

Computerized Systems Validation (CSV) in Biopharmaceutical Industries

Hesham A1* and Patan IK²

¹Middle East for Vaccine, El-Salihya El-Gededa, Egypt ²Strides Pharma Science, Strides House, India

***Corresponding author:** Ahmed Mohamed Hesham, Quality Assurance Manager, Middle East for Vaccines; Address: El-Salihya El-Gededa, El-Sharkia, 44671, Egypt, Tel: (+2) 01159465989; Email: qam@me-vac.com

Review Article

Volume 4 Issue 4 Received Date: August 27, 2020 Published Date: October 16, 2020 DOI: 10.23880/oajpr-16000219

Abstract

The biopharmaceutical industries has more and more used computers to support and accelrate producing of their products. Computer systems also are accustomed support routine offer of high quality products to boost production process performance, scale back production prices, and improve product quality. it's vital that these systems square measure suitable purpose from a business and restrictive perspective. Regulatory authorities treat a lack of regulatory computer system compliance as a serious GxP deviation. The objective of regulated computer systems includes systems used to manage data or support descion making subject to review by regulated authorities whether they are being submitted because its impact on quality or on business. Investments in computer systems supporting the quality controls to ensure that the process is followed correctly, reducing human error and the need to conduct manual checks, Standardization of practices to build consistent ways of working, Speed-up of process cycle times by reducing wait times and by improved scheduling...etc.Computer systems shouldn't be enforced only for restrictive compliance; operational advantages must always be explored as well. "U.S. Code of Federal Regulation 21 CFR Part 600, 606, and 610" and "EU Directive 2003/94/EEC" are the prominent regulations reqested CSV, while "Volume 4 Good Manufacturing Practice Medicinal Products for Human and Veterinary Use - Annex 11: Computerised Systems" considered the main guidlines for CSV in biopharmaceutical industries in European Union. This paper aims to provide simplifed guidance on the basic requireents for computer system validation (CSV) based on the latest regulatory developments and industry trends. In conclusion, CSV has the great impact on the processes improvement. Also the critical parameters of computer systems validation for biopharmaceutical indsutries are highlighted.

Keywords: Computer system validation; CSV, GAMP;, Validation; Qualification; Biopharmaceuticals; GMP

Introduction

In 1990, when two European pharmaceutical manufacturers failed to meet computer compliance expectations and were momentarily forbidden from exporting their products to the United States, the problem of computer system validation assumed a high profile in Europe, EU requirements for computer systems compliance were issued a few years later in 1993 and can be found in Annex 11 in the EU GMPs [1]. So that biopharmaceutical compaines should appoint a senior management representative with particular responsibility for ensuring the implementation of computer compliance requirements. This person, often graded as a Director, is a must-hearted champion of GxP's cause. This senior position's power and accountability should be obviously described and recorded. It is anticipated that the senior manager responsible for regulatory compliance will hire skilled and experienced personnel and guarantee that the CSV requirements carried out is carried out correctly and efficiently [2]. The failure to comply with regulations can has significant financial implications.Noncompliance issues may lead to delays in the issue of a license or its withdrawal and thus an embargo on the distribution of companies products in the relevant marketplace [3]. Successful validation relies on a number of fundamental supporting procedures being operated satisfactorily. These include instruction, document management, change control. configuration management, traceability specifications, self-inspection, and deviation management. Computer Systems Validation (CSV) is central to the life sciences industry [4].

Importance of CSV

Apart from being a regulatory requirement as set out by various regulatory authorities and practices such as the FDA, EMA, GCP, GLP, GMP and all the Predicate Rules; CSV is also very important to implement because not doing so will result in costly consequences such as

- Having a 483 form issued.
- Getting warning letter from FDA.

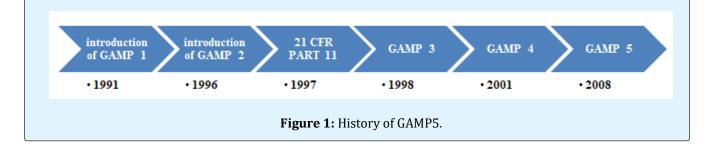
More than anything else, implementation of CSV is also important because it ensures that the data is accurate and the information, secure. Implementing Computer Systems Validation is also an important step in making sure that the organization restricts or prevents any loss of revenue from its main activities or from the CSV exercise itself. It also helps to thoroughly identify and close any gaps in the computer systems. The CSV should ensure that the organization gets the most out of it while meeting regulatory requirements [5].

Definition

- **Computer System:** a system with one or more PCs and related software [1].
- **Computerized System:** A wide range of systems including automated laboratory equipment, laboratory data management, and document management systems, but not restricted to. The computerized system comprises of the parts of hardware, software, and network, along with the regulated tasks and related paperwork [1].
- **Commercial (off-the-shelf, configurable) Computerized System**: Software commercially available, and whose fitness for use has been demonstrated by a broad spectrum of commercial users [1].
- In-House Developed (custom-made or bespoke) Computerized System: a system produced for a customer, specifically to order, defined set of user requirements [1].
- User Requirement Specifications (URS): portrays what the system ought to do. The client necessities contain logical, business, legitimate, administrative, safety, performance and quality parts of things the future system. The user requirements serve as the basis for the Performance Qualification (PQ) [6].
- Qualification (IQ (Installation Qualification), OQ (Operation Qualification), " and PQ (Performance Qualification): is complete and systematic testing behavior of computer system before the actual use, which directly affect the use quality of computer systems. That is, the "Qualification" is the last link of computer system quality assurance [7].
- Computerized System Validation Plan: The validation plan shall be an approved document, which describes the validation activities and responsibilities. The validation plan specifies the Computerized System subjected to validation and compiles the validation activities to be performed and the validation targets/criteria to be fulfilled. The validation plan shall be prepared and approved prior to conducting the test [8].Black-Box Validation: Validation based on the fact that, for a given computerized system, its source code or design is unknown to the user. Validation is performed from the computerized system or computer system user's point of view [1].
- Black-Box Test: Periodic check of a computer, computerized system or computerized system based on the black-box validation approach. Black box testing examines the functionality of a system without peering its inner structure or workings [1].

CSV Requirements

The Requirements for validation of computer systems can be found in:


- a. FDA 21 CFR part 820.70
- b. FDA 21 CFR part 11.10
- c. FDA 21 CFR part 11
- d. FDA Guidance Document regarding Software Validation (also addressing process software)
- e. ISO 13485, clasuses 4.1.6, 7.5.2.1 and 8.2.3
- f. GMP directives
- g. GAMP 5, e.g. regarding the "risk-based approach of testing GxP systems".

History of GAMP 5 [9]

The guidlines laid out in Good Automated Manufacturing Practices GAMP 5, for the computer qualification of automated systems including:

- Automatic computerized manufacturing equipment,
- Control systems,
- Automated laboratory systems,
- Manufacturing execution systems
- Computers running laboratory
- Database systems.

The V model of GAMP 5. It is based on the standards of PQLI1, ICH Q8, ICH Q9, ICH Q10, and ASTM E2500. History of GAMP 5 explined briefly in Figure 1.

GAMP Aim

GAMP describes a set of principles and procedures that help ensure that pharmaceutical Software have required quality. Computer system validation (CSV) following GAMP guidelines require users and suppliers to work together so that responsibilities regarding the validation process are understood.

A series of events has driven changes in industry standards; which will likely continue to evolve as technology advances. One of the obstacles a software development company in the Life Sciences industry routinely faces is the ability to remain current and knowledgeable on all of these developments. Being in the industry since the introduction of GAMP 1.

These computerized systems generally consist of the hardware, software and netware components, together with all control functions and GAMP 5 is a useful guide in scoping your validation online activities for such systems.

GAMP from User Point of View

For users: GAMP provides a documented assurance that a system is appropriate for the intended use before it goes "live."

GAMP from Supplier Point of View

Suppliers can use GAMP to test for avoidable defects in the supplied system to ensure quality products are produced.

It must be remembered at all times that GAMP is collective ideas from the industry and does try to be all things to all people.

IT Infrastructure Control and Compliance

The GAMP® Good Practice Guide: IT Infrastructure Control and Compliance: covers a range of IT Infrastructure, from those operating globally to isolated or semi-isolated. Key aspects considered include:

- IQ, OQ of infrastructure components.
- Configuration management and change control of infrastructure components.
- Settings the infrastructure components in a highly dynamic environment.
- Management of risks to IT Infrastructure.
- Service providers fot critical infrastructure processes to be envolved.
- Security management in relation to access controls.
- Data integrity.
- Backup, restore, and disaster recovery.

• Archiving.

To avoid unnecessary effort, this Guide describes a horizontal, or platform based, approach, the benefits of which include:

- Higher level of standardization throughout the entire life cycle
- Minimal overlap in documentation
- Minimal overlap in qualification

• Minimal overlap in audits, inspections, and assessments [10].

GAMP 5 Categories

This categorization covers the computerized systems, which have an impact on the Products related to patient safety, product quality, and data integrity. The categorization basically covers software and hardware Categories as explained in Tables 1 & 2.

Category	Description	Validation Approach	Typical Example
Category-1 Infrastructure Software	Layered Software Software used to manage the operating environment	Software used to manage the operating	
Category-2 Firmware	No Longer Use		
Category-3 Non- Configured Software	Run Time Parameters may be entered and stored, but the software cannot be configured to suit the business process	Abbreviated life cycle approach: URS, Risk- based approach to supplier assessment, Record version number, verify correct installation, Risk-based tests against requirements as directed by use. Procedures in place for maintaining compliance and fitness for intended use.	 Firmware based applications COTS software Laboratory Software PLC
Category-4 Configured Software	Software, often very complex, that can be configured by the user to meet the specific needs of the user's business process. Software code is not altered	Life Cycle Approach: Risk-based approach to supplier assessment, Demonstrate supplier has adequate QMS, Some life cycle documentation retained only by supplier (e.g. Design Specification). Record Version Number Verify correct installation. Risk- based testing to demonstrate application works as designed in the test environment. Risk-based testing to demonstrate application works as designed within the business process. Procedures in place for maintaining compliance and fitness for intended use. Procedures in place for managing data.	 LIMS Data Acquisition System SCADA ERP DCS BMS Spreadsheets HMI

A. Software Categories

Category-5 Custom software	Software Custom designed and coded to suit the business process	Same as configurable, Plus: More rigorous supplier assessment, with possible supplier audit. Full Life cycle (FS, DS, Structural Testing, etc.) Design and Source Code Review.	 Internally and Externally developed IT Applications Internally and externally developed process control Applications. Custom Ladder Logic. Spreadsheets-Macro.
----------------------------------	---	--	---

Table 1: Software Categories according GAMP 5.

B. Hardware Categories

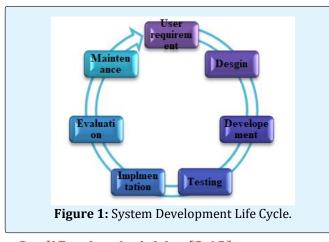
Category	Hardware type	Validation Approach	Example
Category-	Standard hardwareStandard hardware components should be documente including make or supplier details and version numbe		PLC,
1	components Hardware details can be taken from the hardware data sheet or specification material.		Controller, Scanner.
Category-	Custom built	Hardware should have design specification and be subjected to acceptance testing.	
2	hardware components Any hardware configuration should be defined in the design documentation and verify in the IQ.		PCB etc.

Table 2: Hardware Categories according GAMP 5.

Importance of URS

Recent research has highlighted that in the pharmaceutical and bio-medical industry, 32% of all equipment procurement is unsatisfactory. The major problem has been identified as companies not specifying in sufficient detail and or accuracy, what their actual needs are. The lack of a fully detailed company approved User Requirements Specification (URS), leads to many companies having to resort to otherwise un-necessary and costly retrospective actions in modifying the equipment or producing unspecified documentation or engineering drawings, post procurement. These extraneous GMP requirements often cost more than the equipment [11].

Typical Software Requirements [12]

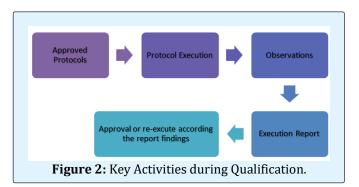

Typical software requirements should specify the following:

- All software System inputs;
- All software System outputs;

- All functions that the software system will perform;
- All performance requirements that the software will meet.
- The definition of all external and user interfaces.
- How users will interact with the system;
- What constitutes an error and how identified errors should be handled?
- Required response times;
- The intended operating environment for the software.
- All ranges, limits, defaults, and specific values.
- All safety specifications & features.

System Development Life Cycle [12]

The system development life cycle (SDLC) can be defined as, a framework for developing computer based information system. In order words, SDLC is the overall process of developing information system through a multi-step process from investigation of initial requirements through analysis, design, implementation and maintenance. These activities are carried out in different phases, which are explained in figure 2.



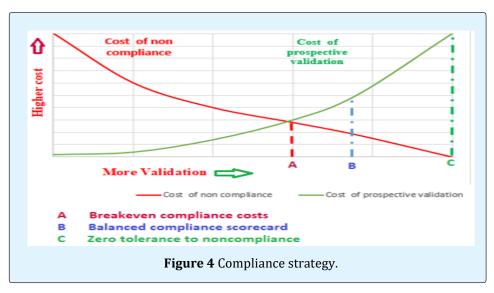
Qualification Activities [2,13]

The validation process for 21 CFR Part 11 compliance consists of these core elements:

- Comprehending the regulatory requirements.
- Ensuring compliance with CSV requirements in a cost-effective process.
- Preparing validation CSV master plan.
- Writing the CSV protocol.
- Conducting testing protocol of software and computer systems initial and ongoing.

- Ensuring that the bare minimum documentation that FDA inspectors will ask for are available.
- Qualifying the IT systems network infrastructure and validating the network systems.
- The key activities in computer system qualification explained briefly in Figure 3.

Project Phase Deliverables


Following section provide a snapshot of project phases deliverables applicable for software validation. However, the actual deliverables to be created, reviewed and approved for a project should be identified in the project validation plan in accordance to the approach defined for the project as explained in Table 3.

S.No.	Deliverables	GAMP Category-1	GAMP Category-3	GAMP Category -4	GAMP Category -5
1.	User Requirement Specification	×	\checkmark	\checkmark	\checkmark
2.	Vendor Assessment	×	×	✓	~
3.	Initial Risk Assessment	✓	\checkmark	✓	✓
4.	Project Validation plan	✓	×	✓	✓
5.	Functional Specification	×	×	✓	✓
6.	Functional Risk Assessment	✓	\checkmark	✓	✓
7.	Configuration Specification	×	×	✓	✓
8.	Design Specification	×	×	✓	✓
9.	Setup, Configuration& Testing in validation Environment	×	×	✓	\checkmark
10.	Installation Qualification	✓	\checkmark	✓	✓
11.	Operational Qualification	×	\checkmark	✓	✓
12.	PerformanceQualification-1	×	\checkmark	✓	✓
13.	Setup, Configuration& Testing in Production Environment	×	×	\checkmark	\checkmark
14.	PerformanceQualification-2	×	×	✓	\checkmark
15.	Traceability Matrix	×	\checkmark	✓	✓
16.	Project Validation Report	✓	\checkmark	✓	✓

Table 3: Project Phase Deliverables.

Compliance Strategy

The objective must be to achieve compliance as costeffectively as possible. Many biopharmaceutical companies have subsequently found at their expense that inefficient compliance programs are extremely costly, involving much more work than is really necessary [5]. Figure 4 illustrates three basic compliance strategies by comparing the cost associated with compliance (prospective validation) compared to the costs of noncompliance (combined effect of retrospective validation and disturbance of company).

Common Reasons for CSV Failure

Without adequate planning and preparation [5], computer system validation can encounter several problems, eventually leading to failure of the process. Problems include:

- a. Inadequate documentation of plans.
- b. Inadequate definition of what constitutes the computer system.
- c. Inadequate definition of expected results.
- d. Inadequate specification of software.
- e. Software that does not meet its specifications.
- f. Unavailable source code for software.

Regulatory Requirements

This section identifies the Regulatory requirements, determined by following regulations [1,14,15]:

I. US Food & Drug Administration - Code of Federal Regulations, Title 21, part 11: "Electronic Records; Electronic Signatures; Final Rule" II. Guide to Good Manufacturing Practice for Medicinal Products (The Rules Governing Medicinal Products in the European Community, Volume IV – Annex 11).

The Regulatory Requirements are grouped according to the following Regulatory Topics [16-19].

- **Quality System**: related to the Quality System and to the associated documentation
- **Security**: related to the general features of System Security and Security of Regulated Electronic Record managed by the system
- **Integrity**: related to the Integrity of the Regulated Electronic Record managed by the system and associated Validation documentation
- **Traceability**: related to the Traceability of the Regulated Electronic Record managed by the system
- Accountability: related to the Regulated Electronic Signatures managed by the system

More details about the requirements in Table 4.

Regulatory Topic	21 CFR Part 11[14]	EU cGMP Annex 11 [1]	Rule Requirement	Detailed Requirement	Descrption
		Principle		Infrastructure Qualification	The application should be validated; IT infrastructure should be qualified.
		1		Risk Management	Risk management should be applied throughout the lifecycle of the computerized system. Protocols, acceptance criteria, procedures and records based on their risk assessment.
		4.1		Validation Standards	Standards should base on risk assessment.
	4. 3. 3. 4.	4.3	Quality System Documentation Verification	System Inventory	An up to date listing of all relevant systems and their GMP functionality (inventory) should be available.
Quality System		4.5 3.2 3.4		Supplier Qualification	The supplier should be assessed appropriately.
		4.6			Supplier Documentation for Customized Computerized Systems
				Automatic Testing	Automated testing tools
		4.7		Tools Adequacy Test Environments	and test environments should have documented assessments for their adequacy
		13		Incident Log	All incidents, not only system failures and data errors, should be reported and assessed. Critical incident should be identified and should form the basis of CAPA.
	11.10 (i)	2		Personnel Training	All personnel should have appropriate qualifications, level of access and defined responsibilities to carry

					out their assigned duties.
		3.1		Quality Agreement for third parties	Formal agreements must exist between the manufacturer and any third parties, and these agreements should include clear statements of the responsibilities of the third party. IT- departments should be
	11.10 (k)(1)			Document Distribution	considered analogous. Adequate controls over the distribution of, access to, and use of documentation for system operation and maintenance.
	11.10 (k)(2)			Document Change Control	Any changes to a computerised system
	()(-)	10	-		including system
		4.2		System Change Control	configurations should only be made in a controlled manner in accordance with a defined procedure.
				Backup	Regular back-ups of all relevant data should be done.
	11.10 (c)	7.2	Archiving	Restore	Integrity and accuracy of backup data and the ability to restore the data should be checked during validation and monitored periodically
Security		17		Archiving	This data should be checked for accessibility, readability and integrity. If relevant changes are to be made to the system
	11.10 (b)	8.1	Inspectability	Record Inspectability	It should be possible to obtain clear printed copies of electronically stored data
	11.10 (d)	12.1			Suitable methods of preventing
	(u)	12.2	Data Security	Restricted Access	unauthorised entry to the system may include the use of keys, pass

					conda nonceral coda-
					cards, personal codes
					with passwords, biometrics, restricted
					access to computer
					equipment and data
					storage areas
					safeguards in place to
					prevent unauthorized
	11.300	12.1		Uniqueness of Codes	use of passwords
	(a)				and/or identification
					codes,
					The system can detecr
					and report in an
					immediate and urgent
				Authority Check	manner any attempts at
	11.10	12.1			their unauthorized use
	(g)	12.1			to the system security
					unit
					Automatically log out
				Automatic Log Off	users after a defined
					period of inactivity
		12.1			Users should work only
		12.2			under their own user
					profiles encompassing
		12.3			unique user IDs and
	11.1				individual passwords or
	(d,g)			User Profiles Security	other access keys and
					not share these with
					othersCreation, change,
					and cancellation of
					access authorizations
					should be recorded.
					Data should be secured
				Data Retention	by both physical and electronic means
					against damage. Stored
					data should be checked
	11.10	7.1			for accessibility,
	(c)	7.1			readability and
					accuracy. Access to data
					should be ensured
					throughout the
					retention period.
					Decisions on the extent
					of validation and data
	11.10 (a)				integrity controls
		Principle		Validation	should be based on a
Integrity		4.1	Validation	valluation	justified and
					documented risk
					assessment of the
					computerized system.
		11		Periodic Review	Computerized systems
	•	•			•

				should be periodically evaluated to confirm
				that they remain valid.
				URS should describe
				the required functions
				of the computerized
	4.4		User Requirements	system and be based on
			documented risk	
				assessment and GMP
				impact.
				An up to date listing of
				all relevant systems and
	4.3		System Specifications	their GMP functionality
				(inventory) should be
				available
				Evidence of appropriate
				test methods and test
				scenarios should be
				demonstrated.
	4.7		Validation Testing	Particularly, system
			(process) parameter	
				limits, data limits and
				error handling should
				be considered.
				If data are transferred
				to another data format
			Data Migration Verification	or system, validation
	4.8			should include checks
				that data are not
				altered in value and/or
				meaning
				For critical data entered
	6	Invalid Records	Invalid Records Detection	manually, there should be an additional check
	0	Invalid Records		
				on the accuracy of the data.
				Validation of systems to
				ensure accuracy,
				reliability, consistent
		Altered Record	Altered Record	intended performance,
		inter cu necoru	Detection	and the ability to
				discern invalid or
				altered records
				availability of
				computerized systems
				supporting critical
				processes, provisions
	16	Business	Business Continuity	should be made to
		Continuity	······································	ensure continuity of
				support for those
				processes in the event
				of a system breakdown
	•	L	1	

					(e.g. a manual or alternative system)
	11.10 (h)		Device Check	Device Check	Devices check to see if they've been assigned
	11.10 (f)		Operational Check	Operational Check	an enterprise configuration
		5	Interface Built-in Checks	Interface Built-in Checks	Is there a formal change control procedure for system documentation that maintains a time sequenced audit trail for those changes made by the organization?
		6	Accuracy Checks	Accuracy Checks	For critical data entered manually, there should be an additional check on the accuracy of the data.
	11.10 (e)	9		Audit Trail	To building into the system the creation of a record of all GMP- relevant changes and deletions (a system
Traceability		8.2	Audit Trail	Changes in Printouts	generated "audit trail"). For records supporting batch release it should be possible to generate printouts indicating if any of the data has been changed since the original entry.
	11.10 (e)		Temporal Reference	Temporal Reference	The system should be capable of recording all electronic record creation, update, and deletion operations. This record should be secure from subsequent unauthorized alteration,
Accountability	11.7	14.b	Signature/ Record Linking	Electronic Record / Electronic Signature link	The system must provide a method for linking electronic signatures, where used, to their respective electronic records, in a way that prevents the signature from being removed, copied, or changed in order to falsify that or any other record.

11.3 (a,b,d)			Uniqueness of identification Components (i.e. code and password)	Physical and/or logical controls should be in place to restrict access to computerized system to authorized persons. The extent of security controls depends on the criticality of the computerized system.
	12	Electronic Signature Management	Periodical check of identification code and password	Initial and periodic testing of devices, such as tokens or cards, that bear or generate identification code or password information to ensure that they function properly and have not been altered in an unauthorized manner
	14.a		Electronic Signature User Identification	Electronic Signature should have the same impact as hand-written signatures within the boundaries of the company,
	4.1		Hybrid Management	The validation documentation and reports should cover the relevant steps of the life cycle
11.50 (a)	14.c	Electronic Signature Manifestation	Information associated with the signing	Electronic Signature should include the time and date that they were applied.
	15	Batch Release	Batch Release and QP Approval	When a computerized system is used for recording certification and batch release the system should allow only Qualified Persons to certify the release of the batches and it should clearly identify and record the person releasing or certifying the batches. This should be performed using an electronic signature.

Table 4: 21 CFR Part 11, EU cGMP Annex 11 requirements for CSV.

Examples from Computerized System Required CSV

system requires validation to be comply GMP requirements, Examples for these systems mentioned in table 5.

In biopharmaceutical industries many computerized

S. No.	Examples for computerized system required CSV	Risk on GMP or Business
1.1	Operation system software	Business
1.2	Servers and backup solution software	Business & GMP
1.3	Documents related software	Business & GMP
1.4	Software for materials stock control	Business & GMP
1.5	Software or excel sheets related to materials / batches release	Business & GMP
1.6	Software for autoclave operation	Business & GMP
1.7	Identification IDs Printer software	GMP
1.8	Fermentations operation software	Business & GMP
1.9	Filter integrity tester software	GMP
1.10	Inoculator / Harvester Operation Software	GMP
1.11	Washing / Sterilization Tunnel operation software	GMP
1.12	Blending system operation software	GMP
1.13	Filling line operation software	GMP
1.14	Labeling / Batch details printing software	Business & GMP
1.15	Thermal mapping software	GMP
1.16	BMS software	Business & GMP

Table 5: Examples for computerized systems requires CSV.

Conclusion

Without adequate planning and preparation, computer system validation can encounter several problems, eventually leading to failure of the process so the successful computer system validation (CSV) is highly dependent upon the quality assurance system, a formal System Development Life Cycle, and the qualification tasks performed throughout the this cycle. CSV must establish a level of confidence|| that the system consistently meets the requirements and user requirements. As most methodologies require that specifications and test protocols are written, approved by qualified staff, and acted upon, it is possible to adapt the validation methodology to most situations, provided that the system requirements and functionality can be shown to be tested and proven, and that the system development, implementation, and operation is under control. Above all the system must be shown to operate correctly. Above all, the device must be shown to function properly, reliably and in compliance with its requirements. The system must be validated according the quality system and approved protocols to provide the

user by data integrity, security, traceability and accountability.

Acknowledgment

Many thanks for Dr. Momtaz Wasfy for his revision and his generously contributed to the work presented in this review. In particular, Eng. Amr Mostafa for their tremendous support, but also for giving me many wonderful opportunities to learn many amazing things from them.

References

- 1. Union E (2011) EudraLex The Rules Governing Medicinal Products in the European Union - Volume 4 Good Manufacturing Practice. Medicinal Products for Human and Veterinary Use - Annex 11: Computerised Systems, pp: 1-90.
- 2. Ostrove SA (2016) How to Validate a Pharmaceutical Process How to Validate a Pharmaceutical Process.

- 3. (2019) Computer System Validation in the Pharma Laboratory 10 years of GAMP 5, Pitfalls and Best Practices.
- 4. Rodríguez-Pérez J (2014) The FDA and Worldwide Current Good Manufacturing Practices and Quality System Requirements Guidebook for Finished Pharmaceuticals.
- Wingate G (2010) Pharmaceutical Computer Systems Validation Quality Assurance, Risk Management and Regulatory Compliance 2nd (Edn.).
- 6. Zwetkow M, Tanguay S (2013) Qualification Guideline for Microsoft Office 365. Heal Life Sci Ind Unit Microsoft.
- 7. (2017) Validation and Automated Validation. Tracelink.
- 8. Signature E (2017) Current Practices of system validation.
- 9. Shields S (2013) GAMP 5 A Risk-Based Risk Based Approach to Compliant GxP Computerized Systems. Allergan, pp: 1-29.
- 10. (2005) GAMP Good Practice Guide: Testing of GxP Systems. ISPE, pp: 1-166.
- 11. Lead G (2018) Guidelines on Validation Appendix 5 Validation of Computerized Systems. World Health Organization, pp: 1-29.

- 12. (2002) U.S. Department Of Health and Human Services Food and Drug Administration and C. for D. and R. H. C. for B. E. and Research, General Principles of Software Validation; Final Guidance for Industry and FDA Staff.
- 13. Elser C, Richmond FJ (2018) Validation Master Plans : Progress of Implementation in the Pharmaceutical Industry. Therapeutic Innovation & Regulatory Science 53(3): 354-363.
- 14. Orlando López (2005) 21 CFR Part 11: Complete Guide to International Computer Validation Compliance for the Pharmaceutical Industry. Boca Raton London New York Washington, DC, pp: 1-286.
- 15. Global compliance panel training. Your Gateway to Regulatory Compliance.
- 16. http://globalcompliancepanel.viewpage.co/Validatio n-and-21-CFR-11-Compliance
- 17. Phan TT (2003) Technical considerations for the validation of electronic spreadsheets for complying with 21 CFR Part 11. Pharmaceutical Technology North America 27(1): 50-56.
- McDowall RD (2019) Data Integrity Focus, Part 1: Understanding the Scope of Data Integrity. LCGC North America 37(1): 44-51.

19. McDowall RD (2019) Data Integrity Focus, Part III: What Is the Problem with Hybrid Systems?. LCGC North America 37(3): 180-184.

