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a b s t r a c t

Patient appointment booking, sequencing, and scheduling decisions are challenging for outpatient procedure
centers due to uncertainty in procedure times and patient attendance. We extend a previously developed
appointment scheduling model to formulate a model based on a two-stage stochastic mixed integer
program for optimizing booking and appointment times in the presence of uncertainty. The objective is to
maximize expected profit. Analytical insights are reported for special cases and experimental results show
that they provide useful rules of thumb for more general problems. Three solution methods are described
which take advantage of the underlying structure of the stochastic program, and a series of experiments are
performed to determine the best method. A case study based on an endoscopy suite at a large medical center
is used to draw a number of useful managerial insights for procedure center managers.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Outpatient procedure centers (OPCs) are a growing trend for
providing specialty health care procedures (surgical or non-surgi-
cal) in the United States. From 1996 to 2006, the rate of visits to
OPCs in the United States increased 300% while the rate of similar
visits to surgery centers in a hospital setting remained constant
[11]. The increase in visit frequency is in part due to the patient
benefits for surgery in an OPC setting including lower costs,
appointment systems that are often more amenable to patient
preferences, the ability to recover at home, lower complication
rates, lower infection rates, and shorter procedure durations.

Patient appointment planning decisions are challenging for
OPCs due to uncertainty in procedure times and patient atten-
dance. The reasons why patients do not attend their appointments
(no-show) vary widely. Contributing reasons for no-shows include
a high co-pay, incomplete preparation for the procedure, trans-
portation problems, and forgetfulness. No-shows cause poor
resource utilization and unanticipated loss of revenue for the

provider. This problem is particularly acute for OPCs because they
often have very high fixed costs of staff and physical resources.
Due to the nature of preparation process for procedures on the
patient's behalf, OPCs have little flexibility in changing their
schedule as the day of the planned procedures approaches. Thus,
OPCs have little recourse when in terms of adjusting their
schedules for no-shows or late cancellations. A review by Macharia
et al. [27] reported that no-show rates range from 6 to 92% in
outpatient settings. For the endoscopy suite considered in this
article, no-show rates ranged between 13 and 24%, depending on
the type of procedure.

Recent attention has focused on interventions to prevent no-
shows including appointment reminders or educational material
to help the patient prepare for their appointment. While inter-
ventions may help reduce the no-show rate (at a cost to the
provider), high no-show rates are still reported among providers
[16]. Therefore, we consider ways to mitigate the effects of no-
shows through a combination of booking decisions and optimal
scheduling decisions that account for uncertain procedure time
and patient attendance. Note that consistent with the appoint-
ment scheduling literature we use the term sequence for the order
in which patients arrive and schedule to refer to patient interarrival
times given a fixed sequence.

Overbooking has been successful in other service industries
including airline scheduling [34], hotel booking [33], and car rental
[17]. However, overbooking in OPCs presents some unique challenges.
For instance, while an airline can pay an overbooked passenger to take
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a later flight, it is not appropriate for a patient that has undergone
preparation for a procedure to be delayed to a later day. Furthermore,
most perishable asset problems study the use of a discrete physical
asset (e.g. airplane seat and hotel room). The problem faced by health
care providers is unique in that the asset being reserved (time with a
provider or resource) is continuous in nature and there is not a one-to-
one allocation of resources to customers. Since patients may have
different procedure times and no-show rates, the choice of how many
patients to book on a particular day is closely related to the sequencing
and scheduling decisions.

In this article, we begin by presenting a generic model for a
stochastic server. The objective of our model is to maximize profit
which is defined as the difference in per patient reimbursements
(revenue) and the weighted sum of costs associated with patient
waiting time, provider idle time, and overtime. Decision variables
include the number of patients to book on a given day, the
sequence of patient arrivals during the day, and interarrival times
between patients. The sequencing and scheduling decisions are
made for a particular booking decision (number of patients);
however, by iteratively evaluating a range of booking decisions,
the optimal booking, sequencing, and scheduling decisions are
formulated as a single optimization model. Procedure times and
patient attendance are random in nature and observed on the day
of service, after the appointment decisions are made. Patients are
organized into classes according to characteristics that influence
their no-show probabilities and procedure duration distributions.
We consider the perspective of the manager that needs to decide
on an appointment sequence and schedule prior to receiving
appointment requests. Given the historical demand of classes, a
certain number of appointments for each class are reserved.
As appointment requests arrive over time patients are allocated
the first available appointment corresponding to their class and
procedure type. This process is consistent with several practices
we have observed, including that which motivates the case study
in Section 7.

The appointment sequencing and scheduling aspect of our model
is formulated as a two-stage stochastic mixed-integer program. We
analyze the structure of the stochastic program and we identify
several properties that can be exploited to achieve computational
advantages. We consider some special cases for which it is possible to
provide sufficient conditions for the optimal sequence and schedule,
and we show that these provide useful insights to the general
problem. These insights are used to motivate heuristics that are
shown to be useful for finding the optimal sequences. Three different
solution methods are evaluated which include two decomposition-
based approaches and a primal heuristic with which to begin the
traditional branch-and-bound algorithm. The decomposition-based
solution methods take advantage of the special structure of the
underlying stochastic program. The results of our experiments are
used to draw managerial insights for OPCs.

This article seeks to answer a number of important research
questions. From the perspective of an OPC manager we investigate
the following questions: How many patients should be booked for
a given day and how is the number influenced by an OPC's costs?
What is the optimal arrival pattern to mitigate the risk of no-
shows? What is the potential benefit of overbooking in an OPC
environment? We evaluate the effectiveness of a single-server
approximation, which is commonly studied in the operations
research literature, in the context of a real OPC. We present a case
study based on the Division of Gastroenterology and Hepatology at
Mayo Clinic in Rochester, MN. The division performs minimally
invasive, endoscopic procedures for preventive, diagnostic, and
therapeutic reasons. We use historical data to generate a set of
realistic problem instances. Although our results are presented in
the context of an endoscopy practice, the managerial and meth-
odological insights are applicable to many other contexts.

The remainder of this article is organized as follows. In Section 2
we review the relevant literature on appointment scheduling sys-
tems and no-shows. In Section 3 we present our model formulation.
In Section 4 we present analytical insights about the structure of the
optimal sequence and schedule for a special case. In Section 5 we
discuss three solution methods that are applicable to our problem,
and which take advantage of the underlying structure of our model.
In Sections 6 and 7 we present numerical results comparing the
proposed solution methods, and the results of the case study,
respectively. Finally, in Sections 8 we summarize the most important
managerial insights that can be drawn from our study.

2. Literature review

In this section we review some of the relevant literature on
appointment scheduling and no-shows. More comprehensive
reviews of outpatient appointment scheduling are provided by
Cayirli and Veral [9] and Gupta and Denton [19]. Although this
article focuses on OPCs, the terms procedure and service, and patient
and customer, are used interchangeably in referencing the literature.

Appointment scheduling in the outpatient setting has received
considerable attention beginning with Bailey [1], who used a queuing
model to compare schedules of customer arrivals at a single server.
In addition to queuing models there has been a long history of
development of heuristics for appointment scheduling. Soriano [35]
was among the first. The author studied a two-at-a-time heuristic
motivated by increasing provider utilization and mitigating the
effects of tardy patients. Although not explicitly motivated by no-
shows, this heuristic is an early reference to the use of double
booking to attempt to mitigate the impact of uncertainty in the
patient arrival process. However, for appointment scheduling settings
such as OPCs, the queue does not reach a steady state.

The articles cited above assume a fixed sequence of patient
arrivals to the stochastic server. Some studies relaxed this assump-
tion. For example, Weiss [39] provided analytical results for a two-
patient sequencing and scheduling problem, establishing sufficient
conditions for the optimal schedule to follow a convex ordering of
service time distributions. Similarly, Klassen and Rohleder [25]
explored the use of service time distribution information and
reported that sequencing patients by increasing duration variance
works well when patients are dynamically scheduled and there is
uncertainty in future demand classification. Similar conclusions
are reported by Rohleder and Klassen [32] for realistic clinic
settings with patient preferences and scheduler behavior uncer-
tainty. Dexter and Ledolter [14] developed a Bayesian method for
calculating prediction bounds for surgical durations that can be
used to sequence surgeries. Vanden Bosch and Dietz [37] used a
pairwise swap based heuristic to sequence patients and subse-
quently determine the optimal appointment schedule. Denton
et al. [12] formulated a model to include decisions about the
sequence of arrivals where total enumeration was applied to small
problems (fewer than 5 customers) and compared to simple
heuristics for larger problems. The authors concluded that the
heuristics worked well for small test cases but there were cases in
which the heuristics performed very poorly. Extending this line of
research to multiple operating rooms, Mancilla and Storer [28]
developed a decomposition-based algorithm for allocating and
sequencing a single surgeon's procedures in two parallel operating
rooms. Considering the problem of developing surgery schedules
that absorb the added uncertainty of emergency surgeries, Bruni
et al. [8] develop a stochastic program to find optimal scheduling
strategies. A rolling horizon heuristic is presented to evaluate
rescheduling and overtime use strategies.

Recently, several authors have considered models that consider
the challenge of patient no-shows. Hassin and Mendel [20]
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explored the impact of no-shows in the context of a single server
queuing model. The authors minimized the sum of expected
customer waiting and server availability costs using sequential
quadratic programming. Kim and Giachetti [24] developed a
stochastic booking model to determine the optimal number of
patients to book based on conditional probabilities of no-shows
and walk-ins during the day. LaGanga and Lawrence [26] devel-
oped a utility function that considers the need to balance patient
waiting and overtime with the goal of serving additional patients.
They used discrete event simulation and regression analysis in
their experiments and concluded that overbooking is appropriate
in certain cases such as when there is a high volume of patients,
high no-show rates, and low service variability. Erdogan and
Denton [15] use a multi-stage stochastic program to formulate
the problem of dynamically assigning appointment times to
patients when the future demand, service duration, and atten-
dance are uncertain. Dynamic booking decisions were also con-
sidered by Muthuraman and Lawley [29] where patient waiting,
overtime, and revenue are the objectives in their queuing model,
which assumes exponential service times. Zeng et al. [40]
extended the work of Muthuraman and Lawley [29] to consider
a heuristic for overbooking patients with heterogeneous no-show
probabilities. Cayirli et al. [10] used simulation and nonlinear
regression to develop an appointment system that focuses on
the dome shape appointment schedule and can be parametrized
for individual practices based on service duration characteristics
and attendance rates. Begen and Queyranne [3] took advantage of
the special structure of the appointment scheduling problem with
discrete service times, no-shows, and walk-ins to find optimal
appointment schedules in polynomial time; the authors specifi-
cally identify the challenge of simultaneously making sequencing
and scheduling decisions as important future research.

This article contributes to the literature in the following ways.
First, our model combines several aspects of the literature refer-
enced above including simultaneously determining the number of
patients to book, and the patient sequence and schedule on the
day of service, in the presence of procedure time and attendance
uncertainty. Unlike queuing models, our model requires no special
assumptions regarding the distributions of procedure times, no-
show probabilities, or other model parameters. Second, instead of
studying only simple heuristics using simulation models we study
optimization methods to find exact solutions, or tight optimality
gaps when limited by computation time. While the model for-
mulation presented in this article has similarities to that in [12],
significant model enhancements are included in order to solve
larger instances with exact methods. Third, we present new
theoretical results for small problems that give insights into the
special structure of optimal solutions including simple sequencing
rules and the use of double booking to mitigate the risk of no-
shows. We show that theoretical results are useful in providing
heuristics that lead to optimal solutions, based on results from the
exact solution methods. Substantial focus has been given to
heuristically determining patient sequences, the performance of
many heuristics when compared to provably optimal sequences is
undetermined. Finally, we apply our model to a OPC to evaluate
the effectiveness of using a single server approximation for a more
complicated multi-server system.

3. Model formulation and structure

We start by formulating the booking decision problem. We
assume that the goal is to maximize the difference between the
expected revenue generated from booking n patients, R(n), and the
expected variable cost associated with booking n patients, C(n). It
is important to note that there is an implicit cost of no-shows

reflected in the lost revenue. The booking decision problem can be
defined as follows:

max
n

fRðnÞ�CðnÞg; ð1Þ

where RðnÞ ¼ ðmarginal revenueÞ �∑n
i ¼ 1ð1�piÞ and C(n) is the

expected weighted sum of patient waiting time, provider idling
time, and overtime.

Since the revenue, R(n), is straightforward to compute, the
remainder of this section focuses on the cost, C(n), which is
determined by the optimal appointment sequence and schedule
that minimizes the expected costs. For a fixed n, C(n) can be
formulated as a two-stage stochastic mixed-integer program. The
first stage decisions include sequencing patients, and determin-
ing the interarrival times for each patient in a given sequence.
The second stage decisions are patient waiting time, provider
idling time, and overtime under each possible scenario. These
are determined after the sequencing and scheduling decisions are
made, and patient attendance and procedure time durations
are observed. In our model we implicitly assume that there is no
opportunity to modify the schedule on the day of service, i.e.,
rescheduling during the day. This is reasonable since such changes
are very uncommon for most service systems including OPCs.
Although patients may fail to attend their appointments, we
assume those patients that do attend are punctual. This is
consistent with our observations of several OPCs in which patients
are generally observed to be on time or early.

Our stochastic programming model is defined using the follow-
ing notation where bold face is used to denote vectors throughout:

Indices
i; i0: indices for patients
j: index for appointment sequence slot assignments
ω: index for scenarios
Fixed model parameters
n: number of patients
cwii0 : sequence dependent waiting cost for patient i0 following

patient i
csii0 : sequence dependent idling cost for idling time between

patients i0 and i
cl: overtime cost
d: planned length of clinic day
M1 and M2 : upper bounds for patient waiting and provider

idling, respectively
Scenario dependent model parameters
ziðωÞ: procedure duration for patient i in scenario ω
AiðωÞ: attendance indicator for patient i in scenarioω (AiðωÞ ¼ 1

if the patient attends,
AiðωÞ ¼ 0 otherwise)
ξðωÞ: random vector containing scenario dependent

parameters, ξðωÞ ¼ ðz1ðωÞ;…; znðωÞ,
A1ðωÞ;…;AnðωÞÞ where n is the number of patients, AABn, and

zARn
þ

First stage decision variables
oii0 :binary precedence variable defining whether patient i is

followed by patient i0 (oii0 ¼ 1)
or not (oii0 ¼ 0)
qij: binary assignment variable defining whether patient i is

assigned to appointment slot j
(qij ¼ 1) or not (qij ¼ 0)
xi: time allotted to patient i's procedure
Second stage decision variables
wii0 ðωÞ: sequence dependent waiting time for patient i0 when

preceded by patient i in scenario ω
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sii0 ðωÞ: sequence dependent idle time between patients i and i0

in scenario ω
lðωÞ: total overtime for scenario ω with respect to the planned

length of clinic day d
gðωÞ: total earliness of the completion of the last procedure for

scenario ωwith respect to the planned length of clinic day d

Note that for simplicity we suppress dependence of the second
stage decision variables onω in the mathematical formulation that
follows, but the dependence of the second stage random para-
meters on ω is maintained.

The length of day is the sum of procedure times for all patients
plus the idle times between each procedure. However, since the day
ends when the last procedure ends, or is a no-show, we exclude the
idle time following the last patient. To do this, a dummy patient is
introduced, who is always the final patient. The dummy patient has
zero procedure time and defines the completion time of the final real
patient as the completion time of the clinic day. The dummy patient
and the associated final appointment slot are denoted in the indices
by nþ1. Using the notation defined above, the mathematical
formulation can be written as follows.

First stage problem:

CðnÞ ¼min Qðo;q; xÞ ð2aÞ

s:t: ∑
nþ1

i0 ¼ 1
oii0 r1 8 i ð2bÞ

∑
nþ1

i ¼ 1
∑
nþ1

i0 ¼ 1
oii0 ¼ n ð2cÞ

qijþqi0 jþ1�1roii0 8 ði; i0; jrnÞ ð2dÞ

∑
nþ1

i ¼ 1
qij ¼ 1 8 j ð2eÞ

∑
nþ1

j ¼ 1
qij ¼ 1 8 i ð2fÞ

∑
nþ1

i ¼ 1
oi;nþ1 ¼ 1 ð2gÞ

∑
nþ1

i ¼ 1
onþ1;i ¼ 0 ð2hÞ

qnþ1;nþ1 ¼ 1 ð2iÞ

oii0 ; qijAf0;1g 8ði; i0; jÞ ð2jÞ

xiZ0 8 i; ð2kÞ
where

Qðo;q; xÞ ¼ Eξ½Q ðo;q; x; ξÞ�: ð3Þ

Second stage recourse problem:

Q ðo;q; x; ξÞ ¼min ∑
nþ1

i ¼ 1
∑
n

i0 ¼ 1
cwii0Ai0 ðωÞwii0 þ ∑

nþ1

i ¼ 1
∑
nþ1

i0 ¼ 1
csii0 sii0 þcll ð4aÞ

s:t: wii0 rM1oii0 8 ði; i0;ωÞ ð4bÞ

sii0 rM2oii0 8 ði; i0;ωÞ ð4cÞ

� ∑
nþ1

i0 ¼ 1
wi0iþ ∑

nþ1

i0 ¼ 1
wii0 � ∑

nþ1

i0 ¼ 1
sii0 ¼ AiðωÞziðωÞ�xi 8ði : ianþ1;ωÞ ð4dÞ

∑
nþ1

i ¼ 1
∑
n

i0 ¼ 1
sii0 � lþg¼ d� ∑

nþ1

i ¼ 1
AiðωÞziðωÞ 8ðωÞ ð4eÞ

wii0 ; sii0 ; l; gZ0 8ði; i0;ωÞ: ð4fÞ
The formulation in (2a)–(2k) minimizes the expected costs of
patient waiting, server idling, and overtime costs over all scenar-
ios. Note that there are no direct costs associated with the first
stage decisions. Constraint (2b) ensures that each patient precedes
at most one other patient. Constraint (2c) ensures that every
patient, except for the dummy patient and the first patient, is
included in exactly two precedence relationships. Constraint (2d)
states that a precedence relationship can only exist if that same
relationship is defined by the appointment slot assignment deci-
sions. Constraints (2e) and (2f) require that one patient is assigned
to every appointment sequence slot and every patient is assigned
to one appointment sequence slot. Constraints (2g)–(2i) ensure
that the dummy patient will be the last patient as defined by the
binary precedence variables and the appointment slot assignment
variables. Binary and non-negativity restrictions on the first stage
decision variables are defined by (2j) and (2k), respectively.

If patient i does not precede patient i0, the associated sequence
dependent waiting and idling times will be 0 by constraints (4b)
and (4c) as enforced by M1 and M2, respectively. Constraint (4d)
calculates the waiting and idling times associated with each
patient based on the waiting time for the preceding patient. Note
that for a given patient, either the associated waiting time or idling
time can be positive, but not both. The clinic's overtime and
earliness are defined by (4e) with respect to the planned length of
the clinic day, d. Non-negativity restrictions on the second stage
decision variables are defined by (4f).

The attendance indicator, AiðωÞ, in (4a), (4d), and (4e) is
assigned according to the probability of no-show for that patient,
pi, and can be written as

AiðωÞ ¼
1 with probability 1�pi
0 with probability pi:

(

Thus, if a patient does not show up for an appointment the
attendance indicator is 0, and the procedure duration is 0 in
(4a), (4d), and (4e). Note that the model allows for the possibility
that individual no-show probabilities differ among patients.

The formulation presented in Denton et al. [12] is extended in
this formulation first through the inclusion of heterogeneous no-
show probabilities, and second through the use of both prece-
dence and assignment variables in order to strengthen the
formulation. The use of assignment decision variables has the
advantage of not requiring sub-tour elimination constraints that
would otherwise be necessary with the binary precedence vari-
ables alone. Waiting and idling time decisions are sequence
dependent since different patients may have different no-show
probabilities. Thus, binary precedence variables are included in the
formulation.

4. Analytical insights

In this section we present properties of special cases that
provide insights into the general problem. The results of this
section are important for two reasons. First the propositions
discussed provide some intuition behind the properties of optimal
solutions that we observe for larger practical problems. Second,
they are used to motivate easy-to-implement heuristics that we
evaluate in Section 6.

We consider the special case where n¼ 2; cl ¼ 0, and ziðωÞ are
independent and identically distributed for i¼1,2. Note that this is
equivalent to minimizing the expected cost of waiting and server
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idling, which is a common formulation in the appointment
scheduling literature. In comparing sequences, we assume that
the time allotted to the first patient in each of the sequences is
represented by x. In the case of two patients, the end of the day is
defined as when the last patient finishes, regardless of how much
time is allotted for it. Thus, the only time allotment decision that
influences the waiting of the second patient or the idle time
between the patients is the allocation of the first patient. The
expected value of the cost function for the sequence f1;2g, denoted
by Z12, is

Z12 ¼ Eω½ð1�p1Þð1�p2Þðcwðz1ðωÞ�xÞþ Þ
þð1�p1Þðcsðx�z1ðωÞÞþ Þþðp1ÞðcsðxÞÞ�: ð5Þ

Similarly, the expected value of the cost function for the sequence
{2, 1} is

Z21 ¼ Eω½ð1�p2Þð1�p1Þðcwðz2ðωÞ�xÞþ Þ
þð1�p2Þðcsðx�z2ðωÞÞþ Þþðp2ÞðcsðxÞÞ�: ð6Þ

With this definition of a two patient problem we state the
following propositions that define optimal sequencing decisions
based on no-show probabilities and procedure duration distribu-
tion conditions. Proofs for each proposition can be found in the
appendix.

Proposition 4.1. If p1op2 and z1ðωÞr cxz2ðωÞ, then the sequence
f1;2g is optimal r cx denotes a convex ordering.

Proof. Let xn1 and xn2 be the optimal solutions for the sequences
f1;2g and f2;1g, respectively. Then,
Z12ðxn1ÞrZ12ðxn2Þ ¼ ðEω½csððxn2�z1ðωÞÞþ þp1ðxn2�ðxn2�z1ðωÞÞþ ÞÞ�Þ

r ðEω½csððxn2�z2ðωÞÞþ þp2ðxn2�ðxn2�z2ðωÞÞþ ÞÞ�Þ ¼ Z21ðxn2Þ:
The second inequality follows from the convex ordering, the
convexity of overtime, and the assumption that p1op2. □

Intuitively, this can be explained as sequencing the patient with
greater uncertainty at the end of the day where they are less likely
to disrupt the rest of the schedule. Next, we present the optimal
allotment of time for the first patient, xn1, for the sequence f1;2g
where p1op2 and ziðωÞ are i.i.d for i¼1,2, and xn1. x

n

1 is defined as
the following based on (5)

xn1 ¼ arg min
x1

fEω½ð1�p1Þð1�p2Þðcwðz1ðωÞ�x1Þþ Þ

þð1�p1Þðcsðx1�z1ðωÞÞþ Þþðp1Þðcsðx1ÞÞ�g:
Taking the derivative of (5) with respect to x1 and setting it equal
to 0 yields

�ð1�p1Þð1�p2ÞcwPðz1ðωÞ4x1Þ
þð1�p1ÞcsPðz1ðωÞox1Þþðp1Þcs ¼ 0;

which is a convex function of x1. From which we can solve for
Pðz1ðωÞox1Þ,

Pðz1ðωÞox1Þ ¼
cwð1�p1Þð1�p2Þ�csðp1Þ

cwð1�p1Þð1�p2Þþcsð1�p1Þ
:

Thus, the expected cost in (5) is minimized when the allotted time
for the first patient in the sequence f1;2g is

xn1 ¼ inf x1Z0 : Fðx1ÞZ
cwð1�p1Þð1�p2Þ�csðp1Þ

cwð1�p1Þð1�p2Þþcsð1�p1Þ

� �
: ð7Þ

The case for sequence f2;1g for xn2 can be derived similarly from
(6). The next proposition relates the above optimal decisions in (7)
to double booking, which we define as scheduling the simulta-
neous arrival of two patients.

Proposition 4.2. If z1ðωÞ and z2ðωÞ are i.i.d., and p1op2, then it is
optimal to double book if ð1�p1Þð1�p2Þ=p1rcs=cw.

Proof. Double booking implies that xn1 ¼ 0 for f1;2g. Since
Pðz1ðωÞo0Þ ¼ 0 and Fðx1 ¼ 0Þ ¼ 0 we have the following from (7)

Fð0Þ ¼ 0Z
cwð1�p1Þð1�p2Þ�csðp1Þ

cwð1�p1Þð1�p2Þþcsð1�p1Þ
:

Since the denominator is always positive, we know

0Zcwð1�p1Þð1�p2Þ�csðp1Þ
and it must hold that

ð1�p1Þð1�p2Þ
p1

r cs

cw
:

Thus, if ð1�p1Þð1�p2Þ=p1rcs=cw, ziðωÞ are i.i.d. and p1op2, then
it is optimal to double book. □

Proposition 4.2 provides a sufficient condition based on waiting
and idling cost parameters, cw and cs, and no-show probabilities,
p1 and p2, for double booking patients to be optimal. Intuitively, as
p1 grows large and/or the ratio of server idling to waiting cost
becomes large, double booking becomes optimal. This provides
theoretical support for double booking, which is commonly done
in practice.

5. Solution methods

The most computationally challenging part of our booking
decision model in (1) is the two-stage stochastic mixed-integer
program in (2a)–(2k). In this section we briefly summarize three
alternative methods that are suited to the underlying structure of
the problem. The first two methods are decomposition methods
based on the classic L-shaped method suggested by [36]. The
third uses another well known stochastic programming method,
progressive hedging, suggested by [31], as a primal heuristic,
to accelerate branch and bound to solve the extensive form of
(2a)–(2k).

5.1. Model structural properties

For the solution methods we exploited properties of the
stochastic mixed-integer program in (2a)–(2k). First, valid inequal-
ities derived from the mean value problem have been used as a
lower bound in the L-shaped method to accelerate convergence of
two-stage stochastic mixed-integer programs such as ours by
Batun et al. [2]. From the multivariate version of Jensen's inequal-
ity [5] it follows that Qðo; q; xÞZQ ðo; q; x; ξðωÞÞ where ξðωÞ repre-
sents the mean value scenario. Jensen's inequality applies to
functions that are convex in the random variables. Note that the
waiting time for patient i is wi0i ¼ ðAi0zi0 �xi0 Þþ þwi″i0 , which is then
multiplied by Ai in (4.4a). The idling time before patient i is
si0i ¼ ðxi0 �Ai0zi0 þwi″i0 Þ. Thus, waiting and idling are both convex in
A and z. The overtime can be written as l¼ ð∑iAizi�dþ∑i∑i0sii

0Þþ ,
and is thus convex in A and z. Thus, (4.4a) is a sum of convex
functions, and is itself convex in A and z. We use the mean value
problem inequalities as a lower bound to accelerate our proposed
solution methods by adding the following constraints:

θZ ∑
nþ1

i ¼ 1
∑
n

i0 ¼ 1
cwii0Ai0wii0 þ ∑

nþ1

i ¼ 1
∑
nþ1

i0 ¼ 1
csii0sii0 þcll ð8aÞ

wii0 rM1oii0 8 ði; i0Þ ð8bÞ

sii0 rM2oii0 8 ði; i0Þ ð8cÞ

� ∑
nþ1

i0 ¼ 1
wi0iþ ∑

nþ1

i0 ¼ 1
wii0 � ∑

nþ1

i0 ¼ 1
sii0 ¼ Aizi�xi 8ði : ianþ1Þ ð8dÞ
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∑
nþ1

i ¼ 1
∑
n

i0 ¼ 1
sii0 � lþg ¼ d� ∑

nþ1

i ¼ 1
Aizi ð8eÞ

wii0 ; sii0 ; l; gZ0 8ði; i0Þ: ð8fÞ
In the above inequalities Ai and zi are the mean values for the

no-show indicators and procedure times respectively, wii0 ; sii0 ; l;
and g are auxiliary decision variables for the mean value scenario,
and oii0 and xi are the first stage decision variables previously
defined.

The second property relates to the strength of the formulation.
For each scenario, ω, an upper bound for wii0 can be defined as the
sum of all the procedure durations. That is, the waiting time
associated with each patient will be no greater than the total
procedure time for all patients. An upper bound for idling time can
be defined as the upper bound for xi, where we define the upper
bound for xi to be the length of the clinic day, d, since all
scheduling is planned to be within the given scheduling horizon.
Thus, to strengthen our formulation in Eqs. (4b) and (4c) for each
scenario, ω, we define M1 and M2 as the following:

M1ðωÞ ¼ ∑
n

i ¼ 1
ziðωÞ 8ω; ð9Þ

M2 ¼ d: ð10Þ
Note that M1 now has argument ω because the upper bound is
dependent on the particular scenario, ω.

The third property relates to symmetry in the patient sequen-
cing decisions. When similar patients can be aggregated into a
class based on procedure duration distributions and no-show
probabilities, we use the following symmetry breaking constraints
to enforce an arbitrary sequence within a class:

qi;j� ∑
n

k4 j
qiþ1;kr0 8 j¼ 1;…;n and ði; iþ1ACÞ; ð11Þ

where C defines the set of patients in the class. Antisymmetry
constraints such as this have been shown to have a significant
impact on computation time [13,30].

5.2. Exact methods

The L-shaped method is a classic decomposition method for
two-stage stochastic programs (see [36] for an early reference, and
[6] for a general review) that takes advantage of an alternative
formulation of (2a)–(2k) using outer linearization. At each itera-
tion, v, of the L-shaped method, a master problem is solved to
obtain a feasible solution, ðov;qv; xv;θvÞ, where θv lower bounds
the recourse function, Qðo;q; xÞ. The first stage solution is passed
to the second stage subproblems which are solved independently
to obtain the dual solutions. Optimality cuts, which are lower
bounding hyperplanes of the recourse function, Qðo;q; xÞ, are
generated from the second stage dual solutions and added to the
master problem. The algorithm proceeds until the optimal solution
is found or some predefined tolerance is satisfied.

In our model the subproblems are very easy to solve and
feasibility cuts, which induce feasibility in the master solution at
each iteration, are not required since every sequence and schedule
generated by the master problem is feasible for the second stage
subproblems, i.e., the problem has complete recourse.

In addition to the classic L-shaped method, we implemented a
hybrid multicut version of the algorithm. The original multicut
L-shaped method [7] generates an optimality cut for every
scenario in the second stage. Our initial computational experience
revealed that while more information is passed to the first
stage problem through additional cuts, the size of the master
problem MIP grows quickly, and the master problem becomes

computationally expensive to solve due to the large number of
additional cuts. Instead, we aggregated cuts by ranking scenarios
into groups based on total procedure time. For example, in a two
cut implementation, one cut is generated from scenarios with the
lowest 50% of total procedure times, and the other is generated
from scenarios with the highest 50% of total procedure times.

In our third method, we solve the extensive form of (2a)–(4f)
directly by branch and bound, using a primal heuristic to generate
an initial feasible solution. Progressive hedging, a scenario-based
decomposition method for multi-stage stochastic programs pro-
posed by [31], is well suited as a primal heuristic. It is based on an
alternative formulation of the two-stage stochastic program in
which the first stage decision variables are indexed according to
scenarios. Thus, the first stage decisions depend on the observed
outcome of the random variables, and different decisions may be
made for each scenario in the first stage in anticipation of the
random outcome. In progressive hedging, the nonanticipativity
constraints are relaxed and scenario subproblems for each ω are
solved independently. Lagrangian multipliers are introduced to
enforce nonanticipativity across all scenarios.

5.3. Heuristics

In addition to the exact methods discussed above, easy-to-
implement heuristics motivated by the properties in Section 4
were evaluated. The heuristics exploit the fact that fixing the
sequence of patients allows the binary decision variables to be
fixed. The resulting stochastic linear program is very easy to solve.
The proposed heuristics operate in the following way:

Algorithm 1. Heuristics for sequencing and scheduling pro-
cedures.

input: Sorting Method: s¼ 1;2;3;4;5;6
output: Sequence and arrival schedule for procedures

1 Sort patients i¼ 1;…;n using Sorting Method s
2 Fix sequence resulting from Step1 for first stage binary decision

variables o and q
3 Solve resulting fixed sequence stochastic linear program using

the L-shaped method

The Sorting Methods in Step 1 are based on two procedure
parameters related to uncertainty: procedure duration standard
deviation ðsiÞ and no-show rate ðpiÞ for each procedure i. Six
sorting methods were evaluated and are defined in Table 1.

The sorting methods that use the product of a procedure's
standard deviation and no-show rate capture both types of
uncertainty in a single parameter. While Sorting Methods 4–6
have no intuitive motivation, these pessimistic Sorting Methods are
included in order to evaluate the impact of the sequencing
decisions.

Table 1
Six sorting methods were evaluated using the
heuristic algorithm.

Sorting method Resulting sequence

1 Increasing si

2 Increasing pi
3 Increasing si � pi
4 Decreasing si

5 Decreasing pi
6 Decreasing si � pi

B.P. Berg et al. / Computers & Operations Research 50 (2014) 24–37 29



6. Results

In this section we present results based on a series of numerical
experiments. First, we describe how parameters were estimated
from historical data for a particular OPC. Next, we present results
to evaluate sensitivity of optimal decisions to model properties,
the value of the stochastic solution, and an analysis of the
effectiveness of the heuristics in Section 5. Finally, we present
results illustrating sensitivity of optimal booking decisions to cost
and revenue estimates for a particular OPC.

6.1. Parameter estimation

Data from the Division of Gastroenterology and Hepatology at
Mayo Clinic in Rochester, MN, were used for parameter estimation
and numerical experimentation. The division is made up of over 70
faculty providers, conducting procedures ranging from routine color-
ectal cancer screenings to more complex cases where the patient
requires procedures for further diagnostic and therapeutic purposes
primarily related to colorectal cancer. Because there is a high variety
of procedures on a given day, any provider may perform multiple
types of procedures, each requiring different amounts of time and
having different historical no-show rates. The heterogeneous daily
patient demand and operational structure of the practice lend itself
well as a case study for our model formulation.

Procedure time analysis was performed using 6 months worth
of procedure data from January, 2010 through June, 2010 with over
10,000 observations covering three GI locations throughout Mayo
Clinic. There were five basic procedures performed at these sites:
Colonoscopy, EGD (Esophagogastroduodenoscopy), ERCP (Endo-
scopic Retrograde Cholangiopancreatography), EUS (Endoscopic
Ultrasound) Colonoscopy, and EUS–EGD. Expert Fit 7.0 was used
to fit probability distributions for each procedure type. Visual and
numerical results confirmed very good fits across all procedure

types with Expert Fit providing scores above 90 on a 0–100 scale.
Procedure descriptive statistics are presented in Table 2.

We assumed that the cost for patient waiting is the average
hourly wage in the United States, as this is common practice in the
health services research literature [22]. We defined d as the expected
duration for the n patients. Overtime cost was defined through the
ratio cl=cw. We consider several choices of cl=cw and we include
cl=cw ¼ 33 in our experiments as this represents an estimated ratio
provided by administrators. The parameter cs was set to 0 since there
is no direct cost of idling, and idle time for providers is generally
filled with administrative, research, and dictation activities. While
not presented, we note experiments where csa0 proved to be
computationally easier to solve. Problem instances were generated
for n¼5 and n¼10 based on the 4–11 procedures being allocated to
each procedure room in the OPC studied.

6.2. Numerical results

Implementation of the methods in Section 5 was done with
IBM ILOG Optimization Programming Language using CPLEX 12.2.
Experiments were run on a Dell Linux server with 2 Quad-Core
Intel Xeon E5420 2.5 GHz CPUs and 16GB shared RAM. To evaluate
computational performance of the three methods we propose, we
used test cases based on a single provider and procedure room
where 55% of procedures are colonoscopies and 45% are EGD's.
This scenario is based on a typical day for the endoscopy suite we
studied.

For the decomposition-based methods, when a tolerance of 1%
was achieved, the algorithm was terminated. A maximum of
15,000 CPU seconds was allowed for each instance and the
optimality gap is reported in cases where the problem did not
solve to optimality within the CPU allowance. For the branch and
bound implementation, the progressive hedging algorithm was
terminated at 1000 CPU seconds and branch and bound was
allowed a maximum of 15,000 CPU seconds. The upper bounds
on M1 and M2 in (8) and (9), and symmetry breaking constraints in
(10) discussed in Section 5.1 were implemented in these results.

The results presented in Table 3 are based on averages from 10
problem instances with 1000 scenarios each. The optimality gap is
defined by the difference between the upper and lower bounds as
a percentage of the lower bound. We observed that the solution
times and optimality gaps are much better, for each of the
methods, for the instances where the overtime to waiting time
cost ratio is high (these are likely to be the most realistic scenarios
for OPCs). Furthermore, while each of the three proposed methods
are computationally competitive for smaller instances, only the
hybrid multicut method was able to solve the larger problems to
the specified tolerance.

Table 2
Parameter were estimated based on historical data from the Division of Gastro-
enterology and Hepatology at Mayo Clinic in 2010. The mean, variance, and the
distribution fit for each procedure type is presented along with the no-show
probabilities for each procedure type.

Procedure type Mean Variance Distribution fit No-show
probability

Colonoscopy 30.96 188.57 Weibull 0.18
EGD 12.05 58.75 Weibull 0.14
ERCP 38.63 598.25 Weibull 0.13
EUS colonoscopy 28.38 210.66 Weibull 0.16
EUS–EGD 29.59 249.99 Log-logistic 0.24

Table 3
Computational results for the classic L-shaped method (L-shaped), hybrid multicut L-shaped method (Multicut), and the progressive hedging primal heuristic method (PH)
are presented for instances varying in size and parameter estimates. The minimum, average, and maximum CPU times and average optimality gap, across 10 randomly
generated instances, are presented for each method.

n cl=cw CPU time (sec) Average gap (%)

L-shaped Multicut PH

Min Avg Max Min Avg Max Min Avg Max L-shaped Multicut PH

5 1 244 315.6 370 114 327.9 429 268 327.1 428 o 1.0 o 1.0 0.0
10 268 342.7 386 201 331.7 595 285 399.9 630 o 1.0 o 1.0 0.0
33 228 270.9 324 246 282.7 325 236 326.9 433 o 1.0 o 1.0 0.0

10 1 a a 15k a a 15k a a 15k 83.1 7.2 186.2
10 a a 15k 9339 10,842.7 13,564 a a 15k 43.8 o 1.0 82.9
33 a a 15k 6756 7726.9 9786 a a 15k 76.6 o 1.0 32.8

a Some instances reached the limit of 15,000 CPU seconds.
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6.2.1. Heuristics
Given the significant computational challenges posed by this

problem, the heuristic in Algorithm 1 was evaluated for each sorting
method for n¼5 problem instances where procedure durations were
assumed to be log-normally distributed with a mean of 30 min. This
mean represents the expected duration of the procedures in Table 2
and the log-normal distribution has been identified as an appropriate
distribution for procedure durations in similar OPCs [4]. Four test
scenarios were generated based on the relationship between proce-
dure duration standard deviation and no-show rate in order to
measure the effects of each parameter on the sequence performance.
Procedure duration standard deviation ranged from 6 to 30 min and
no-show rates ranged from 5% to 45%. The choice of standard
deviation range represents a significant variety in procedure duration
coefficients of variation (20–100%). While no-show rates for endo-
scopy suites have been reported between 13% and 24%, the range was
broadened for the heuristic experiments in order to have managerial
implications for general outpatient clinic settings where higher no-
show rates have been reported. The four test scenarios are detailed in

Table 4. We note that the stochastic linear programs in Step 3 of
Algorithm 1 were solved to within 1% optimality in less than a minute.

The heuristic was evaluated for each sorting method in Table 1
and each test scenario in Table 4 where the ratio cl=cw was set to 1,
10, and 33. The results present the average optimality gap for each
scenario and sorting method resulting from the heuristic using 10
random seed instances.

In Fig. 1, one graph is presented for each test scenario.
In general, the optimality gaps resulting from the heuristic
decrease as overtime estimates increase, illustrating that the
sequence becomes less important to minimizing costs as overtime
costs are more highly valued relative to patient waiting costs. This
can be seen most clearly in Scenario 3 where optimality gaps for
Sorting Methods 4–6 decrease from approximately 37% to 2%
when overtime estimates increase. However, this trend is less
accentuated for Sorting Methods 1–3 where the heuristic provides
small optimality gaps. This indicates that the sorting methods
motivated by the propositions may be generalizable to larger
instances with more diverse patient classes.

Table 4
Four test scenarios were used to evaluate the heuristic. Scenarios differ based on the relationship between procedure duration and attendance uncertainties.

Scenario Description Standard deviation
for procedure i¼ 1;…;5 (min)

No-show rate
for procedure i¼ 1;…;5 (%)

1 Constant standard deviation and increasing no-show rate 18, 18, 18, 18, 18 5, 15, 25, 35, 45
2 Increasing standard deviation and constant no-show rate 6, 12, 18, 24, 30 25, 25, 25, 25, 25
3 Increasing standard deviation and increasing no-show rate 6, 12, 18, 24, 30 5, 15, 25, 35, 45
4 Increasing standard deviation and decreasing no-show rate 6, 12, 18, 24, 30 45, 35, 25, 15, 5
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Fig. 1. The optimality gaps for the four scenarios and six sorting methods are compared for three values of cl=cw .
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The results for Scenario 4 indicate that when procedure duration
standard deviation increases and no-show rates decrease, the sorting
methods are less differentiated due to the two uncertainties “cancel-
ing” each other out in a given sequence. However, when procedure
duration standard deviation and no-show rates exhibit a nondirect
relationship, sorting by procedure duration standard deviation may
take precedence since Sorting Methods 3 and 5 provided the highest
optimality gaps. In other words, not including procedure duration
standard deviation in the heuristic, and only focusing on no-show
rates, resulted in higher optimality gaps.

6.3. Value of the stochastic solution

Table 5 presents the value of the stochastic solution (VSS). VSS is
the difference between the expected costs for using the solution of
the mean value problem (EEV) and the optimal solution value,
Qðon;qn; xnÞ. The VSS results were generated using the multicut
method since this method tended to have the best solution at the
time of termination in the larger instances. We present the VSS in
two contexts. First is the VSS for the cost portion of our problem. This
represents the traditional interpretation of VSS as it compares the
optimal solution value with that of the mean value problem. We also
present the VSS within the context of profit. The VSS for the profit
represents the improvement in P(n) by using the optimal solution
value for C(n) compared to the mean value problem solution.

For the n¼5 instances in Table 5, the VSS for costs range from
16.80% to 24.80%. The corresponding VSS for profits are lower,
ranging from 0.45% to 14.12%, and are most significant for the
instances where overtime costs are significantly higher than
waiting costs (14.12% improvements). For the n¼10 instances that
did not terminate with an optimal solution, the best solution at
termination is used. This represents a lower bound on the VSS. It is
interesting to note that for n¼10, and high ratios of cl=cw, the VSS
is slightly lower indicating that the value of the stochastic program
may be lower for large problems in which the overtime cost is
higher than the patient waiting time cost. However, the VSS is
significantly higher for n¼10 and cl=cw ¼ 1. In general, Table 5
shows that the VSS is high for this problem.

6.4. Sensitivity to no-show probabilities

To examine the sensitivity of the optimal schedule to no-show
probabilities, we considered a single patient class for which the
no-show probability, pi, is the same for all patients, i¼ 1;…;n. The
procedure time distribution for colonoscopies in Table 2 was used
for all patients. Fig. 2 presents the optimal time allowances for the
scenario where n¼10 colonoscopy procedures (no sequencing
decisions), cl=cw ¼ 33, and p is varied from 0.0 to 0.3. When no-
show probabilities are p¼0.15 and p¼0.3, double booking is

observed at the beginning of the day. This is consistent with
theoretical results for the n¼2 case in Section 4 in that it is
optimal to double book, and increasingly so as the no-show
probability, p, increases. This is also consistent with commonly
employed practice, as noted in Section 2. However, the costs
associated with the optimal schedule increases if the patients
who are double booked at the beginning of the day both show up.
For example, in the p¼0.15 case where it is optimal to double book
the first two patients the costs for days where both patients attend
are approximately 17% higher than the expected value. In compar-
ison, the costs for days where both patients fail to attend their
appointments are approximately 57% less than the expected value.
In general, the dome shape is observed early in the schedule, but
interarrival times increase throughout the day.

Two-way sensitivity analysis was also conducted in order to
evaluate the structure of the optimal schedule with respect to no-
show rates and cl=cw ratio estimates. For this analysis, 10 patients
with procedure durations based on the colonoscopy procedure
distribution were considered. Half of the patients were assigned a
no-show rate of 0.15 and the other half was assigned a no-show
rate of 0.05, 0.10, 0.20, and 0.25. The cl=cw ratio was evaluated for
the values of 10, 33, and 100. The results are presented in Fig. 3.
As compared to the results in Fig. 2, having multiple patient
classes, and thus including a sequencing decision, appears to add
volatility to the schedule structure. In general, however, the
pattern of scheduling earlier patients closer together is still
observed. Further, as the no-show rate and cl=cw ratio increase,
the optimal schedules tend to allocate less time to each patient.
With regard to sequencing decisions for the two patient classes,
Fig. 4 illustrates that the patient sequence may be less important
as the cl=cw ratio increases. That is, when cl=cw is low (the value of
patient waiting time is high) the optimal schedules tend to
sequence the lower no-show rate patients earlier in the day to
minimize costs. However, as cl=cw increases the portion of low no-
show rate patients scheduled earlier in the day tends toward 50%,
indicating that the sequence does not matter as overtime costs
significantly outweigh patient waiting costs.

6.5. Booking results

The above results have focused on the sequencing and schedul-
ing element of the booking problem, for a fixed number of

Table 5
The value of the stochastic solution (VSS) for instances varying in size and
parameter estimates. Results are based on Qðon ;qn; xnÞ, or the current upper bound
at the CPU time limit (noted by n). The value of the stochastic solution is presented
in the context of costs (VSS C(n)) and profits (VSS P(n)).

n cl=cw Average
EEV

Average
Qðon;qn; xnÞ

VSS C(n)
(% improvement
from EEV)

VSS P(n)
(% improvement
from EEV)

5 1 21.91 18.23 16.80 0.45
10 100.60 83.50 17.00 2.31
33 305.47 229.72 24.80 14.12

10 1 66.55 45.18n 32.11n 1.32n

10 198.02 168.75 14.78 1.97
33 540.33 410.46 24.03 11.35

Fig. 2. The interarrival time allowances are presented for a single patient class
scenario where no-show probabilities range from 0.0 to 0.3 and the procedure time
distribution are for colonoscopies in Table 2. Double booking is observed at the
beginning of the day for no-show probabilities of 0.15 and 0.3, respectively.
Solution values are averaged over 10 random seed instances.
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patients. Next, we present results for optimal booking decisions.
Recall that the booking decision problem is

max
n

fRðnÞ�CðnÞg:

To find the optimal n we enumerated over the range of feasible
values of n. Vargo et al. [38] assumed that 70% of endoscopy suite
reimbursements are used to pay the fixed costs of running the
suite, leaving 30% ($201.45) of each colonoscopy performed as the
remaining revenue based on CMS (Centers for Medicare & Med-
icaid Services) reimbursement rates. Thus, after accounting for
fixed costs, as a baseline we assume RðnÞ ¼ $201:45�∑n

i ¼ 1ð1�piÞ.
We assume cs¼0 and cl=cw ¼ 33 as previously defined. Procedure
duration distributions and no-show probabilities are the same as
defined in the computational experiments of the previous subsec-
tions. In light of the fact that reimbursements vary across provi-
ders, we assume a fixed cost estimate of 70% as a lower bound and
compare results for 80% and 90% in Fig. 5. We observe that the
optimal number of patients to book decreases as the fixed costs
estimate increases. Further, Fig. 5 illustrates a non-smooth trend
surrounding the peaks of the curves. This is explained by the fact
that each additional patient that is booked is not necessarily of the
same class as the previous additional patient. For example, when
an additional EGD is added to the booking schedule the resulting
increase in expected costs is less than if an additional colonoscopy
were added due to the conoloscopy procedures having longer
procedure durations with higher variance. For each number of
booked patients in Fig. 5, the case mix was held constant with
respect to the long-run demand case mix.

7. Case study: optimal overbooking for a gastroenterology
practice

A detailed discrete event simulation model of the GI Advanced
Practice at Mayo Clinic in Rochester, MN, was developed and used
to compare booking, sequencing, and scheduling decisions based
on our single server booking model and the actual sequences and
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Fig. 3. The interarrival time allowances are presented for a two patient classes where no-show probabilities are 0.15 for one class and range from 0.05 to 0.25 for the other
class, with 5 patients in each class. The procedure time distribution is based on colonoscopies in Table 2. Solutions are averaged over 10 random seed instances.

0.00

0.25

0.50

0.75

1.00

10 33 100

Cost Ratio

P
or

tio
n 

of
 L

ow
er

 N
o−

S
ho

w
 R

at
e 

P
at

ie
nt

s
S

ch
ed

ul
ed

 E
ar

ly

Variable
No−Show Rate

5

10

20

25

Schedule Sequence of Low No−Show Rate Patients

Fig. 4. The sequences are presented for a two patient classes where no-show
probabilities are 0.15 for one class and range from 0.05 to 0.25 for the other class,
with 5 patients in each class. Being scheduled early is defined by being sequenced
in the first half of the schedule.

B.P. Berg et al. / Computers & Operations Research 50 (2014) 24–37 33



schedules employed in practice. The simulation model was devel-
oped using Arena 12.0 [23]. The patient flow process in the model
includes registration, intake, procedure, and recovery. Resources
include registration staff, intake beds, intake nurses, procedure
rooms, endoscopists, endoscopes, procedure support staff, recov-
ery beds, and recovery nurses. The suite opens at 7 A.M. and
overtime was measured according to procedures ending past 12 P.
M. or 4 P.M., depending on the procedure type.

Fig. 6 illustrates the overall process, which is similar to other
OPCs described by Berg et al. [4], Gul et al. [18], and Huschka et al.
[21]. Intake consists of registering at the front desk, changing into
a procedure gown, and meeting with a nurse who collects patient
information and explains the procedure. When the patient finishes
intake, and a procedure room for their specific procedure is
available, the patient is taken to the procedure room where the
endoscopist joins them and the procedure begins. Following the
procedure the patient is taken to recovery where they will stay
until they are ready to be discharged.

As in most procedure centers, procedures require specific
resources. For example, an EUS–EGD requires use of ultrasound
imaging equipment only available in EUS procedure rooms.
Furthermore, each patient is associated with a certain provider.
Thus, the process can be approximated as several single servers,
where the server is defined by the combination of procedure room
and provider. Shared resources exist, such as intake and recovery,
but these are generally much less costly and typically not the
bottleneck in the system. Therefore, the proposed booking,
sequencing, and scheduling method are applied to each procedure
room separately. The appointment times generated for each
procedure are then used in the simulation model as the times at
which the corresponding patients arrive at registration.

The five procedures described in Section 6.1 are each allocated
to one of three types of procedure rooms shown in Fig. 6.
Colonoscopies and EGD's are performed in the Complex procedure
room, EUS Colonoscopies and EUS–EGD's are performed in the EUS
procedure rooms, and ERCP's are performed in the ERCP procedure
room. Procedure room, endoscopist, and case mix information for
the suite are summarized in Table 6.

Test instances were generated based on historical appointment
schedules from five different days. Each historical appointment
schedule was simulated to compare (a) actual sequences and
schedules used in practice, (b) the corresponding two-stage
stochastic program solutions assuming the fixed number of
patients booked in practice (referred to as the SP solution below),
and (c) the optimal booking decision. The actual and SP solutions
both assume a fixed number of patients according to the instance.
The optimal booking decision refers to the optimal number of

Fig. 5. The sensitivity of the expected profit for booking n patients is compared for
varying fixed cost estimates. As the portion of revenue consumed by fixed costs
increases, the optimal number of patient to schedule decreases. 95% confidence
intervals are included.

Fig. 6. Each patient goes through the intake, procedure, and recovery processes in the endoscopy suite. Intake and recovery resources are shared between patients receiving
different procedures, but the procedure rooms and providers act as independent single servers.

Table 6
Patients are assigned to a procedure room and provider according to the type of
procedure they will be receiving. Each procedure type has a specified procedure
room and provider. The procedure case mix is based on historical data.

Procedure type Rooms Endoscopists Procedure case mix

ERCP 1 1 100% ERCP
EUS 2 2 88% EUS–EGD

12% EUS Colonoscopy
Complex 1 1 55% Colonoscopy

45% EGD
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patients scheduled, the optimal sequence, and the optimal time
allowances. The optimal number of patients to schedule was
defined by enumerating the feasible solutions to (1) and using
the n that resulted in the maximum profit. It is important to
remember that in this enumeration process, a stochastic program
is solved for the cost component of each n. The stochastic program
associated with each procedure roomwas solved to optimality. For
larger problems, the CPU budget limit that was used in the
computational experiments was eliminated. Each appointment
schedule was simulated for 1000 replications using historical data
described in Section 6.1 along with historical time stamp data for
the registration, intake, and recovery processes. Procedure room
turn around times were modeled with a triangular distribution of
(10, 15, 20 min) based on a subjective estimate from the endoscopy
suite director.

Expected patient waiting time and overtime with 95% half-
widths are reported in Table 7. The comparison of the actual and
SP results are both with respect to the number of patients actually
booked for each instance. From Table 7, the SP solution resulted in
higher expected patient waiting time (1–10 min) and lower
expected overtime (7–74 min).

Table 7 compares the actual sequence and schedule of patients
to the SP solution, assuming no change in the number of patients
booked for each instance. The optimal booking decision, which
includes the optimal number of patients to book in addition to the
corresponding optimal sequence and time allowances, is also
included in Fig. 7. The optimal booking decision increases
expected profits by a range of 2.49%–63.11% from the actual
booking, sequencing, and time allowance schedules. As seen in
Fig. 7, the optimal booking decision results in higher expected
profit in all of the instances except the SP solution for Historical
Schedule 1. In Historical Schedule 1 the profit for the SP solution is
actually slightly higher than the optimal booking decision. This
is a result of the single server model approximation. Overall, as
Fig. 7 illustrates, the optimal booking decision generally performs
very well.

The performance of the optimal booking decision in Fig. 7 is
based on the parameter estimates used in the model such as
overtime cost estimates and the portion of reimbursements that
are consumed by fixed costs. Table 8 includes results where model
parameter estimates are varied for Historical Schedule 4. Specifi-
cally, overtime estimates were varied 750% resulting in cl=cw

ratios of 49.5 and 16.5, respectively. Further, the fixed costs
estimates were varied between 70% and 90%. Table 8 illustrates
that again, in general, the optimal booking decisions provide
significant increases in the expected profit. However, while these
are extreme estimates of overtime, it can be seen that the
historical schedule resulted in higher expected profits when fixed
cost estimates were high and overtime costs were low, as well as
when fixed cost estimates were low and overtime costs were high.
While not presented for brevity, 95% confidence interval half
widths ranged between 28.5 and 98.09.

While the objective of our model is to maximize expected
profit, an improvement in patient access can also be seen. The
optimal booking decision resulted in more patients being booked,
n¼36, than in all of the instances in Table 7, an increase ranging
from 24% to 80% (when compared to Historical Schedules 5 and
1 scheduling 29 and 20 patients, respectively). That is, the increase
in expected profit also resulted in improved patient access through
more patients being booked.

8. Conclusions

In this article we extended the model in [12] to formulate a
model for optimal booking, sequencing, and scheduling of a single

Table 7
Actual sequences and schedules and the corresponding two-stage stochastic program solutions (SP) were simulated assuming the fixed number of patients booked in
practice. Average patient waiting time and average overtime are compared for five instances with 95% half-widths in parentheses.

Instance Number of patients Average patient waiting (min) Average overtime (min)

ERCP EUS Complex Actual SP solution Actual SP solution

1 5 19 5 71.97 (2.13) 73.40 (2.55) 54.25 (4.01) 42.20 (4.00)
2 5 13 4 30.93 (0.77) 40.43 (1.07) 40.51 (3.57) 33.61 (3.57)
3 5 14 4 38.57 (0.97) 40.05 (0.98) 108.87 (3.98) 34.94 (3.41)
4 4 13 6 23.89 (0.87) 41.66 (1.05) 34.97 (3.05) 13.94 (2.33)
5 5 11 4 33.61 (0.73) 41.48 (0.98) 39.08 (3.49) 27.33 (3.22)

Fig. 7. The expected profits for the actual sequences and schedules and the
corresponding SP solutions are presented for a fixed number of patients for each
instance. The expected profit for the optimal booking, sequencing, and scheduling
decisions is presented for comparison with each historical schedule. 95% con-
fidence intervals are included.

Table 8
Sensitivity analysis was performed on overtime and fixed cost estimates for
Historical Schedule 4.

cl=cw Fixed cost % P (Schedule 4) P (optimal booking) % Improvement

16.5 70 3185.58 3411.49 7.09
80 1699.11 1897.81 11.69
90 775.10 536.22 �30.82

33 70 2969.29 3455.25 16.37
80 1583.85 1654.34 4.45
90 614.68 836.62 36.11

49.5 70 2753.00 2513.97 �8.68
80 1266.53 1577.54 24.56
90 342.52 813.76 137.58
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stochastic server. We evaluated three alternative solution methods
for solving the underlying stochastic mixed-integer program. We
provided analytic insights based on special cases including suffi-
cient conditions for the optimal sequence and double booking in
the presence of attendance uncertainty. Computational experi-
ments showed that realistic problem instances are very challen-
ging to solve. However, the alternative methods presented
provided tight optimality gaps for problems likely to be encoun-
tered in practice. Heuristics motivated by theoretical results and
the computational challenges observed were evaluated and shown
to perform well.

Our analysis revealed that optimal sequencing decisions are
quite sensitive to both the procedure duration variance and no-
show probability. Our theoretical results for special instances, and
heuristic analysis, provide supporting evidence that it is optimal to
sequence patients with higher procedure duration variance, and
higher no-show probability, later in the sequence during a given
day. For example, in the OPC that we studied, our results
demonstrate that is optimal to schedule the EGD and EUS–
Colonoscopy procedures at the beginning of the day and schedule
the Colonoscopy and EUS–EGD procedures later. Our numerical
results for larger instances are also consistent with these findings,
providing evidence that these findings may generalize to larger
problems. Further, our sensitivity analysis illustrated the impor-
tance of solving the stochastic program as optimal sequences
varied among different problem instances, particularly when the
ratio of overtime costs to patient waiting costs is low.

Our heuristic analysis illustrated that there are certain cases
when the easy-to-implement heuristics should be used. When
overtime costs are significantly greater than patient waiting time
costs, the heuristics resulted in solutions with very small optim-
ality gaps. However, the optimality gaps are higher for the
heuristic solutions when there is less of a difference between
patient waiting time costs and overtime costs, implying that exact
solution methods should be used in these cases. Further, the
results demonstrated that when there is a direct relationship
between procedure duration standard deviation and no-show rate,
the heuristics provide near optimal solutions. For example, when
procedures that have high duration standard deviation also have
high no-show rates, this would be a case to use the heuristics. On
the other hand, if there is not a clear relationship between
procedure duration standard deviation and no-show rate, then
using exact solutions may be preferable.

Our findings indicate that as the probability of no-shows
increases, it becomes optimal to double book some patients.
Double booking is common in practice and our results show that
it is also optimal in some cases where overtime or idling costs are
high, or no-show probabilities are high, or both. Although the idea
of double booking was alluded to in the literature as early as 1966
by [35] in his two-at-a-time policy, we are unaware of theoretical
insights, such as ours, about the potential optimality of this
practice. In general, we observe the amount of double booking
increases with no-show probability. The trend of double booking
at the beginning of the day was observed in the structure of the
optimal solutions to the scenarios analyzed. While this rule has
been heuristically demonstrated to perform well, we have pro-
vided numerical results that show it is optimal in certain cases.
Intuitively this means double booking is most appropriate when
there is a high risk of low utilization resulting from a patient no-
show, i.e., when a queue of waiting patients has yet to develop.

Our results show that the optimal number of patients to book is
sensitive to the fixed costs associated with a particular practice,
and decrease as fixed cost estimates increase. Our case study
shows that there may be significant benefits to implementing our
model in a realistic multi-server OPC. Based on our experience in
working with many different types of OPCs at several institutions,

this research presents a model and results that can be general-
izable to other outpatient procedure settings. The most significant
managerial insights can be summarized as follows:

� While the benefits of overbooking depend on an OPC's cost
structure, overbooking resulted in a 17% increase in profit in the
most likely cost scenario, with an increase as high as 137% in
experiments.

� Sequencing patients with high no-show rates or high proce-
dure duration variance later in the day results in lower costs of
waiting, idling, and overtime.

� Double booking is optimal, and increasingly so as no-show
probabilities become high; and in the optimal schedules,
double booking at the beginning of the day is observed.

� The optimal number of patients to book depends on fixed cost
estimates and decreases as fixed costs increase.

There are some limitations to our study that present opportu-
nities for future research. First, we assumed that there is an
unlimited supply of patient demand for each procedure type.
Thus, in some OPCs, there may be additional constraints on the
booking decisions. However, case mix decisions are a result of
many factors such as patient population demand and appointment
volume at referring departments and clinics. Second, based on our
numerical experiments we found that the stochastic mixed integer
program is extremely difficult to solve. Thus, an important direc-
tion for future research is the study of new solution methods. It is
a generic model that underlies many types of industrial service
systems. We were able to solve instances up to n¼10 to optimality,
which is suitable for most OPCs, which are the focus of this article.
However, other types of service systems that pre-schedule
patients, such as lab services, that involve larger numbers of
customers, may benefit from additional computational advances.
Finally, the model considered here focuses on the single day
booking, sequencing, and scheduling decisions. While incorporat-
ing indirect waiting for patients is beyond the scope of this
immediate work, it is an important component to integrate into
future models. Similarly, extending this model and its results to a
dynamic appointment scheduling setting may extend the rele-
vance to other service settings where static booking templates are
less realistic.
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