Education
Project (CEP), and the International Federation of Information Processing (IFIP) formed a joint
task force to create undergraduate curricular guidelines for cybersecurity education
(ACM/IEEE/AIS/IFIP Joint Task Force, 2017).

In recognition of the national importance of cybersecurity education, the ACM CCECC carefully
wove contemporary cybersecurity throughout its Computer Science Transfer Curriculum. See
Appendix A for a consolidated list of all the cybersecurity-related student learning outcomes
woven into the Computer Science Transfer Curriculum. The cybersecurity concepts of the
curriculum were informed by the draft version of the ACM/IEEE/AIS/IFIP Cybersecurity
Curricular 2017: Curriculum Guidelines for Undergraduate Degree Programs in Cybersecurity
(ACM/IEEE/AIS/IFIP Joint Task Force, 2017), the NICE National Cybersecurity Workforce

6

Framework (National Institute of Standards and Technology, 2016), and the knowledge units of
the NSA/DHS National Centers of Academic Excellence in Cyber Defense for Two-Year
Colleges (CAE2Y) (NSA and Department of Homeland Security, 2017).

Survey Input
Two surveys provided valuable input influencing this curricular guidance. The first survey asked
which knowledge areas and knowledge units from CS2013 are appropriate in the first two years
of a computer science program. A second survey solicited input on cybersecurity content
appropriate in a computer science program in the first two years. The surveys were
disseminated internationally and received approximately 50 responses from eight different
countries. Responses to the first survey indicated that 17 of the 18 knowledge areas of CS2013
are appropriate, in some part and at some level, in the first two years of a computer science
transfer program.

Two-Year/Community College Environment
According to the American Association of Community Colleges, nearly one-half of all
undergraduates in the United States are enrolled in two-year colleges, and more than half of all
first-time college freshman attend community and technical colleges. “Community colleges are
centers of educational opportunity. They are an American invention that put publicly funded
higher education at close-to-home facilities, beginning nearly 100 years ago with Joliet Junior
College (in Joliet, Illinois). Since then, they have been inclusive institutions that welcome all who
desire to learn, regardless of wealth, heritage, or previous academic experience. The process of
making higher education available to the maximum number of people continues to evolve”
(www.aacc.nche.edu/).

The community college environment is uniquely positioned, resulting from the threefold mission
of these institutions to provide a learning environment for:

❖ transfer into baccalaureate programs;
❖ entrance into the local workforce; and
❖ lifelong learning for personal and professional enrichment.

In addition, many two-year colleges are drivers of local economic development, providing
workforce development and skills training, as well as offering noncredit programs ranging from
English as a second language to skills retraining to community enrichment programs and
cultural activities.

Two-year colleges serve high school graduates proceeding directly into college, workers
needing to upgrade skill sets or master new ones in order to re-enter the workforce, immigrants
seeking to become integrated into the local culture and master a new language, individuals
leaving the workplace to engage college-level coursework for the first time, returning students
with college degrees who have decided to pursue an alternate career path, and many
individuals in need of ongoing training and skill updating. This diversity is addressed in
numerous ways, including targeted career counseling, remediation of basic skills, specialized
course offerings, individualized instruction and attention, flexible scheduling and delivery
methodologies, and a strong emphasis on retention and successful completion. Furthermore,
because two-year colleges have less restrictive entrance requirements, faculty must be
prepared to instruct students exhibiting a broad range of academic preparations, aptitudes, and
learning styles. The mission of two-year college faculty is to focus their full-time attention on

7

effective pedagogy for educating a diverse student population, as well as remaining current in
their discipline and in the scholarship of teaching and learning, and fostering student success.

Two-year, community or technical colleges, as well as certain four-year colleges, award
associate degrees to students completing between 60 to 66 higher education credits in a
specific program of study. It is often the case that an associate-degree requires approximately
half the college credit of a bachelor’s degree. Associate-degree programs are complete,
whether designed specifically to enable graduates to transfer into the upper division of a
baccalaureate program or to gain entry into the workforce. Additionally, these institutions also
offer certificate programs, intended to be fulfilled in less time than a complete degree program;
such programs are often designed for targeted student audiences and focused on specific
content.

At the earliest opportunity, faculty and academic advisors must help each student determine
which type of program best serves the student’s educational and career goals. Such
considerations include the distinctions between certificate, career and transfer programs, the
academic requirements of each, and the associated employment options. Career-oriented
associate-degree programs (typically A.A.S.) provide the specific knowledge, skills, and abilities
(KSA) necessary to proceed directly into the workplace, while transfer-oriented degree
programs (typically A.S.) provide the academic foundation and pathway to continue a program
of study at a four-year college or university.

Diversity in the Computing Profession
Across the globe there is a high demand for computing professionals and a significant shortfall
in satisfying job vacancies in many locations. In the U.S. alone, it is anticipated that the current
graduation rates in computing disciplines may satisfy only one-third of the projected 1.4 million
computing-related jobs openings in the coming years. Worldwide, the growth of new and
emerging roles in computer, technology, and engineering fields exceeds the rate that
underrepresented groups enter these fields. Academic research continues to bear light on the
pressing need to increase the diversity of students pursuing computer science degrees and the
numerous benefits of doing so. To help fulfill the increasing shortage of computer professionals,
computer science faculty should increase efforts to effectively recruit and retain a wider range of
students and build and provide effective support structures so that all students can successfully
graduate. See Glossary of Terms.

Cybersecurity in Computing Curricula
Whether referred to as “cybersecurity,” “computer security,” “information security,” “information
assurance” or some other name, curriculum content in creating and maintaining secure
computing environments is a critical component in associate-degree computing programs.
Almost every career path open to a computing student encompasses some aspect of security.
System administrators and engineers must be able to properly design, configure, and maintain a
secure system; programmers and application developers must know how to design and build
secure, fault-tolerant software systems from the bottom up; web specialists must be capable of
assessing risks and determining how best to reduce the potential impact of breached systems;
user support technicians must be knowledgeable in security concerns surrounding desktop
computing; and project managers must be able to calculate the cost/benefit tradeoffs involved
with implementing secure systems.

It is the responsibility of faculty to ensure that students are well prepared for the cybersecurity
challenges they will inevitably encounter in their careers as computing professionals. This can

8

be addressed through a variety of implementation strategies. One approach that some
associate-degree computing programs offer is a number of individual courses on specific
security topics. This approach can provide many content opportunities for specialization but may
leave students who don’t choose the specialized security courses without the understanding of
the security concepts necessary to function in their professional roles.

Another approach is to fully integrate and incorporate contemporary cybersecurity content into
core, introductory computer science courses with specialized courses reserved for targeted
settings. The guidelines presented here employ the integrated approach, incorporating relevant
cybersecurity student learning outcomes throughout the computer science body of knowledge
for lower division, undergraduate curriculum. The Committee also strongly advocates for
learning activities that require students to actively demonstrate mastery of the tenets of
professional conduct, ethical, and responsible behavior, as well as an appreciation for
cybersecurity in a holistic manner. See Appendix A for a consolidated list of all the
cybersecurity-related student learning outcomes organized by knowledge area and unit.

Ethics and Professionalism
Ethical reasoning and professional conduct are important concepts in the overall curricula for
computing disciplines including computer science, and must be integrated throughout the
programs of study. This ethical and professional context should be established at the onset and
should appear routinely in discussions and learning activities throughout the curriculum. The
ACM Code of Ethics notes that “When designing or implementing systems, computing
professionals must attempt to ensure that the products of their efforts will be used in socially
responsible ways, will meet social needs, and will avoid harmful effects to health and welfare.”
The Code goes on to provide an excellent framework for conduct that should be fostered
beginning early in students’ experiences. (www.acm.org/about-acm/acm-code-of-ethics-and-
professional-conduct).

As computing technologies become ubiquitous in society, ethical behavior and adherence to
codes of conduct for computing professionals are imperative; therefore, careful consideration of
legal, ethical, and societal issues involving computing, the Internet and databases are essential
to the education of computing professionals. Students who realize the potential uses and
abuses of technology will, as citizens, be able to contribute to public policy debate from a
knowledgeable perspective on issues such as property rights and privacy concerns that affect
everyone.

Computer systems have substantial social impact in nearly every setting including applications
such as healthcare, finance, transportation, defense, government, education, and
communications—real-time and safety-critical systems typically have acceptable margins of
error close to nil. Developers and support technologists of such computing systems are
confronted by challenges regarding choices and tradeoffs in the design, implementation, and
maintenance of these systems. Engaging students in the consideration of the ethical aspects for
such decisions as well as giving them practice in identifying and weighing the ethical issues
enables them to make more judicious choices. It is crucial that students pursuing computing
careers be made aware of and properly equipped to handle the complexities of professional
judgments—as computing professionals, graduates must follow codes of conduct and take
responsibility for their actions and be accountable for the systems that they develop and
support.

9

Characteristics of Computer Science Graduates
Graduates of associate-degree programs in computer science should possess foundational
competency in the areas described throughout the Body of Knowledge (BoK) presented in these
curriculum guidelines. Increasingly, the area of computing has become critical to the operation
of many organizations. Computing employees must demonstrate professionalism and ethical
behavior (as described above), adhere to codes of conduct, safeguard confidentiality, and
respect privacy. They must take responsibility for their actions, be accountable to the
organization, understand the impact of their work on others, and demonstrate effective and
efficient work practices. The world of work is changing at an increasingly rapid pace and
employers are seeking graduates who are adaptable and flexible in the workplace. Computer
science graduates must easily, and quickly, adjust to mutable circumstances and environments,
embrace new ideas, and demonstrate resourcefulness while still adding benefit to the
organization. This field also demands that professionals engage in lifelong learning, an ongoing
process of professional growth and development, to ensure that their skills and abilities remain
current with ever-changing technology.

To this workplace readiness goal, faculty are strongly encouraged to incorporate professional
practices and applied work as an integral part of computer science programs to benefit
students. Students should be encouraged to:

❖ work in teams;
❖ use techniques of task and time management;
❖ solve practical problems in course projects;
❖ solve problems which demonstrate creativity, adaptability, and flexibility;
❖ make oral presentations;
❖ communicate effectively in writing;
❖ confront issues of privacy, confidentiality and ethics;
❖ use current technology in computer laboratories;
❖ attain real-world experience through cooperative education, internships, and/or other

practicum activities; and
❖ participate in student chapters of computing societies and organizations (e.g., ACM) for

professional development opportunities.

Internationalization
In the process of developing its curricular guidance in computer science, the ACM CCECC
continually sought international perspectives from two-year post-secondary (“tertiary”) higher
education programs both locally within the United States and globally throughout the world.
Feedback was received and processed from countries around the globe, including China, India,
Turkey, South Africa, Australia, New Zealand, Canada, Mexico, Peru, Brazil, the United
Kingdom, and countries across the European Union.

Through their Office of International Programs and Services, the American Association of
Community Colleges “promotes partnerships between U.S. community colleges and institutions
around the world to support the exchange of best practices, enhance mutual understanding
between cultures, and expand opportunities for students to gain global competence and skills
for the 21st Century.” Current international partnerships include China, Indonesia, India, Brazil,
and Mexico (American Association of Community Colleges, 2017). Other countries recognize
the economic benefit of graduates with two-year degrees, including Canada and China, for
example. The Association of Canadian Community Colleges offers a wealth of information on
two-year degree programs and colleges in Canada (Association of Canadian Community
Colleges, 2017). The Ministry of Education of the People’s Republic of China describes

10

institutions like community colleges in its discussion on two- to three-year higher vocational
education with the emphasis on high-level professional technical talents (Ministry of Education
of the People’s Republic of China, 2017).

Assessment
The cognitive outcomes in this guidance are clustered by related Knowledge Areas (KAs). The
KAs are further organized into Knowledge Units (KUs) with a list of corresponding student
learning outcomes. Each learning outcome is accompanied by an assessment rubric. The ACM
CCECC uses a structured assessment metric comprised of three tiers: “emerging,” “developed,”
and “highly developed.” Typically, as the level of student achievement progresses from
“emerging” to “highly developed,” the level of Bloom’s verbs also increases from the lower order
thinking skills (LOTS) to the higher order thinking skills (HOTS). It is important to note that the
middle tier of “developed” indicates the student has achieved the intended level of the learning
outcome.

Articulation and Pathways
Articulation is a key consideration in associate-degree programs which are designed as transfer
curricula. Articulation of courses and programs between academic institutions is a process that
facilitates transfer by students from one institution to another. The goal is to enable students to
transfer in as seamless a manner as possible. Efficient and effective articulation requires
accurate assessment of courses and programs as well as meaningful communication and
cooperation. Both students and faculty have responsibilities and obligations for successful
articulation. Ultimately, students are best served when educational institutions establish well
defined articulation agreements that actively promote transfer.

Articulation agreements often guide curriculum content as well, and are important
considerations in the formulation of transfer-oriented programs of study. Institutions are
encouraged to work collaboratively to design compatible and consistent programs of study that
enable students to transfer, in the United States from associate-degree programs into
baccalaureate-degree programs, and in other countries from post-secondary colleges into
universities. A two-year college must develop transition and articulation strategies for the
colleges and universities to which its students most often transfer, recognizing that it may be
necessary to modify course content to facilitate transfer credit and articulation agreements. A
program of study must also take into consideration the general education requirements at both
the initial college and the anticipated transfer institution. Faculty must ensure that they clearly
define program goals, address program learning outcomes, and evaluate students effectively
against defined course outcomes. Articulation agreements should specify one or more well-
defined exit points for students to matriculate from the post-secondary college to the transfer
institution. In turn, faculty at the receiving institution must provide any transitional preparation
necessary to enable transfer students to continue their academic work on par with students at
their institution. Hence, students must expect to complete programs in their entirety up to well-
defined exit points (e.g., completion of a defined course sequence or program) at one institution
before transferring to another institution; one cannot expect articulation to accommodate
potential transfers in the middle of a carefully designed curriculum. Acting on these
considerations, all post-secondary institutions of higher education will foster student success
and best serve their students’ academic and career aspirations.

11

Transfer Programs
Typically, associate-degree computing programs fall into two categories: those designed for
transfer into baccalaureate-degree programs (e.g., Associate in Science and Associate in Arts)
and those designed to prepare graduates for immediate entry into career paths (e.g., Associate
in Applied Science). Colleges should make students aware at the onset of their studies of the
distinctions between career and transfer programs, the academic requirements of each, and the
resultant employment options. Transfer-oriented associate-degree programs rely on formal
inter-institutional articulation agreements to ensure that students experience a seamless
transition between lower division associate-degree coursework and upper division
baccalaureate-degree coursework. Articulation of courses and programs between two academic
institutions facilitates the transfer of students from one institution to the other. Faculty and
students alike have responsibilities and obligations to achieve successful articulation.

Efficient and effective articulation requires a close evaluation of well-defined course and
program outcomes as well as meaningful communication and cooperation. For example, a
specific course in one institution might not be equivalent to a single course at a second
institution; however, a group or sequence of courses could be determined equivalent to another
course grouping or sequence. Faculty must ensure that they clearly define program
requirements, address program goals in a responsible manner, and assess students effectively
against defined standards. When specifying points of exit within the articulation agreement
document, faculty at the transferring institution must provide sufficient material to prepare
students to pursue further academic work at least as well as students at the second institution.

It is not uncommon for students to complete an associate-degree program of study, choose to
work for a period, and then return to college to pursue their upper division studies for career
advancement. (And many employers will provide tuition reimbursement for workers who wish to
continue toward a baccalaureate degree.) Because of the ever-evolving nature of computing,
students must be aware that course content and program requirements are updated frequently,
potentially subjecting them to new program requirements and revised articulation agreements.
Students are best served when sequences of courses are completed as a unit at one institution
due to the comprehensive and conceptual nature of the computing and mathematics content.
Hence, students should complete programs of study in their entirety up to well-defined exit
points at one institution before transferring to another institution; articulation cannot be expected
to accommodate potential transfers in the middle of a well-defined and recognized body of
knowledge.

Academic institutions are advised to work collaboratively to design compatible and consistent
programs of study that enable students to transfer easily from associate-degree programs into
baccalaureate-degree programs. In support of this goal, the ACM provides curricular guidelines
for both associate- and baccalaureate-degree programs in computer science.

Career Programs
Typically associate-degree programs fall into two categories: those designed to prepare
graduates for immediate entry into career paths and those designed for transfer into
baccalaureate-degree programs. Colleges should make students aware at the beginning of their
studies of the distinctions between career and transfer programs, the academic requirements of
each, and the resultant employment options. Students graduating from a career-oriented
associate-degree computing program will typically enter the workforce directly upon graduation.

Career-oriented associate-degree programs provide students with the specific knowledge, skills
and abilities (KSA) necessary to proceed directly into employment in a targeted work

12

environment. The program of study will include professional development coursework as well as
courses that emphasize communication skills, mathematical reasoning and other general
education requirements. The degree granted upon completion of a career-oriented program is
typically an Associate in Applied Science (A.A.S.). In addition, many students will augment their
formal studies with technical industry certifications to enhance their immediate employability.

The following factors support the viability of a career-oriented associate-degree program and
help ensure the success of students in the workplace:

❖ an active industry advisory committee consisting of prospective employers, providing
guidance concerning the knowledge, skills, and abilities students must possess to enter
directly into a career within their community;

❖ real-world work experience including co-op programs, internships and other practicum
activities, with an emphasis on professional practices and core and elective coursework
as recommended by advisory committees;

❖ integration of technical, communication and time-management skills, team projects, and
other interpersonal skills that prepare the student for a business working environment;

❖ potential articulation paths that enable the career-oriented student to pursue a
baccalaureate degree in the future after working for some period; and

❖ assessment processes whereby students can earn credit for relevant experience.

It is important to note that a career-oriented associate-degree program is not intended to
facilitate transfer into a baccalaureate program, but rather to provide entry into a career that
requires specialized post-secondary skills and an advanced level of expertise and education.
Nevertheless, many students graduating from career-oriented programs subsequently elect to
further their education at the baccalaureate level (frequently with employer tuition assistance
plans).

Computer Science Laboratory Experience
The computer laboratory experience is an essential part of the computing curriculum, either as
an integral part of a course or as a separate stand-alone course. Such experiences should start
early in the curriculum, in the very beginning when students are often motivated by the “hands-
on” nature of computing. Introductory laboratories should be designed and conducted to
reinforce concepts presented in lecture classes and homework. Students should be provided
many opportunities to observe, explore and manipulate characteristics and behaviors of actual
devices, systems, and processes. Every effort should be made by instructors to create
excitement, interest and sustained enthusiasm in computing students. Many institutions granting
associate degrees will be familiar with strong lab-based learning activities, drawing on years of
experience with programs such as electronics technology and industry-provided networking
curricula. Numerous colleges have long recognized that experiences such as survey courses in
engineering often engage students in stimulating activities that peak their interests and set the
stage for career choices in such fields. These colleges will find that they can leverage existing
facilities, resources, and faculty expertise in implementing computing programs.

Mathematics Requirements
A strong foundation in mathematics provides the necessary basis for associate-degree transfer
programs in computing. This foundation must include both mathematical techniques and formal
mathematical reasoning. Mathematics provides a language for working with ideas relevant to
computing, specific tools for analysis and verification, and a theoretical framework for
understanding important concepts. For these reasons, mathematics content must be initiated

13

early in the student’s academic career, reinforced frequently, and integrated into the student’s
entire course of study. Curriculum content, pre- and co-requisite structures, and learning
activities and laboratory assignments must be designed to reflect and support this framework.
Many students enter two-year colleges with insufficient mathematics preparation for a
computing program. Such students must devote additional semesters to achieve the
mathematical maturity and problem-solving skills required to be successful in computing
coursework.

Furthermore, computer science programs must provide students with a level of “mathematical
maturity.” Lower division, undergraduate computer science programs need enough
mathematical maturity to have the basis on which to build CS-specific mathematics. The
concepts established in a course on Discrete Structures are foundational material for computer
science, and for that reason such coursework must be completed early in the program of study.
The transfer guidelines include an entire Knowledge Area on Discrete Structures estimated at
40 professor/student contact hours to cover the 34 recommended learning outcomes. The
typical pre-requisite for a discrete structures course is pre-calculus; and a typical discrete
structures course includes requisite concepts in set theory, induction, recursion, logic, graph
theory, and combinatorics, and uses the notion of formal mathematical proof as a unifying
theme. These concepts are critical to the study of algorithms and data structures. The
recommended Discrete Structures course can be taught very successfully by computer science
faculty with appropriate qualifications; in this manner, the content can be presented from the
computing perspective, with examples and assessment activities tailored to that perspective as
well. Concepts in discrete structures also serve as underpinnings for advanced computer
science topics. For example, an ability to create and understand a formal proof is essential in
formal specification, in verification, and in cryptography; professionals use graph theory
concepts in networks, operating systems, and compilers and set theory concepts in software
engineering and in databases.

The theoretical concepts of calculus not only help provide mathematical maturity, but also are
required for studying the efficiency of algorithms, typically measured by Big-O notation. An
introductory calculus course that includes the foundational concepts of limits, functions, and
upper and lower bounds necessary for understanding asymptotic analysis will serve a computer
science major well. Mathematics faculty typically teach this course, intended for engineering,
science or mathematics majors. For computer science majors, the ability to think abstractly and
to generate software solutions of mathematical models for real-world scenarios is enhanced
through the study of calculus. Because introductory calculus is a well-established, time-honored
course, the transfer guidelines do not include learning outcomes for the application of calculus
to computer science.

Other types of mathematics courses may also be appropriate for undergraduate computer
science majors. With the preponderance of algorithms for big data analytics, data visualization,
and machine learning, lower division, undergraduate courses in linear algebra as well as
probability and statistics will serve a computer science major well for emerging and unforeseen
careers. This curricular guidance does not include student learning outcomes for these
mathematics courses.

Laboratory Science Requirements
Rigorous laboratory science courses such as physics, chemistry, and biology provide computer
science students with direct hands-on laboratory experiences and strong training in the tenets of
the scientific method. The scientific method presents a structured methodology for much of the
discipline of computing; it also provides a process of abstraction that is vital to developing a

14

framework for logical thought. Learning activities and laboratory assignments found in computer
science courses should be designed to incorporate and reinforce this framework of
experimentation and observation. Furthermore, advisors should guide students intending to
transfer into a baccalaureate program (immediately or as a long-term goal) to select specific
science coursework appropriate to that objective. Program requirements of this nature can
provide students with a crucial foundation should they later pursue interdisciplinary computing
careers in scientific domains, such as astronomy, geography, biology, chemistry, or physics.

Student Support Services
Student support services aid students specifically through peer and professional counseling,
mentoring, and tutoring. The format of these services may vary depending on the institution's
mission and/or the academic program. Frequently, student support services are composed of
students and peer mentor from the same institution, supervised by professional staff/faculty
members. Student support services are primarily focused on student success and retention.
Examples of these programs may occur through the following options.

❖ Tutoring Learning Centers provide academic support to students through tutoring and
computer assisted instruction for various subjects. These centers provide a supportive
environment to promote positive assistance to students and provide supplemental
resources for coursework.

❖ Peer-led Team Learning Models provide active and collaborative discussion sessions
among students. Usually these sessions take place in a peer-based learning
environment, such as in computer labs or at a learning center facility. These sessions
allow peer leaders to discuss challenging concepts through active learning strategies.

❖ Counseling Centers offer options in career pathways to students who are undecided in
which track of computing to specialize. Normally, counselors work together with faculty
in the corresponding programs to advise undecided students.

15

The Body of Knowledge with Assessment Metrics

Organization of the Body of Knowledge
The ACM/IEEE CS2013 Body of Knowledge (BoK) serves as the foundational curricular
framework for these associate-degree transfer guidelines in computer science. The CS2013
BoK is organized into a set of 18 Knowledge Areas (KA) that correspond to topical areas of
study in computing for undergraduate, baccalaureate degree programs in computer science.
These associate-degree transfer guidelines include 17 of the 18 Knowledge Areas, purposefully
excluding Intelligent Systems, since this KA consists mostly of elective content that is more
appropriate for upper division undergraduate instruction. It is also important to note that a
Knowledge Area does not necessary equate to a course. Learning outcomes from various KAs
are often distributed among a single computer science course. For example, student learning
outcomes from Software Development Fundamentals (SDF), Cybersecurity (CYB), Algorithms
and Complexity (AL), Programming Languages (PL), and Operating Systems (OS) knowledge
areas are often combined to form an introductory programming course.

Table 1 Knowledge Areas of the Computer Science Transfer Curriculum

Algorithms and Complexity (AL) Architecture and Organization (AR)

Computational Science (CN) Cybersecurity (CYB)
(Information Assurance and Security, IAS, in
CS2013)

Discrete Structures (DS) Graphics and Visualization (GV)

Human-Computer Interaction (HCI) Information Management (IM)

Networking and Communications (NC) Operating Systems (OS)

Parallel and Distributed Computing (PD) Platform-based Development (PBD)

Programming Languages (PL) Software Development Fundamentals (SDF)

Software Engineering (SE) Systems Fundamentals (SF)

Social Issues and Professional Practice (SP) ----

The 17 Knowledge Areas in Table 1 along with the associated Knowledge Units in Table 2
comprise the ACM Body of Knowledge for associate-degree transfer curriculum in computer
science.

16

Table 2 Knowledge Units of the Computer Science Transfer Curriculum

Algorithms and Complexity KA
Knowledge Units

Architecture and Organization KA
Knowledge Units

Basic Analysis Digital Logic and Digital Systems
Algorithmic Strategies Machine Level Representation of Data
Fundamental Data Structures and Algorithms Assembly Level Machine Organization
Basic Automata, Computability, and
Complexity

Memory System Organization and
Architecture

Computational Science KA
Knowledge Units

Cybersecurity KA
Knowledge Units

Introduction to Modeling and Simulation Foundational Concepts in Security
 Principles of Secure Design
 Defensive Programming
 Threats and Attacks
 Cryptography
 Web Security

Discrete Structures KA
Knowledge Units

Graphics and Visualization KA
Knowledge Units

Sets, Relations, and Functions Fundamental Concepts
Basic Logic

Proof Techniques
Basics of Counting
Graphs and Trees
Discrete Probability

Human Computer Interaction KA
Knowledge Units

Information Management KA
Knowledge Units

Foundations Information Management Concepts

Designing Interaction
Database Systems
Data Modeling

Networking and Communications KA
Knowledge Units

Operating Systems KA
Knowledge Units

Introduction Overview of Operating Systems
Networked Applications Operating System Principles

Concurrency
Memory Management
Security and Protection
Virtual Machines

17

Parallel and Distributed Computing KA
Knowledge Units

Platform-based Development KA
Knowledge Units

Parallelism Fundamentals None specified
Communication and Coordination

Cloud Computing

Programming Languages KA
Knowledge Units

Software Development Fundamentals KA
Knowledge Units

Object-Oriented Programming Algorithms and Design
Functional Programming Fundamental Programming Concepts
Event-Driven and Reactive Programming Fundamental Data Structures
Basic Type Systems Development Methods

Software Engineering KA
Knowledge Units

Systems Fundamentals KA
Knowledge Units

Software Processes Computational Paradigms
Software Project Management Cross-Layer Communications
Tools and Environments Parallelism
Requirements Engineering

Software Design
Software Construction
Software Verification and Validation
Social Issues and Professional Practice KA

Knowledge Units
Social Context
Analytical Tools
Professional Ethics
Intellectual Property
Privacy and Civil Liberties
Professional Communication
Sustainability
Security Policies, Laws, and Computer Crime

18

Table 3 shows the estimated number of professor/student contact hours for each knowledge
area, as well as the percentage. It is important to note that contact hours are not the same as
course credit hours, such as a three-credit or four-credit course. Contact hours approximate the
instructional time professors and students spend in teaching and learning together.

Table 3 Estimated Contact Hours and Percentage by Knowledge Area

Knowledge Area Estimated Contact Hours Percentage
Algorithms and Complexity 15 7.7%

Architecture and Organization 10 5.2%

Computational Science 1 0.5%

Cybersecurity 20 10.3%

Discrete Structures 40 20.6%

Graphics and Visualization 2 1.0%

Human-Computer Interaction 5 2.6%

Information Management 6 3.1%

Networking and Communications 5 2.6%

Operating Systems 10 5.2%

Parallel and Distributed Computing 3 1.5%

Platform-based Development 0 0%

Programming Languages 15 7.7%

Software Development Fundamentals 30 15.5%

Software Engineering 15 7.7%

Systems Fundamentals 5 2.6%

Social Issues and Professional Practice 12 6.2%

Estimated Total Contact Hours 194 100%

Assessment of Student Learning Outcomes
Each Knowledge Unit is complete with measurable student learning outcomes. Learning
outcomes are expressed using action verbs from Bloom’s Revised Taxonomy. The Bloom’s
level—Remembering, Understanding, Applying, Analyzing, Evaluating, or Creating—is indicated
in bracketed italics [italics] after each learning outcome. See Appendix B for a table of the
measurable Bloom’s verbs that were used in the creation of this curricular guidance.

A three-tiered assessment rubric (Table 4) labeled as emerging, developed, and highly
developed provides further clarity to each learning outcome. Typically, as the level of student
achievement progresses from emerging to highly developed, the level of Bloom’s action verb
also increases from the lower order thinking skills (LOTS) to the higher order thinking skills
(HOTS). The developed middle tier indicates the student has met the intended learning
expectation expressed by the outcome.

19

Table 4 Sample Three-Tier Assessment Rubric

Knowledge Area Assessment Rubric
 Emerging Developed Highly Developed

Knowledge Unit

Learning Outcome Learning Expectation

Figure 1 Pie Chart of Bloom's Revised Taxonomy Levels: All KA Learning Outcomes

Figure 1 shows the percentage of all 214 student learning outcomes in this Body of Knowledge
by Bloom’s Revised Taxonomy level. Only 21% are at the Understanding level, meaning 79%
are at the Applying level or higher. It is important to note that there are no middle-tier learning
outcomes at the lowest Bloom’s level of Remembering.

20

Knowledge Areas
This section comprises the details of each of the 17 Knowledge Areas and associated
Knowledge Units of the Computer Science Transfer Curriculum.

Algorithms and Complexity Knowledge Area (AL)
The Algorithms and Complexity (AL) knowledge area (KA) consists of 17 measurable student
learning outcomes across four knowledge units. As indicated in Figure 2, most of the student
learning outcomes, 53%, are at the Applying level of Bloom’s Revised Taxonomy. The
remaining learning outcomes are shared among the Understanding (18%), Analyzing, (23%),
and Evaluating (6%) levels. The ACM CCECC estimates 15 professor/student contact hours for
the AL knowledge area.

Figure 2 Pie Chart of Bloom's Revised Taxonomy Levels: AL KA LOs

The Algorithms and Complexity knowledge area defines the central concepts and skills required
to design, implement, and analyze algorithms for solving problems. Algorithms are fundamental
to computer science and software engineering. The real-world performance of any software
system depends on the algorithms chosen as well as the suitability and efficiency of the various
layers of implementation. Good algorithm design is therefore crucial for the performance of all
software systems. Moreover, the study of algorithms provides insight into the intrinsic nature of
the problem as well as possible solution techniques independent of programming language,
programming paradigm, computer hardware, or any other implementation aspect, such as
security. An important part of computing is the ability to select algorithms appropriate to specific

21

purposes and to apply them, recognizing the possibility that no suitable algorithm may exist.
This facility relies on understanding the range of algorithms that address an important set of
well-defined problems, recognizing their strengths and weaknesses, and their suitability in
specific contexts. Efficiency is a pervasive theme throughout this knowledge area. (adapted
from CS2013, p. 55).

Learning Outcome Assessment Rubric

AL. Algorithms and
Complexity KA Emerging Developed Highly Developed

AL/Basic Analysis Knowledge Unit

AL-01. Analyze best, average,
and worst-case behaviors of an
algorithm.
[Analyzing]

Illustrate best,
average, and worst-
case behaviors of an
algorithm.
[Applying]

Analyze best,
average, and worst-
case behaviors of an
algorithm.
[Analyzing]

Evaluate best,
average, and worst-
case behaviors of an
algorithm.
[Evaluating]

AL-02. Estimate time and space
complexities for a given algorithm
using Big-O notation.
[Evaluating]

Distinguish between
time and space
complexities for a
given algorithm.
[Analyzing]

Estimate time and
space complexities
for a given algorithm
using Big-O notation.
[Evaluating]

Critique time and
space complexities of
several algorithms
using Big-O and
other notations.
[Evaluating]

AL-03. Contrast standard
complexity classes.
[Analyzing]

Illustrate a few of the
standard complexity
classes.
[Applying]

Contrast standard
complexity classes,
such as logarithmic,
linear, quadratic, and
exponential.
[Analyzing]

Judge standard
complexity classes as
either “efficient" or
"inefficient"
algorithms.
[Evaluating]

AL-04. Analyze the performances
of an algorithm with various input
sizes.
[Analyzing]

Discuss the
performances of an
algorithm with various
input sizes.
[Understanding]

Compare the
performances of an
algorithm with various
input sizes.
[Analyzing]

Assess the
performances of an
algorithm with various
input sizes.
[Evaluating]

AL/Algorithmic Strategies Knowledge Unit
(see also SDF/Algorithms and Design KU)
AL-05. Apply an appropriate
algorithmic approach to a given
problem.
[Applying]

Demonstrate an
algorithmic approach
to a given problem.
[Understanding]

Apply an appropriate
algorithmic approach
to a given problem,
such as brute-force,
greedy, recursive,
divide-and-conquer,
and dynamic
programming.
[Applying]

Analyze the tradeoffs
of various algorithmic
approaches to a
given problem.
[Analyzing]

22

AL-06. Investigate the use of
random/pseudo random number
generation in cybersecurity
applications.
[Applying]

Describe the use of
random numbers in
cybersecurity
applications.
[Understanding]

Investigate the use of
random/pseudo
random number
generation in
cybersecurity
applications, such as
password generation
and data encryption.
[Applying]

Analyze the use of
random/pseudo
random number
generation in a range
of cybersecurity
applications.
[Analyzing]

AL/Fundamental Data Structures and Algorithms Knowledge Unit
(see also SDF/Fundamental Data Structures KU)

AL-07. Implement basic
numerical algorithms.
[Applying]

Describe the use of
basic numerical
algorithms.
[Understanding]

Implement basic
numerical algorithms,
such as min, max,
and mode.
[Applying]

Develop complex
numerical algorithms.
[Creating]

AL-08. Implement common
search algorithms, including
linear and binary searches.
[Applying]

Exemplify common
search algorithms,
including linear and
binary searches.
[Understanding]

Implement common
search algorithms,
including linear and
binary searches.
[Applying]

Compare the
efficiency of common
search algorithms,
including linear and
binary searches.
[Analyzing]

AL-09. Implement common
sorting algorithms, including
iterative, quadratic, and
recursive.
[Applying]

Exemplify common
sorting algorithms,
including iterative,
quadratic, and
recursive.
[Understanding]

Implement common
sorting algorithms,
including iterative,
quadratic, and
recursive.
[Applying]

Compare the
efficiency of common
sorting algorithms,
including iterative,
quadratic, and
recursive.
[Analyzing]

AL-10. Implement hash tables,
including collision avoidance and
resolution.
[Applying]

Explain the general
idea of a hash table.
[Understanding]

Implement hash
tables, including
collision avoidance
and resolution.
[Applying]

Compare common
collision resolution
techniques for hash
tables.
[Analyzing]

AL-11. Explain the runtime and
memory efficiency of principal
sorting, searching, and hashing
functions.
[Understanding]

Summarize the
runtime and memory
efficiency of either a
sorting, a searching,
or a hashing function.
[Understanding]

Explain the runtime
and memory
efficiency of principal
sorting, searching,
and hashing
functions.
[Understanding]

Analyze the runtime
and memory
efficiency of principal
sorting, searching,
and hashing
functions.
[Analyzing]

AL-12. Investigate factors other
than computational efficiency that
influence the choice of
algorithms.
[Applying]

Describe factors
other than
computational
efficiency that ought
to be considered
when choosing an
algorithm.
[Understanding]

Investigate factors
other than
computational
efficiency that
influence the choice
of algorithms, such
as programming time,
maintainability, and
the size and patterns
of input data.
[Applying]

Critique factors other
than computational
efficiency that
influence the choice
of algorithms.
[Evaluating]

23

AL-13. Compare various data
structures for a given problem.
[Analyzing]

Investigate a few
data structures for a
given problem.
[Applying]

Compare various
data structures for a
given problem, such
as array, list, set,
map, stack, queue,
hash table, tree, and
graph.
[Analyzing]

Justify a choice of
data structure for a
given problem.
[Evaluating]

AL-14. Investigate security
vulnerabilities in various data
structures.
[Applying]

Summarize security
vulnerabilities in
various data
structures.
[Understanding]

Investigate security
vulnerabilities in
various data
structures, such as
out-of-bounds arrays
and buffer overflows.
[Applying]

Analyze security
vulnerabilities in
various data
structures.
[Analyzing]

AL/Basic Automata, Computability, and Complexity Knowledge Unit

AL-15. Write a regular
expression to match a pattern.
[Applying]

Explain the use of
regular expressions
in pattern matching.
[Understanding]

Write a regular
expression to match
a pattern.
[Applying]

Write a regular
expression to perform
complex pattern
matching.
[Applying]

AL-16. Describe the concept of
finite state machines.
[Understanding]

Recognize a finite
state machine.
[Remembering]

Describe the concept
of finite state
machines.
[Understanding]

Diagram a finite state
machine.
[Applying]

AL-17. Explain why the halting
problem has no algorithmic
solution.
[Understanding]

Recognize that some
problems have no
algorithmic solution.
[Remembering]

Explain why the
halting problem has
no algorithmic
solution.
[Understanding]

Illustrate a proof of
the halting problem.
[Applying]

24

Architecture and Organization Knowledge Area (AR)
The Architecture and Organization (AR) knowledge area (KA) consists of 11 measurable
student learning outcomes across four knowledge units. As indicated in Figure 3, most of the
student learning outcomes, 46%, are at the Analyzing level of Bloom’s Revised Taxonomy. The
remaining learning outcomes are shared among the Understanding (9%), Applying, (36%), and
Creating (9%) levels. The ACM CCECC estimates 10 professor/student contact hours for the
AR knowledge area.

Figure 3 Pie Chart of Bloom's Revised Taxonomy Levels: AR KA LOs

Computing professionals should not regard the computer as just a black box that executes
programs by magic. The knowledge area Architecture and Organization builds on the Systems
Fundamentals KA to develop a deeper understanding of the hardware environment upon which
all computing is based, and the interface it provides to higher software layers. Students should
acquire an understanding and appreciation of a computer system’s functional components, their
characteristics, performance, and interactions, and, specifically, the challenge of harnessing
parallelism to sustain performance improvements now and into the future. Students need to
understand computer architecture to develop programs that can achieve high performance
through a programmer’s awareness of parallelism and latency. In selecting a system to use,
students should be able to understand the tradeoff among various components, such as CPU
clock speed, cycles per instruction, memory size, and average memory access time. (adapted
from CS2013, p. 62).

25

Learning Outcome Assessment Rubric

AR. Architecture and
Organization KA Emerging Developed Highly

Developed

AR/Digital Logic and Digital Systems Knowledge Unit

AR-01. Diagram the digital
components of computing
architecture.
[Applying]

Discuss some of the
digital components of
computing
architecture.
[Understanding]

Diagram the digital
components of
computing
architecture, such as
logic gates, registers,
and memory.
[Applying]

Evaluate the digital
component design of
a computing
architecture for
accuracy.
[Evaluating]

AR/Machine Level Representation of Data Knowledge Unit

AR-02. Analyze alternative
formats to represent numerical
data.
[Analyzing]

Explain reasons for
using alternative
formats to represent
numerical data.
[Understanding]

Analyze alternative
formats to represent
numerical data.
[Analyzing]

Choose optimal
formats to represent a
given set of numerical
data.
[Evaluating]

AR-03. Illustrate how fixed-length
number representations could
affect accuracy and precision,
causing vulnerabilities.
[Applying]

Explain how fixed-
length number
representations could
affect accuracy and
precision, causing
vulnerabilities.
[Understanding]

Illustrate how fixed-
length number
representations could
affect accuracy and
precision, causing
vulnerabilities.
[Applying]

Examine how fixed-
length number
representations could
affect accuracy and
precision, causing
vulnerabilities.
[Analyzing]

AR-04. Examine the internal
representation of non-numeric
data.
[Analyzing]

Illustrate internal
representation of
non-numeric data.
[Applying]

Examine the internal
representation of
non-numeric data,
such as characters,
strings, records, and
arrays.
[Analyzing]

Estimate memory
requirements for non-
numeric data, such
characters, strings,
records, and arrays.
[Evaluating]

AR-05. Compare different
methods for converting
numerical data from one format
to another.
[Analyzing]

Convert numerical
data from one format
to another.
[Understanding]

Compare different
methods for
converting numerical
data from one format
to another, such as
converting negative
integers into sign-
magnitude and two’s-
complement
representations.
[Analyzing]

Evaluate different
methods for
converting numerical
data from one format
to another.
[Evaluating]

26

AR/Assembly Level Machine Organization Knowledge Unit

AR-06. Decompose the
organization and major
functional units of the classical
von Neumann machine.
[Analyzing]

Diagram the
organization of the
classical von
Neumann machine
and its major
functional units.
[Applying]

Decompose the
organization and
major functional units
of the classical von
Neumann machine.
[Analyzing]

Assess the
organization of the
classical von
Neumann machine
and its major
functional units.
[Evaluating]

AR-07. Diagram how high-level
language patterns map to
assembly/machine language,
including subroutine calls.
[Applying]

Summarize how
high-level language
patterns map to
assembly/machine
language, including
subroutine calls.
[Understanding]

Diagram how high-
level language
patterns map to
assembly/machine
language, including
subroutine calls.
[Applying]

Examine how high-
level language
patterns map to
assembly/machine
language, including
subroutine calls.
[Analyzing]

AR-08. Create simple assembly
language program segments.
[Creating]

Implement simple
assembly language
program segments.
[Applying]

Create simple
assembly language
program segments.
[Creating]

Create complex
assembly language
program segments.
[Creating]

AR-09. Demonstrate the basic
concepts of interrupts and I/O
operations.
[Understanding]

List basic concepts of
interrupts and I/O
operations.
[Remembering]

Demonstrate the
basic concepts of
interrupts and I/O
operations.
[Understanding]

Implement basic
concepts of interrupts
and I/O operations.
[Applying]

AR/Memory System Organization and Architecture Knowledge Unit

AR-10. Compare the cost and
performance of different types of
memory technology.
[Analyzing]

Describe different
types of memory
technology.
[Understanding]

Compare the cost
and performance of
different types of
memory technology,
such as SRAM,
DRAM, virtual, and
cache.
[Analyzing]

Critique the cost and
performance of
different types of
memory technology.
[Evaluating]

AR-11. Calculate the effect of
memory latency on execution
time across the memory
hierarchy.
[Applying]

Explain the effect of
memory latency on
execution time
across the memory
hierarchy.
[Understanding]

Calculate the effect
of memory latency on
execution time
across the memory
hierarchy.
[Applying]

Examine the effect of
memory latency on
execution time across
the memory
hierarchy.
[Analyzing]

27

Computational Science Knowledge Area (CN)
The Computational Science (CN) knowledge area (KA) consists of 11 measurable student
learning outcomes in one knowledge unit. As indicated in Figure 4, most of the student learning
outcomes, 67%, are at the Applying level of Bloom’s Revised Taxonomy. The remaining
learning outcomes at the Understanding (33%) level. The ACM CCECC estimates one
professor/student contact hour for the CN knowledge area.

Figure 4 Pie Chart of Bloom's Revised Taxonomy Levels: CN KA LOs

Computational science is a field of applied computer science—that is, the application of
computer science to solve problems across a range of disciplines, such as molecular and fluid
dynamics, celestial mechanics, economics, biology, geology, medicine, and social network
analysis. Fundamental concepts of computational science are germane to every computer
scientist, such as modeling and simulation. This area offers exposure to many valuable ideas
and techniques, including precision of numerical representation, error analysis, numerical
techniques, parallel architectures and algorithms, quantum computing, modeling and simulation,
information visualization, software engineering, and optimization. Topics relevant to
computational science include fundamental concepts in program construction
(SDF/Fundamental Programming Concepts KU), algorithm design (SDF/Algorithms and Design
KU), program testing (SDF/Development Methods KU), data representations (AR/Machine
Representation of Data KU), and basic computer architecture (AR/Memory System Organization
and Architecture KU). (adapted from CS2013, p. 70).

28

Learning Outcome Assessment Rubric

CN. Computational Science
KA Emerging Developed Highly Developed

CN/Introduction to Modeling and Simulation Knowledge Unit

CN-01. Illustrate the concepts of
modeling and abstraction with
respect to problem solving.
[Applying]

Explain the concepts
of modeling and
abstraction with
respect to problem
solving.
[Understanding]

Illustrate the concepts
of modeling and
abstraction with
respect to problem
solving.
[Applying]

Contrast the
concepts of modeling
and abstraction with
respect to problem
solving.
[Analyzing]

CN-02. Illustrate the relationship
between modeling and
simulation.
[Applying]

Describe the
relationships
between modeling
and simulation.
[Understanding]

Illustrate the
relationship between
modeling and
simulation.
[Applying]

Examine the
relationship between
modeling and
simulation.
[Analyzing]

CN-03. Exemplify different types
of simulations.
[Understanding]

Identify different
types of simulations.
[Remembering]

Exemplify different
types of simulations,
such as
physical simulations,
human-guided
simulations, and
virtual reality.
[Understanding]

Compare different
types of simulations.
[Analyzing]

Cybersecurity Knowledge Area (CYB) – IAS in CS2013
The Cybersecurity (CYB) knowledge area (KA) consists of 25 measurable student learning
outcomes across six knowledge units. As indicated in Figure 5, most of the student learning
outcomes, 57%, are at the Applying level of Bloom’s Revised Taxonomy. The remaining
learning outcomes are shared among the Understanding (21%), Analyzing, (17%), and Creating
(5%) levels. The ACM CCECC estimates 20 professor/student contact hours for the CYB
knowledge area.

In recognition of the national importance of cybersecurity education, the ACM CCECC carefully
wove contemporary cybersecurity concepts throughout its Computer Science Transfer
Curriculum. See Appendix A for a consolidated list of all the cybersecurity-related student
learning outcomes woven throughout the Computer Science Transfer Curriculum. The
Cybersecurity KA was informed by the draft version of the ACM/IEEE/AIS/IFIP Cybersecurity
Curricular 2017: Curriculum Guidelines for Undergraduate Degree Programs in Cybersecurity
(ACM/IEEE/AIS/IFIP Joint Task Force, 2017), the NICE National Cybersecurity Workforce
Framework (National Institute of Standards and Technology, 2016) and the knowledge units of
the NSA/DHS National Centers of Academic Excellence in Cyber Defense for Two-Year
Colleges (CAE2Y) (NSA and Department of Homeland Security, 2017).

29

Figure 5 Pie Chart of Bloom's Revised Taxonomy Levels: CYB KA LOs

In CS2013, the Cybersecurity knowledge area is named Information Assurance and Security
(IAS), and was added to the computer science Body of Knowledge in recognition of the world’s
reliance on technology and its critical role in computer science education. Cybersecurity is a
unique Knowledge Area in this curricular guidance given the pervasiveness of the learning
outcomes throughout other KAs. Cybersecurity as a domain is the set of controls and processes
both technical and policy intended to protect and defend information and information systems by
ensuring their confidentiality, integrity, and availability, and by providing for authentication and
non-repudiation. Cybersecurity education includes all efforts to prepare students with the
needed knowledge, skills, and abilities to protect our information systems and attest to the
assurance of the past and current state of processes and data. The importance of security
concepts and topics has emerged as a core requirement in the Computer Science discipline,
much like the importance of performance concepts has been for many years. (adapted from
CS2013, p. 97).

30

Learning Outcome Assessment Rubric

CYB. Cybersecurity KA
(a.k.a. IAS in CS2013) Emerging Developed Highly Developed

CYB/Foundational Concepts in Security Knowledge Unit

CYB-01. Describe security as a
continuous process of tradeoffs,
balancing between protection
mechanisms and availability.
[Understanding]

Recognize the
importance of
security as a
continuous process
of tradeoffs.
[Remembering]

Describe security as a
continuous process of
tradeoffs, balancing
between protection
mechanisms and
availability.
[Understanding]

Illustrate security as a
continuous process
of tradeoffs,
balancing between
protection
mechanisms and
availability.
[Applying]

CYB-02. Illustrate through
examples the concepts of risk,
threats, vulnerabilities, attack
vectors, and exploits, noting
there is no such thing as perfect
security.
[Applying]

Differentiate the
concepts of risk,
threats,
vulnerabilities, attack
vectors, and exploits.
[Understanding]

Illustrate through
examples the
concepts of risk,
threats,
vulnerabilities, attack
vectors, and exploits,
noting there is no
such thing as perfect
security.
[Applying]

Compare the
concepts of risk,
threats,
vulnerabilities, attack
vectors, and exploits
in a given scenario.
[Analyzing]

CYB-03. Investigate various
countermeasures and security
controls to minimize risk and
exposure.
[Applying]

Explain the
importance of
countermeasures
and security controls
to minimize risk and
exposure.
[Understanding]

Investigate various
countermeasures and
security controls to
minimize risk and
exposure.
[Applying]

Choose among
various
countermeasures and
security controls to
minimize risk and
exposure in a given
scenario.
[Evaluating]

CYB-04. Analyze the tradeoffs of
balancing key security
properties, including
Confidentiality, Integrity, and
Availability (CIA).
[Analyzing]

Investigate the
tradeoffs of
balancing key
security properties,
including
Confidentiality,
Integrity, and
Availability (CIA).
[Applying]

Analyze the tradeoffs
of balancing key
security properties,
including
Confidentiality,
Integrity, and
Availability (CIA).
[Analyzing]

Evaluate the
tradeoffs of balancing
key security
properties, including
Confidentiality,
Integrity, and
Availability (CIA).
[Evaluating]

CYB-05. Explain the concepts of
trust and trustworthiness related
to cybersecurity.
[Understanding]

Define the concepts
of trust and
trustworthiness.
[Remembering]

Explain the concepts
of trust and
trustworthiness
related to
cybersecurity.
[Understanding]

Diagram trust
relationships in a
given cybersecurity
scenario.
[Applying]

CYB-06. Examine ethical issues
related to cybersecurity.
[Analyzing]

Exemplify ethical
issues in
cybersecurity.
[Understanding]

Examine ethical
issues related to
cybersecurity.
[Analyzing]

Argue ethical issues
related to
cybersecurity.
[Evaluating]

31

CYB-07. Illustrate various ways
to minimize privacy risks and
maximize anonymity.
[Applying]

Describe one way to
minimize privacy
risks and maximize
anonymity.
[Understanding]

Illustrate various ways
to minimize privacy
risks and maximize
anonymity.
[Applying]

Analyze ways to
minimize privacy
risks and maximize
anonymity in an
always connected,
mobile computing
environment.
[Analyzing]

CYB-08. Apply security principles
and practices in a dynamic
environment.
[Applying]

Summarize security
principles and
practices.
[Understanding]

Apply security
principles and
practices in a
dynamic environment.
[Applying]

Examine security
principles and
practices in a
dynamic
environment.
[Analyzing]

CYB-09. Illustrate through
examples the key role risk
management frameworks play in
identifying, assessing,
prioritizing, and controlling risks
to organizational assets.
[Applying]

Paraphrase the key
role risk
management
frameworks play in
identifying,
assessing,
prioritizing, and
controlling risks to
organizational
assets.
[Understanding]

Illustrate through
examples the key role
risk management
frameworks play in
identifying, assessing,
prioritizing, and
controlling risks to
organizational assets.
[Applying]

Analyze a given
scenario with a
specific risk
management
framework, such as
NIST, to identify,
assess, prioritize, and
control risks to
organizational assets.
[Analyzing]

CYB-10. Illustrate with examples
the goals of end-to-end data
security.
[Applying]

Explain the goals of
end-to-end data
security.
[Understanding]

Illustrate with
examples the goals of
end-to-end data
security.
[Applying]

Outline the goals of
end-to-end data
security.
[Analyzing]

CYB/Principles of Secure Design Knowledge Unit

CYB-11. Use the principles of
secure design.
[Applying]

Demonstrate some of
the principles of
secure design as
related to
cybersecurity.
[Understanding]

Use the principles of
secure design, such
as least privilege,
isolation, fail-safe,
and deny-by-default.
[Applying]

Choose appropriate
secure design
principles for a given
cybersecurity
scenario.
[Evaluating]

CYB-12. Illustrate the security
implications of relying on open
design vs the secrecy of design.
[Applying]

Discuss the security
implications of relying
on open design vs.
the secrecy of
design.
[Understanding]

Illustrate the security
implications of relying
on open design vs.
the secrecy of design.
[Applying]

Analyze the security
implications of relying
on open design vs.
the secrecy of
design.
[Analyzing]

CYB-13. Discuss the benefits
and limitations of designing
multiple layers of defenses.
[Understanding]

Identify the benefits
and limitations of
designing multiple
layers of defenses.
[Remembering]

Discuss the benefits
and limitations of
designing multiple
layers of defenses.
[Understanding]

Implement multiple
layers of defenses for
a given scenario.
[Applying]

32

CYB-14. Analyze the tradeoffs
associated with designing
security into a product.
[Analyzing]

Summarize the
tradeoffs associated
with designing
security into a
product.
[Understanding]

Analyze the tradeoffs
associated with
designing security
into a product.
[Analyzing]

Evaluate the
tradeoffs associated
with designing
security into a
product.
[Evaluating]

CYB/Defensive Programming Knowledge Unit

CYB-15. Construct input
validation and data sanitization in
applications, considering
adversarial control of the input
channel.
[Creating]

See also SDF-06.

Implement simple
input validation and
data sanitization in
applications.
[Applying]

Construct input
validation and data
sanitization in
applications,
considering
adversarial control of
the input channel.
[Creating]

Develop complex
input validation and
data sanitization in
applications,
considering
adversarial control of
the input channel.
[Creating]

CYB-16. Explain the tradeoffs of
developing a program in a type-
safe language.
[Understanding]

See also PL-10.

List some of the
tradeoffs of
developing a
program in a type-
safe language.
[Remembering]

Explain the tradeoffs
of developing a
program in a type-
safe language.
[Understanding]

Compare the
tradeoffs of
developing a program
in a type-safe
language vs other
types of programming
languages.
[Analyzing]

CYB-17. Implement programs
that properly handle exceptions
and error conditions.
[Applying]

See also SDF-12.

Explain the
importance of writing
programs that
properly handle
exceptions and error
conditions.
[Understanding]

Implement programs
that properly handle
exceptions and error
conditions.
[Applying]

Analyze the
implementation of
exception handling in
programs and error
conditions.
[Analyzing]

CYB-18. Examine the need to
update software to fix security
vulnerabilities.
[Analyzing]

Explain the need to
update software.
[Understanding]

Examine the need to
update software to fix
security
vulnerabilities.
[Analyzing]

Justify the need to
update software to fix
security
vulnerabilities.
[Evaluating]

CYB/Threats and Attacks Knowledge Unit

CYB-19. Examine likely attack
types against standalone and
networked systems.
[Analyzing]

Summarize likely
attack types against
software systems.
[Understanding]

Examine likely attack
types against
standalone and
networked systems.
[Analyzing]

Assess likely attack
types against
standalone and
networked systems.
[Evaluating]

CYB-20. Illustrate the key
principles of social engineering,
including membership and trust.
[Applying]

See also SP-04.

Discuss some of the
key principles of
social engineering.
[Understanding]

Illustrate the key
principles of social
engineering, including
membership and
trust.
[Applying]

Outline the key
principles of social
engineering,
including
membership and
trust.
[Analyzing]

33

CYB/Cryptography Knowledge Unit

CYB-21. Describe key terms in
cryptology, including
cryptography, cryptanalysis,
cipher, cryptographic algorithm,
and public key infrastructure.
[Understanding]

Define some key
terms in cryptology.
[Remembering]

Describe key terms in
cryptology, including
cryptography,
cryptanalysis, cipher,
cryptographic
algorithm, and public
key infrastructure.
[Understanding]

Categorize key terms
in cryptology,
including
cryptography,
cryptanalysis, cipher,
and cryptographic
algorithm.
[Analyzing]

CYB-22. Use a variety of ciphers
to encrypt plaintext into
ciphertext.
[Applying]

Describe basic
methods for
transforming
plaintext into
ciphertext.
[Understanding]

Use a variety of
ciphers to encrypt
plaintext into
ciphertext.
[Applying]

Design a simple
program to encrypt
plaintext into
ciphertext.
[Creating]

CYB-23. Apply cryptographic
hash functions for authentication
and data integrity.
[Applying]

Summarize the use
of cryptographic
hash functions for
authentication and
data integrity.
[Understanding]

Apply cryptographic
hash functions for
authentication and
data integrity.
[Applying]

Deconstruct a
cryptographic hash
function used for
authentication and
data integrity.
[Analyzing]

CYB-24. Contrast symmetric and
asymmetric encryption in relation
to securing electronic
communications and
transactions.
[Analyzing]

Exemplify the
difference between
symmetric and
asymmetric
encryption.
[Understanding]

Contrast symmetric
and asymmetric
encryption in relation
to securing electronic
communications and
transactions.
[Analyzing]

Design a security
solution for a given
scenario that
integrates symmetric
encryption with
asymmetric
encryption.
[Creating]

CYB/Network Security Knowledge Unit
(See NC-06 and NC-07)

CYB/Web Security Knowledge Unit

CYB-25. Explain browser and
web security model concepts,
including same-origin policy, web
sessions, and secure
communication channels.
[Understanding]

Identify one or more
browser and web
security model
concepts.
[Remembering]

Explain browser and
web security model
concepts, including
same-origin policy,
web sessions, and
secure
communication
channels, such as
TLS.
[Understanding]

Apply browser and
web security model
concepts including
same-origin policy,
web sessions, and
secure
communication
channels, such as
TLS.
[Applying]

34

Discrete Structures Knowledge Area (DS)
The Discrete Structures (DS) knowledge area (KA) consists of 34 measurable student learning
outcomes across six knowledge units. As indicated in Figure 6, most of the student learning
outcomes, 50%, are at the Applying level of Bloom’s Revised Taxonomy. The remaining
learning outcomes are shared among the Understanding (35%) and Analyzing (15%) levels. The
ACM CCECC estimates 40 professor/student contact hours for the CYB knowledge area.

Figure 6 Pie Chart of Bloom's Revised Taxonomy Levels: DS KA LOs

Discrete structures serve as a foundation for many areas in computer science. Discrete
structures include the study of logic, set theory, graph theory, and probability theory. The
concepts studied in discrete structures are pervasive throughout the areas of data structures
and algorithms, but also appear elsewhere in computer science. For example, an ability to
create and understand a proof—either a formal symbolic proof or a less formal but still
mathematically rigorous argument—is important in virtually every area of computer science,
including formal specification, verification, databases, and cryptography. Graph theory concepts
are used in networks, operating systems, and compilers. Set theory concepts are used in
software engineering and in databases. Probability theory is used in intelligent systems,
networking, and several computing applications. (adapted from CS2013, p. 76).

35

Learning Outcome Assessment Rubric

DS. Discrete Structures KA Emerging Developed Highly Developed

DS/Sets, Relations, and Functions Knowledge Unit

DS-01. Explain with examples
the basic terminology of
functions, relations, and sets.
[Understanding]

Identify the defining
features of functions,
relations, and sets.
[Remembering]

Explain with
examples the basic
terminology of
functions, relations,
and sets.
[Understanding]

Use function,
relations, and set
terminology in a
correct and
meaningful way.
[Applying]

DS-02. Perform the operations
associated with sets, functions,
and relations.
[Applying]

Describe the
operations associated
with sets, functions,
and relations.
[Understanding]

Perform the
operations
associated with sets,
functions, and
relations.
[Applying]

Compare the
operations of sets,
functions, and
relations.
[Analyzing]

DS-03. Compare practical
examples to the appropriate set,
function, or relation model, and
interpret the associated
operations and terminology in
context.
[Analyzing]

Implement a solution
to a programming
problem using a
specific set, function,
or relation model.
[Applying]

Compare practical
examples to the
appropriate set,
function, or relation
model, and interpret
the associated
operations and
terminology in
context.
[Analyzing]

Justify the choice of a
specific set, function,
or relation model.
[Evaluating]

DS/Basic Logic Knowledge Unit

DS-04. Convert logical
statements from informal
language to propositional and
predicate logic expressions.
[Understanding]

Recognize the
relationship between
logical statements
from informal
language and
propositional and
predicate logic
expressions.
[Remembering]

Convert logical
statements from
informal language to
propositional and
predicate logic
expressions.
[Understanding]

Produce propositional
and predicate logic
expressions from a
given logical
statement from an
informal language.
[Applying]

DS-05. Apply formal logic proofs
and/or informal, but rigorous,
logical reasoning to real
problems such as predicting the
behavior of software or solving
problems such as puzzles.
[Applying]

Describe the steps in
formal logic proofs
and/or informal logical
reasoning to solve
real problems.
[Understanding]

Apply formal logic
proofs and/or
informal, but
rigorous, logical
reasoning to real
problems such as
predicting the
behavior of software
or solving problems
such as puzzles.
[Applying]

Compare different
logic proofs and
informal logical
reasoning to
determine correct
methods to solve real
problems.
[Analyzing]

36

DS-06. Use the rules of
inference to construct proofs in
propositional and predicate logic.
[Applying]

Discuss the rules of
inference to construct
proofs in propositional
and predicate logic.
[Understanding]

Use the rules of
inference to construct
proofs in
propositional and
predicate logic.
[Applying]

Analyze the rules of
inference to construct
proofs in propositional
and predicate logic.
[Analyzing]

DS-07. Describe how symbolic
logic can be used to model real-
life situations or computer
applications.
[Understanding]

List ways that
symbolic logic can be
used to model real-
life situations or
computer
applications.
[Remembering]

Describe how
symbolic logic can be
used to model real-
life situations or
computer
applications, such as
software analysis,
database queries,
and algorithms.
[Understanding]

Use symbolic logic to
model real-life
situations or computer
applications.
[Applying]

DS-08. Apply formal methods of
symbolic propositional and
predicate logic, such as
calculating validity of formulae
and computing normal forms.
[Applying]

Demonstrate formal
methods of symbolic
propositional and
predicate logic.
[Understanding]

Apply formal
methods of symbolic
propositional and
predicate logic, such
as calculating validity
of formulae and
computing normal
forms.
[Applying]

Distinguish between
formal methods of
propositional and
predicate logic to
determine the most
effective solutions to
a given problem.
[Analyzing]

DS-09. Describe the strengths
and limitations of propositional
and predicate logic.
[Understanding]

List the strengths and
limitations of
propositional and
predicate logic.
[Remembering]

Describe the
strengths and
limitations of
propositional and
predicate logic.
[Understanding]

Illustrate the strengths
and limitations of
propositional and
predicate logic.
[Applying]

DS/Proof Techniques Knowledge Unit

DS-10. Outline the basic
structure of each proof
technique, including direct proof,
proof by contradiction, and
induction.
[Analyzing]

Use the basic
structure of each
proof technique to
solve a problem.
[Applying]

Outline the basic
structure of each
proof technique,
including direct proof,
proof by
contradiction, and
induction.
[Analyzing]

Choose the most
effective proof
technique to solve a
problem.
[Evaluating]

DS-11. Apply each of the proof
techniques (direct proof, proof by
contradiction, and induction)
correctly in the construction of a
sound argument.
[Applying]

Demonstrate each of
the proof techniques
by correctly
constructing a sound
argument.
[Understanding]

Apply each of the
proof techniques
(direct proof, proof by
contradiction, and
induction) correctly in
the construction of a
sound argument.
[Applying]

Use each of the proof
techniques correctly
in the construction of
a sound argument.
[Applying]

37

DS-12. Deduce the best type of
proof for a given problem.
[Analyzing]

Compare the different
proof methods.
[Analyzing]

Deduce the best type
of proof for a given
problem.
[Analyzing]

Construct a correct
proof using the best
method for a given
problem.
[Creating]

DS-13. Explain the parallels
between ideas of mathematical
and/or structural induction to
recursion and recursively defined
structures.
[Understanding]

Identify the parallels
between ideas of
mathematical and/or
structural induction to
recursion and
recursively defined
structures.
[Remembering]

Explain the parallels
between ideas of
mathematical and/or
structural induction to
recursion and
recursively defined
structures.
[Understanding]

Illustrate the parallels
between ideas of
mathematical and/or
structural induction to
recursion and
recursively defined
structures.
[Applying]

DS-14. Explain the relationship
between weak and strong
induction and give examples of
the appropriate use of each.
[Understanding]

Identify the
relationship between
weak and strong
induction.
[Remembering]

Explain the
relationship between
weak and strong
induction and give
examples of the
appropriate use of
each.
[Understanding]

Solve problems using
both weak and strong
induction.
[Applying]

DS/Basics of Counting Knowledge Unit

DS-15. Apply counting
arguments, including sum and
product rules, inclusion-
exclusion principle and
arithmetic/geometric
progressions.
[Applying]

Describe counting
arguments.
[Understanding]

Apply counting
arguments, including
sum and product
rules, inclusion-
exclusion principle
and arithmetic/
geometric
progressions.
[Applying]

Outline counting
arguments.
[Analyzing]

DS-16. Apply the pigeonhole
principle in the context of a
formal proof.
[Applying]

Demonstrate the
pigeonhole principle.
[Understanding]

Apply the pigeonhole
principle in the
context of a formal
proof.
[Applying]

Analyze the
pigeonhole principle
in the context of a
formal proof.
[Analyzing]

DS-17. Calculate permutations
and combinations of a set, and
interpret the meaning in the
context of the particular
application.
[Applying]

Explain the
calculation of
permutations and
combinations of a set.
[Understanding]

Calculate
permutations and
combinations of a
set, and interpret the
meaning in the
context of the
particular application.
[Applying]

Discriminate between
computation of sets,
permutations and
combinations.
[Analyzing]

38

DS-18. Compare real-world
applications appropriate to
counting formalisms.
[Analyzing]

Use counting
formalisms to solve
real-world
applications.
[Applying]

Compare real-world
applications
appropriate to
counting formalisms,
such as determining
the number of ways
to arrange people
around a table,
subject to constraints
on the seating
arrangement.
[Analyzing]

Choose appropriate
counting formalisms
to solve real-world
applications.
[Evaluating]

DS-19. Solve a variety of basic
recurrence relations.
[Applying]

Demonstrate a variety
of basic recurrence
relations.
[Understanding]

Solve a variety of
basic recurrence
relations.
[Applying]

Compare a variety of
basic recurrence
relations.
[Analyzing]

DS-20. Analyze a problem to
determine underlying recurrence
relations.
[Analyzing]

Carry out a problem
with an underlying
recurrence relation.
[Applying]

Analyze a problem to
determine underlying
recurrence relations.
[Analyzing]

Evaluate a problem
with an underlying
recurrence relation.
[Evaluating]

DS-21. Perform computations
involving modular arithmetic.
[Applying]

Discuss computations
involving modular
arithmetic.
[Understanding]

Perform
computations
involving modular
arithmetic.
[Applying]

Examine
computations
involving modular
arithmetic.
[Analyzing]

DS/Graphs and Trees Knowledge Unit

DS-22. Illustrate the basic
terminology of graph theory
including properties and special
cases for each type of
graph/tree.
[Applying]

Describe the basic
terminology of graph
theory.
[Understanding]

Illustrate the basic
terminology of graph
theory including
properties and
special cases for
each type of
graph/tree.
[Applying]

Outline the basic
terminology of graph
theory.
[Analyzing]

DS-23. Demonstrate different
traversal methods for trees and
graphs, including pre-, post-, and
in-order traversal of trees.
[Understanding]

List the different
traversal methods for
trees and graphs.
[Remembering]

Demonstrate
different traversal
methods for trees
and graphs, including
pre-, post-, and in-
order traversal of
trees.
[Understanding]

Execute different
traversal methods for
trees and graphs.
[Applying]

39

DS-24. Solve a variety of real-
world problems in computer
science using appropriate forms
of graphs and trees, such as
representing a network topology
or the organization of a
hierarchical file system.
[Applying]

Discuss a variety of
real-world problems
in computer science
using appropriate
forms of graphs and
trees.
[Understanding]

Solve a variety of
real-world problems
in computer science
using appropriate
forms of graphs and
trees, such as
representing a
network topology or
the organization of a
hierarchical file
system.
[Applying]

Distinguish between
real-world problems
solvable by using
graphs and trees.
[Analyzing]

DS-25. Implement and use
balanced trees and B-trees.
[Applying]

Explain balanced
trees and B-trees.
[Understanding]

Implement and use
balanced trees and
B-trees.
[Applying]

Analyze the use of
balanced trees and B-
trees.
[Analyzing]

DS-26. Implement graph
algorithms.
[Applying]

Classify graph
algorithms.
[Understanding]

Implement graph
algorithms, such as
graph search,
spanning trees, and
shortest paths.
[Applying]

Categorize different
implementations of
graph algorithms.
[Analyzing]

DS-27. Demonstrate how
concepts from graphs and trees
appear in data structures,
algorithms, proof techniques
(structural induction), and
counting.
[Understanding]

Identify how concepts
from graphs and trees
appear in data
structures,
algorithms, proof
techniques, and
counting.
[Remembering]

Demonstrate how
concepts from
graphs and trees
appear in data
structures,
algorithms, proof
techniques (structural
induction), and
counting.
[Understanding]

Implement data
structures, algorithms,
proof techniques, and
counting using graphs
and trees.
[Applying]

DS-28. Describe binary search
trees and AVL trees.
[Understanding]

Define binary search
and AVL trees.
[Remembering]

Describe binary
search trees and
AVL trees.
[Understanding]

Apply binary search
and AVL trees.
[Applying]

DS-29. Explain complexity in the
ideal and in the worst-case
scenario for both
implementations.
[Understanding]

State complexity in
the ideal and in the
worst-case scenario
for both
implementations.
[Remembering]

Explain complexity in
the ideal and in the
worst-case scenario
for both
implementations.
[Understanding]

Calculate complexity
in the ideal and in the
worst-case scenario
for both
implementations.
[Applying]

40

DS/Discrete Probability Knowledge Unit

DS-30. Calculate probabilities of
events and expectations of
random variables for elementary
problems.
[Applying]

Exemplify
probabilities of events
and expectations of
random variables for
elementary problems
such as games of
chance.
[Understanding]

Calculate
probabilities of
events and
expectations of
random variables for
elementary
problems, such as
games of chance.
[Applying]

Examine probabilities
of events and
expectations of
random variables for
elementary problems
such as games of
chance.
[Analyzing]

DS-31. Differentiate between
dependent and independent
events.
[Understanding]

Identify dependent
and independent
events.
[Remembering]

Differentiate between
dependent and
independent events.
[Understanding]

Illustrate dependent
and independent
events.
[Applying]

DS-32. Explain the significance
of binomial distribution in
probabilities.
[Understanding]

Recognize the
notation and
parameters that a
binomial distribution
has.
[Remembering]

Explain the
significance of
binomial distribution
in probabilities.
[Understanding]

Calculate the
probabilities from a
binomial distribution.
[Applying]

DS-33. Apply Bayes Theorem to
determine conditional
probabilities in a problem.
[Applying]

Explain Bayes
Theorem to
determine conditional
probabilities in a
problem.
[Understanding]

Apply Bayes
Theorem to
determine conditional
probabilities in a
problem.
[Applying]

Outline Bayes
Theorem to determine
conditional
probabilities in a
problem.
[Analyzing]

DS-34. Apply the tools of
probability to solve problems.
[Applying]

Discuss the tools of
probability to solve
problems, such as the
average case
analysis of algorithms
[Understanding]

Apply the tools of
probability to solve
problems, such as
the average case
analysis of
algorithms.
[Applying]

Analyze the tools of
probability in solving
problems such as the
average case
analysis of
algorithms.
[Analyzing]

41

Graphics and Visualization Knowledge Area (GV)
The Graphics and Visualization (GV) knowledge area (KA) consists of five measurable student
learning outcomes in one knowledge unit. As indicated in Figure 7, most of the student learning
outcomes, 40% and 40%, are at both the Applying and Analyzing levels of Bloom’s Revised
Taxonomy. The remaining learning outcomes are at the Understanding (20%) level. The ACM
CCECC estimates two professor/student contact hours for the GV knowledge area.

Figure 7 Pie Chart of Bloom's Revised Taxonomy Levels: GV KA LOs

Computer graphics is the term commonly used to describe the computer generation and
manipulation of images. It is the science of enabling visual communication through computation,
including cartoons, film special effects, videogames, medical imaging, engineering, as well as
scientific, information, and knowledge visualization. Traditionally, graphics at the undergraduate
level has focused on rendering, linear algebra, and phenomenological approaches. More
recently, the focus has begun to include physics, numerical integration, scalability, and special-
purpose hardware. In order for students to become adept at the use and generation of computer
graphics, many implementation-specific issues must be addressed, such as file formats,
hardware interfaces, and application program interfaces. (adapted from CS2013, p. 82).

42

Learning Outcome Assessment Rubric

GV. Graphics and
Visualization KA Emerging Developed Highly Developed

GV/Fundamental Concepts Knowledge Unit

GV-01. Compare transformation
and changes in dimension and
coordinate systems for 2D and
3D design.
[Analyzing]

Explain how to use
dimensions and
coordinate systems.
[Understanding]

Compare
transformation and
changes in
dimension and
coordinate systems
for 2D and 3D
design.
[Analyzing]

Evaluate the uses of
both 3D coordinate
systems and 2D
planar systems with
respect to computer
graphics.
[Evaluating]

GV-02. Demonstrate common
uses of digital presentation to
human senses.
[Understanding]

Identify common
uses of digital
presentation to
human senses.
[Remembering]

Demonstrate
common uses of
digital presentation to
human senses, such
as computer
graphics, sound, and
haptic devices.
[Understanding]

Categorize types of
digital presentation to
human senses.
[Analyzing]

GV-03. Illustrate color models
and their use in computer
graphics.
[Applying]

Describe color
models and their use
in computer graphics.
[Understanding]

Illustrate color
models and their use
in computer graphics.
[Applying]

Contrast color
models and their use
in computer graphics.
[Analyzing]

GV-04. Analyze image types
according to output choices.
[Analyzing]

Differentiate
multimedia file types,
resolution needs,
conversion, and
appropriate use.
[Understanding]

Analyze image types
according to output
choices.
[Analyzing]

Evaluate multiple
multimedia files
based on given
criteria.
[Evaluating]

GV-05. Perform information
hiding through steganography in
images, messages, videos, or
other media files.
[Applying]

Demonstrate
information hiding
through
steganography.
[Understanding]

Perform information
hiding through
steganography in
images, messages,
videos, or other
media files.
[Applying]

Choose appropriate
steganography
technique to conceal
information.
[Evaluating]

43

Human-Computer Interaction Knowledge Area (HCI)
The Human-Computer Interaction (HCI) knowledge area (KA) consists of six measurable
student learning outcomes across two knowledge units. As indicated in Figure 8, most of the
student learning outcomes, 50% and 50%, are at both the Applying and Analyzing levels of
Bloom’s Revised Taxonomy. The ACM CCECC estimates five professor/student contact hours
for the HCI knowledge area.

Figure 8 Pie Chart of Bloom's Revised Taxonomy Levels: HCI KA LOs

Human-computer interaction (HCI) studies cognitive science and human factors engineering as
applied to computer science. HCI is concerned with designing interactions between human
activities and the computational systems that support them, and with constructing interfaces to
afford those interactions. Interaction between users and computational artifacts occurs at an
interface that includes both software and hardware. Thus interface design impacts the software
lifecycle in that it should occur early; the design and implementation of core functionality can
influence the user interface – for better or worse. Because it deals with people as well as
computational systems, the HCI knowledge area considers cultural, social, organizational,
cognitive, and perceptual issues. Consequently, it draws on a variety of disciplinary traditions,
including psychology, ergonomics, graphic and product design, anthropology and engineering.
(adapted from CS2013, p. 89).

44

Learning Outcome Assessment Rubric

HCI. Human Computer
Interaction KA Emerging Developed Highly Developed

HCI/Foundations Knowledge Unit

HCI-01. Analyze the importance
of human-centered software.
[Analyzing]

Discuss the
importance of
human-centered
software
development.
[Understanding]

Analyze the
importance of human-
centered software.
[Analyzing]

Defend the
importance of
human-centered
software.
[Evaluating]

HCI-02. Implement a simple
usability test for an existing
software application.
[Applying]

Summarize usability
testing.
[Understanding]

Implement a simple
usability test for an
existing software
application.
[Applying]

Design a usability
test for an existing
software application.
[Creating]

HCI-03. Examine the issues of
trust in HCI, including examples
of both high and low trust
systems.
[Analyzing]

Demonstrate design
elements that make a
human-computer
interface trustworthy.
[Understanding]

Examine the issues of
trust in HCI, including
examples of both high
and low trust
systems. [Analyzing]

Critique interface
designs between
high trust and low
trust.
[Evaluating]

HCI/Designing Interaction Knowledge Unit

HCI-04. Write a simple
application that uses a modern
graphical user interface.
[Applying]

Summarize the
components of a
modern graphical
user interface.
[Understanding]

Write a simple
application that uses
a modern graphical
user interface.
[Applying]

Examine a complete
application that uses
a modern graphical
interface and
documentation.
[Analyzing]

HCI-05. Use at least one national
or international user interface
design standard in a simple
application.
[Applying]

See also SP-02.

Identify national and
international user
interface design
standards.
[Remembering]

Use at least one
national or
international user
interface design
standard in a simple
application, such as
U.S. ADA Standards.
[Applying]

Compare among
national and
international user
interface design
standards.
[Analyzing]

HCI-06. Analyze the interaction
between a security mechanism
and its usability.
[Analyzing]

Discuss potential
usability issues
related to a security
mechanism.
[Understanding]

Analyze the
interaction between a
security mechanism
and its usability.
[Analyzing]

Design a user
interface that
balances the
tradeoffs between
usability and
security.
[Creating]

45

Information Management Knowledge Area (IM)
The Information Management (IM) knowledge area (KA) consists of 13 measurable student
learning outcomes across three knowledge units. As indicated in Figure 9, most of the student
learning outcomes, 46%, are at the Understanding level of Bloom’s Revised Taxonomy. The
remaining learning outcomes are shared among the Applying (31%), Analyzing (15%), and
Creating (8%) levels. The ACM CCECC estimates six professor/student contact hours for the IM
knowledge area.

Figure 9 Pie Chart of Bloom's Revised Taxonomy Levels: IM KA LOs

Information Management is primarily concerned with the capture, digitization, representation,
organization, transformation, and presentation of information; algorithms for efficient and
effective access and updating of stored information; data modeling and abstraction; and
physical file storage techniques. Students need the ability to develop conceptual and physical
data models; determine which methods and techniques are appropriate for a given problem; and
select and implement an appropriate solution that addresses relevant design concerns,
including accessibility and usability. (adapted from CS2013, p. 112).

46

Learning Outcome Assessment Rubric

IM. Information Management
KA Emerging Developed Highly Developed

IM/Information Management Concepts Knowledge Unit

IM-01. Contrast the difference
between information and data.
[Analyzing]

Explain information
and data.
[Understanding]

Contrast the
difference between
information and data.
[Analyzing]

Critique the attributes
of both information
and data.
[Evaluating]

IM-02. Describe the advantages
and disadvantages of central
organizational control over data.
[Understanding]

List some
advantages and
disadvantages of
central organizational
control over data.
[Remembering]

Describe the
advantages and
disadvantages of
central organizational
control over data.
[Understanding]

Examine the
advantages and
disadvantages of
central organizational
control over data.
[Analyzing]

IM-03. Investigate contingency
planning with respect to business
continuity, disaster recovery and
incident response.
[Applying]

Describe contingency
planning with respect
to business
continuity, disaster
recovery and incident
response.
[Understanding]

Investigate
contingency planning
with respect to
business continuity,
disaster recovery and
incident response.
[Applying]

Compare
contingency plans of
various size
organizations with
respect to business
continuity, disaster
recovery and incident
response.
[Analyzing]

IM-04. Describe proven
techniques to secure data and
information.
[Understanding]

List proven
techniques used to
secure data and
information.
[Remembering]

Describe proven
techniques to secure
data and information.
[Understanding]

Implement specific
proven techniques to
secure data and
information.
[Applying]

IM-05. Describe approaches to
scale up information systems.
[Understanding]

List approaches to
scale up information
systems.
[Remembering]

Describe approaches
to scale up
information systems.
[Understanding]

Compare several
approaches to scale
up information
systems.
[Analyzing]

IM/Database Systems Knowledge Unit

IM-06. Explain the characteristics
that distinguish the database
approach from the approach of
programming with data files.
[Understanding]

Identify the
characteristics that
distinguish the
database approach
from the approach of
programming with
data files.
[Remembering]

Explain the
characteristics that
distinguish the
database approach
from the approach of
programming with
data files.
[Understanding]

Contrast the
characteristics that
distinguish the
database approach
from the approach of
programming with
data files.
[Analyzing]

47

IM-07. Diagram the components
of a database system and give
examples of their use.
[Applying]

Identify the
components of a
database system.
[Remembering]

Diagram the
components of a
database system and
give examples of
their use.
[Applying]

Organize the
components of a
database system into
a secure, functioning
system.
[Analyzing]

IM-08. Explain the concept of
data independence and its
importance in a database
system.
[Understanding]

Define the concept of
data independence
and its importance in
a database system.
[Remembering]

Explain the concept
of data independence
and its importance in
a database system.
[Understanding]

Examine the concept
of data independence
and its importance in
a database system.
[Analyzing]

IM-09. Formulate queries in SQL
or a similar query language to
elicit information from a
database.
[Creating]

Edit queries in SQL
or a similar query
language to elicit
information from a
database.
[Applying]

Formulate queries in
SQL or a similar
query language to
elicit information from
a database.
[Creating]

Formulate complex
queries in SQL or a
similar query
language to elicit
information from a
database.
[Creating]

IM-10. Investigate vulnerabilities
and failure scenarios in database
systems.
[Applying]

Identify vulnerabilities
and failure scenarios
in information
systems.
[Remembering]

Investigate
vulnerabilities and
failure scenarios in
database systems,
such as SQL
injection and cross-
site scripting.
[Applying]

Examine
vulnerabilities and
failure scenarios in
information systems.
[Analyzing]

IM/Data Modeling Knowledge Unit

IM-11. Contrast appropriate data
models, including internal
structures for different data types.
[Analyzing]

Diagram appropriate
data models,
including internal
structures for
different data types.
[Applying]

Contrast appropriate
data models,
including internal
structures for
different data types.
[Analyzing]

Evaluate appropriate
data models,
including internal
structures for
different data types.
[Evaluating]

IM-12. Diagram a relational data
model for a given scenario that
addresses security and privacy
concerns.
[Applying]

Describe a relational
data model for a
given scenario that
addresses security
and privacy
concerns.
[Understanding]

Diagram a relational
data model for a
given scenario that
addresses security
and privacy
concerns.
[Applying]

Analyze a relational
data model for a
given scenario that
addresses security
and privacy
concerns.
[Analyzing]

IM-13. Describe the differences
among relational data models
and other models.
[Understanding]

Recognize the
differences among
relational data
models and other
models.
[Remembering]

Describe the
differences among
relational data
models and other
models such as
Object-Oriented,
JSON, NoSQL.
[Understanding]

Analyze the
differences among
relational data
models and other
models.
[Analyzing]

48

Networking and Communications Knowledge Area (NC)
The Networking and Communications (NC) knowledge area (KA) consists of eight measurable
student learning outcomes across two knowledge units. As indicated in Figure 10, most of the
student learning outcomes, 50%, are at the Applying level of Bloom’s Revised Taxonomy. The
remaining learning outcomes are shared among the Understanding (37%) and Analyzing (13%)
levels. The ACM CCECC estimates five professor/student contact hours for the NC knowledge
area.

Figure 10 Pie Chart of Bloom's Revised Taxonomy Levels: NC KA LOs

The Internet, computer networks, cloud computing, and the Internet of Things (IoT) are now
ubiquitous, and a growing number of computing activities strongly depend on the correct
operation of an underlying network. Networks, both fixed and mobile, are a key part of the
computing environment of today and tomorrow. Many computing applications that are used
today would not be possible without networks. This dependency on an underlying network is
likely to increase in the future. (adapted from CS2013, p. 130).

49

Learning Outcome Assessment Rubric

NC. Networking and
Communications KA Emerging Developed Highly Developed

NC/Introduction Knowledge Unit

NC-01. Diagram the basic
structure of the Internet.
[Applying]

Explain the basic
structure of the
Internet.
[Understanding]

Diagram the basic
structure of the
Internet.
[Applying]

Analyze the basic
structure of the
internet.
[Analyzing]

NC-02. Describe the layered
structure of a typical networked
architecture, including routing
and switching.
[Understanding]

Label the
components of a
typical networked
architecture.
[Remembering]

Describe the layered
structure of a typical
networked
architecture,
including routing and
switching.
[Understanding]

Diagram the layered
structure of a typical
networked
architecture.
[Applying]

NC-03. Diagram the layers of the
OSI model, including associated
protocols.
[Applying]

Describe the layers of
the OSI model.
[Understanding]

Diagram the layers of
the OSI model,
including associated
protocols.
[Applying]

Compare the layers
of the OSI model with
the TCP/IP model.
[Analyzing]

NC/Networked Applications Knowledge Unit

NC-04. Categorize the principles
used for naming schemes and
resource location.
[Analyzing]

Summarize principles
used for naming
schemes and
resource location.
[Understanding]

Categorize the
principles used for
naming schemes and
resource location.
[Analyzing]

Evaluate the
principles used for
naming schemes and
resource location.
[Evaluating]

NC-05. Implement a simple
distributed network application.
[Applying]

Identify the
components of a
simple distributed
network application.
[Remembering]

Implement a simple
distributed network
application.
[Applying]

Integrate a simple
distributed network
application within a
server program to
exchange data with a
client.
[Analyzing]

NC-06. Describe security
concerns in designing
applications for use over wireless
networks.
[Understanding]

Recognize security
concerns in designing
applications for use
over wireless
networks.
[Remembering]

Describe security
concerns in designing
applications for use
over wireless
networks.
[Understanding]

Illustrate security
concerns in designing
applications for use
over wireless
networks.
[Applying]

NC-07. Illustrate secure
connectivity among networked
applications.
[Applying]

Explain secure
connectivity among
networked
applications.
[Understanding]

Illustrate secure
connectivity among
networked
applications, such as
SSH, HTTPS, SFTP.
[Applying]

Critique secure
connectivity among
networked
applications.
[Evaluating]

50

NC-08. Explain the advantages
and disadvantages of using
virtualized infrastructure in Cloud
computing.
[Understanding]

See also PD-05.

List the advantages
and disadvantages of
using virtualized
infrastructure in
Cloud computing.
[Remembering]

Explain the
advantages and
disadvantages of
using virtualized
infrastructure in
Cloud computing.
[Understanding]

Investigate the
advantages and
disadvantages of
using virtualized
infrastructure in
Cloud computing.
[Applying]

Operating Systems Knowledge Area (OS)
The Operating Systems (OS) knowledge area (KA) consists of 13 measurable student learning
outcomes across six knowledge units. As indicated in Figure 11, most of the student learning
outcomes, 77%, are at the Applying level of Bloom’s Revised Taxonomy. The remaining
learning outcomes are at the Analyzing (23%) level. The ACM CCECC estimates 10
professor/student contact hours for the OS knowledge area.

Figure 11 Pie Chart of Bloom's Revised Taxonomy Levels: OS KA LOs

An operating system defines an abstraction of hardware and manages resource sharing among
the computer’s users. The topics include the most basic knowledge of operating systems in the
sense of interfacing an operating system to networks, teaching the difference between the
kernel and user system design and implementation. This knowledge area is structured to be
complementary to the Systems Fundamentals (SF), Networking and Communications (NC), and
the Parallel and Distributed Computing (PD) knowledge areas. (adapted from CS2013, p. 135).

51

Learning Outcome Assessment Rubric

OS. Operating Systems KA Emerging Developed Highly Developed

OS/Overview of Operating Systems Knowledge Unit

OS-01. Examine major
objectives, functions, features,
and concepts of modern
operating systems.
[Analyzing]

Describe objectives,
functions, features,
and concepts of
modern operating
systems.
[Understanding]

Examine major
objectives, functions,
features, and
concepts of modern
operating systems.
[Analyzing]

Assess major
objectives, functions,
and concepts of
modern operating
systems.
[Evaluating]

OS-02. Compare prevailing types
of operating systems.
[Analyzing]

Investigate prevailing
types of operating
systems.
[Applying]

Compare prevailing
types of operating
systems, such as
networked, mobile,
embedded, and real-
time.
[Analyzing]

Assess prevailing
types of operating
systems.
[Evaluating]

OS-03. Illustrate potential threats
to operating systems and
appropriate security measures.
[Applying]

Describe potential
threats to operating
systems and
appropriate security
measures.
[Understanding]

Illustrate potential
threats to operating
systems and
appropriate security
countermeasures.
[Applying]

Examine potential
threats to operating
systems and
appropriate security
countermeasures.
[Analyzing]

OS/Operating System Principles Knowledge Unit

OS-04. Diagram the interaction
of an Application Programming
Interface (API) with an operating
system.
[Applying]

Summarize the
interaction of an
Application
Programming
Interface (API) with
an operating system.
[Understanding]

Diagram the
interaction of an
Application
Programming
Interface (API) with
an operating system.
[Applying]

Test the interaction of
an Application
Programming
Interface (API) with
an operating system.
[Evaluating]

OS-05. Illustrate how computing
resources are used by
applications and managed by the
operating system.
[Applying]

Exemplify how
computing resources
are used by
applications and
managed by the
operating system.
[Understanding]

Illustrate how
computing resources
are used by
applications and
managed by the
operating system.
[Applying]

Test how computing
resources are used
by applications and
managed by the
operating system.
[Evaluating]

OS-06. Manipulate a device list
or driver I/O queue.
[Applying]

Explain the purpose
of a device list and
driver I/O queue.
[Understanding]

Manipulate a device
list or driver I/O
queue.
[Applying]

Categorize device
types of a modern
operating system.
[Analyzing]

52

OS/Concurrency Knowledge Unit

OS-07. Investigate the need for
concurrency within an operating
system.
[Applying]

See also PD-01.

Describe the need for
concurrency within an
operating system.
[Understanding]

Investigate the need
for concurrency
within an operating
system.
[Applying]

Analyze the need for
concurrency within an
operating system.
[Analyzing]

OS/Memory Management Knowledge Unit

OS-08. Illustrate the principles of
memory management.
[Applying]

Describe the
principles of memory
management.
[Understanding]

Illustrate the
principles of memory
management, such
as memory hierarchy
and allocation,
tradeoffs, and
caching.
[Applying]

Analyze the
principles of memory
management.
[Analyzing]

OS-09. Illustrate the concepts of
virtual memory, including paging,
thrashing, and partitioning.
[Applying]

Describe the
concepts of virtual
memory, including
paging, thrashing,
and partitioning.
[Understanding]

Illustrate the
concepts of virtual
memory, including
paging, thrashing,
and partitioning.
[Applying]

Examine the
concepts of virtual
memory, including
paging, thrashing,
and partitioning.
[Analyzing]

OS/Security and Protection Knowledge Unit

OS-10. Investigate the features
and limitations of an operating
system used to provide
protection and security.
[Applying]

Explain the features
and limitation of an
operating system
used to provide
protection and
security.
[Understanding]

Investigate the
features and
limitation of an
operating system
used to provide
protection and
security.
[Applying]

Examine the features
and limitation of an
operating system
used to provide
protection and
security.
[Analyzing]

OS-11. Use mechanisms
available in an operating system
to control access to resources.
[Applying]

Summarize
mechanisms
available in an
operating system to
control access to
resources.
[Understanding]

Use mechanisms
available in an
operating system to
control access to
resources.
[Applying]

Test mechanisms
available in an
operating system to
control access to
resources.
[Evaluating]

OS/Virtual Machines Knowledge Unit

OS-12. Analyze the concept of
virtualization with respect to
hardware and software.
[Analyzing]

Investigate the
concept of
virtualization with
respect to hardware
and software.
[Applying]

Analyze the concept
of virtualization with
respect to hardware
and software.
[Analyzing]

Assess a given
implementation of
virtualization with
respect to hardware
and software.
[Evaluating]

53

OS-13. Diagram the physical
hardware devices and the virtual
devices maintained by an
operating system.
[Applying]

Explain the
relationship between
the physical
hardware devices
and virtual devices
maintained by an
operating system.
[Understanding]

Diagram the physical
hardware devices
and the virtual
devices maintained
by an operating
system.
[Applying]

Distinguish between
the physical
hardware devices
and virtual devices
used by an operating
system for a given
implementation of
virtualization.
[Analyzing]

Parallel and Distributed Computing Knowledge Area (PD)
The Parallel and Distributed Computing (PD) knowledge area (KA) consists of five measurable
student learning outcomes across three knowledge units. As indicated in Figure 12, most of the
student learning outcomes, 60%, are at the Applying level of Bloom’s Revised Taxonomy. The
remaining learning outcomes are at the Analyzing (40%) level. The ACM CCECC estimates
three professor/student contact hours for the PD KA.

Figure 12 Pie Chart of Bloom's Revised Taxonomy Levels: PD KA LOs

The past decade has brought explosive growth in multiprocessor computing, including multi-
core processors and distributed data centers. Both parallel and distributed computing entail the
logically simultaneous execution of multiple processes, whose operations have the potential to
interleave in complex ways. Parallel and distributed computing builds on foundations in many

54

areas, including an understanding of fundamental systems concepts such as concurrency and
parallel execution, consistency in state/memory manipulation, and latency. Communication and
coordination among processes is rooted in the message-passing and shared-memory models of
computing and such algorithmic concepts as atomicity, consensus, and conditional waiting.
Distributed systems highlight the problems of security and fault tolerance, emphasize the
maintenance of replicated state, and introduce additional issues that bridge computer
networking. The Systems Fundamentals knowledge area also contains an introduction to
parallelism (SF/Parallelism KU). The Operating Systems knowledge area also contains learning
outcomes on concurrency (OS/Concurrency KU). (adapted from CS2013, p. 145).

Learning Outcome Assessment Rubric

PD. Parallel and Distributed
Computing KA Emerging Developed Highly Developed

PD/Parallelism Fundamentals Knowledge Unit

PD-01. Analyze the goals of
parallelism and concurrency.
[Analyzing]

See also OS-07 and SF-08.

Differentiate the goal
of parallelism, such
as throughput, from
the goal of
concurrency, such
as controlling access
to shared resources.
[Understanding]

Analyze the goals of
parallelism and
concurrency.
[Analyzing]

Evaluate the
performance of a
given program that
was implemented
using parallelism and
concurrency
techniques.
[Evaluating]

PD-02. Implement various
programming constructs for
synchronization.
[Applying]

Summarize various
programming
constructs for
synchronization.
[Understanding]

Implement various
programming
constructs for
synchronization.
[Applying]

Integrate
synchronization
routines/techniques
into a non-
synchronized
programming
constructs.
[Analyzing]

PD-03. Contrast low-level data
races with higher level races.
[Analyzing]

Differentiate low-
level data races from
higher level races.
[Understanding]

Contrast low-level
data races with higher
level races.
[Analyzing]

Create a low-level
data race among two
concurrent threads.
[Creating]

PD/Communication and Coordination Knowledge Unit

PD-04. Implement mutual
exclusion in order to avoid race
conditions that could cause
security vulnerabilities.
[Applying]

Explain mutual
exclusion in order to
avoid race
conditions.
[Understanding]

Implement mutual
exclusion in order to
avoid race conditions
that could cause
security
vulnerabilities.
[Applying]

Categorize critical
and noncritical race
conditions.
[Analyzing]

55

PD/Cloud Computing Knowledge Unit

PD-05. Investigate the
challenges and concerns related
to security and privacy in Cloud
computing.
[Applying]

See also NC-08.

Describe the
challenges and
concerns related to
security and privacy
in Cloud computing.
[Understanding]

Investigate the
challenges and
concerns related to
security and privacy in
Cloud computing.
[Applying]

Examine the
challenges and
concerns related to
security and privacy
in Cloud computing.
[Analyzing]

Platform-based Development Knowledge Area (PBD)
There are no hours associated with the Platform-based Development (PBD) knowledge area in
CS2013, but rather this KA is concerned with the design and development of software
applications that reside on specific software platforms. In contrast to general purpose
programming, platform-based development considers platform-specific constraints. For
instance, web programming, multimedia development, mobile app development, the Internet of
Things (IoT), and robotics are examples of relevant platforms that provide specific
services/APIs/hardware that constrain development.” (adapted from CS2013.org, p. 144).

56

Programming Languages Knowledge Area (PL)
 The Programming Languages (PL) knowledge area (KA) consists of 10 measurable student
learning outcomes across four knowledge units. As indicated in Figure 13, most of the student
learning outcomes, 50%, are at the Applying level of Bloom’s Revised Taxonomy. The
remaining learning outcomes are shared among the Understanding (20%), Analyzing (10%),
and Creating (20%) levels. The ACM CCECC estimates 15 professor/student contact hours for
the PL knowledge area.

Figure 13 Pie Chart of Bloom's Revised Taxonomy Levels: PL KA LOs

Programming languages are the medium through which programmers precisely describe
concepts, formulate algorithms, and reason about solutions. A computer scientist will work with
many different languages, separately or together. Software developers must understand the
programming models underlying different languages and make informed design choices in
languages supporting multiple complementary approaches. Computer scientists will often need
to learn new languages and programming constructs, and must understand the principles
underlying how programming language features are defined, composed, and implemented. The
effective use of programming languages, and appreciation of their limitations, also requires a
basic knowledge of programming language translation and static program analysis, as well as
run-time components and the memory management hierarchy. (adapted from CS2013, p. 155).

57

Learning Outcome Assessment Rubric

PL. Programming
Languages KA Emerging Developed Highly Developed

PL/Object-Oriented Programming Knowledge Unit

PL-01. Design a simple class
hierarchy using superclasses,
subclasses, and abstract
classes.
[Creating]

Implement a simple
class hierarchy using
superclasses,
subclasses, and
abstract classes.
[Applying]

Design a simple class
hierarchy using
superclasses,
subclasses, and
abstract classes.
[Creating]

Develop a complex
class hierarchy using
superclasses,
subclasses, and
abstract classes.
[Creating]

PL-02. Diagram control flow in a
program using dynamic dispatch.
[Applying]

Demonstrate control
flow that uses
dynamic dispatch.
[Understanding]

Diagram control flow
in a program using
dynamic dispatch.
[Applying]

Contrast control flow
that uses a static
environment vs a
dynamic
environment.
[Analyzing]

PL-03. Use access and visibility
modifiers to secure class data
and methods.
[Applying]

Describe access
modifiers to secure
class data such as
private and protected.
[Understanding]

Use access and
visibility modifiers to
secure class data
and methods, such
as private and
protected.
[Applying]

Analyze the security
effect of using access
and visibility
modifiers in code.
[Analyzing]

PL-04. Implement in code OOP
constructs, including
encapsulation, abstraction,
inheritance, and polymorphism.
[Applying]

Demonstrate the
tenets of OOP,
including
encapsulation,
abstraction,
inheritance, and
polymorphism.
[Understanding]

Implement in code
OOP constructs,
including
encapsulation,
abstraction,
inheritance, and
polymorphism.
[Applying]

Create a program
that utilizes OOP
constructs, including
encapsulation,
abstraction,
inheritance, and
polymorphism.
[Analyzing]

PL/Functional Programming Knowledge Unit

PL-05. Implement algorithms
which utilize immutable and
mutable variables.
[Applying]

Discuss how
functional languages
handle both
immutable and
mutable variables.
[Understanding]

Implement algorithms
which utilize
immutable and
mutable variables.
[Applying]

Evaluate the
efficiency of different
algorithms which
utilize immutable vs
mutable variables.
[Evaluating]

PL-06. Contrast functional and
object-oriented programming
paradigms.
[Analyzing]

Explain major
differences between
functional and object-
oriented programming
paradigms.
[Understanding]

Contrast functional
and object-oriented
programming
paradigms.
[Analyzing]

Appraise functional
and object-oriented
programming
paradigms.
[Evaluating]

58

PL/Event-Driven and Reactive Programming Knowledge Unit

PL-07. Create an interactive
program using an event-driven
style.
[Creating]

Describe advantages
of having an event-
driven programming
style vs a pre-defined
programming style.
[Understanding]

Create an interactive
program using an
event-driven style.
[Creating]

Create a complex
program using an
event-driven style.
[Creating]

PL-08. Describe potential
security vulnerabilities in event-
driven GUI applications.
[Understanding]

Identify potential
security vulnerabilities
in event-driven GUI
applications.
[Remembering]

Describe potential
security
vulnerabilities in
event-driven GUI
applications, such as
injection-based
attacks.
[Understanding]

Illustrate potential
security
vulnerabilities in
event-driven GUI
applications.
[Applying]

PL/Basic Type Systems Knowledge Unit

PL-09. Investigate potential
errors detected from both strong-
type and weak-type languages.
[Applying]

Summarize possible
errors detected from
both strong-type and
weak-type languages.
[Understanding]

Investigate possible
errors detected from
both strong-type and
weak-type
languages.
[Applying]

Discriminate among
errors detected from
strong-type and from
weak-type
languages.
[Analyzing]

PL-10. Explain the security
implications of a type-safe
language for software
development.
[Understanding]

Recognize the
security implications
of a type-safe
language for software
development.
[Remembering]

Explain the security
implications of a type-
safe language for
software
development.
[Understanding]

Examine the security
advantages and
disadvantages of a
type-safe language
for software
development.
[Analyzing]

59

Software Development Fundamentals Knowledge Area (SDF)
The Software Development Fundamentals (SDF) knowledge area (KA) consists of 19
measurable student learning outcomes across four knowledge units. As indicated in Figure 14,
most of the student learning outcomes, 47%, are at the Applying level of Bloom’s Revised
Taxonomy. The remaining learning outcomes are shared among the Analyzing (16%) and
Creating (37%) levels. The ACM CCECC estimates 30 professor/student contact hours for the
SDF KA.

Figure 14 Pie Chart of Bloom's Revised Taxonomy Levels: SDF KA LOs

Fluency in the process of software development is a prerequisite to the study of most of
computer science. To use computers to solve problems effectively, students must be competent
at reading and writing programs in multiple programming languages. Beyond programming
skills, however, they must be able to design and analyze algorithms, select appropriate
paradigms, and utilize modern development and testing tools. This knowledge area brings
together those fundamental concepts and skills related to the software development process. As
such, it provides a foundation for other software-oriented knowledge areas, most notably
Programming Languages, Algorithms and Complexity, and Software Engineering. (adapted from
CS2013, p. 167).

60

Learning Outcome Assessment Rubric

SDF. Software Development
Fundamentals KA Emerging Developed Highly Developed

SDF/Algorithms and Design Knowledge Unit
(see also AL/Algorithm Strategies and AL/Fundamental Data Structures and Algorithms)

SDF-01. Design an algorithm in a
programming language to solve a
simple problem.
[Creating]

Implement an
algorithm in a
programming
language to solve a
simple problem.
[Applying]

Design an algorithm
in a programming
language to solve a
simple problem.
[Creating]

Design an algorithm
in a programming
language to solve a
complex problem.
[Creating]

SDF-02. Use the techniques of
decomposition to modularize a
program.
[Applying]

Explain program
decomposition.
[Understanding]

Use the techniques
of decomposition to
modularize a
program.
[Applying]

Analyze code to see
how decomposition
techniques were
used.
[Analyzing]

SDF-03. Compare multiple
algorithms for a given problem.
[Analyzing]

Investigate multiple
algorithms for a
given problem.
[Applying]

Compare multiple
algorithms for a
given problem.
[Analyzing]

Evaluate the
strengths and
weaknesses of
multiple algorithms
for a problem.
[Evaluating]

SDF/Fundamental Programming Concepts Knowledge Unit

SDF-04. Create simple programs
that use abstract data types
(ADTs).
[Creating]

Implement simple
programs that use
abstract data types
(ADTs).
[Applying]

Create simple
programs that use
abstract data types
(ADTs).
[Creating]

Write complex
programs that use
abstract data types
(ADTs).
[Creating]

SDF-05. Investigate potential
vulnerabilities in provided
programming code.
[Applying]

See also AL-16, PL-10, SDF-12.

Summarize
potential
vulnerabilities in
programming code.
[Understanding]

Investigate potential
vulnerabilities in
provided
programming code.
[Applying]

Choose a solution to
mitigate
vulnerabilities in
programming code.
[Evaluating]

SDF-06. Create programs which
use defensive programming
techniques, including input
validation, type checking, and
protection against buffer overflow.
[Creating]

See also CYB-15.

Investigate
defensive
programming
techniques.
[Applying]

Create programs
which use defensive
programming
techniques, including
input validation, type
checking, and
protection against
buffer overflow.
[Creating]

Create complex
programs which use
defensive
programming
techniques, including
input validation, type
checking, and
protection against
buffer overflow.
[Creating]

61

SDF-07. Create code in a
programming language that
includes primitive data types,
references, variables, expressions,
assignments, I/O, control
structures, and functions.
[Creating]

Implement code in a
programming
language that
includes primitive
data types,
references,
variables,
expressions,
assignments, I/O,
control structures,
and functions.
[Applying]

Create code in a
programming
language that
includes primitive
data types,
references,
variables,
expressions,
assignments, I/O,
control structures,
and functions.
[Creating]

Create complex
programs that include
primitive data types,
references, variables,
expressions,
assignments, I/O,
control structures,
and functions.
[Creating]

SDF-08. Create a simple program
that uses persistence to save data
across multiple executions.
[Creating]

Implement a simple
program that uses
persistence to save
data across multiple
executions.
[Applying]

Create a simple
program that uses
persistence to save
data across multiple
executions.
[Creating]

Create a complex
program that uses
persistence to save
data across multiple
executions.
[Creating]

SDF-09. Create a simple program
that uses recursion.
[Creating]

Implement a simple
program that uses
recursion.
[Applying]

Create a simple
program that uses
recursion.
[Creating]

Develop a complex
program that includes
various types of
recursive techniques,
such as binary, tail,
and natural recursion.
[Creating]

SDF/Fundamental Data Structures Knowledge Unit
(see also AL/Fundamental Data Structures and Algorithms)

SDF-10. Create simple programs
that include each of the following
data structures: lists, stacks,
queues, hash tables, graphs and
trees.
[Creating]

Implement
programs that
include each of the
following data
structures: lists,
stacks, queues,
hash tables, graphs
and trees.
[Applying]

Create simple
programs that
include each of the
following data
structures: lists,
stacks, queues, hash
tables, graphs and
trees.
[Creating]

Create complex
programs that include
each of the following
data structures: lists,
stacks, queues, hash
tables, graphs and
trees.
[Creating]

SDF-11. Compare the efficiency of
basic operations across various
data structures.
[Analyzing]

Investigate the
efficiency of basic
operations across
various data
structures.
[Applying]

Compare the
efficiency of basic
operations, such as
insertion and
deletion, across
various data
structures.
[Analyzing]

Critique the efficiency
of basic operations
across various data
structures.
[Evaluating]

62

SDF/Development Methods Knowledge Unit

SDF-12. Investigate common
coding errors that introduce
security vulnerabilities
[Applying]

Describe common
coding errors that
expose security
vulnerabilities.
[Understanding]

Investigate common
coding errors that
introduce security
vulnerabilities, such
as buffer overflows,
integer errors, and
memory leaks.
[Applying]

Test for common
coding errors that
introduce security
vulnerabilities and the
associated
techniques for
securing the code.
[Evaluating]

SDF-13. Implement refactoring
within given program components.
[Applying]

Recognize
refactoring
opportunities within
given program
components.
[Remembering]

Implement
refactoring within
given program
components.
[Applying]

Create program
components utilizing
refactoring.
[Applying]

SDF-14. Analyze programming
code that utilizes preconditions,
postconditions, and invariants.
[Analyzing]

Describe
programming by
contract.
[Understanding]

Analyze
programming code
that utilizes
preconditions,
postconditions, and
invariants.
[Analyzing]

Create a program
utilizing
preconditions,
postconditions, and
invariants.
[Creating]

SDF-15. Apply a variety of
strategies to test and debug
programs.
[Applying]

Explain strategies to
test and debug
programs.
[Understanding]

Apply a variety of
strategies to test and
debug programs,
such as unit testing
and test-case
generation.
[Applying]

Analyze a variety of
strategies to test and
debug programs.
[Analyzing]

SDF-16. Use an integrated
development environment (IDE) to
create, execute, test, and debug
secure programs.
[Applying]

Discuss the benefits
of using an
integrated
development
environment (IDE)
to create, execute,
test, and debug
secure programs.
[Understanding]

Use an integrated
development
environment (IDE) to
create, execute, test,
and debug secure
programs.
[Applying]

Compare integrated
development
environments (IDEs)
for a given
programming
language.
[Analyzing]

SDF-17. Use standard libraries for
a given programming language.
[Applying]

Describe standard
libraries for a given
programming
language.
[Understanding]

Use standard
libraries for a given
programming
language.
[Applying]

Choose appropriate
components from
standard libraries to
solve a given
problem.
[Evaluating]

SDF-18. Apply consistent
documentation and program style
standards.
[Applying]

Explain the reasons
for using consistent
documentation and
program style
standards.
[Understanding]

Apply consistent
documentation and
program style
standards.
[Applying]

Assess
documentation and
program style in a
given program.
[Evaluating]

63

SDF-19. Carry out a code review
on a program component using a
provided security checklist.
[Applying]

Explain the process
of a code review.
[Understanding]

Carry out a code
review on a program
component using a
provided security
checklist.
[Applying]

Organize a team
code review on a
program component
using a provided
security checklist.
[Analyzing]

Software Engineering Knowledge Area (SE)
The Software Engineering (SE) knowledge area (KA) consists of 14 measurable student
learning outcomes across seven knowledge units. As indicated in Figure 15, most of the student
learning outcomes, 65%, are at the Applying level of Bloom’s Revised Taxonomy. The
remaining learning outcomes are shared among the Understanding (14%), Analyzing (14%),
and Creating (7%) levels. The ACM CCECC estimates 15 professor/student contact hours for
the SE knowledge area.

Figure 15 Pie Chart of Bloom's Revised Taxonomy Levels: SE KA LOs

Software engineering is the discipline concerned with the application of theory, knowledge, and
practice to effectively and efficiently build reliable software systems that satisfy the requirements
of customers and users. This discipline is applicable to small, medium, and large-scale systems.
It encompasses all phases of the lifecycle of a software system, including requirements

64

elicitation, analysis and specification; design; construction; verification and validation;
deployment; and operation and maintenance. Whether small or large, following a traditional
plan-driven development process, an agile approach, or some other method, software
engineering is concerned with the best way to build good software systems.

Software engineering uses engineering methods, processes, techniques, and measurements. It
benefits from the use of tools for managing software development; analyzing and modeling
software artifacts; assessing and controlling quality; and for ensuring a disciplined, controlled
approach to software evolution and reuse. The software engineering toolbox has evolved over
the years. Software development, which can involve an individual developer or a team or teams
of developers, requires choosing the most appropriate tools, methods, and approaches for a
given development environment. Practicing software engineers must select and apply
appropriate techniques and practices to a given development effort in order to maximize value.
(adapted from CS2013, p. 172).

Learning Outcome Assessment Rubric

SE. Software Engineering
KA Emerging Developed Highly Developed

SE/Software Processes Knowledge Unit

SE-01. Diagram how software
interacts with various systems,
including information
management, embedded,
process control, and
communications systems.
[Applying]

Describe how
software interacts
with various systems
including information
management,
embedded, process
control, and
communications
systems.
[Understanding]

Diagram how
software interacts
with various systems,
including information
management,
embedded, process
control, and
communications
systems.
[Applying]

Assess how software
interacts with various
systems, including
information
management,
embedded, process
control, and
communications
systems.
[Evaluating]

SE-02. Compare the features of
various process models.
[Analyzing]

Describe the features
of a process model.
[Understanding]

Compare the
features of various
process models,
such as waterfall,
iterative,
and agile.
[Analyzing]

Critique various
process models.
[Evaluating]

SE-03. Diagram the phases of
the secure software development
lifecycle (SecSDLC).
[Applying]

Exemplify the phases
the software
development lifecycle
(SecSDLC).
[Understanding]

Diagram the phases
of the secure
software
development lifecycle
(SecSDLC).
[Applying]

Examine the phases
of the secure
software
development lifecycle
(SecSDLC).
[Analyzing]

65

SE/Software Project Management Knowledge Unit

SE-04. Illustrate common
behaviors that contribute to the
effective functioning of a team.
[Applying]

Describe common
behaviors that
contribute to the
effective functioning
of a team.
[Understanding]

Illustrate common
behaviors that
contribute to the
effective functioning
of a team, such as
good communication
skills.
[Applying]

Examine common
behaviors that
contribute to the
effective functioning
of a team.
[Analyzing]

SE-05. Investigate the risks in
using third-party applications,
software tools, and libraries.
[Applying]

Explain the risks in
using third-party
code.
[Understanding]

Investigate the risks
in using third-party
applications, software
tools, and libraries.
[Applying]

Evaluate the risks in
using third-party
applications, software
tools, and libraries.
[Evaluating]

SE/Tools and Environments Knowledge Unit

SE-06. Use a set of development
tools for software systems.
[Applying]

Summarize a set of
development tools for
software systems.
[Understanding]

Use a set of
development tools for
software systems,
such as requirements
tracking, modeling,
version control,
automation, and
testing.
[Applying]

Choose a set of
development tools for
software systems.
[Evaluating]

SE/Requirements Engineering Knowledge Unit

SE-07. Implement the
requirements for a secure
software system.
[Applying]

Paraphrase the
requirements for a
key feature for a
secure software
system.
[Understanding]

Implement the
requirements for a
secure software
system.
[Applying]

Develop the
requirements for a
secure software
system.
[Creating]

SE/Software Design Knowledge Unit

SE-08. Illustrate principles of
secure software design.
[Applying]

Describe different
software design
principles.
[Understanding]

Illustrate principles of
secure software
design, such as least
privilege, simplicity,
separation of
concerns, information
hiding, coupling and
cohesion, and code
reuse.
[Applying]

Create a program
that employs secure
software design
principles.
[Creating]

66

SE-09. Analyze an existing
software design to improve its
security.
[Analyzing]

Identify possible
stages of software
design that may
introduce a security
vulnerability.
[Remembering]

Analyze an existing
software design to
improve its security.
[Analyzing]

Debate whether a
proposed solution/
patch to the design
can fix the
vulnerability in a
viable and effective
way.
[Evaluating]

SE-10. Describe the cost and
tradeoffs associated with
designing security into software.
[Understanding]

Recognize situations
where security
designs are
effectively applied in
software.
[Remembering]

Describe the cost
and tradeoffs
associated with
designing security
into software.
[Understanding]

Compare security
software designs and
associated costs and
tradeoffs.
[Analyzing]

SE/Software Construction Knowledge Unit

SE-11. Implement a small
software project that uses a
defined coding standard.
[Applying]

Demonstrate a
defined coding
standard in a small
software project.
[Understanding]

Implement a small
software project that
uses a defined
coding standard.
[Applying]

Justify the reason for
using a given coding
standard.
[Evaluating]

SE/Software Verification and Validation Knowledge Unit

SE-12. Differentiate between
program validation and
verification.
[Understanding]

Define software
engineering terms
verification and
validation.
[Remembering]

Differentiate between
program validation
and verification.
[Understanding]

Apply software
validation and
verification for a
given piece of code.
[Applying]

SE-13. Implement in code
different types of testing,
including security, unit testing,
system testing, integration
testing, and interface usability.
[Applying]

Describe different
types and levels of
testing.
[Understanding]

Implement in code
different types of
testing, including
security, unit testing,
system testing,
integration testing,
and interface
usability.
[Applying]

Examine different
types of testing for
given code.
[Analyzing]

SE-14. Design a test plan that
validates software security.
[Creating]

Implement a given
test plan that
validates software
security.
[Applying]

Design a test plan
that validates
software security.
[Creating]

Develop a test plan
that validates
software security.
[Creating]

67

Systems Fundamentals Knowledge Area (SF)
The Systems Fundamentals (SF) knowledge area (KA) consists of nine measurable student
learning outcomes across three knowledge units. As indicated in Figure 16, most of the student
learning outcomes, 67%, are at the Applying level of Bloom’s Revised Taxonomy. The remaining
learning outcomes are at the Understanding (33%) level. The ACM CCECC estimates five
professor/student contact hours for the SF knowledge area.

Figure 16 Pie Chart of Bloom's Revised Taxonomy Levels: SF KA LOs

The underlying hardware and software infrastructure upon which applications are constructed is
collectively described by the term "computer systems." Computer systems broadly span the
sub-disciplines of operating systems, parallel and distributed systems, communications
networks, and computer architecture. Traditionally, these areas are taught in a non-integrated
way through independent courses. However, these sub-disciplines increasingly share important
common fundamental concepts within their respective cores. These concepts include
computational paradigms, parallelism, cross-layer communications, state and state transition,
resource allocation and scheduling, and so on. The Systems Fundamentals Knowledge Area is
designed to present an integrative view of these fundamental concepts in a unified albeit
simplified fashion, providing a common foundation for the different specialized mechanisms and
policies appropriate to the specific domain area. (adapted from CS2013, p. 186).

68

Learning Outcome Assessment Rubric

SF. Systems Fundamentals
KA Emerging Developed Highly

Developed

SF/Computational Paradigms Knowledge Unit

SF-01. Illustrate the basic
building blocks of computers and
their role in the historical
development of computer
architecture.
[Applying]

Describe some of the
basic building blocks
of computers.
[Understanding]

Illustrate the basic
building blocks of
computers and their role
in the historical
development of
computer architecture.
[Applying]

Outline the basic
building blocks of
computers and
their role in the
historical
development of
computer
architecture.
[Analyzing]

SF-02. Discuss the differences
between single thread and
multiple thread, as well as single
server and multiple server
models.
[Understanding]

Identify some
differences between
single thread and
multiple thread, as
well as single server
and multiple server
models.
[Remembering]

Discuss the differences
between single thread
and multiple thread, as
well as single server
and multiple server
models.
[Understanding]

Illustrate the
differences
between single
thread and multiple
thread, as well as
single server and
multiple server
models.
[Applying]

SF-03. Investigate security
implications related to emerging
computational paradigms.
[Applying]

Report security
implications related
to computational
paradigms.
[Understanding]

Investigate security
implications related to
emerging computational
paradigms, such as
quantum computing and
biological computing.
[Applying]

Analyze security
implications related
to emerging
computational
paradigms.
[Analyzing]

SF/Cross-Layer Communications Knowledge Unit

SF-04. Describe how computing
systems are constructed of
layers upon layers.
[Understanding]

Recognize that
computing systems
are constructed of
layers upon layers.
[Remembering]

Describe how
computing systems are
constructed of layers
upon layers, such as
separation of concerns,
well-defined interfaces,
and abstraction.
[Understanding]

Diagram a
computing system
constructed of
layers upon layers.
[Applying]

SF-05. Implement a program
using methods of layering.
[Applying]

Exemplify a program
that uses methods of
layering.
[Understanding]

Implement a program
using methods of
layering, such as error
detection, recovery and
status across layers.
[Applying]

 Develop a
program using
methods of
layering.
[Creating]

69

SF-06. Investigate defects in a
layered program using tools for
program tracing, single stepping,
and debugging.
[Applying]

Demonstrate defects
in a layered program
using tools for
program tracing,
single stepping, and
debugging.
[Understanding]

Investigate defects in a
layered program using
tools for program
tracing, single stepping,
and debugging.
[Applying]

Categorize defects
by security risk in a
layered program
using tools for
program tracing,
single stepping,
and debugging.
[Analyzing]

SF/Parallelism Knowledge Unit

SF-07. Illustrate the performance
of simple sequential and parallel
versions of the same program
with different problem sizes.
[Applying]

Summarize the
general performance
of simple sequential
and parallel versions
of the same program.
[Understanding]

Illustrate the
performance of simple
and parallel versions of
the same program with
different problem sizes.
[Applying]

Compare the
performance of
simple and parallel
versions of the
same program with
different problem
sizes.
 [Analyzing]

SF-08. Summarize the
differences among the concepts
of instruction parallelism, data
parallelism, thread
parallelism/multitasking, and
task/request parallelism.
[Understanding]

See also PD-01.

Define the concepts
of instruction
parallelism, data
parallelism, thread
parallelism/multi-
tasking, and
task/request
parallelism.
[Remembering]

Summarize the
differences among the
concepts of instruction
parallelism, data
parallelism, thread
parallelism/multitasking,
and task/request
parallelism.
[Understanding]

Investigate the
differences among
the concepts of
instruction
parallelism, data
parallelism, thread
parallelism/
multitasking, and
task/request
parallelism.
[Applying]

SF-09. Investigate other uses of
parallelism, including reliability
and redundancy of execution.
[Applying]

Describe other uses
of parallelism,
including reliability
and redundancy of
execution.
[Understanding]

Investigate other uses of
parallelism, including
reliability and
redundancy of
execution.
[Applying]

Examine other
uses of parallelism,
including reliability
and redundancy of
execution.
[Analyzing]

70

Social Issues and Professional Practice Knowledge Area (SP)
The Social Issues and Professional Practice (SP) knowledge area (KA) consists of 22
measurable student learning outcomes across eight knowledge units. As indicated in Figure 17,
most of the student learning outcomes, 45%, are at the Analyzing level of Bloom’s Revised
Taxonomy. The remaining learning outcomes are shared among the Understanding (14%),
Applying, (32%), Evaluating (4%), and Creating (5%) levels. The ACM CCECC estimates 12
professor/student contact hours for the SP knowledge area.

Figure 17 Pie Chart of Bloom's Revised Taxonomy Levels: SP KA LOs

As technological advances continue to significantly impact the way we live and work, the critical
importance of social issues and professional practice continues to increase. While technical
issues are central to the computing curriculum, they do not constitute a complete educational
program in the field. Students must also be exposed to the larger societal context of computing
to develop an understanding of the relevant social, ethical, legal and professional issues.

Students furthermore need to develop the ability to ask serious questions about the social
impact of computing and to evaluate proposed answers to those questions. Future practitioners
must be able to anticipate the impact of introducing a given product into a given environment.
Will that product enhance or degrade the quality of life? What will the impact be upon
individuals, groups, and institutions? Finally, students need to be aware of the basic legal rights
of software and hardware vendors and users, and they also need to appreciate the ethical
values that are the basis for those rights. Future practitioners must understand the responsibility
that they will bear, and the possible consequences of failure. They must understand their own

71

limitations as well as the limitations of their tools. All practitioners must make a long-term
commitment to remaining current in their chosen specialties and in the complete discipline of
computing.

The application of ethical analysis and reasoning underlies every subsection of the Social
Issues and Professional Practices knowledge area in computing. The ACM Code of Ethics and
Professional Conduct (ACM, 1992) provides guidelines that serve as the basis for the conduct of
our professional work. The General Moral Imperatives provide an understanding of our
commitment to personal responsibility, professional conduct, and our leadership roles.
Computing faculty who are unfamiliar with the content and/or pedagogy of applied ethics are
urged to take advantage of the considerable resources from ACM and its Special Interest Group
on Computers and Society (SIGCAS). (adapted from CS2013, p. 192).

Learning Outcome Assessment Rubric

SP. Social Issues and
Professional Practice KA Emerging Developed Highly Developed

SP/Social Context Knowledge Unit

SP-01. Investigate both positive
and negative ways in which
computing technology impacts
information exchange and social
interaction.
[Applying]

Describe different
ways in which
computing
technology impacts
information exchange
and social interaction.
[Understanding]

Investigate both
positive and negative
ways in which
computing
technology impacts
information exchange
and social interaction,
such as the Internet,
mobile computing,
and social media.
[Applying]

Analyze positive and
negative ways in
which computing
technology impacts
information exchange
and social
interactions.
[Analyzing]

SP-02. Examine developers’
assumptions and values
embedded in hardware and
software design, especially with
respect to underrepresented
groups and diverse populations.
[Analyzing]

See also HCI-06.

Infer developers’
assumptions and
values embedded in
hardware and
software design,
especially with
respect to
underrepresented
groups and diverse
populations.
[Understanding]

Examine developers’
assumptions and
values embedded in
hardware and
software design,
especially with
respect to
underrepresented
groups and diverse
populations, such as
persons with
disabilities.
[Analyzing]

Critique developers’
assumptions and
values embedded in
hardware and
software design,
especially as
pertinent to
underrepresented
groups and the
disabled.
[Evaluating]

SP-03. Analyze the impact of
diversity on the computing
profession.
[Analyzing]

Discuss the impact of
diversity on the
computing
profession.
[Understanding]

Analyze the impact of
diversity on the
computing
profession, such as
industry culture and
product development.
[Analyzing]

Assess the impact of
diversity on the
computing
profession.
[Evaluating]

72

SP-04. Investigate social
engineering attacks and the
types of bad actors who might
perform them.
[Applying]

Describe social
engineering attacks
and the types of bad
actors who might
perform them.
[Understanding]

Investigate social
engineering attacks
and the types of bad
actors who might
perform them.
[Applying]

Analyze the impact
and likelihood of
social engineering
attacks.
[Analyzing]

SP/Analytical Tools Knowledge Unit

SP-05. Contrast stakeholder
positions in a given scenario.
[Analyzing]

Infer stakeholder
positions in a given
scenario.
[Understanding]

Contrast stakeholder
positions in a given
scenario.
[Analyzing]

Debate stakeholder
positions in a given
scenario.
[Evaluating]

SP-06. Analyze social tradeoffs
in technical decisions.
[Analyzing]

Explain social
tradeoffs in technical
decisions.
[Understanding]

Analyze ethical and
social tradeoffs in
technical decisions.
[Analyzing]

Justify social
tradeoffs in technical
decisions.
[Evaluating]

SP/Professional Ethics Knowledge Unit

SP-07. Examine various ethics
scenarios in computing.
[Analyzing]

Discuss ethics
scenarios in
computing.
[Understanding]

Analyze various
ethics scenarios in
computing.
[Analyzing]

Debate various ethics
scenarios in
computing.
[Evaluating]

SP-08. Support the ethical
responsibility of ensuring
software correctness, reliability,
and safety.
[Evaluating]

Examine the ethical
responsibility in
ensuring software
correctness,
reliability, and safety.
[Analyzing]

Support the ethical
responsibility of
ensuring software
correctness,
reliability, and safety.
[Evaluating]

Hypothesize various
ethical
responsibilities of
ensuring software
correctness,
reliability, and safety.
[Creating]

SP-09. Compare professional
codes of conduct from the ACM,
IEEE Computer Society, and
other organizations.
[Analyzing]

Discuss professional
codes of conduct
from the ACM, IEEE
Computer Society,
and other
organizations.
[Understanding]

Compare
professional codes of
conduct from the
ACM, IEEE
Computer Society,
and other
organizations.
[Analyzing]

Evaluate professional
codes of conduct
from the ACM, IEEE
Computer Society,
and other
organizations.
[Evaluating]

SP/Intellectual Property Knowledge Unit

SP-10. Differentiate among
intellectual property, fair-use,
copyright, patent, trademark, and
plagiarism.
[Understanding]

Define the terms
intellectual property,
fair-use, copyright,
and plagiarism. Give
examples of each.
State the plagiarism
policy at your school.
[Remembering]

Differentiate among
intellectual property,
fair-use, copyright,
patent, trademark,
and plagiarism.
[Understanding]

Investigate ethics
violations related to
intellectual property
rights, fair-use,
copyright, patents,
trademarks, and
plagiarism.
[Applying]

SP-11. Discuss the rationale for
legal protection of intellectual
property.

Recognize the
rationale for legal

Discuss the rationale
for legal protection of
intellectual property.

Examine the rationale
for legal protection of
intellectual property.

73

[Understanding] protection of
intellectual property.
[Remembering]

[Understanding] [Analyzing]

SP/Privacy and Civil Liberties Knowledge Unit

SP-12. Outline the need for legal
protection of personal privacy.
[Analyzing]

Discuss the need for
legal protection of
personal privacy.
[Understanding]

Outline the need for
legal protection of
personal privacy.
[Analyzing]

Defend the need for
legal protection of
personal privacy.
[Evaluating]

SP-13. Investigate threats to
privacy rights in personally
identifiable information (PII).
[Applying]

Summarize threats to
privacy rights in
personally identifiable
information (PII).
[Understanding]

Investigate threats to
privacy rights in
personally identifiable
information (PII).
[Applying]

Analyze solutions for
privacy threats to
personally identifiable
Information (PII).
[Analyzing]

SP-14. Illustrate the role of data
collection in the implementation
of pervasive surveillance
systems.
[Applying]

Discuss the role of
data collection in the
implementation of
pervasive
surveillance systems.
[Understanding]

Illustrate the role of
data collection in the
implementation of
pervasive
surveillance systems,
such as RFID, face
recognition, and
mobile computing.
[Applying]

Assess the role of
data collection in the
implementation of
pervasive
surveillance systems.
[Evaluating]

SP-15. Analyze technological
solutions to privacy concerns.
[Analyzing]

Investigate
technological
solutions to privacy
concerns.
[Applying]

Analyze technological
solutions to privacy
concerns.
[Analyzing]

Choose a
technological solution
to solve a privacy
problem.
[Evaluating]

SP/Professional Communication Knowledge Unit

SP-16. Use effective oral, written,
electronic, and visual
communication techniques with
stakeholders.
[Applying]

Demonstrate
effective oral, written,
electronic, and visual
communication
techniques.
[Understanding]

Use effective oral,
written, electronic,
and visual
communication
techniques with
stakeholders.
[Applying]

Choose the
appropriate oral,
written, electronic or
visual communication
technique with
stakeholders.
[Evaluating]

SP-17. Interpret the impact of
both verbal and nonverbal cues
during communication among
team members.
[Understanding]

Recognize both
verbal and nonverbal
cues during
communication
among team
members.
[Remembering]

Interpret the impact
of both verbal and
nonverbal cues
during
communication
among team
members.
[Understanding]

Analyze the impact of
both verbal and
nonverbal cues
during
communication
among team
members.
[Analyzing]

SP-18. Develop technical
artifacts.
[Creating]

Write a technical
artifact.
[Applying]

Develop technical
artifacts, such as
documentation of
source code and user
requirements, as well

Create technical
artifacts of
considerable length
and/or complexity.
[Creating]

74

as project
documents.
[Creating]

SP-19. Analyze case studies
related to sustainable computing
efforts.
[Analyzing]

Paraphrase case
studies related to
sustainable
computing efforts.
[Understanding]

Analyze case studies
related to sustainable
computing efforts.
[Analyzing]

Critique case studies
related to sustainable
computing efforts.
[Evaluating]

SP/Security Policies, Laws and Computer Crime Knowledge Unit

SP-20. Investigate laws
applicable to computer crimes.
[Applying]

Paraphrase laws
applicable to
computer crimes.
[Understanding]

Investigate laws
applicable to
computer crimes.
[Applying]

Debate laws
applicable to
computer crimes.
[Evaluating]

SP-21. Examine the motivation
and ramifications of cyber
terrorism and criminal hacking.
[Analyzing]

Discuss the
motivation and
ramifications of cyber
terrorism and criminal
hacking.
[Understanding]

Examine the
motivation and
ramifications of cyber
terrorism and criminal
hacking.
[Analyzing]

Evaluate the
motivation and
ramifications of cyber
terrorism and criminal
hacking.
[Evaluating]

SP-22. Write a company-wide
security policy.
[Applying]

Exemplify a
company-wide
security policy.
[Understanding]

Write a company-
wide security policy,
such as procedures
for managing
passwords, avoiding
social engineering
attacks, and
monitoring
employees.
[Applying]

Compare several
company-wide
security policies.
[Analyzing]

Table 5 Number of Student Learning Outcomes in each Knowledge Unit

Algorithms and Complexity KA Architecture and Organization KA

Knowledge Unit Number of Student
Learning Outcomes Knowledge Unit Number of Student

Learning Outcomes

Basic Analysis 4 Digital Logic and Digital
Systems 1

Algorithmic Strategies 2 Machine Level
Representation of Data 4

Fundamental Data
structures and
Algorithms

8 Assembly Level
Machine Organization 4

Basic Automata,
Computability, and
Complexity

3
Memory System
Organization and
Architecture

2

75

Computational Science KA Cybersecurity KA

Knowledge Unit Number of Student
Learning Outcomes Knowledge Unit Number of Student

Learning Outcomes

Introduction to Modeling
and Simulation 3

Foundational Concepts
in Security 10

Principles of Secure
Design 4

Defensive Programming 4

Threats and Attacks 2

Cryptography 4

Web Security 1

Discrete Structures KA Graphics and Visualization KA

Knowledge Unit Number of Student
Learning Outcomes Knowledge Unit Number of Student

Learning Outcomes

Sets, Relations, and
Functions 3 Fundamental Concepts 5

Basic Logic 6

Proof Techniques 5

Basics of Counting 7

Graphs and Trees 8

Discrete Probability 5

Human Computer Interaction KA Information Management KA

Knowledge Unit Number of Student
Learning Outcomes Knowledge Unit Number of Student

Learning Outcomes

Foundations 3 Information
Management Concepts 5

Designing Interaction 3
Database Systems 5

Data Modeling 3

76

Networking and Communications KA Operating Systems KA

Knowledge Unit Number of Student
Learning Outcomes Knowledge Unit Number of Student

Learning Outcomes

Introduction 3 Overview of Operating
Systems 3

Networked Applications 5 Operating System
Principles 3

 Concurrency 1

Memory Management 2

Security and Protection 2

Virtual Machines 2

Parallel and Distributed Computing KA Platform-based Development KA

Knowledge Unit Number of Student
Learning Outcomes Knowledge Unit Number of Student

Learning Outcomes

Parallelism
Fundamentals 3 No Specified KUs 0

Communication and
Coordination 1

Cloud Computing 1

Programming Languages KA Software Development Fundamentals KA

Knowledge Unit Number of Student
Learning Outcomes Knowledge Unit Number of Student

Learning Outcomes

Object-Oriented
Programming 4 Algorithms and Design 3

Functional Programming 2 Fundamental
Programming Concepts 5

Event-Driven and
Reactive Programming 2 Fundamental Data

Structures 2

Basic Type Systems 2 Development Methods 8

77

Software Engineering KA Systems Fundamentals KA

Knowledge Unit Number of Student
Learning Outcomes Knowledge Unit Number of Student

Learning Outcomes

Software Processes 3 Computational
Paradigms 3

Software Project
Management 2 Cross-Layer

Communications 3

Tools and Environments 1 Parallelism 3

Requirements
Engineering 1

Software Design 8

Software Construction 1

Software Verification
and Validation 3

Social Issues & Professional Practice KA

Knowledge Unit Number of Student
Learning Outcomes

Social Context 4

Analytical Tools 2

Professional Ethics 3

Intellectual Property 2

Privacy and Civil
Liberties 4

Professional
Communication 3

Sustainability 1

Security Policies, Laws
and Computer Crime 3

78

Correlating Programs to the Computer Science Transfer Curriculum
Examples of programs that align with the ACM Computer Science Transfer Curriculum
demonstrate the adaptability to a variety of computer science courses, certificates, and degree
programs. Existing correlations from the following colleges can be viewed at the ACM CCECC
website: http://ccecc.acm.org/correlations/all.

❖ Bluegrass Community and Technical College, KY
 Associate in Science degree, Computer Science
 Associate in Science degree, Informatics

❖ El Paso Community College, TX
 Associate in Arts degree, Computer Science

❖ Union County College, NJ
 Associate in Science degree, Computer Science
 Associate in Science degree, Cybersecurity

❖ Others

Additional correlations are encouraged. If your college is interested in correlating its certificate
and/or degree program courses, visit http://ccecc.acm.org/correlations/new.

Mapping CS Transfer to Other Curricula and Frameworks
The student learning outcomes that make up the present guidance have been mapped to
several well-known curricula and frameworks. Current mappings are available for viewing at the
ACM CCECC website: http://ccecc.acm.org/guidance.

❖ ACM/IEEE CS2013
❖ NSA/DHS CAE2Y Knowledge Units
❖ College Board AP Computer Science A
❖ Others

http://ccecc.acm.org/correlations/all
http://ccecc.acm.org/correlations/new
http://ccecc.acm.org/guidance

79

Bibliography

ACM. (1992). ACM Code of Ethics and Professional Conduct. New York: Association for
Computing Machinery. Retrieved June 15, 2017, from www.acm.org/about-acm/acm-code-
of-ethics-and-professional-conduct.

ACM and IEEE-CS. (2013). Computer Science 2013: Curriculum Guidelines for Undergraduate
Programs in Computer Science. New York: Association for Computing Machinery.
Retrieved June 15, 2017, from www.CS2013.org.

ACM Two-Year College Computing Committee. (1993). Computing Curricula Guidelines for
Associate-Degree Programs: Computing Sciences. New York City: ACM Press.

ACM Two-Year College Computing Committee. (2003). Computing Curricula 2003: Guidelines
for Associate-Degree Curricula in Computer Science. New York City: ACM Press.

ACM Two-Year College Computing Committee. (2009). Computing Curricula 2009: Guidelines
for Associate-Degree Transfer Curriculum in Computer Science. New York City: ACM
Press.

ACM/IEEE/AIS/IFIP Joint Task Force. (2017). Cybersecurity Curricula 2017: Curriculum
Guidelines for Post-Secondary Degree Programs in Cybersecurity. New York City.
Retrieved June 15, 2017, from www.csec2017.org.

ACM/IEEE-CS Joint Curriculum Task Force. (1991). Computing Curricula 1991. New York City:
ACM Press and IEEE Computer Society Press.

ACM/IEEE-CS Joint Curriculum Task Force. (2001). Computing Curricula 2001: Computer
Science.

American Association of Community Colleges. Partnership Initiatives. Retrieved June 15, 2017,
from International Programs and Services:
http://www.aacc.nche.edu/Resources/aaccprograms/international/pi/Pages/default.aspx.

Anderson, L., & Krathwohl, D. (2000). A Taxonomy for Learning, Teaching, and Assessing: A
Revision to Bloom’s Taxonomy of Educational Objectives. New York: Pearson.

Bloom, B. S. (1956). The Taxonomy of Educational Objectives: Classification of Educational
Goals. Handbook I: The Cognitive Domain. New York: McKay Press.

IEEE Computer Society. Retrieved June 15, 2017, from www.computer.org/education/.
Ministry of Education of the People’s Republic of China. Retrieved June 15, 2017, from

http://en.moe.gov.cn/.
National Institute of Standards and Technology. (2016). The National Cybersecurity Workforce

Framework. National Initiative for Cybersecurity Education (NICE). Gaithersburg, MD:
NIST. Retrieved June 16, 2017 from www.nist.gov/itl/applied-
cybersecurity/nice/resources/nice-cybersecurity-workforce-framework.

NSA and Department of Homeland Security. CAE2Y Requirements. Retrieved June 15, 2017,
from National IA Education and Training Programs:
https://www.iad.gov/NIETP/documents/Requirements/CAE_CD-2Y_Criteria.pdf.

The White House. (2016, February 9). FACT SHEET: Cybersecurity National Action Plan.
Retrieved June 16, 2017, from Office of the Press Secretary:
https://obamawhitehouse.archives.gov/the-press-office/2016/02/09/fact-sheet-
cybersecurity-national-action-plan.

80

Glossary of Terms

The ACM CCCECC defines the following terms in relationship to curricula associated with
computing education in associate-degree granting institutions.

Associate Degrees are well-defined and meaningful completion points after two-year degree
programs; such degrees are awarded by two-year, community or technical colleges, as well as
some four-year colleges.

Career Programs are specifically designed to enable students to pursue entry into the
workforce after two years of college studies; these are typically Associate of Applied Science
(AAS) degree programs.

Computing is now recognized by the ACM as composed of six defined sub-disciplines:
computer science, computer engineering, software engineering, information systems,
information technology, and cybersecurity.

Computer Engineering … involves the design and construction of processor-based systems
composed of hardware, software, and communications components. This four-year curriculum
focuses on the synthesis of electrical engineering and computer science as applied to the
design of systems such as cellular communications, consumer electronics, medical imaging and
devices, alarm systems and military technologies. Upon graduation, students initiating careers
as computer engineers should be able to design and implement systems that involve the
integration of software and hardware devices.

Computer Science … involves design and innovation developed from computing principles.
This four-year curriculum focuses on the theoretical foundations of computing, algorithms, and
programming techniques, as applied to operating systems, artificial intelligence, informatics and
the like. Upon graduation, students initiating careers as computer scientists should be prepared
to work in a broad range of positions involving tasks from theoretical work to software
development.

Cybersecurity … The ACM JTF defines cybersecurity as a “computing-based discipline
involving technology, people, information, and processes to enable assured operations in the
context of adversaries. It involves the creation, operation, analysis, and testing of secure
computer systems. It is an interdisciplinary course of study, including aspects of law, policy,
human factors, ethics, and risk management.” (csec2017.org, June 2017.)

Information Systems … involves the application of computing principles to business
processes, bridging the technical and management fields. This four-year curriculum focuses on
the design, implementation and testing of information systems as applied to business processes
such as payroll, human resources, corporate databases, data warehousing and mining, e-
commerce, finance, customer relations management, transaction processing, and data-driven
decision making and executive support. Upon graduation, students initiating careers as
information systems specialists should be able to analyze information requirements and
business processes and be able to specify and design systems that are aligned with
organizational goals.

Information Technology … involves the design, implementation and maintenance of
technology solutions and support for users of such systems. This four-year curriculum focuses
on crafting hardware and software solutions as applied to networks, security, client-server and
mobile computing, web applications, multimedia resources, communications systems, and the

81

planning and management of the technology lifecycle. Upon graduation, students initiating
careers as information technology professionals should be able to work effectively at planning,
implementation, configuration, and maintenance of an organization’s computing infrastructure.

Software Engineering … involves the design, development and testing of large, complex, and
safety-critical software applications. This four-year curriculum focuses on the integration of
computer science principles with engineering practices as applied to constructing software
systems for avionics, healthcare applications, cryptography, traffic control, meteorological
systems and the like. Upon graduation, students initiating careers as software engineers should
be able to properly perform and manage activities at every stage of the life cycle of large-scale
software systems.

Transfer Programs are specifically designed for students intending to matriculate into the junior
year of a four-year program; these are typically Associate of Arts (AA) or Associate of Science
(AS) degree programs.

82

Appendix A

Cybersecurity-related Student Learning Outcomes
in the Computer Science Transfer Curriculum

A total of 214 student learning outcomes are included in the computer science transfer
curriculum. Of the 214, there are 64 learning outcomes directly related to cybersecurity, nearly
30%. This Appendix contains the consolidated list of all 64 student learning outcomes carefully
woven throughout the transfer BoK. Figure 18 depicts 19% of the cyber outcomes at the
Understanding level, 57% at the Applying level, 17% at the Analyzing level, 2% at the
Evaluating level, and 5% at the Creating level of Bloom’s Revised Taxonomy. There is clearly
an emphasis on doing—the students’ ability to apply knowledge—as well as on the higher order
thinking skills of analyzing, evaluating, and creating.

AL/Algorithmic Strategies
❖ AL-06. Investigate the use of random/pseudo random number generation in

cybersecurity applications.

AL/Fundamental Data Structures and Algorithms
❖ AL-14. Investigate security vulnerabilities in various data structures.

Figure 18: Pie Chart of Bloom’s Revised Taxonomy Levels: All Cybersecurity LOs

83

AR/Machine Level Representation of Data
❖ AR-03. Illustrate how fixed-length number representations could affect accuracy and

precision, causing vulnerabilities.

CYB/Foundational Concepts in Security
❖ CYB-01. Describe security as a continuous process of tradeoffs, balancing between

protection mechanisms and availability.
❖ CYB-02. Illustrate through examples the concepts of risk, threats, vulnerabilities, attack

vectors, and exploits, noting there is no such thing as perfect security.
❖ CYB-03. Investigate various countermeasures and security controls to minimize risk and

exposure.
❖ CYB-04. Analyze the tradeoffs of balancing key security properties, including

Confidentiality, Integrity, and Availability (CIA).
❖ CYB-05. Explain the concepts of trust and trustworthiness related to cybersecurity.
❖ CYB-06. Examine ethical issues related to cybersecurity.
❖ CYB-07. Illustrate various ways to minimize privacy risks and maximize anonymity.
❖ CYB-08. Apply security principles and practices in a dynamic environment.
❖ CYB-09. Illustrate through examples the key role risk management frameworks play in

identifying, assessing, prioritizing, and controlling risks to organizational assets.
❖ CYB-10. Illustrate with examples the goals of end-to-end data security.

CYB/Principles of Secure Design
❖ CYB-11. Use the principles of secure design.
❖ CYB-12. Illustrate the security implications of relying on open design vs the secrecy of

design.
❖ CYB-13. Discuss the benefits and limitations of designing multiple layers of defenses.
❖ CYB-14. Analyze the tradeoffs associated with designing security into a product.

CYB/Defensive Programming
❖ CYB-15. Construct input validation and data sanitization in applications, considering

adversarial control of the input channel.
❖ CYB-16. Explain the tradeoffs of developing a program in a type-safe language.
❖ CYB-17. Implement programs that properly handle exceptions and error conditions.
❖ CYB-18. Examine the need to update software to fix security vulnerabilities.

CYB/Threats and Attacks
❖ CYB-19. Examine likely attack types against standalone and networked systems.
❖ CYB-20. Illustrate the key principles of social engineering, including membership and

trust.

CYB/Cryptography
❖ CYB-21. Describe key terms in cryptology, including cryptography, cryptanalysis, cipher,

cryptographic algorithm, and public key infrastructure.
❖ CYB-22. Use a variety of ciphers to encrypt plaintext into ciphertext.
❖ CYB-23. Apply cryptographic hash functions for authentication and data integrity.
❖ CYB-24. Contrast symmetric and asymmetric encryption in relation to securing electronic

communications and transactions.

CYB/Web Security
❖ CYB-25. Explain browser and web security model concepts, including same-origin

policy, web sessions, and secure communication channels.

84

GV/Fundamental Concepts
❖ GV-05. Perform information hiding through steganography in images, messages, videos,

or other media files.

HCI/Designing Interaction
❖ HCI-03. Examine the issues of trust in HCI, including examples of both high and low

trust systems.
❖ HCI-06. Analyze the interaction between a security mechanism and its usability.

IM/Information Management Concepts
❖ IM-03. Investigate contingency planning with respect to business continuity, disaster

recovery, and incident response.
❖ IM-04. Describe proven techniques to secure data and information.

IM/Database Systems
❖ IM-10. Investigate vulnerabilities and failure scenarios in database systems.

IM/Data Modeling
❖ IM-12. Diagram a relational data model for a given scenario that addresses security and

privacy concerns.

NC/Networked Applications
❖ NC-06. Describe security concerns in designing applications for use over wireless

networks.
❖ NC-07. Illustrate secure connectivity among networked applications.

OS/Overview of Operating Systems
❖ OS-03. Discuss potential threats to operating systems and the security features

designed to guard against them.

OS/Security and Protection
❖ OS-10. Investigate the features and limitations of an operating system used to provide

protection and security.
❖ OS-11. Use mechanisms available in an operating system to control access to

resources.

PD/Communication and Coordination
❖ PD-04. Implement mutual exclusion to avoid race conditions that could cause security

vulnerabilities.

PD/Cloud Computing
❖ PD-05. Investigate the challenges and concerns related to security and privacy in Cloud

computing.

PL/Object-Oriented Programming
❖ PL-03. Use access modifiers to secure class data and methods.

PL/Event-Driven and Reactive Programming
❖ PL-08. Describe potential security vulnerabilities in event-driven GUI applications.

PL/Basic Type Systems
❖ PL-10. Explain the security implications of a type-safe language for software

development

85

SDF/Fundamental Programming Concepts
❖ SDF-05. Investigate potential vulnerabilities in provided programming code.
❖ SDF-06. Create programs which use defensive programming techniques, including input

validation, type checking, and protection against buffer overflow.

SDF/Development Methods
❖ SDF-12. Investigate common coding errors that introduce security vulnerabilities.
❖ SDF-19. Carry out a code review on a program component using a provided security

checklist.

SE/Software Processes
❖ SE-03. Diagram the phases of the secure software development lifecycle (SecSDLC).

SE/Software Project Management
❖ SE-05. Investigate the risks in using third- party applications, software tools, and

libraries.

SE/Requirements Engineering
❖ SE-07. Implement the requirements for a secure software system.

SE/Software Design
❖ SE-09. Analyze an existing software design to improve its security.
❖ SE-10. Describe the cost and tradeoffs associated with designing security into software.

SE/Software Verification and Validation
❖ SE-14. Design a test plan that validates software security.

SF/Computational Paradigms
❖ SF-03. Investigate security implications related to emerging computational paradigms.

SF/Cross-Layer Communications
❖ SF-06. Investigate defects in a layered program using tools for program tracing, single

stepping, and debugging.

SP/Social Context
❖ SP-04. Investigate social engineering attacks and the types of bad actors who might
❖ perform them.

SP/Professional Ethics
❖ SP-08. Support the ethical responsibility of ensuring software correctness, reliability, and

safety.

SP/Privacy and Civil Liberties
❖ SP-13. Investigate threats to privacy rights in personally identifiable information (PII).
❖ SP-15. Analyze technological solutions to privacy concerns.

SP/Security Policies, Laws and Computer Crime
❖ SP-20. Investigate laws applicable to computer crimes.
❖ SP-21. Examine the motivation and ramifications of cyber terrorism and criminal

hacking.
❖ SP-22. Write a company-wide security policy.

86

Appendix B

Bloom’s Revised Taxonomy
The foundational Taxonomy of Educational Objectives: A Classification of Educational Goals
was established in 1956 by Dr. Benjamin Bloom, an educational psychologist, and is often
referred to as Bloom's Taxonomy. This classification divides educational objectives into three
learning domains: Cognitive (knowledge), Affective (attitude) and Psychomotor (skills). In 2000,
Lorin Anderson and David Krathwohl updated Bloom’s seminal framework to create Bloom’s
Revised Taxonomy, focusing on the Cognitive and Affective Domains. As described below, the
ACM Committee for Computing Education in Community Colleges (CCECC) has adopted
Bloom’s Revised Taxonomy for the assessment of student learning outcomes in its computing
curricula.

Table 6 Measurable Action Verbs of Bloom's Revised Taxonomy, Cognitive Domain

Remembering Understanding Applying Analyzing Evaluating Creating
Define Classify Apply Analyze Appraise Assemble

Duplicate Convert Calculate Attribute Argue Construct

Find Demonstrate Carry out Categorize Assess Create

Identify Describe Edit Compare Choose Design

Label Differentiate Diagram Contrast Critique Develop

List Discuss Execute Decompose Debate Devise

Locate Exemplify Illustrate Deconstruct Defend Formulate

Memorize Explain Implement Deduce Estimate Hypothesize

Name Infer Investigate Discriminate Evaluate Invent

Recall Interpret Manipulate Distinguish Judge Make

Recognize Paraphrase Modify Examine Justify Plan

Retrieve Report Operate Integrate Support

Select Summarize Perform Organize Test

State Translate Produce Outline Value

 Solve Structure Verify

 Use

 Write

CCECC.ACM.org

	Table of Contents
	Acknowledgements
	Introduction
	Overview of the Curricular Development Process
	Survey Input
	Two-Year/Community College Environment
	Diversity in the Computing Profession
	Cybersecurity in Computing Curricula
	Ethics and Professionalism
	Characteristics of Computer Science Graduates
	Internationalization
	Assessment
	Articulation and Pathways
	Transfer Programs
	Career Programs
	Computer Science Laboratory Experience
	Mathematics Requirements
	Laboratory Science Requirements
	Student Support Services

	The Body of Knowledge with Assessment Metrics
	Organization of the Body of Knowledge
	Assessment of Student Learning Outcomes

	Knowledge Areas
	Algorithms and Complexity Knowledge Area (AL)
	Architecture and Organization Knowledge Area (AR)
	Computational Science Knowledge Area (CN)
	Cybersecurity Knowledge Area (CYB) – IAS in CS2013
	Discrete Structures Knowledge Area (DS)
	Graphics and Visualization Knowledge Area (GV)
	Human-Computer Interaction Knowledge Area (HCI)
	Information Management Knowledge Area (IM)
	Networking and Communications Knowledge Area (NC)
	Operating Systems Knowledge Area (OS)
	Parallel and Distributed Computing Knowledge Area (PD)
	Platform-based Development Knowledge Area (PBD)
	Programming Languages Knowledge Area (PL)
	Software Development Fundamentals Knowledge Area (SDF)
	Software Engineering Knowledge Area (SE)
	Systems Fundamentals Knowledge Area (SF)
	Social Issues and Professional Practice Knowledge Area (SP)

	Correlating Programs to the Computer Science Transfer Curriculum
	Mapping CS Transfer to Other Curricula and Frameworks
	Bibliography
	Glossary of Terms
	Appendix A
	Cybersecurity-related Student Learning Outcomes in the Computer Science Transfer Curriculum
	Appendix B
	Bloom’s Revised Taxonomy

