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COMPUTERIZED TOMOGRAPHY: THE NEW MEDICAL X-RAY TECHNOLOGY 

L. A. SHEPP AND J. B. KRUSKAL 

Abstract. Computerized X-ray tomography is a completely new way of using X-rays for medical 
diagnosis. It gives physicians a more accurate way of seeing inside the human body and permits safe, 
convenient, and quantitative location of tumors, blood clots and other conditions which would be painful, 
dangerous, or even impossible to locate by other methods. Although each tomography machine costs 
hundreds of thousands of dollars, hundreds of tomography machines are already in use. 

A mathematical algorithm to convert X-ray attenuation measurements into a cross-sectional image plays 
a central role in tomography. Sophisticated mathematical analysis using Fourier transforms has led to 
algorithms which are much more accurate and efficient than the algorithm used in the first commercial 
tomography machines. We show how some of the algorithms in actual use have been developed. We also 
discuss some related mathematical theorems and open questions. 

1. Introduction. In computerized tomography, X-ray transmission measurements are recorded on 
a computer memory device rather than on film, and a sophisticated mathematical algorithm is 
applied. This produces a numerical description of tissue density as a function of position within a thin 
slice through the body. The physician examines this function by use of visual displays. 

In the ordinary medical use of X-rays, the picture is something like a shadow; any feature in line 
with denser bone tissue tends to be blocked out. In other words, if we could make a great many 
pictures, each of a thin slice perpendicular to the beam of X-rays, the actual X-ray picture is formed 
by superposition of all these hypothetical pictures, i.e., it is a kind of "multiple exposure." Com- 
puterized X-ray tomography provides a picture of a single thin slice through the body, without 
superposition. The word tomography is related to the Greek word "tomos" meaning cut or slice. 

Imagine a thin slice, say through the head, perpendicular to the main body axis. Several hundred 
parallel X-ray pencil beams are projected through the head in the plane of this slice, and the 
attenuation of X-rays in each beam is measured separately and recorded. (In earlier machines a single 
beam has been used by translating it parallel to itself within the plane; some of the later machines 
discussed in Section 3 use fan rather than parallel arrays of beams.) Another set of parallel beams is 
used within the same plane but at an angle of perhaps 10 or so with the first set, and measurements 
are taken again. The process is repeated until measurements have been taken for a grid covering all 
directions in the plane. An elaborate calculation then permits approximate reconstruction of the 
X-ray attenuation density as a function of position within the slice. 

In appropriate units, tissue density in the head varies roughly between 1.0 and 1.05 with the 
exception of bone which has a density of about 2. Some features of medical interest are indicated by 
variations of density as small as .005. Reconstructing tissue density with adequate accuracy at a 
sufficiently fine grid of points is thus a challenging project. 

Mathematically we may describe the problem as follows. Consider a fixed plane through the body. 
Let f(x,y) denote the density at the point (x,y), and let L be any line in the plane. Suppose we direct 
a thin beam of X-rays into the body along L, and measure how much the intensity is attenuated by 
going through the body. It is easy to see that the logarithm of the attenuation factor is given 
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approximately by the projection or line integral of f along L, 

Pf (L) = f (x,y)ds, (1.1) 

where s indicates length along L. The formula (1.1) is only an approximation because: (1) it assumes 
the X-ray beam is infinitely thin, and (2) it assumes the beam is monochromatic, or alternatively that 
the physical attenuation coefficient is independent of the energies of the different X-ray photons, and 
(3) it ignores the significant statistical fluctuations due to the limited number of photons actually 
transmitted during each measurement. None of these three assumptions is quite correct, but the error 
in using (1.1) can in principle be made arbitrarily small. 

Although complete mathematical analysis of the above errors is impossible, the effects of the 
approximations have been studied by various means. Thus consider the first approximation. Suppose 
we replace the line integrals Pf (L) by integrals Pf (S) over strips S. It is shown in Appendix 1 that the 
strip integrals of f are the line integrals of the function k*f, the convolution of f with a circularly 
symmetric kernel k, where k is the Abel transform of the strip shape. Although the strip integral is 
still only an approximation, it suggests that an X-ray beam of nonzero width will merely produce a 
slight smoothing in the reconstruction. The last approximation can be analyzed with the techniques of 
signal-in-noise communication theory [20]. All three approximations have been studied using simula- 
tions [21]. 

The mapping f-4Pf in (1.1) is known as the Radon transform because Radon (1917) studied it 
extensively. He showed that if f is continuous and has compact support, thenf is uniquely determined 
by the values of P/L) for all lines L (i.e., the Radon transform is one-one). Furthermore, Radon gave 
the fairly simple inversion formula, (2.1) below, for f. 

Around 1970, G. N..Hounsfield of EMI, Ltd. invented the first computerized tomography machine 
to give an image accurate enough to be of value in medical diagnosis [11]. Since that time 
computerized X-ray tomography has assumed great medical importance. It is interesting to note that 
several years prior to Hounsfield's work, Bracewell and Riddle [1] used the tomography principle in 
radioastronomy, while Cormack [2a, 2b] proposed it for medical use. 

Mathematics has played a central role in tomography from the very beginning, because without a 
mathematical algorithm of some sort, reconstruction of the density f from its projections Pf(L) is 
impossible. Rigorous deduction plays an important but limited role in these algorithms. Without it, 
tomography would be far less effective. For example, Radon's work, which appears to have been pure 
mathematics carried out for its own sake, has played a very important role in the development of 
tomography. Lebesgue-Stieltjes integration theory provided the foundation on which the present 
formulation of algorithms is based. Classical theorems by Fourier, Poisson and others play an 
important role as we shall illustrate. On the other hand, when comparing the value of different 
algorithms, rigorous deduction hardly enters the picture. For example, consider one important aspect 
of reconstruction, the accuracy to which the density values are reconstructed. In principle, it might be 
possible to give rigorous error bounds and these could be used to compare the accuracy of different 
algorithms. However, this has not yet been possible (and might not even provide a useful compari- 
son). Instead the accuracy is compared by several types of experiments which we shall describe in a 
moment. 

It is interesting to consider the method by which algorithms have been "justified" mathematically 
in this field. While this method consists of mathematical reasoning in a certain sense, the reasoning is 
far from rigorous. Approximations are introduced at many steps with only intuition as a guide to the 
error involved. We do not know of a single instance in which a tomographic algorithm has been 
justified in a truly rigorous sense. Thus, in contrast to some other workers in this field, we do not feel 
that one derivation is more rigorous than another, whether it is based on Radon's inversion formula, 
the Fourier inversion formula or any other foundation. 
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It is interesting to see how non-rigorous mathematical thinking has played the major role in 
comparing different algorithms. The most widely used technique for comparing algorithms has been 
to compare the reconstructions when applied to data taken from real human subjects. Another 
technique is to use what physicians call "phantoms": this means taking data from a physical object of 
known structure instead of a human subject. This is useful because we know what the true object is. 
Errors in the reconstruction, however, may be due to errors in the data or to errors in the algorithm. 
To separate these, Shepp introduced a "mathematical phantom." As described more fully in [20], this 
involves simulating a body section by a mathematically describable function. It has been convenient 
to use piecewise constant functions where the pieces are made from circles or ellipses (since for these 
the projection data is easily obtained). In a mathematical phantom there is no measurement error, so 
any errors in the reconstruction are due to the algorithm. Furthermore, any desired type of 
measurement error can be simulated to study its effects, which has been very useful [21] in the design 
of the newer high speed scanning machines. 

FIG. 1. Simulation of human head using 11 ellipses. The density of the skull is 2.0 and of the ventricles, tumors, 
etc. is 1.0-1.05 (see [20] for more details). 

Figure 1 shows a mathematical phantom which is a reasonable imitation of a slice through the 
human head, subject to the limitations mentioned above. The skull has density 2.0 while the diagonal 
ellipses represent ventricles of the brain which are filled with fluid of density 1.0. The surrounding 
gray matter has density 1.02; the various tumors, and the blood clot just inside the skull, have 
densities ranging between 1.03 and 1.05. Thus all interior head tissue has a very narrow range of 
variation. See [20] for further details. 
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FIG. 2. Reconstruction using the algorithm embodied in the first commercial machine (EMI Ltd.) from 180>( 160 
strip projection data obtained by exact calculation from Fig. 1. 

Figures 2,3,4 show reconstructions of this phantom. by three different algorithms in chronological 
order. Figure 2 shows a reconstruction using the algorithm embodied in the first commercial machine, 
which was constructed and sold by EMI Ltd. We shall call this the Hounsfield iterative algorithm 
(Hounsfield 1971) since it was based on an iterative relaxation method. Figure 3 shows the 
reconstruction from the same data by the Fourier-based convolution algorithm due to Shepp (1974). 
Figure 4 shows the reconstruction by the algorithm now used in EMI machines and due to C. Lemay 
(1974) of EMI. It is evident that Figs. 3 and 4 are great improvements over Fig. 2 which has artifacts 
which make it difficult to detect the small tumors. It also has a ring around the inside of the skull, 
which was also observed in human reconstructions and was believed to be a genuine aspect of human 
anatomy. Through the use of mathematical phantoms it was first learned that this ring is an artifact 
due to the algorithm. Figure 4 also shows this artifact, much decreased, and some tomographers argue 
that such "overshoot" is desirable because it enhances some otherwise less notable features of 
importance, such as edges of tumors. Other tomographers feel otherwise, pointing out that the 
overshoot can conceal a feature immediately adjacent to the skull such as a blood clot. We feel that at 
this stage of tomography the goal should be to 'Make the tomographs as accurate as possible. 
Enhancement may have value, but it also has dangers which are better deferred until the field has 
matured further. 

The comparison shown in the figures is not quite fair for various reasons, most notably because 
Fig. 4 is based on a finer grid of simulated X-ray beams than Fig. 2. (However, Fig. 3 is based on the 
same data as Fig. 2.) Nevertheless, there is little question that the conclusions are correct, because 
they are supported by a wealth of other experiments, using various algorithms and all three methods 
of comparison described above. 

Some experimental details may be worth mentioning. The reconstructions in Figs. 2 and 4 were 
made by placing the simulated projection data from the mathematical phantom in the appropriate 
memory area of an EMI machine (at Columbia-Presbyterian Hospital, NYC) so that the miachine 
could process the data through its algorithm and display the reconstruction in its normal manner. The 
reconstruction in Fig. 3 was made at Bell Laboratories using a computer program due to Shepp [20]. 
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FIG. 3. Reconstruction from the same data using the Fourier based algorithm of Shepp [20] (see [20] for more 
details). 

_ 0 - -------- .... ....l..... 

FIG. 4. Reconstruction using the algorithm now embodied in the EMI machine from 180x239 strip projection 
data obtained by exact calculation from Fig. 1. 
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In ?2, we survey the mathematical foundations and some rigorous models of tomography and state 
some theorems of mathematical interest which have grown out of tomography. In ?3 we briefly 
describe some of the major tomographic algorithms now in use. 

Another survey [22] of the field of tomography has recently appeared and deserves comparison. 
[22] treats some interesting mathematical questions related to tomography, but has little to do with the 
way mathematical algorithms are being used in the field. 

2. Mathematical foundations. Radon [181 gave a simple formula to invert the transform (1.1). 
Assume the projections Pf(L) are given for all lines L where f is continuous with compact support. If 
Q is any point in the plane, denote by FQ (q) the average value of Pf(L) over all lines L at distance 
q > 0 from Q. Then for any Q, f is reconstructed by 

IfoOdFQ(q) (2.1) 

where the integral converges as a Stieltjes integral in spite of the apparent singularity at q=O. 
Some pure mathematicians seem to have the mistaken notion that a formula like (2.1) is a 

complete answer to the tomographic reconstruction problem, and that little more remains to be done. 
However, it will come as no surprise to most applied mathematicians that the work has just begun. 
First, an inversion formula is not enough. The stability properties of the inverse mapping are of vital 
importance since if the inverse mapping is not sufficiently stable then impractically precise measure- 
ments of Pf(L) may be required to determine f to sufficient accuracy. Second, in practice it is 
necessary to use sums rather than integrals and this discretization involves subtle and difficult 
questions. 

To illustrate the latter point first, the natural discrete approximations to (2.1) do not give good 
reconstructions. This is partly because of the singularity at q=0 but mainly because finding a good 
natural approximation to FQ(q) is possible only if there are many lines L available at distance exactly 
q from Q. This occurs only for a few points Q and for a few distances q, no matter how the lines L 
are chosen. Thus another inversion formula for the mappingf->Pf is needed which lends itself better 
to discrete approximations. 

To illustrate the point about stability of the inversion mapping, let us consider a more general 
inversion problem. Since the Radon transform uses all lines L, while discrete approximations deal 
with only a finite number of lines, it is natural to consider how the inversion depends on the set C of 
available lines. Furthermore, the density functions f(x,y) must have smoothness properties, so it is 
natural to specify that f belongs to some linear space '1 of functions, and to consider how the 
reconstruction depends on C. 

Now consider three different sets of lines: the set of all lines, the set %D of all lines which intersect 
a disk D and the set J4D of all lines which are exterior to D. We shall refer to the complete Radon 
transform, the interior Radon transform, or the exterior Radon transform, according to whether L 
ranges over the first, second, or third of these sets. Then Radon's theorem (2.1) shows that the 
complete Radon transform is a l-to-l mapping. That is, Pf determines f everywhere if f belongs to 
6, the set of functions which are continuous and have compact support. The complete Radon 
transform is even l-to-l on the larger set 6k, the set of continuous functions f with 
f(x,y)= o((x2 +y2) k) as (x,y)--oo, k > 1, [18]. 

Inversion of the interior or exterior Radon transform is of medical interest. For example, the fewer 
measurements required for the interior transform could reduce patient dosage in imaging a specific 
organ or part of the body within D. Inversion of the exterior transform could solve the problem 
caused by rapid heart motion in imaging the chest region around the heart. If there were an accurate 
inverse exterior transform, the measurements through the beating heart could simply be omitted. 

Let us first consider inversion of the interior transform. There is an elementary "solution" which is 
often rediscovered, sometimes called "old tomography" because there are older devices (not very 
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successful) which used this method. Old tomography merely forms the average Pf(L) over all lines L 
which go through each point (x,y). This however gives notf itself but a smoothed version off, namely 

If00f00 du dv 
2jjf(| +uf(x+u,Y+v) (2.2) 

Old tomography is actually a particular algorithm for reconstructing f at a point Q from its parallel 
projections in each of n directions by merely averaging the line integrals Pf(L) over the lines L nearest 
to Q in each direction. Figure 5 was obtained in this way and shows that this algorithm does not give 
good reconstructions. It is easy to see that the interior Radon transform does not determine f inside 
D, i.e., there are nonzero functions f with zero interior Radon transform. Nevertheless, practical 
inversion of the interior transform may be possible for certain more limited classes IF. 

v.......... 

FIG. 5. Reconstruction using the algorithm of "old tomography" which gives for each point Q the average of that 
line integral in each direction whose line is nearest to Q. There are 128 lines in each of 64 directions and the line 
integrals were obtained by exact calculation from Fig. 1. 

For the exterior Radon transform, theorems of Helgason [8] and Ein-Gal [4] show that the exterior 
Radon transform is 1-to- 1 on 0O and these authors provide explicit inversion formulas for f E I 

However, the inversion mapping for the exterior Radon transform has a property which suggests to us 
that a practically useful numerical inversion may never be possible. In particular let us extend the 
Radon transform to the class of functions '5k for k > 1 as above. The complete Radon transform 
remains 1-to- 1 over 5k. However, an example of D. J. Newman below shows that the exterior Radon 
transform is not l-to-l for any k. In fact the same example shows that if D, is a disk containing D, 
there exist f eC Fk with zero exterior transform and which are arbitrarily small outside of D1 but large 
in D, - D. Of course this does not constitute a proof that exterior inversion is unstable in some sense 
for IS, itself, but it certainly suggests trouble. What is needed is a study of the stability of the 
inversion formulas of [8] and [4] in the presence of noise in the measurements. 

Newman's examples of f eC k for which Pf(L) = 0 for L e D are constructed as follows: Let 

f(x,y) = Re 1, z =x+iy, n > 2. (2.3) 
zn 
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For all lines L not passing through z =0, 

f (x,y)ds = Rec I dz = 0, (2.4) 
L LZ 

because, along L, ds = cdz (ds and dz are proportional) and z - ndz is an exact differential. It is easy to 
modify f inside a disk D containing x =y = 0 so as to make f continuous. Note f E gk for n > k. 

Another example of e and qy where a mathematical inversion formula exists, but which is believed 
to be impractical due to instabilities, occurs with e = El = the set of all lines which make an angle of 
say < 10 with the x-axis. Here again forf E <Y, explicit inversion is possible but the inversion involves 
a process of analytic continuation. Measuring Pf(L) for only those L Ef C, would present significant 
engineering and cost advantages if a practical realization of the analytic continuation inversion were 
possible but this seems unlikely, again because of noise instabilities. What is needed but not available 
is a theory which would assign a measure of stability to the various cases above. We shall return to 
this point at the end of ?2. 

For a restricted set of lines e& there are usually many f E 'f with the given projections. However, a 
unique reconstruction may be obtained by placing an additional criterion of optimality on f. Thus 
Marr [16] has considered e = En =the (finite) set of n(n - 1)/2 lines joining all pairs of n equally 
spaced points on the circumference of the unit disk D, and C5'm = the set of polynomials in x andy of 
degree m. For m < n -2, Marr gives a formula for the polynomial g e- which minimizes the 
sum-of-squares error, 

I (Pf(L)-Pg (L))2. (2.5) 
L E f 

Although Marr's model is realistic in the sense that (E, is finite, it does not seem desirable in practice 
to restrict g to be a polynomial. Also if m > n -2, g is not unique since (2.5) can be made zero in 
many ways. 

Moving closer to the situation of central interest, let e consist of all lines at one of n distinct angles 
01,...,n . Let L,, be the line with equation 

xcosO+ysinO= t (2.6) 

and use Pf(t,O) for convenience to denote Pf(L,,10). We assume fO0 outside a disk D which we take 
for convenience to be the unit disk. Consequently, Pf(t, 0) =0 for ItI> 1. We want to keep qy 
reasonably wide so as not to force an inappropriate structure on f, and hence use = L2(D). 
Denoting the given projection data by Pj(t), f must satisfy the basic equations 

Pf(t,OJ)=Pp(t), -1<t<1, j=l,...,n. (2.7) 

+ -t p 

Fio. 6. Example of a function which projects to zero in each of the 4 directions, 00, 450, 900, 1350. 
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We see from Fig. 6 that if there is one solutionf to this equation there will be many solutions. (For 
a stronger assertion of nonuniqueness of f, see [22].) Therefore it is necessary to impose an optimality 
condition on f in order to obtain a unique inversion formula. One natural condition which leads to 
interesting results is to select among the solutions of (2.7) that solution g which has minimum possible 
L2-oscillation, i.e., 

fDf ( g(x,y) - -)2dx cy = minimum (2.8) 

where - is the average of g over D. Note that g is determined from the known projections Pj(t) since 

gf gfdxdy=f Pj(t)dt, j= 1,...,n. (2.9) 
IT I T -1 

From (2.9) it is easy to see that (2.8) is equivalent to the simpler condition 

f g2dxdy = minimum. (2.10) 

This formulation of the problem has the advantage that the optimal g is computable explicitly in 
terms of Pj, at least for the case of equally spaced angles Oj. The solution was found by Logan and 
Shepp [15] and the same problem was posed and solved independently by 0. Tretiak [23]. To describe 
the solution we introduce the useful notion of a ridge function due to B. F. Logan, which is simply a 
function constant along lines perpendicular to the direction U, 

p(x,y)=p(xcosG+ysinO), (x,y)ED. (2.11) 

Let 6 be the subspace of L2(D) formed by sums of ridge functions in the directions 9k,...,9,. It is 
proved in [15] for the case of equally spaced angles Oj that the solution to (2.7) and (2.10) has the form 

n 

g(x,y) = E pi (x,y) (2.12) 
j=l 

where pj is a ridge function in direction Oj. In fact, g is the orthogonal projection of anyf satisfying 
(2.7) onto 6R. Further, in the case of equally spaced angles, it is possible to obtain an explicit 
expression for pj. For this purpose introduce the change of variables, 

hj(T) = pj(cosT)jsinT, O < T < IT (2.13) 

and expand hj and Pj into sine series 
00 

hj(T)= E hj(w)sinWT, (2.14) 
(01 

00 

Pj(cosT)= E (w)sinWT. (2.15) 

This allows a complete diagonalization and an explicit solution for hjl(w) in terms of Xk(w), k= n,...,n 

for each w = 1,2,..., i.e., hj(w) depends only on Tk(w), k =,...,n for the same value of w. This leads to 
an expression for each ridge function pj of g in terms of convolutions with two fixed kernels operating 
on the projections. Unfortunately each ridge function involves all projections, which makes the 
formula apparently impractical (except perhaps for circularly symmetric functions). 

For any f e L2(D), there is of course a unique polynomial R (x,y) of degree n -1 which best 
approximates f in the L2 sense on D. Curiously every function f satisfying (2.7) has the same best 
fitting polynomial R. In fact this polynomial R is merely the first n terms (in w) of the expansion of g 
generated by (2.13)-(2.15). This gives a fairly explicit algorithm for the optimal polynomial R (x,y) of 
degree n - 1. Unfortunately, for functions f of medical interest, R does not give sufficiently good 
approximations to be of value. 

It was asserted in [15] without proof that the space 6R of sums of ridge functions is a closed 
subspace of L2(D). This follows from the explicit inversion formula of [15] for the case of equally 
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spaced angles, but as several readers of [15] pointed out, is not proved in general in [15]. Fortunately 
the general result has recently been proved by Hamaker and Solmon [7]. 

B. F. Logan [14] proved a very interesting theorem whose practical implications for tomography 
are not yet entirely clear, but which deserve further study. Very roughly the theorem states that 
knowledge of the full projections in each of n directions is sufficient to reconstruct f up to but not 
beyond bandwidth n. A little more precisely, Logan shows that a function in L2(D) of essential 
bandwidth n(l - e) can be essentially reconstructed from any n views. On the other hand, he proves 
that there exist functions of essential bandwidth n(l + e) which project to zero in any n given 
directions. Still more precisely, suppose that n distinct directions 01,..., 0n are given and that f denotes 
the Fourier transform of f E L2(D). The concentration of the energy of f in the frequency band of 
radius p is defined as the ratio 

X(f; ) f2+22 If (u, v) dudv/f 2 If (u,v) l2du dv. (2.16) 

To measure how n projections limit the concentration, let 

Xn(P)=Xn(P;01,.* ,0,n)= supX(g;p), (2.17) 

where the sup is taken over all g E L2(D) which project to zero in the given directions Oj, i.e., for 
which Pg(t,Oj)E=O. Logan proves that Xn(P) is independent of 01,..., n. He also proves that Xn(P) 
rapidly increases around p= n, 

lim Xn(n(l+e))= [ >?. (2.18) n--*oo ~ 10 C<O' 

Actually much more precise estimates of Xn(p) are obtained in [14] but (2.18) will suffice for our 
purposes. Logan shows turther that if X (f; p) is near one and Xn (P) is near zero, then n projections of f 
suffice to make a good L2 estimate of f. On the other hand, by definition, if Xn(P) is near one then 
there exist f E L2(D) which are well-concentrated in frequency to a circle of radius p, but which 
project to zero in the given directions and hence cannot be reconstructed. 

Thus, roughly speaking, to reconstruct functions f of bandwidth p one needs n = p projections of f. 
Unfortunately it has not yet been established what value of p is needed for functions f of medical 
interest. 

It seems very surprising that the bandwidth does not depend on the angles Oj but only on how 
many different angles there are. This suggests the possibility that one could use n angles within a very 
narrow range, which would limit the motion of the X-ray tube and allow much faster data acquisition. 
This would have many benefits, including perhaps the possibility of imaging the beating heart. 
However, it seems quite likely that any algorithm for this purpose (i.e., which would give the same 
resolution as in the case of equally-spaced angles) would require unrealistically precise estimates of 
Pf(L). But, as long as such limitations have not been firmly established the narrow angle approach 
remains a tantalizing possibility, deserving further mathematical quantification. 

3. Algorithms for practical use. In practice, measurements PI = Pf(LI) are made for a finite set e of 
lines, Li, and it is desired to find an approximationfq to f(Qq) for a grid of points Qq, generally taken 
to be a square grid. It is not surprising that the properties of the set e play an important role. For 
so-called "parallel-mode" tomography machines, which include all the earlier machines, e consists of 
many equally-spaced parallel lines at each of many equally-spaced angles. Most of our discussion will 
be devoted to algorithms suitable for parallel-mode machines. 

Some of the newer machines have adopted a different mode of scanning, in order to reduce the 
scanning time from minutes to seconds. In such "fan-beam machines, e consists of several "fans" of 
lines. Each fan consists of many lines through a single focal point. The focal points lie on a circle 
concentric to the disk on which f is supported, which has a radius R typically about 3 times that of D. 
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The parallel-mode set of lines can be regarded as a limiting (R-oo) special case of the fan-beam 
mode set, but we shall only touch lightly on algorithms for fan-beam machines. 

There are two major types of algorithms for reconstruction, iterative and convolutional. The first 
uses an iterative procedure [11], [6], [20] which updates the current estimate of the density using each 
projection measurement in turn and which converges to the desired solution after about 5 or 10 
complete cycles through every measurement. The first successful tomographic reconstruction algo- 
rithm (Hounsfield, 1972) used an algorithm of this type. A convolution algorithm (in the parallel 
mode) forms the density estimate by applying to the set of measurements a linear mapping which has 
a certain property, namely, that the coefficient which weights the measurement Pf(Ll) in estimating 
the density f(Qq) is a function 4 only of the distance from Qq to Lp. Many different weight functions, 
or filters, 0 have been suggested [1], [11], [20], [2]. One important advantage of the convolutional 
algorithm over the iterative algorithm is in speed of computation, since experience shows that an 
iterative algorithm usually takes about i times longer, where i is the number of complete iteration 
cycles. At one time the iterative procedures were asserted by many people [11], [5], [6], [17] to have 
advantages in accuracy. It was also commonly believed that there was little to be gained by 
improvements in the algorithm, and the iterative procedures were considered attractive because they 
are inherently "digital" or "discrete," or because they can in principle be used interactively for as 
many iterations as desired (although they are seldom used this way). It is now generally agreed, 
however, that the convolutional algorithms are not only faster but give reconstructions with much 
better accuracy and spatial resolution than the earlier iterative procedures. 

Recently still further light has been shed on the comparison between iterative and convolutional 
algorithms. Experiments by Shepp, which were confirmed by others [9], have pinpointed the chief 
reason for inaccuracy in the early iterative algorithms [11], [6], and he has given an iterative algorithm 
[20] whose accuracy is roughly comparable with that of the better convolutional algorithms. To 
understand the source of the earlier inaccuracy, note that the iterative algorithms attempt to find a 
function f which is piecewise constant on the squares in a grid, and which has the given projections. 
The X-ray beam is represented by a strip rather than a line (see Appendix) and each strip gives an 
equation in the unknown values of f on the grid squares. The equations are solved by Gauss-Seidel 
relaxation. It turns out that in setting up the equation for each strip it is important to use the actual 
area of intersection of the strip with each grid square rather than an average value approximation to 
this area as described in [11] or the even cruder approximation used in [6], where weight one or zero is 
assigned to each square, according as its center is or is not inside the strip. That the exact coefficients 
are important did not become clear until the experiments by Shepp with mathematical phantoms [20]. 

Another limitation of the iterative procedure has to do with spatial resolution. To avoid excessive 
computation time, iterative procedures have been used only with grids up to 80 x 80, while the more 
efficient convolutional algorithms typically use 160 x 160 or larger. This is a real increase in spatial 
resolution and has great practical significance. We suspect that even if computation time did not limit 
the iterative procedures in this way, the necessity of having more equations than unknowns in 
iterative methods might prevent them from achieving the same spatial resolution as the convolutional 
algorithms. However, the question is now moot and iterative algorithms are no longer used in 
commercial machines. Of course it must be acknowledged that for certain oscillatory functionsf and 
noisy measurements of Pf(L4), the iterative method produces a reconstruction which is closer in some 
sense to f than the convolution reconstruction. 

The convolutional algorithms are fast because advantage can be taken of the special structure of 
the linear mapping: Direct computation of 

NL 

fq= cqiPf(4l) q= 1,... ,NQ, (3.1) 
1= 1 

for a general set of weighting constants Cqi would involve NQNL multiplications and additions, where 
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NQ and NL are the numbers of grid points and measurement lines. Since typical values are 
NQ = 160 X 160 = 25,600 and NL = nm = (number of directions) X (numbers of lines or strips per 
direction) = 180 x 160= 28,800, the direct computation via (3.1) would be rather time consuming. The 
convolutional algorithm, as is clear from the explicit Fortran program [20], involves fewer than 
4m2n + 4NQn multiplications and additions. In the convolution method Cql is a function 4 

Cql = 4(dql ) (3.2) 

of the distance, dql, from Qq to L1. The linear mapping (3.1) is then carried out in 2 stages. The first 
stage is to perform convolutions. Each convolution is over the set of parallel projections in one of the 
directions with the function 4. The convolution is stored and the second stage is to back-project each 
convolution to a ridge function as will be described below. The back-projections are summed to 
obtain the reconstruction. (In the fan-beam case a convolution is carried out for each fan, but the 
back-projection is not a ridge function but depends also on the distance of Qq to the focal point of the 
fan. The calculation and use of this distance makes the fan-beam computation somewhat more 
difficult than the parallel-beam case.) 

There have been two major approaches to choosing the weight function 4 in the convolutional 
algorithms. One of them, which is based on the Fourier inversion formula, we refer to as the Fourier 
approach. The other approach seeks to compensate for the smoothing introduced by old tomography. 
Because this approach results in seeking to give good approximate reconstructions of a 8-like 
function, we call this approach the 8-function approach. The Fourier approach has a long history, 
going back at least to [3]. Further contributions were made in [1], [19], [20]. In [20] the earlier works 
were unified and generalized by focusing attention on the role of 4 ([1] and [19] had proposed specific 
but different O's) which can be thought of as a filter function, in analogy with problems in 
communication theory and antenna design. The 8-function approach is due to Cho [2] and was later 
independently rediscovered and extended [13]. While both approaches lead to more or less equivalent 
algorithms, we feel the Fourier approach has provided a framework in which 4 may be varied 
conveniently. One wants to vary 0 in order to: (a) diminish artifacts (see the discussion in Chapter 1 
of the artifact inside the skull in Fig. 4); (b) trade-off between density and spatial resolution [20]; (c) 
sharpen the smoothing effect (Appendix A) resulting from the X-ray beam having nonzero width (the 
beam width cannot be decreased without losing X-ray flux). The Fourier approach allows one to limit 
the search for a good 0 to those with an appropriate Fourier transform, i.e., which satisfy (3.13), 
below. 

In estimating the density at Qq, should the weight given to the measurement Pf(L1) depend only on 
the distance from LI to Qq? This seems natural enough intuitively; why should two measurements at 
the same distance from Q be Vgiven different weights? It is also suggested by Radon's formula (2.1) 
which can be interpreted roughly speaking to say that f(Q) is the integral of Pf(L) over every L with 
a weight function which depends only on the distance q between Q and L. This intuition led Shepp to 
the idea that it would be no loss to restrict attention to algorithms which have this property in discrete 
form. This means that the weight cql in (3.1) is a function only of the distance dql from Qq to L, as in 
(3.2). As we shall see below, this restriction has provided helpful guidance in choosing an algorithm 
for tomographic machines operating in the parallel mode. However, the emergence of "fan-beam" 
machines, and the important advance in fan-beam algorithms by Lakshminarayanan [12] has shown 
that this restriction excludes valuable algorithms. 

The general theory of parallel-mode algorithms having "function-of-the-distance" form due to 
Shepp and Logan [20], has proved very useful. Both this theory and the Lakshminarayanan fan-beam 
algorithm are obtained by suitable (nonrigorous) approximation from the Fourier reconstruction 
formula. This rigorous formula for reconstructing a function from all its projections is an alternative 
to Radon's formula (2.1), and is almost as old ([24] seems to be the earliest reference, but see also [3]). 
To obtain this formula define the two-dimensional Fourier transform f of f in polar coordinates (w, 9) 
by 
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f (W,)=f fi f(x,y)e-i3(xcos+Ys )dxdy.3) 
-0 00 

and write the Fourier inversion formula, 

f(x,y) = ( 2 
7T) f00_I (w,9 )eiw(xcosO+YsinO)IwldwdO. (3.4) 

Tlhis formula can be obtained from the ordinary Fourier inversion formula by changing from 
cartesian to polar coordinates (w,9). The factor 1o1, which will be very important, comes from the 
Jacobian of the transformation. Next we express f(w, 9) in terms of Pf by changing variables in the 
definition, and simplifying. Set in (3.3) 

t = x cos9 +y sin3 
s= -xsin9+ycos9 

and note the Jacobian of this rotation is 1, so 

-00 -00 f (,)f0 f 0(x,y) ei-wds dt 

= Pf_(t,9 )e-itdt= PfQf (9), (3.6) 

where PfQ,9) is the one-dimensional Fourier transform of Pf(t,9) with respect to t. Substituting this 
in the Fourier inversion formula, we obtain 

f(x,y) = ( )f tof 00 PIA(,9)eiw(xcosO+ysinO) IwldwdO. (3.7) 

If there were a function 4 whose Fourier transform f had the form 

+(o)= I1oI, (3.8) 
we could use Parseval's identity, 

1 
fI P (w)1(w)ei"dw= f0P (t)4T (-t)dt (3.9) 

with T=xcos9+ysin9 in (3.7) to obtain 

f(X,Y) = 
I 

ff00 Pf(t, 9 )4O(x cos 9+y sin9 - t)dtd9. (3.10) 

Note this has the function-of-the-distance form since x cos9 +y sin9 - t is the distance from (x,y) to 
L(t, 9). 

Unfortunately, if 0 is an "honest" function, its Fourier transform 4(W) tends to zero as W->oo, so 
(3.8) is impossible. However, by using a function 4 whose Fourier transform 4 approximates lwl in a 
suitable sense we may be able to use (3.10) as an approximate formula. We want to insure that the 
error in (3.10), namely 

( g )27TJXp(w, )e'w(x cos 0+Y sinO) (CO) - IJI)dw)dO (3.11) 

is small. Now it is plausible to assume that 

I (t,9) is small for large X (say 1IX > 2) (3.12) 

since this is a smoothness assumption on f, i.e., it means that f contains little high frequency energy. 
In the region where f(W, 9) Pf(W, 9) is small, we can afford a large discrepancy between o(c) and lwl. 
Tlhus if we weaken (3.8) to 

4)(w)1I1w for small w (say I w<aI), (3.13) 

then (3.10) may be a good approximation. Of course the same S2 must be used in (3.12) and (3.13). 
The earlier tomography machines all operate in the "parallel mode." Without going into the details 
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this means that the measurements Pf(t,9) are available for equally-spaced parallel lines at each angle 
Oj. If a is the spacing between adjacent parallel lines then t takes on the values ka for k = 

0,+1 +2 ...+ 1/a, for each angle. In practice, equally-spaced angles are always used, so A>= 
(j- 1)r/n, j= 1,2,...,n. Then the natural discrete approximation to (3.10) is 

f4 (X,Y) 2n- 2 _ Pf(ka,91)4)(xcosOj+ysinOj- ka). (3.14) 

Of course there are only finitely many terms in the inner sum since Pf(ka, 9j) = 0 for ka > 1 because f 
is supported on the unit disk. (3.13) gives a simple algorithm for reconstructingf which depends upon 
the choice of 4. 

How 4 should be chosen is not completely understood except for guiding principles. Intuitively, it 
seems likely that if the spacing between the parallel lines is not fine relative to the high frequencies in 
f(x,y), it will not be possible to reconstructf very well. Since the spacing between the grid lines is a (a 
itself is chosen to achieve a desired resolution), we may assume that f has little energy above the 
Nyquist frequency of nr/a. Thus we may plausibly take Mz7r/a. This still leaves a lot of room for 
choice of 4. One possibility, suggested by Bracewell and Riddle (1956), who were the first to use the 
Fourier method in an algorithmic context, is 

+(@) ( O, :fi):>Sz ~~~~~~(3.15) 

However, this choice does not work well, apparently because the corresponding 4)(t), 

'0 (t) = 2 S it Icosi2t (3.16) 

only decays like l/t for large t so that the weight given by (3.14) to a measurement line L far away 
from (x,y) is still too large. Intuitively it seems undesirable to permit such long range effects. If 4)(X) 
is absolutely continuous, then 4 will decay at least as fast as l/t2 for large t. On the other hand, if 
+(X) has the same discontinuity at w = 0 as 1X1 (this is expected if (3.13) holds) then it can be expected 
that 4)(t) will decay no faster than l/t2. 

In order that (3.14) should be a good approximation to f, the inner sum in (3.14) should be a good 
approximation to the inner integral in (3.10), i.e., we should have 

J Pf(t,0)4)(u-t)dtz i Pf(ka,9)4)(u-ka)a. (3.17) 
o00 k=-oo 

However, a function 4 satisfying (3.13) for Sir/a has the shape shown in Fig. 7. Note that there are 
only one or two sampling points in the main lobe of 4. Under such sparse sampling one ordinarily 
would not expect the Riemann sum in (3.17) to be a good approximation to the integral. Fortunately, 
however, the sampling is regular and the Poisson summation formula (identity) 

00 

k E 4(2ak) ) k- (ka) (3.18) 
k= k=oo 

may be applied. In (3.18) we use 

+ (t) =4/u (t) = Pf(t,)4 (u - t) (3.19) 

and note that the right side of (3.18) is the right side of (3.17) whereas the left side of (3.17) is the k = 0 
term of (3.18). Therefore the error in (3.17) consists of the k#-0 terms on the left of (3.18). Using (3.6), 

,i ( 2a k) 1f0 (- 2keTk (w, )e "dw 

= f r (r- 2Xk)f(W,O)dw (3.20) 
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since the transform of a product is the convolution of the transforms. We want (3.20) to be small for 
k=70. 

By (3.12) f(w, 9) may be large for w <U. Indeed, since the X-ray density typically stays fairly 

constant within many organs we may expect that f(0,9) is large. To make (3.20) small, we want 
(4w-(2rrk/ a)) to be small whenever Iwl < l and k#,0 and particularly small whenever w=27rk/a. 

These arguments may seem crude to those accustomed to pure mathematics, but they are typical 
of much applied mathematics. The guidance they provide in choosing 4 has been very helpful. 
Reconstructions of f with different O's are compared by the method discussed in Chapter 1. 

As we shall see later on, in the case of fan-beam projection data, the values of Pf(t, 9) are only 
available for unequally-spaced values of t. In this situation the Poisson sum argument used to obtain 
(3.17) breaks down, and it is not surprising that there seems to be no choice of 4 which yields good 
reconstructions. However, by interpolating in t to obtain approximate values of Pf(t, 9) at regularly 
spaced values of t, it is possible to obtain good reconstructions. Unfortunately this interpolation leads 
to significant errors in case the measurements of Pf(t, 9) are corrupted by drift and gain variation in 
X-ray detectors. This is a crucial point which will be referred to later in discussing the adaptation of 
the parallel-mode algorithm to fan-beam machines. 

Many convolution algorithms can be thought of in the framework we have described above, e.g., 
old tomography corresponds to use of the special 4 where 4)(t) =1 for Itj I a and 0 otherwise. 
Bracewell and Riddle [1], who gave the first Fourier based convolution algorithm, used (3.16). 
Ramachandran and Lakshminarayanan [19] used a function 4 which is the same as (3.16) for Sa= /a 

at the points t = ka, k = 0, + 1,... and is piecewise linear in between. They introduced this function to 
achieve substantial savings in computation time (since it avoids a great many sine and cosine 
evaluations required by (3.16)) but assumed that the modification would degrade the image some- 
what. Within our framework, however, there is no reason to expect the piecewise linear modification 
to do worse than the original (see [20] for more details) and experimental results bear this out. 

Shepp and Logan [20] were the first to look at the choice of 4 in a systematic way. They found the 
principles above to provide good guidance. They also expressed the trade-off relation between spatial 
and density resolution in terms of the choice of 4. The choice (3.16) and the modification both have 
the property that +)(t) continues to oscillate even for large t. 

To avoid these oscillations, and to achieve the computational efficiency of a piecewise linear filter, 
a new filter was designed by the following approach. We wish to emphasize the approach, rather than 
the particular filter which was chosen, since many other choices might be quite as effective. As a 
source of piecewise linear filters, we may take even functions +(w) which are approximately equal to 
(3.15) in a suitable sense, calculate their inverse transforms, and then take piecewise linear approxima- 
tions. To evaluate the piecewise linear filters, we may examine their transforms, the image reconstruc- 
tions which they yield, and various other considerations. The filter used in [20] was chosen after 
examining several filters which were generated in this way. It is a piecewise linear approximation to 
the inverse transform of 

74()= f 21sin(wa/2)1/a for 1) <2wr/a, 
t. 0 elsewhere, 

a function which was suggested by B. F. Logan. This filter is given by: 

0 (a) 4 1 k 
_ 

~?1. 
,72a 4k2-l' k=01 , ... (3.21) 

l 4 piecewise linear in between these values. 

The piecewise linearity saves substantial computation time (as was first observed in [19] with no 
apparent loss in image quality). Using any such function 4, the calculation of (3.14) may be arranged 
to be very efficient (see [20] for more details and a simple 60-line Fortran program). 

As we mentioned earlier, there is another approach to convolution algorithms which may be 
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FIG. 7. The reconstruction filter 0 of (3.21). The algorithm assigns weight +(d) to a line L at a distance d from the 
point of reconstruction. Note that a is the distance between adjacent centerlines of ray measurements. This is 
typical of reconstruction filters, having positive main lobe and negative side lobes. 

discussed in the same framework. This interesting and natural approach, which is due to Z. H. Cho [2] 
but was also arrived at by LeMay [13], avoids Fourier transforms altogether. Roughly speaking, the 
idea is to start with "old tomography" and correct its inadequacies. Old tomography forms a ridge 
function from Pf (t, Oj) in the direction orthogonal to Oj. The ridge function, which is called the "back 
projection" of Pf (.,Oj), has Pf (.,Oj) as a cross-section. Old tomography then sums the back projec- 
tions. The result, as we saw in (2.2), is a smeared version of the desired functionf. 

To correct this smearing, Cho decided to convolve Pf(t,O) with some function +(t) before back 
projecting. By this means he arrived at (3.14) using a much more direct route than the one we 
described. To achieve the desired effect, one can see that 0 should have a central peak surrounded by 
negative "sidelobes." 

Roughly speaking, any function f(x,y) can be formed as a linear combination of functions which 
are sharply peaked at one location and zero elsewhere, in other words, approximate 8-functions. 
Therefore a linear algorithm which correctly reconstructs an approximate 8-function will correctly 
reconstruct any density function. Cho used a cylindrical spike S of radius a and height one as an 
approximate 8-function and chose 0 so that the average of the back projections 

- 0 p(xcos9.+ysin9.)i _ O (xcos9+ysinO)d9 (3.22) 
nj=1 

i 

would approximate S well. 
Cho's algorithm [2] also involves several other features of the back projection which are quite 

outside the simple framework we have discussed. Experiments by Shepp seem to show, however, that 
these other features do not play an important role in his algorithm, and that the algorithm (3.14) using 
Cho's function 0 (modified to be piecewise linear) gives results quite like Cho's. LeMay's algorithm 
[13] has much in common with Cho's. 
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The algorithms of [2] and [13] give good results, as illustrated in Fig. 4. However, as we discussed 
in the introduction, they give a characteristic artifact just inside the skull, which could conceal 
medically important conditions. Also the functions 4 which Cho and LeMay obtained are defined in 
terms of a sequence of numerical values. This type of 4 is more complicated to use in noise analyses 
[21] than is the analytically explicit and especially simple 4 in (3.21). Furthermore, this approach does 
not provide as much guidance in modifying 4 to achieve the desirable trade-off of density vs. spatial 
resolution. 

An important virtue of any theoretical framework in which to obtain ideas or algorithms is 
flexibility in adapting to new situations. Some of the new tomography machines do not operate in the 
"parallel-mode" mentioned earlier, but in the "fan-beam mode," in order to reduce the X-ray 
scanning time from minutes to seconds. In this mode Pf (L) is measured for n "fans" of lines L, where 
the lines in each fan have a common focal point (at an X-ray detector). The n focal points lie on a 
circle, concentric with the unit circle on which f is nonzero, which has a radius R typically about 3 
times as large. (The limiting case as R->oo is the parallel mode.) 

It is interesting to see how the Fourier approach to convolutional algorithms can be adapted to this 
situation. While it is possible to regroup the lines into sets of (almost) parallel lines at each of several 
angles, the parallel lines are not equally-spaced. One approach would be to maintain the restriction to 
linear algorithms satisfying (3.2), which states that the reconstruction weight for each line L depends 
only on the distance from L to the point Q of reconstruction. Hlowever, as discussed earlier, the 
Poisson-sum argument breaks down because the parallel lines are not equally spaced. No function 4 
has been found which gives good reconstructions in this situation. 

Another approach is to interpolate Pf between the irregularly spaced and not quite parallel lines to 
obtain pseudomeasurements at an equally spaced set of exactly parallel lines. Although this interpola- 
tion is neither simple nor elegant, this method can be made to work reasonably well, subject to one 
important proviso which makes it quite useless in practice. 

The proviso is that if there are any systematic differences between the fans, due to differences 
between the X-ray detectors with which they are associated, the image is seriously marred by streaks. 
Unfortunately, it seems difficult to control the drift and gain problems in detector behavior to a 
sufficient degree of uniformity to avoid this problem. 

Fortunately, an elegant effective algorithm has been found by a young biophysicist, A. V. 
Lakshminarayanan [12], by an approach which uses the fan-beam geometry rather than fighting it. 
Starting with the Fourier inversion formula (3.7) he made changes of variables to adapt these 
formulas to the fan-beam coordinates. He then succeeded in making approximations similar to those 
described above, and obtained an algorithm [12] which is now widely used in fan-beam scanners. 
Subsequently another derivation for this algorithm, based on Radon's inversion formula and using 
different approximations, has been found by Herman and Naparstek [10]. 

Appendix. We study the relationship between the line integral of f 

Pf (t,9)= I f(tcos9+ssin9,tsin9-scos9)ds (A.1) 
-00 

along the line L(t, 9) in (2.6) and the strip integral of f 

Qf(t,9)=(I/28)f Pf(t- u,9)du (A.2) 

obtained by integrating f over a strip of width 28 about L(t, 9) (and dividing by the width of the 
strip). We show that (A.2) is actually the line integral of a smoothed version, fk (x,y), of f obtained by 
convolving f with a centrally symmetric two-dimensional kernel k, 

fk(x,y)= 
f7 00f(x-pcosa,y-psina)k(p)pdpda. (A.3) 
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In the more general case, where the strip has weight function W, denote the W-weighted strip integral 
by 

Qfw(t,9)= 
f W(u)Pf(t-u,9)du. (A.4) 

Note (A.2) is the special case 

W( ) (1/28; Jul < 8 (A.5) 
I; uI>8 

We show that the line integrals of jk are the strip integrals off, i.e., 

Pfk (t,9)= QfW(t,9) (A.6) 

where k is the kernel given by the Abel transform of W, i.e., 

1 d W(u)u du. A W(u)= k( u2+v2)dv; k(p)= - I d du. (A.7) -rp dp U 2~ 

This shows that regarding actual measurements as line measurements, when of course the beam 
has a nonzero width, is not serious, in the sense that one is merely reconstructing fk rather than f, 
which for thin beams is a reasonable approximation to f. However, we hasten to point out that in 
actual X-ray measurements neither Pf (t, 9) nor QfW (t, 9) is measured (neglecting statistical errors, the 
nonzero height of the beam, and polychromatic effects) but rather a nonlinear weighting is obtained. 
Thus if a parallel X-ray beam with profile W(u) is passed through an object of attenuation f, the log 
of the ratio input/output intensities is given by 

logIin/Iout = -log W(u)exp-Pf('-u ,6)du. (A.8) 

If W is 8-function like, i.e., if the beam is very narrow and if P (t,9) is smooth in t, then the linearized 
approximation to (A.8) is (assuming W integrates to unity) 

logIin/I0ut-f W(u)P (t-u, O)du = Qf (t, 9) (A.9) 

which is a good approximation. This approximation is the spatial analogue of the linearization in 
energy with a polychromatic beam. 

To prove (A.6) and (A.7), note that from (A.1) and (A.3) 

Pfk (t, )=f I2f I f(tcosO+ssinO-pcosa, tsinO-scosO-psina)k(p)pdpdOds. (A.10) 

Make the change of variables 
pcosa = ucosO+ vsinO 

psina=usinO-vcosO 

s =s-v (A.1) 

and use the definition of W to obtain (A.6) after a short calculation. The second part of (A.7) is the 
well-known Abel inversion formula which is easily proved. 

From (A.7), for a square beam as in (A.5), 

k(p) ( (1/2vTp)( 2 -p2) 1/2 o<p<8 (A.12) 
0 8<p. 

For a circular beam of radius 8, from (A.7), 

W(u)= (1/V2)(82-u2)12 Jul < 8 (A.13) 
O U>8 
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k (p) ((I/7T2), p<8 6(A. 14) 

which is a uniform weight. 
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THE PLANE SYMMETRY GROUPS: 
THEIR RECOGNMTION AND NOTATION 

DORIS SCHATTSCHNEIDER 

Introduction. Groups of transformations which leave invariant a specified item are familiar objects 
of study for students and researchers alike. Finite groups of plane isometries which leave invariant a 
regular polygon are elementary examples: C,", the cyclic group of order n, can be realized as the group 
of rotations leaving invariant a regular n-gon, and D, the dihedral group of order 2n, can be realized 
as the group of all isometries (rotations and reflections) leaving invariant the same polygon. A very 
interesting collection of discrete groups of plane isometries which are natural extensions of these 
examples exists, but is lacking in most introductory algebra texts. These are the groups of plane 
isometries which leave invariant a design or pattern in the plane. If the pattern is finite, such a group 
is necessarily a subgroup of some dihedral group. If the pattern is repeated regularly in one or in two 
directions, translations and glide-reflections are additional possible isometries of the pattern, and so 
the group leaving such a design invariant will be an infinite discrete group. Designs which are 
invariant under all multiples of just one translation are frieze, or border ornaments, and their 
associated groups are commonly called "frieze groups." Patterns which are invariant under linear 
combinations of two linearly independent translations repeat at regular intervals in two directions, 
and hence their groups are often termed "wallpaper groups." 

The interweaving of elementary aspects of Euclidean transformation geometry and group theory 
makes these groups excellent ones for study-but there are several non-mathematical bonuses which 
make their study especially appealing. To analyze a repeating design to see what makes it "work," and 
to create original designs using the power of the mathematical "laws" which govern these designs, is a 
strong non-mathematical motive for studying these groups. (Suddenly, the word "symmetry" has true 
dual meaning; both its artistic and mathematical connotations are seen as inseparable.) Rudiments of 
elementary crystallography are part of the theory as well-another bonus. 

A very specific incentive to learn about these groups is the opportunity to study examples of the 
imaginative interlocking patterns by the Dutch artist M. C. Escher (1898-1972). His work is perhaps 
the most concrete testament to the power gained in understanding these groups. He struggled for 
several years to produce animate interlocking designs, with very primitive results. When he became 
aware that these types of designs were governed by groups of isometries, he studied the mathematical 
literature available. In examining Escher's notebooks, this author discovered that he copied in full the 

Doris Schattschneider received her Ph.D. from Yale University in 1966 (in the area of algebraic groups). After 
teaching at Northwestern University and the University of Illinois at Chicago Circle, she came to Moravian 
College in 1968. Here, her interest in art led her to create a January Term course, "Tessellations, the Mathematical 
Art," in which much of the information for this MONTHLY article was developed. A deepened interest in the work 
of M. C. Escher was a natural outgrowth of this course. Recently, she has collaborated with a graphic artist to 
produce a book and a collection of unique geometric models, M. C. Escher Kaleidocycles, published by Ballantine 
Books.-Editors. 
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