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The scientific literature on automated gait analysis for human recognition has grown dramatically over the past
15 years. A number of sensing modalities including those based on vision, sound, pressure, and accelerometry
have been used to capture gait information. For each of these modalities, a number of methods have been
developed to extract and compare human gait information, resulting in different sets of features. This paper
provides an extensive overview of the various types of features that have been utilized for each sensing modality
and their relationship to the appearance and biomechanics of gait. The features considered in this work include

(a) static and dynamic (temporal) features; (b) model-based and model-free visual features; (c) ground reaction
force-based and finely resolved underfoot pressure features; (d) wearable sensor features; and (e) acoustic
features. We also review the factors that impact gait recognition, and discuss recent work on gait spoofing and
obfuscation. Finally, we enumerate the challenges and open problems in the field of gait recognition.

1. Introduction

High’st queen of state, Great Juno, comes; I know her by her gait.
The Tempest (Act 4, Scene 1)

Gait is one of many physical and behavioral traits of an individual
that can be used for recognizing a person. Gait refers to a person’s
manner of walking. A number of studies have established the potential
of using gait information to distinguish between individuals. Gait has
even been used in criminal cases to identify perpetrators based on their
walking behavior. Besides recognizing people, gait patterns such as the
Parkinsonian shuffle can be used to help identify and assess patholo-
gical conditions. Gait recognition has been defined as (Boyd and
Little, 2005) “... the recognition of some salient property, e.g., identity,
style of walk, or pathology, based on the coordinated, cyclic motions
that result in human locomotion.” The timeline and taxonomy depicted
in Fig. 1 indicate the use of gait recognition in three main application
areas: gait analysis, gait forensics, and gait biometrics. As also high-
lighted in this figure, the introduction of new enabling technologies has
significantly advanced the objective study of gait.

Gait recognition and analysis has a rich history, and in recent years
is being considered as a biometric recognition tool. Aristotle was the
first person to take note of human and animal gaits, as recorded in his
work “On the Gait of Animals” (Aristotle, 350 BC), written in 350 BCE.
The study of locomotion was later taken up by Borelli, considered to be
a father of biomechanics. He related animals to machines using
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mathematics in his posthumous work (Borelli, 1679) that bears the
same title as Aristotle’s treatise. Wilhelm and Eduard Weber are re-
cognized for their work, “Mechanics of the human walking apparatus”
(Weber and Weber, 1836), where they proposed a number of hy-
potheses about human locomotion (some correct, some incorrect), in-
cluding the pendulum-like behavior of the forward leg motion. Later
that century, physiologist and inventor Etienne-Jules Marey of France
developed cameras that could take multiple distinct photos per second
exposed on the same negative, referred to as chronophotography. With
this, Marey captured a variety of human and animal movements. In the
same period, Eadweard Muybridge in the United States used a bank of
12 cameras to famously prove in 1878 that there is a point at which all
of a horse’s hooves are off the ground during a gallop. He also explored
human gait and other human movements with his equipment.

Gait analysis and enabling technologies made great strides in the
latter half of the 20th century. After World War II, Verne Inman and
Howard Eberhart began their collaboration and later helped establish
the Prosthetic Device Research Project at UC Berkeley, where they
performed basic research on the biomechanics of human locomotion.
Notably, their research led to a seminal paper in gait analysis offering a
unifying theory of gait, which proposed that the body moves its center
of gravity in a way that minimizes energy expenditure, as determined
by specific joint movements (Saunders et al., 1953). Jacqueline Perry
and David Sutherland contributed substantially to the developing field
of clinical gait analysis, evolving the model of the gait cycle and se-
parately setting up important laboratories in 1968 and 1974. Around
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Fig. 1. A taxonomy and timeline of gait recognition. On the left side is shown a list of enabling technologies. On the right, gait recognition and its advancements over time are shown,
dividing into three main areas: gait analysis, gait forensics, and gait biometrics. Some of the images used in this and other figures are from the Internet. URLs are provided in Appendix 1.

this time and afterward, video and force platforms to capture gait in its
visual and force delivery forms, respectively, were being developed.
The 3-axis force sensor underlying Kistler force plates was launched in
1969. It was used to capture the total XY and vertical forces delivered
by the foot while walking. In 1984, the well-known commercial 3D
motion capture technology business Vicon was founded. They in-
troduced a video-based motion capture system that reflected infrared
light off passive targets attached to key anatomical locations on the
body. The reflected images were captured by an array of surrounding
cameras to accurately localize the 3D positions of the points.

Gait as a means of discriminating between individuals was studied
in the late 1960s and 70s. As part of Patricia Murray’s gait analysis
research, she studied normal gait using chronophotography (Murray,
1967; Murray et al., 1964). She identified features of normal gait that
were consistent within an individual, but that varied between in-
dividuals. Adding to this, studies such as by Johansson (1973),

Cutting and Kozlowski (1977) and Cutting et al. (1978) demonstrated
the human ability to recognize individuals by their gait expressed using
point light displays. Such studies, beyond subjective experience and
Shakespearean anecdotes, provide the basis for forensic and biometric
gait recognition because they objectively affirm that gait is sufficiently
stable for a normal individual and distinctive between normal individuals.
Gait has been used as forensic evidence in court. Videos of gait at
crime scenes have been compared with gait videos of known suspects in
cases in the UK and elsewhere. Notably, Hadyn Kelly of London,
England, was perhaps the first to offer expert gait analysis testimony in
court for a robbery case in 2000 (Gui, 2016). At the time of writing this
paper, he runs a consultancy and training business called GaitForensics
that specializes in this area. Forensic podiatry is a broader discipline
that includes gait forensics. The American Society of Forensic Podiatry
was established in 2003, and its President John DiMaggio in a 2014
interview (Daugherty, 2014) estimated that members of the society are
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Fig. 2. Examples of sensor modalities used for gait recognition. Gait
features can be extracted from (a) a sequence of visual images or video
(often transformed into a silhouette or skeletal structure), (b) an un-
derfoot pressure image sequence obtained using a pressure mat
sensor, (c) an acceleration trace recorded by an accelerometer in a
mobile or wearable device, or (d) an audio recording.

Accelerometry

Pressure

contacted on 30 to 40 cases per year, and that “he expects that number
to grow as more police departments learn about the discipline”.

Gait as a biometric cue began first with video-based analysis
(Niyogi and Adelson, 1994) and, shortly afterward, by analysis of un-
derfoot pressures (Addlesee et al., 1997). A more recent addition is the
use of accelerometer data (Mantyjarvi et al., 2005) from mobile devices
such as smartphones. These three different sensory modalities for gait
recognition are illustrated in Fig. 2. Table 1 outlines state-of-the-art
features pertaining to each sensory modality. Early studies had few
subjects, but provided proof of concept. In the early 2000s, at a time
when digital video recording technology was becoming more accessible
and advanced, DARPA established the HumanID at a distance research
program, which boosted research in vision-based gait recognition. An
important outcome was the creation of the HumanID gait challenge
problem datasets (Phillips et al., 2002; Sarkar et al., 2005). The largest
of these was collected at the University of South Florida (Tampa) and
offered significant numbers of subjects with realistic environmental or

Table 1
State-of-the-art features by sensory modality.

walking condition variations (e.g., footwear, carrying briefcase,
walking surface, elapsed time). It is the most commonly used dataset in
the gait recognition literature to date. In vision-based gait recognition,
an important observation made in 2004 was that the average of a
person’s silhouettes (centered within the image) from a video sequence
is an effective way of representing their gait for recognition purposes
(Han and Bhanu, 2004, 2006; Liu and Sarkar, 2004). It has since be-
come a standard method against which new vision-based approaches
are commonly compared. In 2006, the first book on vision-based bio-
metric gait recognition was published by Mark Nixon (University of
Southampton), Tieniu Tan (Chinese Academy of Sciences), and Rama
Chellappa (University of Maryland), all researchers that have published
substantially in the area. Shortly afterward, Mark Nixon established the
University of Southampton’s “biometric tunnel” (Seely et al., 2008) to
simulate a controlled high-throughput environment such as an airport
tunnel, to evaluate automatic gait, face, and ear recognition ap-
proaches. In terms of recognition accuracy, early studies on vision-

Sensory odality Features

References

Vision Average silhouette or GEI

Histogram of gradient approaches

Joint position and trajectory-based
Underfoot Wavelet packet features on GRF
Pressures Center of pressure features

2D pressure images (barefeet)
Accelerometry Gait cycle template matching approaches

Inner products (of multi-axis sensors)
Audio Mel-frequency cepstral coefficients

Han and Bhanu (2004, 2006)

Liu et al. (2012), Hofmann and Rigoll (2012) and Hofmann et al. (2012)
Goffredo et al. (2010), Switonski et al. (2011a) and Yu and Zou (2012)
Yao et al. (2010), Moustakidis et al. (2008) and Mason et al. (2016)
Connor (2015)

Pataky et al. (2011) and Connor (2015)

Bours and Shrestha (2010) and Gafurov et al. (2010)

Zhong and Deng (2014)

Shoji et al. (2004) and Geiger et al. (2013)
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based approaches to gait recognition achieved high recognition rates,
but were evaluated only on a few subjects. Eventually, rates reached
above 90% with larger populations (e.g., 50 + subjects Hofmann et al.,
2012; Liu et al., 2012; Seely et al., 2008). In recent years, a major focus
has been to understand and account for the variations in gait between
recording sessions (e.g., clothing, walking speed), to make gait re-
cognition a robust biometric cue in real world scenarios. Databases for
gait research have also grown with time. Recently, an indoor gait da-
taset involving 4007 participants was collected (Iwama et al., 2012).
Identification accuracies ranging from the mid to high 90s were ob-
tained on this dataset (El-Alfy et al., 2014; Iwama et al., 2012). Another
recent development is the availability of video cameras that provide
depth information such as the Microsoft Kinect, which has been used in
a number of gait studies (e.g., Hofmann et al., 2012; Sivapalan et al.,
2011). Such low cost sensors provide additional discriminative gait
information that is easy to extract.

Although underfoot pressure sensors and accelerometers are po-
tential modalities for gait recognition, yet they have been relatively less
studied. Perhaps this is because they require some form of direct con-
tact with the subject, whereas vision-based approaches can recognize
people at a distance from the sensor. Recent technological advances
may increase research in these areas. The Bio_Sole concept introduced
by “autonomousID”, a Canadian startup company, measures foot
pressures using an insertable insole and emits a signal indicating
whether or not the wearer is the “owner”. This could be used as a smart
ID badge at controlled access points. Vera-Rodriguez and Mason of
Swansea University have studied and reported extensively on recogni-
tion using similar data (Vera-Rodriguez et al., 2013a), finding that
single footsteps can be very distinctive. Stepscan Technologies Inc.,
another Canadian startup, has recently brought to market its high-re-
solution (5mm) and modular pressure-sensitive floor tiles, providing
sufficient floor coverage to capture underfoot pressure from multiple
consecutive footsteps naturally and unobtrusively. Jung of the Korean
university KAIST has repeatedly demonstrated the value of high-re-
solution pressure information for gait recognition (e.g., Cho et al.,
2012; Jung et al., 2004). The remarkable rise of the smartphone (and
even smartwatch), with its internal sensors, has increased the potential
applicability of wearable sensors for security applications. This decade-
old gait recognition from smartphone sensors was largely advanced by a
group at Gjgvik University College, involving Gafurov, Derawi, and
Bours who studied a variety of issues including gait covariates and gait
impersonation or spoofing (Bours and Shrestha, 2010; Derawi et al.,
2010b; Gafurov et al., 2007).

In this paper, we focus on gait recognition as a biometric cue. We do
so by reviewing several gait recognition modalities and their features.
By modalities, we refer to the different sensing modes including vision,
underfoot pressure, and accelerometry. By features, we mean unique
and distinguishing measures extracted from the raw data recorded by
these modalities.

The paper proceeds as follows. In the next section, we briefly cover
the biomechanics of gait and what it means for gait recognition.
Following that, Section 3 reviews the various gait recognition mod-
alities in the literature. In each of these we highlight important types of
features and their correspondence to the biomechanics of gait. In
Sections 4 and 5 we discuss the issues of gait covariates and spoofing.
Section 6 wraps up the survey with a discussion on the challenges and
open problems in gait recognition. The present survey differs from other
gait biometric surveys (e.g., Boyd and Little, 2005; Makihara et al.,
2015; Nixon and Carter, 2006; Sprager and Juric, 2015) by including
more modalities and focusing much more on the content of feature sets
than on feature reduction, classification, and fusion techniques. Instead
of reporting only the most popular features, we cover many different
and, perhaps, lesser known feature sets to capture as many distinctive
aspects of gait as possible. It is hoped that doing so will guide future
work to combine features that overcome the limitations of any one
modality and arrive at practical systems that take advantage of the
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unobtrusive nature of gait recognition.
2. Understanding and characterizing gait

What characterizes’s one’s gait? Since we are interested here in
identifying the collection of gait features that uniquely identify in-
dividuals, it is worth understanding the various factors that influence
the generation of gait. Several studies indicate that people can deduce
not only the identity of a person (Cutting et al., 1978; Johansson, 1973;
Stevenage et al, 1999) but also their gender (Kozlowski and
Cutting, 1977) based on their walk. Some gait recognition techniques
can even distinguish between people of different ethnicity (Zhang et al.,
2010), which might be explained by the fact that some gait analysis
parameters have been shown to change with ethnicity (Al-Obaidi et al.,
2003; Ryu et al., 2006). This could be a result of cultural or sociological
influences, although it is clear that gait features are predominantly
dictated by physical traits. Indeed, stride length, joint angle ranges,
center of mass, etc., will be influenced by skeletal structure and mus-
culature, as discussed further below. The act of walking is also influ-
enced by emotional state (Roether et al., 2009), although features of
gait induced by emotions will be transient and, therefore, of less in-
terest here, except as a potential gait covariate (Janssen et al., 2008;
Montepare et al., 1987).

Simple walking is a finely choreographed action, coordinating the
timely activation of a large collection of muscles over a complex bone
and joint structure to deliver an energy efficient form of locomotion.
Diagrammed in Fig. 3, the field of gait analysis breaks the standard
walking (gait) cycle (Whittle, 2007) into seven stages and two phases:
the swing and stance phases. As the legs travel through this pattern, the
arms swing in phase with the opposite leg, and the trunk moves up and
down and side to side as it moves its center of mass toward the sup-
porting limb to maintain balance. The foot itself is a complicated net-
work of bones and muscles, and is the body’s interface with the walking
surface. The spatiotemporal pattern of forces delivered to this surface is
the net effect of those invoked during gait. The style of delivery and
one’s foot shape can significantly define one’s gait and its quality, as
attested to by the prevalence of the orthotics industry.

Since gait largely proceeds from a mechanical basis, it would seem
straightforward to suggest that people of similar gender, age, ethnicity,
etc. will have gait similarities partly because of similarities in their
physique. For example, men tend to be taller and more muscular than
women and so have a longer stride length and higher natural walking
speed (Oberg et al., 1993). Walking speed also declines with age (re-
gardless of gender) due to a reduction in stride length rather than ca-
dence (Oberg et al., 1993; Samson et al., 2001). Samson et al. (2001)
determined that this was partly due to height and weight differences
between young and old subjects. The differences in physique between
ethnicities may also influence gait parameters. Al-Obaidi et al. (2003)
found that young Kuwaiti men were slightly shorter and substantially
heavier on average than young Swedish men. Yet, the Kuwaiti men also
walked faster than the Swedes when asked to walk quickly and had a
longer stride length regardless of walking speed. In this case, increased
height does not account for increased stride length, but other physical
or perhaps cultural features may be at play.

Gait can temporarily vary with changes in physical features or cir-
cumstances such as walking speed and load bearing. The length and
volume of a foot can vary about 5 mm and 4.4%, respectively, from
morning to evening (Nah, 1985; Nakajima et al., 2000), which may
slightly affect weight distribution. Gait can also shift during the “warm
up” period after a lengthy stationary period, such as rising after sleep.
Walking speed affects gait (Jordan et al., 2007; Orendurff et al., 2004;
Rosenbaum et al., 1994; Taylor et al., 2004) to the degree that a
number of gait recognition approaches have been developed or ad-
justed to overcome it (e.g., Guan and Li, 2013; Kusakunniran et al.,
2012; Lee et al., 2007; Yoo and Nixon, 2011; Yu and Zou, 2012).
Adding a load can also modify gait parameters (Birrell et al., 2007;
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Gait Forces

Fig. 3. The mechanical nature of gait. The gait cycle is divided into two phases made up of seven periods, demarcated by seven events with reference to a particular limb (in black), as
shown in the upper panel. In the lower-left panel, muscles from the hip, leg, and foot are recruited at various times to provide the coordinated torque forces needed to generate this series
of lower body movements and shift the center of gravity. The foot shape, footwear, and the walking surface influence gait by affecting the interface between gait forces and the ground.

Anatomical images of the human leg and foot are taken from Gray’s Anatomy, 20th edition.

Majumdar et al., 2010; Qu and Yeo, 2011) including their consistency
(Hsiang and Chang, 2002), although small loads of 10% body weight or
less do not appear to have a very large effect on gait recognition
(Moustakidis et al., 2009; Sarkar et al., 2005). Adding a significant load
encourages a reduction in walking speed (Diedrich and
Warren Jr, 1998), so these two variables are related.

The apparent distinctiveness of the gait will be affected by its gen-
erative influences and our ability to reliably measure them. It is the goal
of gait recognition, then, to capture the distinctive features of this
biomechanical process, some of which may be observable from only
certain views and by specific sensing modalities. Murray et al. (1964)

and Murray (1967) characterized gait using 20 specific parameters,
many appearing to have within-subject consistency and between-sub-
ject variability. These included pelvic, chest, and ankle rotation, and
the serial displacement of several body parts. Many gait movements are
evident visually, given an appropriate view angle. The measurement of
forces or pressures on the walking surface will capture the net effects of
ongoing muscle contractions and the timing thereof. Wearable accel-
erometers will sense the linear and angular acceleration of limb seg-
ments where they are placed. These sensing modalities, however, have
their limitations. For videos of gait, viewing angle and contrast/
brightness conditions may change, and subject clothing can obscure or
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change the gait appearance. For underfoot pressure sensors, footwear
can redistribute the forces of the barefoot. For audio, the sound of the
foot contacting the surface can be buried in background noise, and so
on for other modalities. All of these covariates may at first seem to
discourage the use of gait as a biometric cue. As will be shown, how-
ever, a number of these issues have been effectively addressed and will
continue to be investigated.

3. Biometric gait recognition features

Based on the aforementioned commentary, it would seem that to
capture the distinctiveness of gait, the various sensing modalities
should capture biomechanical measures pertaining to the body’s phy-
sical dimensions, its body part masses, or the time-varying muscle-
generated forces applied during gait. In the past two decades, there
have been a large number of such measures or features proposed and
evaluated. In the next several sections, we review these in detail. Before
doing so, we give a brief primer on common terminology and our re-
porting methodology.

Performance metrics: Most gait recognition approaches are designed
to generate a match score that indicates the degree of similarity be-
tween two gait samples. This match score is then used to render a de-
cision by the gait recognition system. In the identification mode of op-
eration, the most commonly reported metric in the gait biometric
literature is the identification rate or the classification rate (CR). It
simply indicates how likely a random test or “probe” sample is asso-
ciated with the correct person in the labeled “gallery” based on the
match scores generated. In the verification mode of operation, the
generated match score is compared against a threshold in order to de-
termine if there is a match or not. The false acceptance rate or FAR
denotes how likely a user claiming to be someone else is incorrectly
accepted or “verified” as that alternate identity. It’s companion, the
false rejection rate or FRR, denotes how likely a user claiming to be
himself is incorrectly rejected. Changing the matching threshold, results
in a set of FAR and FRR values that can be plotted in a two-dimensional
graph referred to as the Detection Error Tradeoff (DET) curve or the
Receiver Operating Characteristic (ROC) Curve. A common summary
measure called the equal error rate (EER) reports the point on the DET
curve at which the FAR equals the FRR. More recently, however, re-
porting only EER values in the context of biometric performance has
been discouraged (Jain et al., 2015). Identification can be viewed a
multi-class problem, while verification can be formulated as a two-class
problem (DeCann and Ross, 2012). For clarity and brevity, we primarily
report CRs and EERs in this paper, although these measures must be
carefully interpreted. There are metrics which we do not report in-
cluding expected confusion (Bobick and Johnson, 2001) and the cu-
mulative match characteristic (Phillips et al., 2000). For the latter, we
merely report the rank-1 result as the CR.

Data: While many studies use data collected in their own labs, a
number of openly available datasets from several modalities have been
prepared for evaluating gait recognition techniques, especially for
challenging covariates like walking speed and viewpoint. Where a re-
sult is based on a public gait database, we refer to it by name. We
always report the number of subjects in the evaluated dataset because it
indicates the significance of the results. So, studies with large number of
subjects exhibiting high CRs, low FRRs, or low EERs are among the
most effective (but see Jain et al. (2015) for guidelines involving bio-
metric system evaluation). The number of gallery/probe instances per
subject has less of an effect on these measures, but is relevant when
considering statistical confidence on results such as given by the “rule
of 30” (Doddington et al., 2000).

Feature reduction and classification methods: While our focus is on the
extracted features of gait, results for each method are also influenced by
the associated feature reduction methods and classifiers used. Because
the present focus is on discerning how features relate to the bio-
mechanics of gait and on capturing distinctive aspects of gait, the exact
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classification/verification rates are not as critical as recognizing effec-
tive versus ineffective features and distinct versus similar features.
Nevertheless, we report feature reduction and classification methods in
each study for the sake of completeness, by brief acknowledgment and
often through their acronym only. For additional details on a specific
method, the reader is directed to the associated paper for which the
results are reported.

3.1. Gait features from video

Video is an obvious sensory means of perceiving gait. Sometimes
referred to as the “machine vision” approach, it can be subdivided into
two general categories: model-based and model-free. Model-based ap-
proaches usually attempt to fit a walking model (e.g., a multi-segment
skeleton) to the video frames and then compute features based on the
model parameters. Model-free approaches, however, extract features
directly from the video imagery or silhouette images derived therefrom.

3.1.1. Model-free features: moving silhouettes

Early on in gait recognition research, it seemed appropriate to
segment the walker’s pixels from the background pixels, which resulted
in the binary silhouette shown in Fig. 4. This is the most common data
preprocessing step in vision-based gait recognition studies. Table 2
captures a summary of these studies, describing the feature sets ex-
tracted, their performance, the number of participants in the gallery,
and the study reference. These studies are also reviewed in the text of
this section. Murase and Sakai (1996) extracted silhouettes from video
of gait and used Principal Components (PCs) to reduce the 3D (x, y, and
time) data down to 16 features per time instance. They achieved 100%
recognition accuracy (7 subjects, Linear Time Warping, 1NN).
Huang et al. (1999) extended this approach to include canonical ana-
lysis (CA), which encouraged separation between the classes (i.e., in-
dividuals). They achieved 100% (6 subjects, INN by class means) on
the same dataset, but had much improved the class separation.
BenAbdelkader et al. (2001) computed a silhouette self-similarity ma-
trix, that is, the pair-wise correlation between each silhouette image
and all others in the same gait sequence. This achieved a CR of 93% (7
subjects, PCA, kNN). Collins et al. (2002) extracted, cropped, and scaled
key frames from the image sequence that represented specific poses in
the gait cycle. They evaluated these as features on several different gait
databases, giving promising results: 87% (UMD outdoor dataset
(Chalidabhongse et al., 2001), 55 subjects, 1NN), 93% (University of
Southampton dataset (Nixon et al., 2001), 28 subjects, 1NN), and 100%
(MIT dataset (Lee and Grimson, 2002), 24 subjects, 1NN). Liu and
Sarkar (2006) normalized binary silhouette sequences according to a
generic or common walking model they computed from many different
subjects’ sequences using a hidden Markov model (HMM). Like
Huang et al. (1999), they also used a linear discriminant subspace to
enhance between-subject differences in each key frame. When testing
on the USF humanID gait challenge database (Sarkar et al., 2005)
(hereafter referred to as the humanID gait database), they achieved
substantially better performance than the dataset baseline when the
walking surface condition was changed (60% over 40%, 122 subjects,
1NN) and when the carrying condition was changed (89% over 62%,
122 subjects, 1NN). Their algorithm also compared favorably on the
CMU MoBo database (Gross and Shi, 2001) (84%, 25 subjects, 1NN), in
which various walking speeds are present.

Body width or build: Several approaches have collapsed the silhou-
ette in ways that appear to capture the person’s width or build.
Kale et al. (2002) extracted the silhouette width of each image row from
five key frames in a video sequence and modeled this with an HMM.
With this approach they achieved a CR of 89% (5 subjects) on Little and
Boyd’s data (Little and Boyd, 1998), 56% (43 subjects) on the UMD
database, and as much as 70% (25 subjects) on the CMU MoBo database
(training and testing on same pace data). Cuntoor et al. (2003) used a
vector of silhouette widths (example shown in red in Fig. 4) of the leg
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Binary Silhouette
and Features

Outline and
Shape Features

Average Silhouette
(Gait Energy Image)

Fig. 4. Gait features derived from silhouettes in video sequences. From an image sequence, a binary silhouette of the person walking is first extracted. Then features can be extracted from
the sequence of silhouettes, such as body segment lengths and width features. The outline of the silhouette can also be extracted and characterized using a variety of methods. An average
silhouette can be substituted for the sequence of binary silhouettes, although it has less temporal information. The original image and silhouette shown here are part of the humanID gait

database. (For interpretation of the references to color in the text, the reader is referred to the web version of this article.)

Table 2
Representative model-free gait recognition feature sets.

Feature set Performance Subjects Reference

Silhouette PCs 100% CR 7 Murase and Sakai (1996)
Silhouette key frames 87, 93, 100% CR 55, 28, 24 Collins et al. (2002)
Silhouette row widths (HMM) 89, 56, 70% CR 5, 43, 25 Kale et al. (2002)

Row width averages (GPCA) 0.9% EER 16 Cattin (2002)

Areas of partial silhouettes (CA) 75.4% CR 114 Foster et al. (2003)

Body part lengths and height 91-100% CR 18 Johnson and Bobick (2001)
Average silhouette or GEI 44-57% CR 71 Han and Bhanu (2004, 2006)
GEI from 2D-projected 3D silhouettes and multiple views 96.6-99.6% CR 103 Seely et al. (2008)
Chrono-gait image 51.3% CR 122 Wang et al. (2010) and Liu et al. (2012)
Gradient histogram energy image 79.8% CR 122 Hofmann and Rigoll (2012)
Depth silhouettes (radon trans., Krawtchouk moments, GA) 57.4% CR 122 Toannidis et al. (2007)

Gait energy volumes 95% CR 25 Sivapalan et al. (2011)
Histogram of gradients on depth silhouettes 97.7% CR 176 Hofmann et al. (2012)
Fourier descriptors (FDs) of silhouette outline 85% CR 114 Mowbray and Nixon (2003)
Histogram of normal vectors on silhouette outline 97.5% CR 3141 El-Alfy et al. (2014)




P. Connor, A. Ross

region. These features performed well on the CMU dataset giving a 91%
CR (25 subjects, PCA, k-means, HMM) but not as well on the UMD
dataset giving a 31% CR (44 subjects). Instead of a person’s horizontal
coverage, (Cattin, 2002) computed “histogram” or width features from
silhouettes as the sum of silhouette pixels in each row (depicted by
green arrows in Fig. 4). Cattin took the mean, standard deviation, and
the 2D Fourier transform of each row’s width over a gait cycle. The
mean performed best, achieving a very low EER of 0.9% (16 subjects,
GPCA). The standard deviation and frequency domain features were
also discriminative (EER of 4.3% and 7.8%, respectively).
Hong et al. (2007) used the same histogram features with dynamic time
warping (DTW) on the CASIA-A (former NLPR) database (Wang et al.,
2003b) and achieved 96.25% correct classification (for the 0 and 45°
viewpoints, 20 subjects, 1NN). Lee et al. (2007) explored a slightly
different approach based on self-similarity of images to a specified key
frame, which they referred to as a “shape variation-based frieze pat-
tern”. These features are computed by taking the difference between a
silhouette key frame and the silhouette video frames and summing
along the horizontal or vertical axis, thereby collapsing the differenced
image. These features, along with a measure of their half gait cycle-
symmetry, achieved an average CR of 85% on the CMU MoBo database
(25 subjects, 1NN based on a special cost function). Foster et al. (2003)
computed areas of specific parts of the silhouette (centered horizontal
and vertical rectangles, bottom half, and full area) as features over time.
They achieved between 16 and 30% recognition (114 subjects, CA,
kNN) for individual areas and a high CR of 75.4% for the combined
areas.

Physical dimensions: The silhouette has also been used to extract
features of body appearance such as height and the distance between
certain body parts, shown by blue arrows in the lower-left of Fig. 4.
Johnson and Bobick (2001) extracted height, head-to-pelvis distance,
maximum leg length, and stride length. For several different view
perspectives, and when scaling parameters to a common view, they
achieved classification rates between 91% and 100% (18 subjects,
maximum likelihood classifier based on a Gaussian fit to each in-
dividual’s data). BenAbdelkader et al. (2002) extracted height, stride
length, and cadence from silhouettes. Together, these features achieved
47% and 65% CRs for the side and oblique views (41 and 17 subjects,
1NN), respectively. When the height information was removed, rates
dropped to 18% and 51%, showing height to be a discriminative fea-
ture.

Average Silhouette: Another way in which the spatiotemporal binary
silhouette has been transformed is by averaging it over a complete gait
cycle, as shown in the lower-right panel of Fig. 4. When doing this,
Liu and Sarkar (2004) found the average silhouette matching perfor-
mance to be at par with the baseline algorithm on the humanID gait
database (Phillips et al., 2002; Sarkar et al., 2005), which is based on
similarity matching of the silhouette sequences between gallery and
probe samples. The benefit, however, is that the average silhouette is
far more efficient to use and store than a video sequence. Han and
Bhanu (2004, 2006) dubbed the average silhouette (horizontally
aligned and scaled) as the “Gait Energy Image” (GEI) and employed it
on the humanID gait database confirming Liu and Sarkar’s finding by
getting an average of 44% (71 subjects, 1INN) for direct template
matching, with the average baseline result being 42%. However, they
also achieved an average of 57% (PCA, MDA) by including a statistical
matching approach. The substantial improvement is due to better per-
formance on the more challenging covariates. It is the inclusion of these
covariates that makes the humanID gait database so challenging and
resulting in lower CRs than most other databases. Tao et al. (2007)
convolved average silhouettes with a bank of differently scaled and
oriented Gabor filters to get a 4th-order tensor, and summed over one
or two of the Gabor dimensions (either scale, direction, or both) to get
2D and 3D feature sets. They applied these to the humanID gait data-
base and achieved a best average classification rate of 60.6% (122
subjects, GTDA). Seely et al. (2008) synthesized an average silhouette
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(centered and normalized for size) for a side view that was computed
from silhouettes extracted from multiple viewpoints. On its own, this
gave a CR of 96.6% (103 subjects, 1NN). Without size normalization,
the classification result of the centered data improved to 98.6%. They
also concatenated the average silhouettes from three different views
(side, front, and top) and achieved a further improvement in perfor-
mance (99.6%). The average silhouette or GEI has become the baseline
model-free feature representation against which new methods are
usually compared. Iwama et al. (2012) introduced the OU-ISIR Large
Population dataset of 4007 participants, they evaluated several dif-
ferent model-free features of which GEI gave the best CR of 94.24%
(1NN, 3141 subjects, data from 4 different camera angles) and an EER
of about 1.2%.

Other 2D image silhouette derivatives: Taking a cue from the GEI
study, a number of related 2D image model-free representations have
been proposed. Bashir et al. (2009) introduced the gait entropy image
(GEnl), which gives each pixel an “uncertainty” value. The more stable
a given pixel is across images in the gait cycle, the smaller the entropy
value, and thus high values highlight areas of motion and the body
boundary. It performed comparably to GEI on several datasets, but
improved on several of their covariate cases. On the bag-carrying case
of the CASIA-B gait database (Yu et al., 2006), it improved on GEI’s
60.2% (124 subjects, GEI, PCA, MDA, 1NN) achieving a CR of 80.1%
(GEnlL, PCA, MDA, 1NN). On the coat-wearing case of the SOTON small
dataset C (Shutler et al., 2002), it improved on GEI's 72.7% (11 sub-
jects), reaching 81.8%, and on the briefcase-carrying case of the hu-
manlID gait database outperformed GEI's 62% (Han and Bhanu, 2006)
yielding 82%. An improved result of 93% on this briefcase-carrying
case (Liu et al., 2012, 122 subjects) was achieved using the Chrono-Gait
Image (CGI) (Wang et al., 2010). To compute the CGI, the binary sil-
houettes in the sequence are given an RGB color according to their time
stamp and then averaged to recapture some sense of the time sequence
that is lost when taking the average silhouette from the sequence. An-
other related approach is the use of histograms of orientation gradients
(HOG) (Dalal and Triggs, 2005; Liu et al., 2012), which has proven
popular in other computer vision tasks. Here, the orientation gradient,
or average direction (%,y) of intensity change is computed for each
pixel. For many individual cells or areas of the image, a histogram of
the gradients is created and normalized for contrast. In Liu et al. (2012),
combining the HOG representations of the GEI and CGI images
achieved an average CR of 59.4% (122 subjects, PCA, LDA, 1NN) on the
humanlID gait database. Hofmann and Rigoll (2012) proposed another
histogram based representation. Their data source used the original
RGB frames masked by the silhouette to show only the walkers’ pixels.
For each pixel, they computed the gradient orientations and generated
9-bin orientation histograms over non-overlapping 8x8 pixel regions
that were normalized by neighboring histograms. The histograms were
then averaged over a full gait cycle of images to produce the “Gradient
Histogram Energy Image”. They tested their method on the humanID
gait database and achieved a high average CR of 79.8% (122 subjects,
PCA, LDA, 1INN), substantially better than previous methods. Their
most significant improvement was in the covariate cases where the
probe videos differed from the gallery videos with respect to the fol-
lowing attributes: walking surface, shoe, view, and carrying of a
briefcase. One possible reason for the overall improvement is the ad-
ditional information embedded in the original imagery. It may also be
partly due to the method capturing something of the details of the
clothes. The method is quite ineffective on the clothing and time cov-
ariates, where the time factor is likely also affected by the change in
clothing between recording sessions.

Depth: Instead of using monochromatic or color imagery, some
studies use depth imagery, which can be captured using consumer
motion capture devices such as Microsoft Kinect or industrial-level lidar
systems (Galai and Benedek, 2015). Similar to Hofmann and
Rigoll (2012), Ioannidis et al. (2007) assigned real values to the sil-
houette pixels. However, the silhouette values were based on the



P. Connor, A. Ross

distance from the center of mass and used the “geodesic” distance. From
these silhouettes, they extracted generalized radon transform features,
which take the sum of pixel values projected onto a line; several lines at
various angles were used for this purpose. From these, they extracted
Krawtchouk moments and used a genetic algorithm for classification.
For the humanID gait database (Sarkar et al., 2005), they achieved an
average CR of 57.4% (122 subjects, subsets A-G).
Sivapalan et al. (2011) proposed to use average silhouette volumes, or
“Gait Energy Volumes”. They showed how volumes could be computed
either from a depth camera such as the Microsoft Kinect or from two or
more standard cameras by silhouette extraction and registration. Then
they centered, scaled, and averaged these volumes over time. Using the
CMU MoBo database, the gait energy volumes achieved a CR as high as
95% (25 subjects, PCA, MDA, 1NN), which was as good or better than
GEL Hofmann et al. (2012) computed a HOG representation using
depth imagery. On their large dataset of 176 subjects recorded with a
Microsoft Kinect (version 1), they achieved a 97.7% CR (normal gait
condition, 1NN) which was substantially better than that of GEI at
69.3% and GEIs based on silhouettes extracted from depth data at
90.1%. This approach also outperformed gait energy volumes
(Sivapalan et al., 2011), which achieved a CR of 79.6%.

Body shape: The body shape itself has been shown to be dis-
criminative. Wang et al. (2003b) investigated the shape of silhouette
outlines from several camera angles. The outline boundary points were
translated into distances from the outline centroid, as illustrated in the
lower-middle panel of Fig. 4, and PCA was used to reduce the di-
mensionality (15 features). For identification, they achieved a 94% CR
(20 subjects, PCA, INN by class means) for the frontal view of the
CASIA-A database. The authors also extracted several physical features
(gait period, stride length, height, ratio of chest width to body height)
which increased the CR of the side view from 75% to 82.5%. Wang et al.
(2003a), using the same database, employed Procrustes shape analysis
on the outline, rather than mere distance to the centroid. The approach
achieved a best result (frontal view again) of only 90% this time (ENN).
For the side view, however, the accuracy improved to 89% (from 75%)
without the help of the physical dimension features employed before
(see also Wang et al., 2002). Several studies have extracted Fourier
descriptors (FDs) of the silhouette outline, which define the violet
contour of the lower-middle panel of Fig. 4. Yu et al.’s (2004) use of key
FDs on the SOTON gait database (Shutler et al., 2002) achieved a CR of
85.2% (114 subjects, INN). On the same database, Mowbray and
Nixon (2003) also used FDs and achieved an 85% CR.
Kusakunniran et al. (2011) used a novel “higher-order shape config-
uration” and Procrustes shape analysis. Testing on the CASIA-C gait
database (Tan et al., 2006) (50 subjects, walking fast, normal, and
slow), they evaluated various speed combinations of gallery and probe
datasets and achieved CRs between 92% and 98% (I1INN). El-
Alfy et al. (2014) used a histogram of normal vectors (HoNV) to de-
scribe the shape of the silhouette boundary. They computed a set of
vectors that are normal to the silhouette boundary, divided the image
into a grid, made a histogram of the normal vectors within each grid
cell and concatenated the histograms together. Finally, they averaged
the histograms over all frames in a gait cycle. Testing on the OU-ISIR
Large Population dataset, their method outperformed HOG and GEI,
achieving a low EER of 0.58% (1NN, 3141 subjects) and a CR of 97.5%
based on video from four different camera positions and angles.

3.1.2. Model-based features: body models fitted to video

Many different methods have been used to derive a skeletal or body
model from video sequences. The goal is to identify key anatomical
locations accurately and efficiently. Most approaches are complex and
computationally expensive as they try to optimize the fit of some
number of skeletal segments or volumes to the data. Alternatively,
several gait recognition studies use the Microsoft Kinect and its API,
which is one of several commercial marker-less motion capture systems
becoming readily available. An example of this is shown in Fig. 5. After
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fitting the skeletal model, regardless of the approach, the extraction of
joint positions and angles is straightforward. Table 3 summarizes a
number of features based on this type of information. Note that most
model-based gait recognition approaches use their own distinct model-
fitting approach, which would seem to complicate cross-comparisons
between studies with similar model-based features.

Early video-based gait research involved fitting shapes to the ima-
gery and using their parameters as features. Niyogi and Adelson (1994)
extracted the side-view outline of a walker using four splines which
capture the front contour, back contour, and two inside leg contours.
With the positions traversed by these contours as features, they
achieved 81% correct classification (5 subjects, 1NN). Little and
Boyd (1995) used optic flow to fit two ellipses to the motion of the
walker. Although they did not perform recognition, they computed the
vertical and torque phase differences between the centroids of the el-
lipses and showed that these show some degree of similarity between
walks of the same subject. In a subsequent study (Little and
Boyd, 1998), they again fit two ellipses to the optical flow data and
derived a series of phase features from them (the centroid and elon-
gation, and inter-ellipse differences thereof). For a subject pool of 6,
they achieved CRs as high as 95.2% (5 ellipse features, ENN). Lee and
Grimson (2002) expanded upon this approach by fitting seven ellipses
to various regions of the binary silhouette. From each region, the fol-
lowing attributes were extracted: centroid, elongation, and major axis
orientation. Total height was also computed. From these attributes, the
mean, standard deviation, and Fourier spectrum over all frames in a
video sequence were used as features. For a reduced set (41 of 57) of the
mean and standard deviations features on the within-day dataset of the
CMU MoBo database gave 100% classification (25 subjects, 1NN).
When the data in the gallery vs. probe was taken from different days,
the CR plummeted to around 40%, however.

As in the silhouette-based features described earlier, features de-
scribing gait and specific body dimensions can also be derived from
skeletal models fitted to gait imagery. Tanawongsuwan and Bobick
(2003a) extracted stride length and cadence information from motion
capture data. Transforming these for classification at a fixed walking
speed, they achieved between 20% and 35% CRs (15 subjects, 1NN)
across different walking speeds using stride length, cadence, or both.
Preis et al. (2012) extracted step length and cadence among other
features from Microsoft Kinect (version 1) motion capture sensor data.
Step length and cadence together achieved a 55.2% CR (9 subjects,
C4.5, Naive Bayes). Bhanu and Han (2003) fit a 12-segment skeletal
model to the silhouette, and extracted segment lengths of the neck,
torso, upper arm, forearm, thigh, calf and foot. Classification rates in-
creased with the number of structural features to a maximum CR of
62% (8 subjects, 1NN). Bhanu and Han also extracted the mean and
standard deviation of joint angles (neck, upper arm, forearm, leg, and
thigh) and achieved a maximum CR of 72% when increasing the
number of angular features. Combining both types of features gave an
83% CR. Wagg and Nixon (2004) used mean gait parameter profiles
(e.g., average hip rotation angle over a gait cycle) to fit individuals’ gait
cycle to a multi-shape (ellipses and rectangles) model. With their
model, they extracted 63 features per gait cycle, defining parameters
for joint rotation models (45 features for hip, knee, and ankle) and body
size parameters (18 features). Performing statistical analyses, they
found that the lower knee width, ankle width, and cadence were the
most discriminative features. Classification accuracy on the SOTON
large gait database was 84% (115 subjects, 1NN) on indoor data and
only 64% (115 subjects, 1NN) on outdoor data. Yoo and Nixon (2011)
fit an 8-segment skeletal model (no arms) to digital video sequences on
the same SOTON gait database. From this model, they extracted 10
types of features: height, cycle time, stride length, speed, average joint
angles, variation of hip angles, correlation coefficient between the an-
gles of the right and left legs, and the center coordinates over the hip-
knee cycle. They achieved CRs of 96.7% (30 subjects, 1NN) and 84.0%
(100 subjects, 1INN). Dikovski et al. (2014), also using the Microsoft
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Fig. 5. Gait features derived from a skeletal model fitted to a video sequence. The image from a Microsoft Kinect (version 2) contains a 25-joint skeletal model fitted by the Microsoft
Kinect SDK. Joint positions are recorded from this model over time, here shown with a moving average filter applied to reduce joint position noise. Joint angles over time can also be
easily computed, from which additional features may be derived.

Table 3

Representative model-based gait recognition feature sets.

Feature set Performance  Subjects Reference

Fitting two ellipses 95.2% CR 5,6 Little and Boyd (1998)

Fitting seven ellipses 100% CR 25 Lee and Grimson (2002)

Body part lengths and 83% CR 8 Bhanu and Han (2003)
joint angles (12-
segment model)

Body part lengths and 84,64% CR 115,115 Wagg and Nixon (2004)
joint rotation model
parameters

Joint angle trajectories 73% CR 18 Tanawongsuwan and

Bobick (2001)

Joint position 96.9% CR 25 Switoniski et al. (2011a)
trajectories

Fourier magnitude and 79.4% CR 46 Ariyanto and Nixon (2011)

phase on joint angle
trajectories

10

Kinect sensor (version 1), evaluated a collection of segment length and
angular features (mean, max, min, and std of the time sequence data).
They found that the segment length features (89% CR, 15 subjects,
MLP) were more distinguishing than angular features (78%) and that
lower-body features (89%) were more telling than upper-body features
(81%). Ariyanto and Nixon (2011) extracted a model from 3D gait data
(laser scan) to determine height, stride length, and footstep pose
structural features. Height was most discriminative (41.3% 46 subjects,
1NN) followed by footstep pose (17.4%) and stride length (7.1%). The
best combination of these features gave a maximum of a 56% CR
(footstep pose plus height).

A key advantage of the model-based approach is that it provides the
most direct description of locomotion by providing joint angle and
position trajectories over time. Tanawongsuwan and Bobick (2001),
using hip and knee angle trajectories from marker-based motion cap-
ture data, achieved a 73% CR (18 subjects, 1NN, DTW).
Goffredo et al. (2010) fitted a skeletal model and, by assuming the walk
was in a straight line, transformed the joint position trajectories to a
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common (side) view. Initially testing on the SOTON database (Shutler
et al., 2002; 2000), where the recording camera always has a side view,
they used dynamic gait features (hip and knee angle traces) for re-
cognition and achieved a 95.8% CR (20 subjects, kNN). Testing on a
subset of the CASIA-B database (Yu et al., 2006) (65 subjects), where
viewing angle is variable, they achieved a 73.6% CR. Although their
approach achieved lower CRs than others (Bashir et al., 2008; Yu et al.,
2006) when the gallery and probe camera angles were the same, they
achieved 10s of percent higher CRs than the others when the gallery
and probe camera angles were significantly different. In two studies,
Switonski et al. (2011a, 2011b) extracted human motion through a
marker-based motion capture system. From these, they extracted gait
paths for the head, both feet and their average position, both hands, and
the base of the spine or root. The paths of the hands and feet were most
discriminative, followed by the root and lastly the head. These paths as
features achieved as high as a 96.9% CR (25 subjects, MLP). They also
evaluated velocity and acceleration along the paths, finding these to be
more discriminative than the raw position trajectories alone. In their
second paper, using 22 angular trajectories (position, velocity, and
acceleration), they achieved a CR of 98.0% (25 subjects, PCA, kNN).
Yu and Zou (2012) fit a 3D, 18-segment skeleton to single-camera video
of the CASIA-B database. For identification, thirteen joint position
trajectories were used as features, for subjects in several clothing con-
ditions. Accuracy was highest when subjects wore a thin coat (93%, 124
subjects, NPE, HCRF, SVM), slightly less with a thick coat (89%) and
less still with a backpack (85%).

Fourier-based methods have been used in several studies to ap-
proximate the gait trajectories to good effect. Cunado et al. (1997) used
the Hough Transform to determine the hip and knee angles from video
and computed the magnitude and phase spectra of the Fourier trans-
form from them. They found that the magnitude alone was not as dis-
criminative (50%, 10 subjects, 1NN) as combining the magnitude and
phase information (80%). A subsequent paper by Cunado et al. (2003)
employed a more detailed gait model. Taking the magnitude and phase-
weighted magnitude of the Fourier series describing the pattern of hip
rotation, they achieved CRs of 80% and 100% (10 subjects, same data
as previous study, 1NN), respectively. Yam et al. (2004) expanded on
this further, computing the magnitude and phase features for the ro-
tation of both the hip and the knee. These features achieved a maximum
CR of about 85% (20 subjects, 1NN) for walking and above 90% for
running. Bouchrika and Nixon (2007) investigated dynamic features of
gait by fitting an elliptical Fourier descriptors model to gait video. In so
doing, they extracted the joint locations as well as the movement. In
recognition, they included static body parameters (stride, overall
height, and height of body parts) and the hip and knee angular motions
as described by the phase-weighted magnitudes of the Fourier de-
scriptors. In total they achieved a 92% (20 subjects, kNN) CR. In a
second paper (Bouchrika and Nixon, 2008b), they extracted joint angles
over time using the same approach and then used feature subset se-
lection to reduce the number of features used for classification. Their
best result was 95.7% (20 subjects, kNN), derived from purely dynamic
features of gait. Ariyanto and Nixon (2011) took the thigh and shin
angles (sagittal and frontal plane) plus the center of hip rotation
throughout the gait sequence and computed Fourier magnitude and
phase features. From the abduction angle of the left thigh, right thigh,
and left shin along with the center of the hip position, a 79.4% CR (46
subjects, DTW, 1NN) was achieved, which proved better than the seg-
ment length features of the same study (a best CR of 56%). The right
thigh abduction angle, a frontal-view feature, was also particularly in-
formative alone (about as effective as height and footprint pose to-
gether), perhaps reflecting the width of one’s stance during gait. More
recently, Kova¢ and Peer (2014) used gait trajectories (angles, phase
differences, body part mass ratios, and distances between centers of
mass) from an 8-segment (no arms) skeletal model. The trajectories
were recast as Fourier descriptors and evaluated on the OU-ISIR gait
database A (Tsuji et al., 2010) which contains recordings of different

11
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walking speeds for each subject. With a transformation for walking
speed invariance and fusion of various features, they achieved about
95% (25 subjects, PCA, 1NN) CRs when the gallery and probe walking
speeds were within 2 km/h. Classification for running speeds (8-10 km/
h) also had high classification rates (usually high 90s or 100%), so such
features are at least as distinctive for running as for walking.

3.1.3. Correspondence to gait mechanics

Both model-based and model-free features tell us much about the
physical structure of the walker. In the model-based approaches, the
approximate length of each body segment is computed from joint po-
sitions deduced from the video. This appears to be the most accurate
and direct way of determining the lengths and positioning of body
segments, and can provide good recognition rates (Dikovski et al.,
2014; Wagg and Nixon, 2004), although it requires a computationally
expensive process to fit such models. The model-free, silhouette-based
approaches provide information about the subject’s approximate build
and body shape (i.e., the distribution of mass), putting flesh on the body
structure. Features that seem to capture this effectively are the width
histogram techniques (Cattin, 2002; Hong et al., 2007) and Fourier
descriptors of the silhouette outline (Mowbray and Nixon, 2003; Wagg
and Nixon, 2004; Yu et al., 2004). These features, however, also include
temporal information, so their effectiveness is not a reflection of body
shape discriminability alone. Foster et al.’s (2003) effective area fea-
tures, which also give a sense of build, saw a drop in CR from 75.4%
(SOTON database, 114 subjects, CA, kNN) to 52.7% after removing the
means of the areas over time, suggesting that there is both a constant
(structural) component that is discriminative and a temporal compo-
nent. The average silhouette or GEI nicely focuses on representing the
non-temporal aspects of silhouette data, that is, a person’s build.
Lee et al. (2007) pointed out that the same average silhouette can be
generated from a shuffled set of its source silhouette frames, and
therefore must not contain much temporal information. This may ex-
plain why average silhouette studies (Liu and Sarkar, 2004; Veres et al.,
2004) found that the (static) upper-body is equally or more dis-
criminative than the (dynamic) lower-body, whereas a silhouette se-
quence-based study (Phillips et al., 2002) saw the lower-body as far
more discriminative. Regardless, Seely et al.’s (2008) CR of 99.6% (103
subjects, 1NN) and Iwama et al.’s (2012) CR of 94.24% (3141 subjects,
INN) demonstrates that the GEI, is a strongly discriminating re-
presentation. Depth imagery’s information appears help to improve
silhouette extraction quality (Hofmann et al., 2012), which could boost
the effectiveness of the many dependent feature representations.

Model-based approaches most directly and efficiently represent gait
dynamics. They do this by expressing movement as a set of joint posi-
tion trajectories, rather than as a sequence of images. Movement is the
outcome of forces applied by muscle groups to limbs and the body.
Switoriski et al.’s (2011a) model-based study considered velocities and
accelerations of specific joints and found these to be more informative
than the mere shape of the movement (i.e., the joint positions). They
concluded that, “... more important is how energetic the movements are
rather than what is their shape.”. Joint position or angle is an indirect
function (a second order integral) of acceleration, which is a direct
function of force and mass (F = ma). So, it seems appropriate that ac-
celeration be more discriminative than position/angle, which is the
cumulative (i.e., averaged) effect of a history of accelerations. Re-
gardless, several model-based approaches (Bouchrika and Nixon,
2008b; Kovac and Peer, 2014; Yu and Zou, 2012) effectively used po-
sition or angular trajectories to achieve positive results.

Both model-based and model-free approaches give us information
about the high-level features of gait, such as cadence and stride length
(BenAbdelkader et al., 2002; Preis et al., 2012). It would seem, how-
ever, that the model-based approach is generally better suited for
computing these, given that it provides a specific anatomical position
for the heel, by which these measures are commonly determined.

Most studies observed gait from the side view, but other views
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contribute significantly as well. Ariyanto and Nixon (2011) found that
the right thigh abduction angle, a frontal-view feature, was particularly
informative (about as effective as height and footprint pose together).
Indeed, unlike a side view, a frontal view is not affected by self-oc-
clusion. Seely et al. (2008) improved results slightly from 98.6% to
99.6% (103 subjects, 1NN) by including average silhouettes from three
different views (side, front, and top). Several studies described above
(BenAbdelkader et al., 2002; Collins et al., 2002; Hong et al., 2007;
Wang et al., 2003b) found that the side view was less effective than
either the front or oblique (45°) views for their features. In contrast,
Switonski et al.’s (2011a) model-based study found that the fore-aft and
vertical dimensioned features were most discriminative and thus re-
commended a side view.

3.2. Gait features computed from underfoot force/pressure sensors

A key aspect of gait is the force placed on the ground by the foot.
Using this information as a biometric is sometimes referred to as floor
sensor-based gait recognition (Liu et al., 2009) or footstep recognition
(Rodriguez et al., 2009). Although not directly based on force,
Kennedy (1996) found that simple geometric features of barefoot ink
impressions were highly unique among several thousand people, and
such impressions have subsequently become a separate form of bio-
metric (e.g., Kumar and Ramakrishnan, 2011; Kuragano et al., 2005;
Uhl and Wild, 2008). In the same way that unique body size and shape
will influence gait, so will a unique 3D foot size and shape influence
gait, especially in terms of underfoot pressures. In the literature, un-
derfoot pressure profiles have been sensed by a grid of on/off switches
or by pressure sensor arrays which vary greatly in resolution and ar-
rangement. At the coarsest resolution, a vertical ground reaction force
profile is captured by a few sensors (a force plate), usually with a high
sampling rate and large range of forces. As resolution increases, the
pressures (or binary switch activation) applied by different areas of the
foot are more precisely specified, giving the geometric shape, orienta-
tion, and COP of the foot, and thereby providing a spatially and tem-
porally rich base for deriving distinctive features of gait.

3.2.1. Ground reaction force features

Ground Reaction Forces (GRFs) are the counteracting pressures
placed on the foot as it comes in contact with the floor and can be
delivered vertically, laterally, and fore-and-aft. When these pressures

Computer Vision and Image Understanding 167 (2018) 1-27

Table 4
Representative ground reaction force (GRF) feature sets.

Feature set Performance Subjects  Reference

GREF profile key 93% CR 15 Orr and Abowd (2000)
points features

HMM of GRF profile 91% CR 15 Addlesee et al. (1997)

PCs of GRF profile 13% EER 41 Vera-Rodriguez et al. (2007,
and its gradient 2008)

DTW of GRF profile 4.0% FAR, 132 Derlatka (2013)

2.2% FRR

WP decomposition of  98.2% CR 40 Moustakidis et al. (2008)
GRF

Mass computed from 50% CR 43 Jenkins and Ellis (2007)
GRF

are measured over the time of a footfall, a GRF profile is acquired. Fig. 6
shows the vertical GRF profile’s “M” shape, which corresponds to a
peak force from the initial heel impact and another peak when the
person is propelled forward by the same foot. In the lateral and fore-
and-aft directions, there are corresponding events, although of lower
forces overall. Table 4 provides a list of the most common types of gait
recognition features used in this modality.

One intuitive and popular approach has been to extract features
based on key points of the GRF profile and specific statistical measures.
Orr and Abowd (2000) used 10 features based on vertical GRF profiles
to identify individuals. These included mean profile value (i.e., ap-
proximate weight), standard deviation of the profile, length of the
profile (footstep duration), total area under the profile curve, maximum
heel-strike force and its location in time, minimum force and its time,
and the maximum push-off force and its time (see Fig. 6). Together,
these features gave a 93% recognition rate (15 subjects, 1NN).
Suutala and Roning (2004) expanded on these features, reaching 31
distinctive features. They found 13 of these to be most descriptive, in-
cluding all those in Orr and Abowd (2000) except the total area under
the profile curve. Their results, however, were much poorer, achieving
only 70.2% (11 subjects, Distinction-Sensitive LVQ). In a subsequent
paper by Suutala and Roning (2005), they reworked the classification
step and improved results to 79.2% (11 subjects again, MLP). Vera-
Rodriguez et al. (2007, 2008) used two piezoelectric sensors (one for
the heel and one for the toes) to capture pressure data that gave similar
profiles to the gradient of the GRF profile signals seen in other work.
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Fig. 6. A typical vertical GRF profile and some of its key point and statistical features. The characteristic M shape has a peak force for heel impact and push-off.
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They extracted five key points based on maxima and minima in the two
sensors’ curves. For each key point, the magnitude and time were re-
corded (i.e., 10 features). Also, the differences in magnitude and time
between key point pairs (i.e., 20 features) and the total profile area
under the curve, length, norm, mean, and standard deviation for each
sensor’s profile were computed (i.e., 12 features). These 42 features
achieved an EER of 16% (41 subjects, SVM). They reduced the features
down to the 17 most informative ones using a greedy forward feature
selection technique and achieved an EER of 12.5%. Selected features
were five time- and six magnitude-based key point derived features, as
well as the norm, area under the curve, and standard deviation for both
sensors. Mason et al. (2016) also used GRF key points and their dif-
ferences to achieve a low EER of 1.33% (10 subjects, forward feature
selection, kNN). To identify key points when the peaks and valleys were
difficult to distinguish, they calculated proxy positions by finding the
largest area of a triangle made by 3 equally spaced points along the GRF
curve and setting the key point to the second point of the triangle. This
might account for their substantially better results than others using the
same key points.

Instead of identifying key points and basic statistical measures of the
GRF profile, a number of studies holistically characterize the overall
profile. The earliest GRF biometric study, Addlesee et al. (1997), used
an HMM fitted to vertical GRF profiles to identify individuals. Their
best reported result was a CR of 91% (15 subjects).
Stevenson et al. (2007) modeled each subject’s footsteps with a “char-
acteristic” HMM and achieved an EER of about 19% (8 subjects). Vera-
Rodriguez et al. (2007, 2008) also extracted “holistic” features for each
footfall, made up of the principal components of the heel and toe sensor
signals and the GRF profile derived by integrating over time. This
achieved slightly better performance (EER of 13%, 41 subjects, PCA,
SVM) than using key point features (EER of 17%). Derlatka (2013) used
DTW on GRF profiles (vertical, lateral, and fore-and-aft) and achieved
an FAR of 4.0% and FRR of 2.2% (132 subjects, kNN). Later,
Derlatka and Bogdan (2015a) broke the GRF stance phase into 5 sub-
phases and achieved a maximum CR of 97.38% (200 subjects, DTW,
ensemble of kNNs). Cattin (2002) used the power spectral density (PSD)
of the GRF profile gradient as features and achieved an EER of 5.3% (20
subjects, GPCA). Using a more “realistic” data collection setup, they
achieved slightly worse results (EER of 9.4%).

A few very effective GRF-based studies have employed wavelet
packet (WP) features to characterize the GRF profile.
Moustakidis et al. (2008) extracted WP features for all three GRF di-
mensions on a dataset containing walking speed and load carriage
covariates. When the gallery and probe data sets contained examples of
all covariates, the average CR was 98.2% (40 subjects, fuzzy-based
feature selection, GK-SVM). The approach held up well when the gal-
lery contained only data for the normal-speed plus nothing-carried case
but probes were taken from all seven variations on walking speed and
load carriage. The lowest CR was only 82.7%. Mason et al. (2016)
followed a similar WP approach as Moustakidis et al. (2008), except
that they used eight rather than three GRF components. Of the eight
components, four were vertical measures from the four force plate
sensors, two were measuring lateral forces from pairs of sensors, and
two were fore-and-aft forces. They achieved a low EER of 1.28% (10
subjects, lege04 wavelet). Yao et al. (2010) used GRF profiles from

Table 5
Representative pressure mat feature sets.
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three dimensions, each profile consisting of a sequence of 5 steps. They
also extracted WP features and achieved CRs between 91% and 97%
(103 subjects, fuzzy-based feature selection, SVM). An analysis of the
misclassification showed that the remaining confusion was significantly
due to the similar masses of certain subjects.

Nevertheless, mass as calculated from the GRF profile is dis-
criminative. Yao et al. (2010) measured each subject’s mass and nor-
malized the GRF curve by it to remove its influence, and classification
rates dropped by 25% or more. Addlesee et al. (1997) calculated the
apparent mass as the average GRF over a single step and normalized the
GRF curve by it to see classification rates plummet from 80 + % to 50%
and below (15 subjects, HMM). Jenkins and Ellis (2007) evaluated body
mass alone as a means of identification. They computed “steady state”
body mass as an average of the sum of both foot pressures, not in-
cluding the first and last quarters of the signal to reduce error. This
single feature achieved a CR of 50% (43 child subjects, 1NN), whereas
they found that Orr and Abowd, 2000 features on this data achieved
only a 36% CR (1NN). Also, when the data was normalized by each
subject’s average standing force, Orr and Abowd’s features only
achieved a 17% CR.

3.2.2. Pressure mat features

Nakajima et al. (2000) provided the first investigation of mat-based
features for biometrics, although the measurements were recorded from
stationary subjects rather than moving ones. They normalized the po-
sition and orientation of a pair of footprints and used direct template
matching to achieve a CR of 82.64% (10 subjects, INN). Since then, a
number of studies have been conducted on pressure mats of various
sizes and sensor resolutions, whether home-grown or commercial-oft-
the-shelf. Some involve simple arrays of on/off switches, while others
measure actual pressures. Unlike the force plates that are typically used
to measure GRF, pressure mats offer the ability to compute spatial
features of the footstep as well as between-footstep features commonly
used in gait analysis (e.g., stride length, toe-out angle). Mat-type sen-
sors are also able to better separate the contributions of multiple in-
dividuals than the force plates of GRF studies (Morishita et al., 2002).
Also, sufficiently large mats avoid the need to aim footfalls, and thus
avoid the need for unnatural movement or explicit user cooperation. A
sampling of the studies we review below are listed in Table 5, giving
measures similar to previous tables but also indicating whether the
participants walked barefoot or wore shoes. Barefoot walking in this
context appears to be more discriminative than shod walking.

Arrays of binary switches provide useful, though basic, spatial in-
formation, as shown in Fig. 7. Middleton et al. (2005) evaluated three
features extracted from such binary profiles: stride length, single step
period, and the ratio of time spent on the heel vs. time spent on the toes.
In total, these features gave an 80% CR (15 subjects, 1NN by class
means). The ratio feature alone achieved a 60% CR. Yun et al’s
(2003,2005) features included the binary activation image summed
over time, the computed location (centroid) of each step, and the
number of sensors activated by each step. In Yun et al. (2003), the most
discriminative of these were the computed footstep locations over a
walk across the floor, achieving a CR of 92.8% (10 subjects, MLP). The
raw (binary) data was also informative (84%). The resolution of the
sensors in a follow up paper (Yun et al., 2005) was much higher

Feature set Performance Subjects Footwear Reference

Stride length, period, heel vs. toe period 80% CR 15 Bare Middleton et al. (2005)
Footstep locations 92.8% CR 10 Unspecified Yun et al. (2003)
Center of geometry path 91.4% CR 11 Bare Jung et al. (2004)
Center of pressure path < 1.3% EER 11 Both Takeda et al. (2011)
Max pressure image 99.8% CR 104 Bare Pataky et al. (2011)
Footprint energy image 4.2% FRR, 0.2% FAR 24 Shod Cho et al. (2012)
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Fig. 7. Gait features derived from pressure-sensitive mats. The mats may use simple
binary sensors, from which foot dimensions, step duration, and between-step information
can be extracted. Sensor arrays that extract pressure values can also be used to compute
the center of pressure and pressure images, such as the maximum pressure image and the
pressure-time integral image.

( < 2 cm between sensors). They found that the computed location was
again discriminative (89%, 10 subjects, MLP) and that adding the time
of heel-strike and toe-off raised the CR to 96%. Suutala et al. (2008)
used an irregularly shaped tile flooring of binary switches, each sensor
covering a 10 cm X 10 cm area, to perform identification. Like
Middleton et al. (2005), they acquired both binary and duration-based
images from the switch array. Footstep-level features included footprint
area, length, width, centroid, and the duration minimum, maximum,
mean, and standard deviation. Footstep shape features based on line
detection and Sobel gradient filters were also computed. Gait cycle-
level features included time, Euclidean distance, and axis-aligned dis-
tance between adjacent footsteps. Based on footstep features, a CR of
64% was achieved (9 subjects, GP). Adding gait cycle-level features
improved the CR to 81%. Overall, they determined that the between-
footstep features were more informative than their low-resolution
footstep features, although footstep shape was significantly dis-
criminative.

High-resolution pressure-sensitive mats can add center of pressure
(COP) or geometry features to the above repertoire, as illustrated at the
bottom of Fig. 7, although the same can be done to a certain degree
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with binary switch arrays. Jung et al. (2004) used the center of geo-
metry as characterized by a hidden Markov model (HMM) based on
data from a switch array and achieved a 79.6% CR (11 subjects). They
also used aligned binary images of a pair of feet (which they call the
“overlapped foot shape”) and got a 91.4% CR. Adding the COP features
to the binary image features increased the CR to 98.6%.
Takeda et al. (2011) employed a high-resolution (5 mm X 7 mm)
pressure mat to collect gait data, acquiring barefoot and shod data from
11 subjects. They extracted the normalized COP, which was the COP at
nine equally spaced times along the full COP trajectory. They also ex-
tracted foot width, length, toe-out angle, total area, the areas of several
zones of the foot, the normalized maximum pressure position over time
(9 features), and the normalized total area over time (9 features). Using
a fuzzy similarity metric, EERs for gallery and probe data with the same
footwear condition were 1.3% (11 subjects) and below. EERs increased
to between 12.5% and 28% when the gallery did not contain instances
of the same footwear condition as the probe data. Qian et al. (2010)
also extracted COP and key point features from a high-resolution
pressure mat. From the COP curve, they computed the “turning point”
of the lateral COP trajectory. They also computed the GRF profile by
taking the pressures along the COP curve and extracted key point fea-
tures, which were the maximum heel and toe peak pressure points, the
minimum between them, and the end point. For each of these, they
used the normalized position, pressure, curve length (distance along
curve from the start of the COP to the key point position) and nor-
malized time (relative to gait cycle length) as features. Finally, they
included the mean pressure (i.e., their measure of mass) and stride
length. Their best result, a 92.3% CR (11 subjects, FLD), included all of
these features for a pair of left and right footsteps.

High-resolution pressure mats provide 2D pressure image informa-
tion. For each X-Y pressure mat image location, Pataky et al. (2011)
computed various pressure percentiles (100% or maximum pressure,
90%, 80%, 70%, 60%, 50%), the pressure-time integral (sum of pres-
sures over footstep duration), the time to first contact (relative to heel
strike), the time to maximum, and the contact duration. On their
barefoot pressure data, the single most effective pressure image features
were the maximum pressure and pressure time integral (both shown in
Fig. 7), achieving as much as 99.0% and 99.6%, respectively (104
subjects, 1NN). This work also showed that careful foot alignment
(orientation and translation) can have a significant impact on pressure
image-based CRs, by as much as 6% in this study. The total best per-
formance was 99.8% (104 subjects, LE, 1NN). Cho et al. (2012) also
investigated the use of contact duration features, which they call the
“footprint energy image”, for shod gait recognition. Using contact
duration images in the form of Jung et al.’s ‘overlapped foot shape”
(Jung et al., 2004), they achieved a 7.1% FRR and 0.3% FAR (24 shod
subjects, kNN). Taking this further, they used the barefoot impressions
of each subject to create weighted filters that focus recognition on the
areas directly below the barefoot, rather than the below the shoe-only
areas. This improved results to a 4.2% FRR and 0.2% FAR. Note that
subjects wore different footwear from one another, but wore the same
individual footwear for all recordings. Vera-Rodriguez et al. (2013a)
expanded earlier GRF work by employing two medium-resolution pie-
zoelectric sensor mats, one for each foot in a stride (88 sensors per small
mat), known as the Swansea Footstep Biometric Database (Vera-
Rodriguez et al., 2011; 2013a). They computed raw GRF profiles and
“contour features”, which capture the maximum positive and negative
changes in pressure among the sensors at each time step. They also
computed the pressure-time integral after a series of image processing
steps. Under the various experimental conditions evaluated, they
achieved an EER between 5-15%(40 subjects, PCA, SVM) for temporal
or spatial features separately and a 2.5-10% EER for their fusion.

Conveniently most of the features that can be computed from force
plates and binary switch arrays can also be computed from high-re-
solution pressure mats, the exception being features based on the lateral
and fore-and-aft GRF dimensions. Connor (2015) compared many of the
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above listed features for both barefoot and shod datasets from the
CASIA-D gait database (Connor, 2015; Zheng et al., 2011, 2012). For
barefoot data with two different walking speeds, the most useful fea-
tures were primarily pressure image features and COP features. For
shod data (one walking speed only), there were two scenarios: when the
shoes between gallery and probe were the same or different. In the
same-shod scenario, the pressure image features remained useful. In the
different-shoe case, however, image features were generally poorer
than features like step length, cadence, and GRF key point features.
COP features remained among the most useful over all scenarios.
Overall, Connor achieved high CRs of 99.8% (92 subjects, PCA, FFS,
1INN) and 99.5% (13 subjects) in the barefoot and different-shoe sce-
narios, respectively, when five footsteps of data were used for each
probe. In the same-shoe case, rates reached 100% (15 subjects) with
only one footstep needed for the probe.

3.2.3. Correspondence to gait mechanics

The underfoot pressure modality captures some static information
about the walker. Overall mass gives rise to the average GRF value, and
is static over the timescale of a gait recording. Mass appears to best
computed from the average pressure over multiple footsteps
(Jenkins and Ellis, 2007), possibly after trimming certain portions.
Pressure mats capture the foot (or shoe) size and shape and a sense of
the general load distribution tendencies, such as more heavily loading
the heel or toes, etc. Pressure image features support this, collapsing the
temporal dimension just as the average silhouette does in the visual
modality. In fact, the contact duration image or footprint energy image
is an average silhouette of foot contact with the pressure mat. Of these
features, the PTI and maximum pressure features are most effective
when the subject is barefoot (Pataky et al., 2011). Otherwise, duration
images appear to be more useful (Cho et al., 2012), especially when the
footwear is different between the gallery and probe (Connor, 2015).

Dynamic information, whether spatial or not, captures the time-
varying forces placed by gait onto the walking surface. The subject first
loads their heel with their weight and later launches off with the
forefoot. The GRF curve captures a summarized, non-spatial force, re-
gardless of whether it is characterized by key points or more general-
ized approaches. Of these, the generalized approaches, especially WP
decomposition features appear to be among the most discriminating
(Mason et al., 2016; Moustakidis et al., 2009; Yao et al., 2010). Pressure
mats go a step further, effectively providing a large number of related
mini GRF curves, which provide the shift of loading distribution or
position with time. An effective way of representing this shift is the
COP, which was found to be very helpful in both barefoot and shod
contexts (Connor, 2015).

Pressure mats have the potential to provide the most accurate be-
tween-footstep measures. The stride-length, support base, toe-out angle,
and cadence have shown here to be discriminative (Connor, 2015;
Suutala et al., 2008; Yun et al., 2003), as also they were in the machine
vision modality. Most between-footstep measures can be determined
directly from foot positions, and a pressure mat’s accuracy is limited
only by its resolution (the current highest resolution is 5mm sensor
spacing).

Table 6
Representative accelerometry feature sets.
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The dimension of the force features matters. The effective pressure
mat features described above are based on forces in the vertical di-
mension only. This seems aligned with several GRF studies, as well. For
example, Cattin (2002) evaluated the PSD of the vertical, lateral, and
fore-and-aft dimensions and found the vertical dimension to be most
discriminating (vertical EER of 5.3%, 20 subjects, GPCA, lateral EER of
6.6% and fore-and-aft EER of 10.5%). Moustakidis et al. (2009) and
Yao et al. (2010) also found that the vertical dimension to be the most
informative. They also suggested that the fore-and-aft dimension is
more discriminating than the lateral dimension. In contrast,
Mason et al.’s (2016) WP work found that more than half of the most
discriminative components came from the fore-and-aft dimension and
only a quarter came from the vertical GRF.

3.3. Gait features from accelerometry, audio, and other modalities

Besides the vision and underfoot-pressure-based modalities, gait as
recorded from accelerometers, gyroscopes, microphones, and radar has
also been shown to discriminate between individuals. Of these, the most
prominent is the use of accelerometers which are common in modern
mobile phones. This poses a slightly different use case than those
considered so far, that is, the user cooperates with the biometric to
some degree by carrying the phone. This modality is sometimes
grouped with other wearable sensor gait recognition modalities such as
gyroscopes (Ngo et al, 2014) and pressure sensitive insoles
(Yamakawa et al., 2008). The most commonly mentioned application of
this modality is for user authentication on such mobile devices (even
smart watches (Johnston and Weiss, 2015)), for example, to lockout
users with an unfamiliar gait. Anecdotal evidence proposes that it is
also possible to identify individuals by the sound of their footsteps.
Only a few studies have been conducted to test this hypothesis, but they
have met with some success (de Carvalho and Rosa, 2010; Geiger et al.,
2013; Shoji et al., 2004). Even Doppler-based approaches using mod-
alities such as radar (Mobasseri and Amin, 2009; Otero, 2005), ultra-
sound Kalgaonkar and Raj (2007); Zhang and Andreou (2008), and wifi
signals (Wang et al., 2016) have been used to recognize individuals by
their gait.

3.3.1. Accelerometry-based gait features

Acceleration, as opposed to velocity or position, is a direct function
of the forces and masses involved in gait generation, since F = ma. It
would therefore seem like acceleration would be a strong candidate for
divulging discriminating features of gait. Table 6 captures a summary of
different types of feature sets proposed for this modality. Unique to this
table is the sensor placement location on the human body, which may
affect performance.

The most straightforward approach to using acceleration for re-
cognition, after preprocessing and gait cycle extraction, is to compare
the accelerations of gallery gait cycles with probe gait cycles and to
choose the closest match. Mantyjarvi et al. (2005), an early acceleration
gait recognition study, took this approach. Taking only the fore-and-aft
and vertical dimensional acceleration signals, they composed left and
right step templates as averages of all associated steps in the gallery gait

Feature set Performance Subjects Location Reference

Direct acc. gait cycle matching 7% EER 36 Hip Mantyjarvi et al. (2005)
Direct matching, multiple templates 1.6-6.1% EER 30 Ankle Gafurov et al. (2010)
DTW cycle matching 5.6% EER 21 Spine-base Rong et al. (2007)

PCs of acc. gait cycle 1.6% EER 60 Hip Bours and Shrestha (2010)
Acc. Fourier coefficients 10% EER 36 Hip Mantyjarvi et al. (2005)
Acc. value histograms 5% EER 21 Ankle Gafurov et al. (2006)

Acc. inner product 6.8% EER 744 Pocket Zhong and Deng (2014)
Acc. key points 95.8% CR, 2.2% EER 175 5 Places Zhang et al. (2014)
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Fig. 8. Gait features derived from accelerometry traces. Upper Panel: An accelerometry recording of five footsteps from a modern mobile phone. Middle Panel: Fourier coefficients of the

recorded signal. Lower Panel: A ten-bin histogram of the acceleration values.

cycles for each subject. Then they used cross-correlation between the
gallery templates and probe instances as a score by which to classify.
This approach achieved an EER of 7% (36 subjects) and was superior to
other features of the gait cycle they evaluated (discussed below). Using
all three accelerometer dimensions, Rong et al.’s (2007) gait cycle
matching approach achieved a slightly lower EER of 5.6% (21 subjects),
employing DTW to normalize gait cycle lengths, compute average
templates, and compute the matching metric. Derawi et al. (2010b) also
used DTW to compare gallery cycle acceleration templates (8 to 15
templates per person) to probe gait cycles. The classification was based
on the best cross comparison between an individual’s group of gallery
templates and the probe’s gait cycles. This approach achieved an EER of
20.1% (51 subjects). Gafurov et al. (2010) also used a set of templates
per person and performed cross comparisons, but used Euclidean dis-
tance as a measure of similarity rather than DTW. This achieved low
EERs of between 1.6% and 6.1% (30 subjects) when the training and
test instances involved a single type of shoes. In a second paper,
Derawi et al. (2010a) altered their cycle comparison approach
(Derawi et al., 2010Db) to circularly shift the cycle for best fit combined
with DTW and achieved a much improved EER of 5.7% (60 subjects).
Bours and Shrestha (2010) made substantial gains by representing the
average gait cycle template by its principle components, achieving an
EER of 1.6% (60 subjects) that improved upon their best reported direct
comparison approach that achieved 5.7% (based on Derawi et al.
(2010a)).

Besides direct comparison of gait cycle signals, Fourier coefficients

and histograms of cycle signal values, as illustrated in Fig. 8, have also
been evaluated. Méntyjarvi et al. (2005) and Rong et al. (2007) found
that Fourier coefficients were less discriminative than their direct gait
cycle comparisons, yielding EERs of 10% (36 subjects, cross-correla-
tion) and 21.1% (21 subjects, DTW), respectively. Regarding histo-
grams, results were less conclusive. Mantyjarvi et al. (2005) computed
10-bin histograms that were normalized by the length of the gait cycle
signal and achieved an EER of 19%, much worse than their direct gait
cycle comparison approach. Gafurov et al. (2006) derived histogram
features in the same way as (Mantyjarvi et al., 2005). Their results,
however, were much better than Méntyjérvi et al., yielding an EER of
5% (21 subjects). They suggest that the difference was due to a dif-
ference in the datasets’ size and elapsed time between recording of
gallery and probe data. It may also be due to the difference in sensor
placement (their ankle placement, vs. Mantyjarvi et al.’s hip place-
ment), which noticeably alters the signal shape (Gafurov et al., 2006).

One challenge in using acceleration is that the orientation of the
device (e.g., smart phone) may shift in transit or be carried differently
on the person due to a change in clothing, situation, etc. Some studies
have adjusted for this in part by this using the acceleration magnitude
(square root of the sum of squares of each acceleration dimension) as
the primary signal (e.g., Gafurov et al., 2007). Zhong and Deng (2014)
proposed a similar but more general solution. They computed the inner
product of a multi-dimensional acceleration or gyroscopic signal out of
phase with itself to varying degrees. This mathematically eliminates the
effect of rotation, and the acceleration magnitude used in other studies
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Table 7
Representative acoustic feature sets.

Feature set Performance Subjects  Reference
MFCCs 60%, 42.3% CR 5, 155 Shoji et al. (2004) and
Geiger et al. (2013)
Cadence 54% CR 5 Shoji et al. (2004)
Power spectral 52% CR 5 Shoji et al. (2004)
coefficients
Signal energy 24.2% CR 155 Geiger et al. (2013)

is one form of this (a zero phase difference). From this convenient
property, they generate a gait dynamics image, each row corresponding
to a specific time difference panned over the length of the gait se-
quence. They show that these features are more effective than magni-
tude measures (the first row of their image), approximately doubling
the identification rate from 32.5% to 66.3% (20 subjects) when the
gallery and probe samples were taken on different days. On a large
dataset (744 subjects, Ngo et al. (2014)), they achieved a low EER of
5.6% (fusion of accelerometer and gyroscopic images, 1NN). Even their
6.8% EER on acceleration data alone substantially outperformed the
lowest EER of several other approaches on the same data set (13.5%,
Ngo et al. (2014)).

Since extracting the gait cycle can be problematic, some approaches
attempt to avoid it altogether. Zhang et al.’s (2014) approach auto-
matically finds key points of the gait signature without having to
identify individual gait cycles. They achieved a high CR of 95.8% (175
subjects, softmax, 1NN-like) and a low EER of 2.2% based on the ac-
celerations from 5 sensors. Using a single sensor, they achieved a best
CR of 73.4% (sensor at pelvis) and a best EER of 8.6% (sensor on thigh).

3.3.2. Acoustic gait features

Table 7 lists several types of feature sets used to automatically re-
cognize people by the sound of how they walk. Shoji et al. (2004) re-
corded the audio of five subjects in slippers as they walked toward a
microphone. From these recordings, they extracted three types of fea-
tures as shown in Fig. 9: mel-frequency cepstral coefficients (MFCCs),
cadence, and power spectral coefficients. Evaluated separately, these
features achieved between 52% and 60% CRs (5 subjects, kmeans).
When the cepstral and cadence features were combined, however, they
reached a 100% CR. MFCCs and cadence were also evaluated by
de Carvalho and Rosa (2010). In addition, they also considered cepstral
coefficients, spectral envelope, and loudness as features. In this study,
15 subjects’ data were divided into six groups according to footwear
type (with overlap between groups). Here, the MFCCs appeared to be
most effective, achieving as high as a 97.5% CR (4 subjects, kNN) in the
“buskin” style footwear group and, when combined with the loudness
of specific frequency bands, gave the highest CR in the all-footwear
group (72.9%, 15 subjects, kNN). The MFCC and loudness features in
the all-footwear group were separately able to achieve 55% and 59%
CRs, respectively. The spectral envelope also performed relatively well,
achieving a 46% CR when extracted using the Welch method.
Geiger et al.’s (2013) acoustic gait recognition approach was evaluated
on the TUM Gait from Audio, Image, and Depth (GAID) database
(Hofmann et al., 2014). They evaluated energy, loudness, spectral (e.g.,
zero crossing rate, spectral roll off points, spectral flux, sharpness, etc.),
and MFCC features. These features were collapsed into constant length
vectors per recording using a variety of what the authors called
“functionals”, including mean, standard deviation, and 40 others. They
found that the best features were the signal energy, loudness, spectral
kurtosis, spectral skewness, spectral flux, and the first MFCC, together
achieving a maximum CR of 51.9% (155 subjects, SVM). As separate
groups, the MFCCs, spectral, and energy features achieved 42.3%,
33.2%, and 24.2% CRs respectively.

Instead of recording the footstep sounds passively, the Doppler-shift
in an ultrasound transceiver has also been used to characterize gait for
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recognition. Kalgaonkar and Raj (2007), performed a form of FM de-
modulation on the ultrasound reflections to essentially extract a map of
the velocities of the walker. From the demodulated Fourier spectra,
they computed 40 cepstral coefficients and achieved a CR of 91.7% (30
subjects, GMM). They also attempted recognition without the FM de-
modulation step (similar to features from a radar-based gait recognition
study, Otero, 2005) and the CR dropped to 72.0%.

3.3.3. Correspondence to gait mechanics

As expressed earlier, acceleration information is a direct function of
the combined forces and masses involved in gait generation, and cap-
tures primarily dynamic information. Studies that compare the gait
cycle accelerations achieved among the lowest EERs, and were usually
under 10%. To achieve this, however, a careful gait cycle segmentation
process seems necessary, and representing the cycles by principal
components appears to help substantially (Bours and Shrestha, 2010). It
is tempting to think that audio as a gait biometric modality captures
more information about a subject’s footwear than about the subject
themselves. In most of the studies, including the high CRs of
Geiger et al. (2013), relative to the number of subjects, the footwear
varied among the subjects. Yet, in Shoji et al.’s (2004) study, all five
subjects wore slippers, and cepstral coefficients still achieved above-
chance discrimination. Even in Geiger et al., there were 155 subjects
and so there may have been some overlap among the subjects’ footwear.
Therefore, it is possible that the audio records a sense of the intensity of
major transient underfoot events (e.g., impact force of the heel or the
degree of slap beneath the forefoot). Audio can also indicate the ca-
dence of the subject, based on the time between audible footsteps. The
Doppler-shift based studies, whether from ultrasound or radar, record a
sense of the subject limb and body movement velocities, which again
indirectly reflects the forces and masses involved in gait generation.

Sensor location will affect the acceleration wave form
(Gafurov et al., 2006). According to reviews of the acceleration litera-
ture (Derawi et al., 2010b; Youn et al., 2014), aside from the low EERs
in Gafurov et al. (2010) which used ankle sensor placement, the waist
or pants pocket is the most consistently discriminative sensor location.
Gafurov et al. (2006) also evaluated the different acceleration dimen-
sions, and reported that the fore-and-aft direction gave the lowest
average EERs (over all footwear), but all dimensions give quite similar
results. In contrast, Muaaz and Nickel (2012) noted that the vertical
acceleration signal was more discriminative than the fore-and-aft and
lateral dimensions.

4. Vulnerability to covariates in biometric gait recognition

Laboratory and restrictive experimental conditions can sometimes
lead to recognition results that are optimistically biased. In real-world
circumstances, there may be substantial variability between the gallery
and probe samples of an individual, due to them being collected in
different sessions. As diagrammed in Fig. 10, variations can include
walking speed, clothing, footwear, load carriage, and walking en-
vironment. Such “covariates” are external to the subject and may mask
or distort the sensing of the natural gait parameters or may impose a
constraint on how people walk. Over time, a subject may also undergo
internal physical changes due to injury, pregnancy, or advanced age,
which can alter the underlying gait generation machinery. Although the
literature is silent on recognition methods to address this latter concern,
a few studies have demonstrated stability in recognition rates over
several months. Below, we review the external covariates, one at a time,
describing how each relevant modality is affected by them and solu-
tions offered in the literature. Table 8 summarizes this by placing “Y”
symbols in proportion to the effect a covariate has on a specific sensory
modality. Note that there is less data for the underfoot pressure and the
accelerometry modalities on which to base this summary.
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Fig. 9. Gait features derived from audio recordings of footsteps. Upper Panel: An audio recording of five footsteps as the walker approaches and passes by a microphone. Middle Panel: The

spectral power of the recorded signal. Lower Panel: The first three mel-frequency cepstral coefficient signals.

4.1. Walking speed

Walking speed impacts recognition accuracy across all modalities. A
change in speed is the result of a change in the average force or effort
invoked during walking and leads to changes in all time-based features.
Spatial features are also at risk of alteration. For example, it is known
that step length, and thus maximum joint angles, will change relative to
walking speed (Han, 2015; Tanawongsuwan and Bobick, 2003b). The
peak values of ground reaction force also appear to vary with speed.
Nilsson and Thorstensson (1989) showed that the m-shaped amplitudes
shift with increasing speed, with higher amplitudes on the heel-strike
and toe-off peaks and a lower trough between them. While humans
have a preferred walking speed and tend to stay within a small range of
this speed much of the time, an individual’s walking speed can be in-
fluenced by internal motivation and external factors including foot-
wear, load carriage, walking surface, and even the length of the
walkway (Oberg et al., 1993). Walking speed can have a very negative
impact on recognition rates. For example, Bouchrika and Nixon (2008a)
specifically evaluated the effects of several covariates in a model-based
approach and found that walking speed had a large effect, dropping
rates by as much as 35% (10 subjects, ASFFS, 1NN). Similarly,
Kusakunniran et al. (2011) achieved an average of 96% for a small
difference in gallery-probe speed (1 km/h difference, OU-ISIR gait da-
tabase, 25 subjects, 1NN) and 68% for a large difference (4 km/h) in
gallery-probe speeds based on features of the silhouette outline. There
are several general approaches taken to lessen the effect of this cov-
ariate. One approach is to transform features to suit the apparent
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walking speed. Tanawongsuwan and Bobick (2003a) modeled stride
length vs. walking speed and cadence vs. walking speed with a linear
model. Then, they used the models to transform probe stride lengths
and cadences to match the gallery walking speed and, finally, per-
formed classification. This approach achieved CRs about as high as
when the gallery and probes had the same speed. Another strategy they
attempted (Tanawongsuwan and Bobick, 2004) was to eliminate the
arm swing and stretch the width of the leg region in the double support
phase silhouettes relative to speed. This increased CRs from an average
of about 63% to about 81% (24 subjects). Mason et al. (2016) evaluated
a number of GRF normalization techniques, including one that linearly
stretched the GRF profiles to have the same duration, which is normally
correlated with walking speed. This helped improve results slightly
across all applicable feature types they evaluated. Another way to ad-
dress the walking speed covariate is to train with data from multiple
walking speeds. Moustakidis et al.’s (2009) GRF recognition results saw
CRs increase for fast and slow speeds from 84.0% to 98.3% and 88.7%
to 98.3% (40 subjects, WP, FuzCoC, LDA), respectively, when training
included fast and slow speed samples together with the usual normal
speed samples. Lastly, features that are less sensitive to walking speed
have been employed. For example, Guan and Li (2013) applied the
Random Subspace Method (RSM) to Gabor-GEI features (Tao et al.,
2007) that had been reduced using 2DPCA. Each RSM descriptor was
the projection of the features onto a random subset of the significant
2DPCA eigenvectors, which gave each descriptor a different (random)
perspective on the data. On the CASIA-C database, they achieved high
CRs of 99.7% and 99.6% (153 subjects, 2DLDA) for slow and fast speed
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Table 8
Impact of covariates on various modalities.

Covariate Model-free  Model- Pressure  Accelerometry
based
Walking speed YY YY YY ?
Clothing YY Y
Load carriage Y Y ?
Footwear Y Y YY YY
Viewing angle or YY Y YY
placement
Walking surface or setting  YY YY N/A YY

probes given a “normal” speed gallery, substantially outperforming all
previous methods. This improvement was not only due to RSM since
their method without RSM (i.e., Gabor-GEI + 2DPCA + 2DLDA)
achieved 97%. On the OU-ISIR-A dataset, where walking speeds ranged
from 2 km/h to 7 km/h, the average CR for their method (train on one
speed gallery and test on every speed) reached an impressive 98.05%
(34 subjects).

4.2. Clothing

A person’s clothing will change regularly and poses a significant
challenge to vision-based and acoustic-based gait recognition, but
perhaps has little to no effect on the other gait modalities. Clothing
would seem to have very little effect on actual gait generation, except
when it is particularly constricting or heavy (Bouchrika and
Nixon, 2008a). However, it’s shape can distort or occlude the appear-
ance and sound of gait. Geiger et al.’s (2013) audio-based recognition
study found that the wearing of shoe covers reduced CRs because of the
audible noise generated by these objects during movement.
Matovski et al. (2010) collected data on separate days, both times re-
cording the same subjects walking while wearing their own clothes and
while wearing a standardized clothing (overalls). The GEI-based CRs
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Fig. 10. There are a variety of gait covariates to consider, espe-
cially walking speed, which affects all gait sensory modalities and
has a significant impact on recognition rates. Certain covariates
have a larger impact in one modality than in another (e.g.,
clothing in vision-based vs. pressure-based modalities). Elapsed
time may at first appear to be a highly influential covariate, but
studies suggest that the other covariates that change with time
contribute the most to identification errors, rather than a change
in gait itself over time.
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were between approximately 18% and 70% (21 subjects, kNN) lower
when the subjects wore their own clothes than when the subjects wore
overalls, presumably because the subjects’ clothes differed between
days. According to a recent survey (Makihara et al., 2015), model-based
methods are more clothing invariant than model-free methods. How-
ever, clothing changes still have a negative effect. In Bouchrika and
Nixon’s (2008a) model-based study, it was found that adding a normal
coat did not reduce recognition rates much (5%), but that adding a
trench coat that obscures leg appearance did reduce CRs by almost 30%
(10 subjects, ASFFS, 1NN). In Yu and Zou’s (2012) model-based study,
the CR was highest when subjects wore a thin coat (93%, 124 subjects,
NPE, HCRF, SVM), slightly less with a thick coat (89%) and less still
with a backpack (85%). Several model-free approaches (Guan et al.,
2012; Hossain et al., 2010; Islam et al., 2013) address this covariate by
using groups of templates that focus on different parts of the silhouette.
Then, templates which focus on familiar portions between gallery and
probe samples can correctly identify the individual. These approaches
were all evaluated on the OU-ISIR Treadmill database B, which in-
cluded up to 32 clothing combination conditions for 68 subjects. The
best CRs from this group of approaches were around 80%, which
greatly improved over a simple GEI matching-based approach at 55%.

4.3. Load carriage

Recognition rates can drop when subjects carry an object, but this
may be due more to a change in visual appearance than to a change in
gait itself. In many situations, load carriage is common (e.g., airports,
businesses, etc.) and therefore must be taken into account. The load
itself will change the gait appearance and may also force the arm(s) to
take a different pose than in natural gait (e.g., the ball-carrying cov-
ariate of the CMU MoBo database (Gross and Shi, 2001)). It will also
add mass to the subject, which may affect gait accelerations. So far, it
seems that the visual modality is affected the most, although, as far as
covariates are concerned, the impact appears relatively small.
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Bouchrika and Nixon (2008a) found that the addition of a hand bag or
barrel-shaped gym bag dropped classification rates slightly (by less than
10%, 10 subjects, ASFFS, 1NN) and Sarkar et al.’s (2005) baseline re-
sults for the humanID gait database gave a 61% CR (122 subjects, Ta-
nimoto-based similarity) for the briefcase covariate data, where the best
CR was the shoe covariate at 78%. Underfoot pressures may be even
less affected. Moustakidis et al.’s (2009) GRF study evaluated four
carrying conditions (right hand, left hand, both, and backpack) at two
different weights (5% and 10% of the subject’s weight). Using WP
features with a gallery that contained no loads (though multiple
walking speeds), CRs for the load conditions averaged about 99% (40
subjects, WP, FuzCoC, LDA). As with other covariates, a natural ap-
proach to reducing the effect of load carriage is to seek features that are
less affected by it. On the CMU MoBo database, Collins et al.’s (2002)
approach of double and single support stance key frame comparisons
achieved a high CR of 92% (25 subjects, 1NN) when the probes (but not
the gallery) had the subject carrying the ball. Yet, a very similar key
frame correlation approach in Veeraraghavan et al. (2009) only
achieved 48% on the same dataset. A dynamic approach by
Lee et al. (2007) based on self-similarity of images to a specified key
frame achieved 77% (25 subjects, 1NN based on a special cost func-
tion). In the humanID gait database, the best results for the briefcase
carrying covariate (93% (Liu et al., 2012), 122 subjects) were achieved
using the Chrono-Gait Image (Wang et al., 2010). Another very effec-
tive approach (92%, 122 subjects, HOG-GEI, PCA, LDA) is the histo-
gram of orientation gradients method (Liu et al., 2012), which captures
the detailed shape information of the silhouette. If the negative effect of
load carriage is due to a change in appearance, then strategies used to
overcome the clothing covariate may be likewise effective.

4.4. Footwear

Changes in footwear is a challenge for all gait recognition mod-
alities, but especially for the underfoot pressure modality. Although
perhaps more stable from day-to-day than clothing, footwear can
change regularly. Footwear can also affect gait generation. According to
Lythgo et al. (2009), wearing shoes rather than walking barefoot was
found to change gait by increasing walking speed (by 8cm/s, 980
subjects, mostly children), stride length (11.1 cm), and support base
(0.5 cm) while decreasing cadence (3.9 steps/min) and foot pose angle
(0.1°). Different types of footwear will define different interfaces be-
tween the foot and walking surface and thus differences in the dis-
tribution of pressure. Even the same shoe’s pressure distribution may
shift over a shoe’s lifetime. The effect of footwear on recognition rates
for the various modalities is mixed, but is generally low for vision-based
approaches. Among the covariates of footwear, view, walking surface,
and load carriage evaluated with the humanlID gait database (Liu et al.,
2012; Sarkar et al., 2005), the footwear covariate has had the least or
second least impact of all covariates. Bouchrika and Nixon (2008a)
found that some common footwear (boots, trainers) had little effect on
recognition rates (less than a 10% drop, 20 subjects, ASFFS, 1NN), and
thus gait generally. The exception to this was the use of flip-flop foot-
wear, which had a drastic impact on recognition results, a drop of about
40%, which was perceived to be caused by the unfamiliarity of the
subject group with them and the extra need to grasp the upper between
the toes. Gafurov et al. (2010) evaluated the effect of different footwear
in the accelerometry modality. All subjects wore four different pairs of
shoes during the recording sessions. When gallery and probe instances
involved only a single type of shoe, EERs were between 1.6% and 6.1%
(30 subjects). When instances with all four footwear types were present,
EERs increased substantially to between 16.4% and 23.6%. From the
individual EERs for different pairs of footwear, the lighter pairs con-
sistently gave lower EERs. In the underfoot pressures modality, foot-
wear is a challenging covariate. Using barefoot data in the gallery and
as probes can achieve very high CRs when high-resolution pressure
mats are used (> 90% CR with large numbers of subjects (Connor,
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2015; Pataky et al., 2011)). The more realistic scenario of footwear
changing between gallery and probe acquisition sees substantially
lower CRs. Takeda et al. (2011) evaluated recognition using the same
footwear for all subjects—two pairs of slippers with different thick-
nesses. While EERs were under 2% (11 subjects, fuzzy similarity metric)
when gallery and probe were recorded with the same slipper, EERs
increased to 12% or more when the gallery and probe were recorded
from different slippers. Connor (2015) achieved a very similar result for
a variety of different footwear. In the same gallery-probe footwear case,
EERs were 2.1% (15 subjects, PCA, FFS, 1NN) and below, whereas in
the different footwear case, EERs rose to between 11.4% and 15.9% (13
subjects). A simple way of addressing this covariate, although perhaps
impractical, is to include data from several different pairs of footwear
for each subject in the gallery. When Takeda et al. included data from
both types of slippers, EERs regardless of test slipper dropped to 2.1%
and below. Another approach is to use features that are less sensitive to
a change in shoes. Connor found that the types of underfoot pressure
features that were most effective for the changing footwear case to be
the COP (especially along the fore-and-aft axis), contact duration
images, GRF key point features, and between-footstep features like
cadence and step length. Cho et al. (2012) used barefoot impressions to
provide a weighting filter that focused attention on areas directly below
the barefoot, and improved results from 7.1% FRR and 0.3% FAR (24
shod subjects, kNN) to 4.2% FRR and 0.2% FAR.

4.5. Viewing angle

Changes in a sensor’s “view” or orientation and placement with
respect to the subject is particularly an issue for the vision and accel-
erometry modalities. In the underfoot pressures modality, the walker
may cross the sensor surface at different angles, but the pressure image
will be the same aside from a simple 2D image rotation. In contrast, the
walker’s orientation and distance to a camera, and the orientation and
location of an accelerometer attached to an individual, may be different
between gallery and probe. Having different views will lead to a larger
variance in the feature values for the same individual, leading to larger
overlap with others’ data and a decrease in CRs. In the humanID gait
database, where subjects walked in two different directions, the view
covariate leads to some reduction in CRs, but only below the CR of the
footwear covariate (Liu et al., 2012; Sarkar et al., 2005). However, the
difference in viewing angle was such that “their view was approxi-
mately fronto-parallel” (Sarkar et al., 2005). In contrast, the CASIA-B
gait database includes a series of eleven views covering a range of 180°.
On this database, Liu and Tan (2010) used GEI images as features for
one of their baselines and included three spread-out views of data in the
gallery. This yielded an average CR of 51.2% (124 subjects) across all
views, whereas the average CR for probes with views in the gallery was
97.3%. There are a few possible ways to mitigate this covariate. One is
to constrain the walking direction based on the setting. If, like the
Biometric tunnel at the University of Southampton (Seely et al., 2008),
there is a hallway or a narrow walking carpet or sidewalk to encourage
a specific path, variability in view can be substantially reduced. Other
solutions include either artificially reorienting the viewpoint or to using
features less dependent on view. Seely et al. (2008) synthesized an
average silhouette for a certain viewpoint from six cameras with other
viewpoints and achieved a maximum CR of 99.6% (103 subjects, 1NN).
Goffredo et al. (2010) estimated the view angle of the camera relative
to the walker and “corrected” for it. With model-based features they
achieved 73.6% on a subset of the CASIA-B database (65 subjects, only
six view angles, kNN) and 95.8% on the SOTON small database (20
subjects). Hong et al. (2007) achieved a CR of 96.25% (20 subjects,
1INN) on the view-varying CASIA-A database by using a width-histo-
gram style feature vector based on silhouettes. Liu and Tan (2010)
radon transform-based approach, which took data from three viewing
angles, was able to achieve an average CR of 90.7% (124 subjects, LDA)
across all viewpoints, much better than the GEI-based approach at
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51.2%. In accelerometry studies, the sensor orientation problem has
been addressed by using either magnitude (Gafurov et al., 2007) or a
phase-shifted image version thereof (Zhong and Deng, 2014), as de-
scribed in Section 3.3.1. We are not aware of any published attempt to
deal with variation in sensor location (e.g., hip, ankle), but between
there being natural locations for certain devices and users being crea-
tures of habit, devices will often be worn in a consistent location (e.g.,
smartwatch on the wrist, smartphone in a certain pocket).

4.6. Walking surface and setting

Changes in the setting, especially the walking surface, can have
substantial effects on recognition performance in all modalities, except
perhaps for underfoot pressures where the walking surface is con-
strained to be the sensor surface. From common experience, it would
seem that gait, or at least walking speed, can be affected by walking
surface (e.g., sand, snow) as well. Wagg and Nixon (2004) model-based
approach achieved a CR of 84% (115 subjects) on indoor data and only
64% (115 subjects) on outdoor data. They explained that this drop was
due to greater difficulty fitting their human model to the outdoor data.
Muaaz and Nickel (2012) recorded subjects’ accelerations while
walking on a carpet, gravel, grass, and a grassed incline at a normal
speed. Their base condition (normal speed on carpeted floor) achieved
an EER of 16.3% (48 subjects, DTW), where classification was based on
the similarity between a typical (of each subject) gait cycle and probe
cycles using a majority voting approach. With gallery and probe in-
stances having the same surface condition, they found that the carpet
and gravel surfaces allowed for comparable recognition rates (EERs of
25.3% and 25.5%) but that grass and inclined grass walks made re-
cognition more difficult (EERs of 35.9% and 36.8%). It may be that the
grassy nature of the inclined surface is the primary cause for its increase
in EER over a level carpeted surface rather than its inclined nature,
since the two grassy EERs are very similar. The humanID gait database,
where the grass surface is used in the gallery, saw a large drop in CRs
when the probe was on concrete (46% lower than a change in footwear,
Liu et al., 2012; Sarkar et al., 2005). A simple, though perhaps not al-
ways practical solution to avoid setting changes is to constrain the
environment to be consistent in lighting, background, and walking
surface. There may also be features that are less affected by walking
surface. Liu and Sarkar (2006) normalized binary silhouette sequences
improved results substantially over baseline results on the humanID
gait database on the walking surface covariate test (from 32% to 57%,
122 subjects, INN). One setting-related issue that seems largely un-
addressed in the vision-based gait recognition literature is occlusion,
whether by other individuals or by objects. This will be a necessary
issue to address if visual gait recognition is to be effectively used in
busy or cluttered locations.

4.7. Elapsed time

The effect of elapsed time on gait recognition can appear drastic, but
seems largely due to accompanying covariates. Matovski et al. (2010)
hypothesized that performance drop was not only due to time, but a
change in clothing, shoes, etc. that are different between recording
sessions. Accordingly, they created a database with several elapsed
periods (0, 1, 3, 4 , 5, 8 and 9 months) between gallery and probe
instances. Using a GEI-based approach, they discovered that when
clothing and footwear are standardized between recording sessions,
recognition rates only dropped by 5% over time, part of which they
attributed to a change in clothing worn under their standardized
clothing (overalls). They also compared recognition rates between the
standard and subjects own clothing and found a larger drop of between
approximately 18% and 70% (21 subjects) depending on which dataset
(overalls or subjects’ clothing) is used as the gallery and the view di-
rection(s) recorded. Using foot pressures, Pataky et al. (2011) compared
data from barefoot subjects acquired between 1.5 and 5 years apart and
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achieved a 94% recognition rate (gallery containing 104 subjects and
probes from 10 subjects, LE, 1NN), a drop of about 6% from their same-
day results with 104 subjects. In Jung et al. (2004), the gallery was
recorded in the first month and the probes were recorded the next
month, and they achieved a high CR of 98.6% (11 subjects). Vera-
Rodriguez et al. (2013a) also used time elapsed data (collected over 16
months in separate sessions per user), the earliest data for the gallery
and later recorded data for the probes. Their features were based on
coarse underfoot pressure information and achieved low EERs between
2.5% and 10% (40 subjects, PCA, SVM). From these findings, it would
appear that a year or so of time passing is among the least challenging
of the covariates discussed here.

5. Gait spoofing and obfuscation

An important feature of a biometric is how robust it is against
spoofing attacks. According to the various types of gait features dis-
cussed, a would-be impersonator should make their body shape appear
similar to their target, and also walk in a similar manner. What few
papers there are in the literature on gait spoofing suggests this to be a
difficult task, even with extensive training. Gafurov et al. (2007) eval-
uated spoofing by comparing average gait cycles, where the gait cycle
signal was the magnitude of gait accelerations over all dimensions. This
approach achieved a 73.2% CR (100 subjects) and a 13% EER without
spoofing attempts. They tested this system’s vulnerability to incorrect
verification when: 1) subjects briefly learned to mimic a friend/col-
league with similar traits and 2) the claimed identity was chosen to be
the one in the database with the greatest gait similarity. They found
that intentional mimicry had a negligible effect on EERs (for 90 “at-
tackers”), but that knowing the closest target in the database gave an
attacker a somewhat higher likelihood of success (raising the EER to
25%, 100 subjects). Mjaaland (2009) and Mjaaland et al. (2011) studied
gait spoofing using similar gait acceleration features, which achieved an
EER of 6.2% (50 subjects, DTW) without spoofing attempts. In contrast
to Gafurov’s brief training, Mjaaland worked one-on-one with six
would-be attackers over five one-hour training sessions each. In spite of
this relatively extensive training regimen, which involved video and
statistical feedback, none of the attackers were capable of consistently
generating walks that would pass the verification process nor did they
appear to improve over time. Hadid et al.’s (2012) spoofing evaluation
was based on the average silhouette features of Veres et al. (2004).
Accordingly, attacks were based on matching the subject’s clothing and
build. They found that wearing common clothing (overalls) and having
a similar build increased the EER relative to the baseline (from 6% to
12% and 9%, respectively, 113 subjects, PCA, 1NN). The combination
of attacks was slightly more effective, increasing the EER to around
18%. In a second paper (Hadid et al., 2013), with a different recogni-
tion approach, they achieved a lower EER of 14% (113 subjects, LBP-
TOP, Gentle AdaBoost) on the same data under the combination of
attacks. From the above studies, it seems that purposely and repeatedly
circumventing a gait recognition system by imitation is either very
difficult or impossible. In general, spoofing of gait could be approached
in a visually similar way to that evaluated independently by Gafurov,
Mjaaland, and Hadid. Basing features on the inaccessible underfoot
pressures may further frustrate gait spoofing.

Can someone intentionally avoid being detected by a gait recogni-
tion system? Gafurov et al. (2007) found that when subjects mimicked
others, the similarity to their own gait changed substantially (average
CR drop of 50%, 90 subjects). Bouchrika and Nixon (2008a) studied
footwear covariates and discovered that although boots and trainers
had little effect on CRs, the wearing of flip-flops reduced them by 40%
(20 subjects, kNN). These two findings would suggest that it is possible
to willfully avoid detection by gait. The likelihood of this occurring
might be reduced if sensors were implemented covertly or in a public
location where a natural gait is likely to be used to avoid drawing at-
tention to oneself.
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6. Challenges in biometric gait recognition

There are a number of open problems and challenges in gait re-
cognition that are yet to be thoroughly explored or addressed:

® assessing the distinctiveness of gait as a biometric cue;

e gauging the consistency of gait across time, emotional state, and
pathological ailments;

o determining the effects of covariates and spoofing;

o effectively fusing gait features from multiple sensory modalities and
with other biometrics;

o predicting the gait features in one sensing modality based on fea-
tures from another modality;

e developing a comprehensive dataset that spans multiple modalities
and covariates;

o exploring the role of deep learning in gait recognition.

These issues are categorized and diagrammed in Fig. 11 and dis-
cussed in the following sections.

6.1. The distinctiveness of gait

Aside from the observation of Murray et al. (1967) suggesting the
existence of at least “twenty distinct gait components” (Nixon et al.,
2010), it appears that little scientific work has been done to determine
the actual distinctiveness of gait. The upper bound on gait recognition
performance, therefore, remains unknown. Certainly there have been
many papers on gait recognition that demonstrate improvement in
performance on standard datasets. However, in some cases, it is pos-
sible that these approaches are dependent on information other than
gait (e.g., clothing or other covariates that change between days, but
testing is done with data captured the same day). Having an upper
bound would help assess the role of ancillary information in optimis-
tically improving the performance of “gait” recognition. A known
bound would also help us determine the viability of using gait as a
biometric in specific real-world applications. Perhaps a first step in this
direction would be to collect data from a wide range of individuals
using video, a marker-based motion capture system, and a pressure mat.
From these, a variety of gait parameters could be computed to de-
termine between- and within-subject variance besides agglomerative
statistics.

6.2. The consistency of gait

The degree of stability or permanence of a biometric trait from the
time of enrollment to the time of recognition is an important con-
sideration. From Section 4.7 we saw that short periods of time (up to 5
years) appear to have a low impact on gait recognition performance.
However, with extended periods of time this could change, due to the
onset of advanced age (Maki, 1997; Winter et al., 1990), injury, change
in weight, pregnancy (Foti et al., 2000) or pathology (e.g., Parkinson’s
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v
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Fig. 11. Various challenges in biometric gait recognition
can be categorized under three main topics: gait specifi-
city, features, and data. Gait specificity refers to the
challenge of distinguishing between individuals based on
their distinctive gait attributes in the presence of noise
(inconsistencies, covariates, and spoofing). Judiciously
combining features across gait sensory modalities and
with other biometric modalities (e.g., ear, iris, finger-
print) has the potential to enhance specificity and predict
unseen gait features. Gait recognition is ripe for a new
standard dataset that covers the gamut of gait sensory
modalities, includes multiple recording sessions per sub-
ject, and is sufficiently large for data-hungry deep
learning algorithms, which have had a significant impact

Deep Learning o i
in other pattern recognition domains.

disease). While some of these conditions may be addressable, there is no
known gait recognition approach that seeks to overcome such changes.

6.3. The effects of covariates and spoofing

In Section 4, we reviewed the growing body of work on gait cov-
ariates. Most of these, however, are focused on vision-based approaches
that address the factors of walking speed and view angle. Covariates
can have a large negative impact on recognition scores, and thus would
appear to be the greatest single obstacle to the commercialization of
gait recognition technologies. While Section 5 suggests that gait
spoofing is difficult and potentially risky to the attacker, such studies
are few in number. Additional investigation is warranted, especially
across multiple sensory modalities to determine which is least vulner-
able to obfuscation and spoofing whilst being robust to covariates.

6.4. The fusion of gait features across sensory modalities and with other
biometrics

There are a number of examples of combining gait features from a
single modality with other biometrics (e.g., Geng et al., 2010; Kimura
et al., 2014; Muramatsu et al., 2013; Shakhnarovich et al., 2001; Vera-
Rodriguez et al., 2012; Vildjiounaite et al., 2007; Zhou et al., 2007).
Depending on the application (e.g., smartphone security), a particular
combination of biometrics (e.g., face and gait from accelerometry) may
be advantageous. By combining gait with other personal traits, the
identity of an individual can be established at a distance in applications
such as airport security.

In some controlled applications, the combination of features across
multiple gait sensory modalities could be beneficial. There are a few
studies that attempt this (Castro et al., 2015; Cattin, 2002; Derlatka and
Bogdan, 2015b; Lee et al., 2013; Vera-Rodriguez et al., 2013b; Zheng
et al., 2012) but, only two clearly show the benefit of combining fea-
tures from multiple gait modalities. Cattin (2002) combined ground
reaction force underfoot pressure features with “histogram” visual
features to achieve a low equal error rate (EER) of 1.6%. However,
Cattin achieved a still lower (better) EER of 0.9% using the histogram
features alone. Lee et al. (2013) achieved a 51% classification rate (CR)
using “gait energy image” visual features alone, 77% using underfoot
pressure image features alone, and 85% using both in combination.
However, their underfoot pressure features came from a different co-
hort of subjects than the visual gait data, so it is possible that the
combination is synthetically unique, thereby unnaturally boosting re-
sults. Zheng et al. (2012) used underfoot pressure images to retrieve
potential matching candidates from a database, which were further
narrowed down using sophisticated visual features. Without the help of
the underfoot pressure features, the visual features only achieved a 39%
classification rate (88 barefoot subjects). Together, they achieved a
high CR of 99%. However, they did not evaluate the effectiveness of
underfoot pressure features alone, which are typically highly dis-
criminative (in the barefoot case). In other studies (Connor, 2015;
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Pataky et al., 2011), CRs of over 99% have been achieved on similarly
large databases of barefoot subjects based on underfoot pressure fea-
tures alone. Derlatka and Bogdan (2015b) used underfoot force over
time to first verify a claimed identity and then rejected the positive
verifications when any of a set of five measured body size parameters
(e.g., height) did not fall within 5% of the system’s stored values. Al-
though this helped to reject several incorrectly verified cases, it rejected
substantially more correct verifications. Castro et al. (2015) (see also
Castro et al., 2016) added audio features to visual features, showing
increases in classification rates between 3.1% and 9.4% (32 subjects,
FV, PCA, SVM). Finally, Vera-Rodriguez et al. (2013b) combined gait
energy image visual features extracted from the lower-body over a half
gait cycle with ground reaction force and spatial underfoot pressure
features. The visual features achieved an 8.4% EER (122 subjects) and
the underfoot pressure features achieved a 10.7% EER. Together, they
achieved a much improved 4.8% EER.

As a product of this review, we propose a fusion of features across
modalities for future research. Note that some signals (e.g., accelera-
tion) may be derived from other gait sensing modalities (e.g., machine
vision model-based joint positions). Thus, the discussion below is not
confined to specific sensors since similar information may be gleaned
from other novel sensing modalities in the future.

It would appear that a combination of features from the visual and
underfoot pressure modalities, with insights from accelerometry, will
be the most discriminating. This is suggested because the visual and
underfoot pressure views capture largely separate aspects of gait. Visual
features capture a macro view of the body structure and movement,
whereas underfoot pressure receives more detailed information about
the interface between the foot and walking surface as well as the foot-
level spatiotemporal forces at work. Besides offering complementary
views of gait, a combination of these modalities may work better to-
gether because they are negatively impacted by different covariates.
Visual features rarely focus on the shape and size of the foot and, thus,
do not suffer as much from the footwear covariate as do underfoot
pressure features. Also, underfoot pressure features are presumably
oblivious to clothing (and perhaps to load carriage) that does not affect
actual gait, and do not suffer from view point variations or occlusions.
This latter quality makes multiple subject gait recognition a more viable
possibility. Also, pressure mats can provide accurate foot location and
gait cycle timing information for vision-based approaches that require
gait cycle segmentation or assistance in determining view direction,
walking speed, etc. Compared to model-based vision methods, accel-
erometry-based gait recognition methods appear to have evaluated
various features and cycle matching approaches based on acceleration
information. Several accelerometry-based studies, which have achieved
results comparable to high-performing visual and underfoot-based
features, were based on a single recording location. Since model-based
methods implicitly have access to accelerations at multiple body loca-
tions, employing accelerometry-based approaches to model-based gait
recognition may be quite helpful. Most video sequences, however,
usually have a lower sampling rate (e.g., 30 frames/s) than accel-
erometry recordings (e.g., 100 Hz), but some high-performance video
cameras can match this, if necessary.

Although potentially useful, the audio and Doppler-shift based
features do not seem to add much to the combination of vision and
underfoot pressures modalities. The footstep sound is generated by the
impact of the foot with the ground and would seem to be a function of
the underfoot pressure profile. It also seems very susceptible to noise,
which is difficult to control in most practical applications. The Doppler-
shift velocity features would seem to overlap with the limb velocity of
model-based features or velocities extracted from accelerometry data.

A recommended combination of types of features extracted from
video and high-resolution pressure mat data would include some or
possibly all of the following:

® Static features capturing structure and mass. Body segment lengths
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seem most accurately captured by model-based approaches.
Averaged or key frame silhouette approaches, and possibly width
histograms, seem like effective mechanisms for capturing the sub-
ject’s relative mass and its distribution. The shape of the silhouette
may capture additional build information. With silhouette-based
features especially, approaches that address the clothing covariate
will be helpful. High-resolution pressure mats can be used to extract
the average dimensions of the foot, and the shape of the foot if
barefoot. Pressure-based images can also provide a summary of
underfoot mass distribution. Total body mass (including any load)
can be calculated from GRF data (derivable from high-resolution
pressure mats).

Dynamic features capturing forces and movement. GRF curves report
the change in overall vertical force over the footstep, and COP
curves provide the underfoot trajectory. Contact duration images
provide some footwear invariance and capture a spatiotemporal
trace of the footstep. Model-based joint position trajectories relate
gait movement and can be used to compute joint accelerations,
which is where features from accelerometry-based studies may
prove valuable.

Between-footstep features capturing high-level gait cycle information. For
this, certain high-resolution pressure mats can capture to within
5mm and 0.01s of the location and timing of heel strike and thus
give an accurate assessment of step length, step width, and cadence.
It also has a direct view of the foot pose angle, relative to other
footsteps on a path.

The inclusion of more gait cycle/footstep instances per classification
should also help improve accuracy. This is one biometric trait where the
use of additional information does not burden the user because it does
not require explicit cooperation. Suutala and Roning (2005) showed an
increase in recognition as the number of footsteps used to build a probe
was increased. Using five footprints instead of one increased the CR
from about 80% to 95% (11 subjects, MLP, product and sum rules).
Connor (2015) used this strategy as well, bringing rates from 91.3%
(one footprint) up to 99.8% (five footprints) in barefoot gait recognition
(92 subjects, PCA, FFS, 1NN) and from 90.5% to 99.5% for shod gait
recognition (13 subjects). Perhaps a similar approach might benefit
vision-based approaches, such as taking multiple average silhouettes
(one per gait cycle or half-gait cycle).

6.5. Cross-modality prediction of gait features

An interesting line of inquiry would involve predicting gait feature
sets pertaining to one modality (e.g., vision), based on the features
extracted from another modality (e.g., accelerometry data). This would
entail developing models that can describe the correlation between
features extracted from multiple modalities as well as determine the
complementary nature of the associated feature sets. As alluded to
earlier, the distinctive attributes of an individual’s gait may be dis-
tributed across modalities and fusing these modalities can, therefore,
provide a more comprehensive description of the individual’s gait.
While such a methodology may not have immediate practical applica-
tions, it would allow researchers to establish upper bounds on gait re-
cognition accuracy and would help in understanding the information
entropy of this biometric cue.

6.6. The need for a large multi-modality, multi-covariate standard dataset

Early in the growing field of gait recognition, DARPA’s “HumanlID at
a Distance” research program spurred the community to gather ap-
propriate real-world datasets, one of which was widely used by the
vision-based gait recognition community. While this most popular da-
taset covers a variety of covariates and has 100 + subjects, it lacks the
ability to move gait recognition from laboratory to commercialization.
Large vision-based datasets (1000+ subjects) have been collected in
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recent years, but the challenge is having subjects return for a second
session, where real-world covariates come into play. A valuable con-
tribution to the gait recognition community would be to generate a
database spanning multiple gait sensory modalities, covering a wide
range of covariates, and having large numbers of subjects that return
for subsequent sessions after a prolonged time in order to facilitate
longitudinal studies. This will be especially important for algorithms
that are dependent on such large data sources such as those based on
deep learning.

6.7. The role of deep learning in gait recognition

A trend in a number of pattern recognition domains is a move to-
ward deep learning techniques, which avoid specifically handcrafting
feature extraction methods by finding discriminating regularities in the
raw data. Deep learning has begun to penetrate the gait recognition
community in each of the major modalities (e.g., Gadaleta et al., 2016;
Shiraga et al., 2016; Wolf et al., 2016; Wu et al., 2015; Zheng et al.,
2010). For example, Shiraga et al. (2016) used a convolutional neural
network (CNN) on a subset of the OU-ISIR Large Population dataset
with the average silhouette or GEI as input. This approach consistently
outperformed other methodologies compared in the paper in terms of
cross-view EERs of between 1.2 and 2.5% (956 subjects, CNN), al-
though their cross-view CRs ranging 80.4 to 94.8% were not always
best. Each cross-view test held only one view in the gallery and all other
views (different by a 10, 20, or 30° viewing angle) as probes.
Zheng et al. (2010) used a deep learning-like approach to extract fea-
tures from barefoot data captured with a high-resolution pressure mat.
An FRR of 0.1% (88 subjects, DHSC) and FAR 0.9% was achieved. Using
a CNN, Gadaleta et al. (2016) extracted 40 features from accelerometry
and gyroscopic data that had been segmented into gait cycles. Their
approach achieved FARs and FRRs of under 1% (9 subjects, CNN, PCA,
SVM, SPRT) usually combining data from five or fewer gait cycles.

Just as deep learning has become the state of the art in several
pattern recognition domains (e.g., speech recognition and object re-
cognition), it may likewise become useful in gait recognition. The
present survey has advocated using features from multiple modalities,
and has loosely specified a complementary set of such features.
Perhaps, rather than collecting a set of handcrafted features from a
multimodal gait dataset, a deep learning approach may discover a more
effective combination of multimodal features or provide a new and
more discriminating view on gait data than do the features reviewed
herein.

7. Summary

From a developmental standpoint, automatic gait recognition is still
in its infancy compared to other advanced biometric cues such as face,
fingerprint, iris and voice. Yet, it’s unobtrusive quality makes it more
attractive than other biometric traits for certain applications. In some
cases, gait recognition could be used to narrow down the potential list
of identities in a multi-biometric system thereby increasing throughput
and decreasing the need for user interaction. However, a number of
compelling challenges have stymied the adoption of this biometric cue
in operational environments. Chief among them has been the adverse
effect of covariates on gait recognition performance. While some of
these effects, especially due to variations in walking speed and view-
point, have been analyzed and studied in the context of vision-based
gait recognition, their impact on other modalities has not been sys-
tematically studied. With an appropriate fusion of features across
modalities, gait recognition may well escape its “infancy” and mature
into a very practical, unobtrusive member of the industrial biometrics
toolbox.
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Appendix 1

Some of the images used in this article are from the Internet. The
URLs for these images are provided below.Figure 1: http://goldberg.
berkeley.edu/courses/S06/IEOR-QE-S06/images.htmlhttp://www.
tonychai.com/mocap.html (Photo Credit: Tony Chai)https://commons.
wikimedia.org/wiki/File:Sony_ HDR-FX1E_20050423.jpghttps://www.
ecs.soton.ac.uk/gait-tunnelhttps://commons.wikimedia.org/wiki/
File:IPhone_lst Gen.svg (Photo credit: Rafael Fernandez)https://
commons.wikimedia.org/wiki/File:Aristotle_Altemps_Inv8575.
jpghttps://commons.wikimedia.org/wiki/File:Giovanni_Alfonso_
Borelli.jpghttps://commons.wikimedia.org/wiki/File:Wilhelm_Eduard_
Weber_II.jpghttps://www.saw-leipzig.de/de/mitglieder/
weberefhttp://www.publicdomainpictures.net/view-image.php?
image = 27277&picture =security-camera (Photo credit: Peter Griffin)
http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitLP.
htmlhttps://www.theasfp.org/https://openclipart.org/Figure
3:https://commons.wikimedia.org/wiki/File:Gray827.pnghttps://
commons.wikimedia.org/wiki/File:Gray355.pngFigure 10:https://
openclipart.org/.
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