
Computing Conditional Probabilities
in Large Domains by

Maximizing Ŕenyi’s Quadratic Entropy

Charles Lawrence Zitnick III

CMU-RI-TR-03-20

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Robotics

Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15217

May 23, 2003

Thesis Committee:

Takeo Kanade, Chair
Greg Cooper, University of Pittsburgh

Jeff Schneider, Carnegie Mellon University
Manuela Veloso, Carnegie Mellon University

Copyright 2003 by C. Lawrence Zitnick. All rights reserved.

Abstract

In this dissertation we discuss methods for efficiently approximating conditional probabilities in

large domains by maximizing the entropy of the distribution given a set of constraints. The con-

straints are constructed from conditional probabilities, typically of low-order, that can be accurately

computed from the training data. By appropriately choosing the constraints, maximum entropy

methods can balance the tradeoffs in errors due to bias and variance.

Standard maximum entropy techniques are too computationally inefficient for use in large do-

mains in which the set of variables that are being conditioned upon varies. Instead of using the

standard measure of entropy first proposed by Shannon, we use a measure that lies within the fam-

ily of Rényi’s entropies. If we allow our probability estimates to occasionally lie outside the range

from 0 to 1, we can efficiently maximize Ŕenyi’s quadratic entropy relative to the constraints using

a set of linear equations.

We develop two algorithms, the inverse probability method and recurrent linear network, for

maximizing Ŕenyi’s quadratic entropy without bounds. The algorithms produce identical results.

However, depending on the type of problem, one method may be more computationally efficient

than the other. We also propose an extension to the algorithms for partially enforcing the constraints

based on our confidence in them.

Our algorithms are tested on several applications including: collaborative filtering, image re-

trieval and language modeling.

i

Acknowledgements

I would like to thank Takeo Kanade for his continued support throughout my years as a graduate

student. He very patiently critiqued my research approach and results and accepted my changes in

research topics. Without his trust and guidance this thesis would not be possible.

For his part in introducing me to research and nurturing my ideas I would like to thank Jon

Webb. His enthusiasm in my early research gave me the confidence to pursue my ideas further.

In addition, I would like to sincerely thank my committee members Jeff Schneider, Manuela

Veloso and Greg Cooper for their insights and time, and Jim Gemmell and Jim Gray for their great

conversations and advice during my time spent at BARC.

My family, including my parents Sue and Chuck Zitnick along with my sister Karen and brother

Dave, have given me complete support and encouragement throughout these years.

Finally, I would like to thank Krista for her love, support and her ability to listen patiently to my

many ramblings about isolation problems and recurrent networks.

I’d like to acknowledge Microsoft Corporation and Hewlett-Packard Company for use of their

databases in my experiments.

iii

Table of Contents

1 Introduction 1

1.1 Balancing Bias and Variance Errors Through Constraints 2

1.2 Applications of Maximum Entropy . 6

1.3 Outline of Work . 7

2 Maximum Entropy 9

2.1 Maximum Entropy Methods . 10

2.1.1 Shannon’s Entropy . 12

2.1.2 Ŕenyi’s Entropy . 13

2.1.3 Unbounded Ŕenyi Quadratic Entropy . 14

2.1.4 Comparison of Shannon’s and Rényi’s Entropy Measures 16

2.2 Maximizing Conditional Entropy . 20

2.2.1 Shannon’s Conditional Entropy . 20

2.2.2 Ŕenyi’s Conditional Entropy . 22

2.2.3 Independent Hidden Variables . 23

2.2.4 Comparison of Methods for Approximating Conditional Probabilities . . . 25

2.3 The Relation of Bayesian Approaches to Maximum Entropy 26

2.4 Naive Bayes . 28

2.5 Alternative Explanations for RQE . 31

3 Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods 33

3.1 Inverse Probability Method . 35

3.2 Recurrent Linear Network . 36

3.2.1 Structure of the RLN . 36

3.2.2 Learning the Weights . 39

3.2.3 Example . 40

3.2.4 Weight Properties . 42

v

vi TABLE OF CONTENTS

3.2.5 Multiple Stable States . 45

3.2.6 Large Scale Domains . 47

3.3 Other Concerns . 50

3.3.1 Bounding the Probability Values . 50

3.3.2 ComputingP(Xi ,X j |xE) . 51

3.4 Function Confidence . 52

3.4.1 Computing the Weights Directly From Data 57

4 Complex Feature Functions 61

4.1 Adding Complex Functions for the IPM and the RLN 62

4.1.1 High Frequency Pairs . 62

4.1.2 Analyzing Error Values . 62

4.2 Adding Complex Functions for the RLN . 63

4.2.1 Utility of a Complex Function . 63

4.2.2 Pruning Complex Functions . 64

4.2.3 Analyzing Weight Values . 66

4.3 Increasing the Efficiency of the RLN . 67

5 Experimental Results 71

5.1 Amount of Data vs. Accuracy . 71

5.2 Collaborative Filtering . 79

5.2.1 Web Browsing Behavior . 79

5.2.2 Movie Ratings . 81

5.2.3 Serendipity . 83

5.3 Image Retrieval . 84

5.3.1 Providing Similar and Unique Images . 88

5.3.2 Overcoming the Cold Start Problem using CBIR 90

5.4 Language Modeling . 90

5.4.1 Grouping Words . 93

6 Conclusion 97

6.1 Contributions . 97

6.2 Future Work . 98

A 109

A.1 Notation . 109

A.2 Abbreviations . 110

TABLE OF CONTENTS vii

B 111

B.1 Language Modeling Database . 111

List of Figures

1.1 Probability diagram for dog example: Each box in the diagram corresponds to a

different combination of values for ”rain” and ”mailman” while the dog is out. . . . 4

1.2 Distribution with maximum entropy for dog example. 5

2.1 Histogram of entropies for uniformly sampled distributions with 2, 3 and 4 entries. 11

2.2 The set of probabilities is represented by a triangle with each corner corresponding

to an outcome having a probability of one. If we impose a linear constraint such as

C1 the set of possible probability distributions is restricted to a line. 17

2.3 Shannon’s entropy over the simplex. 18

2.4 Ŕenyi’s quadratic entropy over the simplex. 18

2.5 Comparison of Shannon’s entropy, RQE and URQE using 5(a) and 10(b) variables. 18

2.6 A constraintC1 that has a minimumY that lies outside the simplex. 19

2.7 Average percentage of values withinY that are negative for the 5 variable example. 20

2.8 Plot of RQE and scaled squared probabilities for the case of one variable. 23

2.9 Comparison of maximizing Shannon’s entropy and URQE measures using 5(a) and

10(b) variables. 26

2.10 Average percentage of values withinY that are negative for the conditional 5 vari-

able example. 26

2.11 For each constraintCi the Bayesian approach with uniform priors predicts a distri-

bution Pi . If the same result were to be found by maximizing an entropy measure

H∗ thenH∗(P1) > H∗(P3) > H∗(P2) > H∗(P1) which is a contradiction. 27

2.12 Using RQE, the probability distributionP1 found with constraintC1 lies on the

edge of the simplex. A Bayesian approach with non-zero priors will never find a

probability distribution on the edge of the simplex. 28

2.13 Comparison of URQE and Naive Bayes using 5(a) and 10(b) variables. 30

2.14 Comparison of URQE and Naive Bayes using 5(a) and 10(b) variables for classifi-

cation. 31

ix

x LIST OF FIGURES

3.1 Wet Grass Bayesian network:C = cloudy,S = sprinkler,R= rain andW = wet grass. 41

3.2 Alarm Bayesian network:B= burglary,E = earth quake,A = alarm,J = John calls

andM = Mary calls. 44

3.3 Alarm RLN network: Weights with values not equal to zero are shown. 45

3.4 A constraintC1 that has a minimumY that lies outside the simplex. 50

3.5 Four example distributions centered aroundP(fi) = 0.5,0.7,0.9,0.95. Notice the

tail of the 0.95 case is truncated near 1. 53

3.6 Three example distributions centered aroundP(fi) = 0.5 for m= 10,50,200. . . . 54

3.7 Various examples of relationship betweenP(fi |¬ f j)→ A, P(fi)→ B andP(fi | f j)→

C. As pointB approaches pointC, the variance ofC decreases. 55

3.8 Example distributions for the slope having a value of zero (the wide distribution)

and a value equal to the observed slope (the narrow distribution.) 56

3.9 Example confidence values for varying values ofr as the number of observations

increase. 57

5.1 Structure of Bayesian network. 73

5.2 Structure of naive Bayes networks. 73

5.3 Results for training sizes of 20 to 1,000 for the Inverse Probability Method (IPM),

Naive Bayes (NB), Nearest Neighbor (NN) and Bayesian Network (BN). Errors are

measured using the absolute deviation between the predicted and actual values for

the diseases. Four tests were run using 1 (a), 2 (b), 3 (c) and 4 (d) evidence variables.

Confidence intervals are too small to be displayed. 74

5.4 Results for training sizes of 2,000 to 20,000 for the Inverse Probability Method

(IPM), Naive Bayes (NB), Nearest Neighbor (NN) and Bayesian Network (BN).

Errors are measured using the absolute deviation between the predicted and actual

values for the diseases. Four tests were run using 1 (a), 2 (b), 3 (c) and 4 (d) evidence

variables. 75

5.5 Results for training sizes of 2,000 to 50,000 for the Inverse Probability Method

(IPM) using varying numbers of complex functions. Errors are measured using the

absolute deviation between the predicted and actual values for the diseases. Four

tests were run using 1 (a), 2 (b), 3 (c) and 4 (d) evidence variables. 78

5.6 Query 1 and Query 2: Top row contains evidence images followed by the six most

relevant images as predicted by the RLN. 86

5.7 Query 3 and Query 4: Top row contains evidence images followed by the six most

relevant images as predicted by the RLN. 87

5.8 User recommendations using (a) the most similar images and (b) the most similar

images assuming the user doesn’t like the previous recommendations. 89

List of Tables

3.1 The pair-wise probability matrixP for the Wet Grass example. 41

3.2 The weightsωi, j computed for the RLN in the wet grass problem. 41

3.3 Several example sets of evidence values for the wet grass problem. The value of

the left is that found by the network and the value on the right is the true value.

Evidence values are shown in bold. 42

3.4 The weightsωi, j computed for the RLN in the alarm problem 45

3.5 A pair-wise probability matrixP will rank less thanb. 46

3.6 The weightsωi, j computed for the RLN. 46

3.7 Converged values for differentτ using equation 3.32 and table 3.5. 47

4.1 Weights for functions in the parity example whenψ is set to zero. 65

4.2 Weights for functions in the parity example withψ is set to 0.0001. 65

4.3 Probability ofX1 = 1 conditioned uponX2 andX3 whenX1 ≈ x2 ∨ x3. P(X2 = 1) =

P(X3 = 1) = 0.5 . 67

4.4 Weights of network whenX1 ≈ x2∨x3: Given no complex functions, anOr function

and anAnd function. 68

4.5 Probability ofX1 = 1 conditioned uponX2 andX3 whenX1 ≈ x2 ∧ x3. P(X2 = 1) =

P(X3 = 1) = 0.5 . 68

4.6 Weights of network whenX1 ≈ x2∧x3: Given no complex functions, anOr function

and anAnd function. 68

4.7 Varying sets of functions with corresponding weights generated for the RLN. . . . 69

5.1 Complete set of complex functions used for the IPM. 76

5.2 Set of 3 complex functions used for the IPM. 77

5.3 Set of 6 complex functions used for the IPM. 77

5.4 Results for the MS Web data set. The higher the score the better the results.RD is

the required difference between scores to be deemed statistically significant at the

90% confidence level. 80

xi

xii LIST OF TABLES

5.5 Recommendations per second for the MS Web data set, given 2, 5 and 10 ratings.

All tests are done on a 1 GHz Pentium running Windows 2000. 81

5.6 Results for the MS Web data set using different sets of complex functions. 81

5.7 Results for the EachMovie data set. Absolute deviation from the true user ratings.

Lower scores indicate better results.RD is the required difference to be deemed

statistically significant. 82

5.8 Recommendations per second for the EachMovie data set, given 2, 5 and 10 ratings.

All tests are done on a 1 GHz Pentium running Windows 2000. 83

5.9 Different types of N-gram models. The words occur in the following order:w1, w2

andw3. 91

5.10 Language modeling results for the RLN when using bigram and trigram models. . . 92

5.11 A sampling of the 111 word groups. 94

5.12 Language modeling results for the RLN when adding And and Or complex functions. 95

Chapter 1

Introduction

My thesis is conditional probabilities between variables in large domains can be modeled efficiently

and accurately using low-order interactions. The size of a problem’s domain is measured by the

number of variables associated with the problem. We consider a large domain as consisting of at

least several hundred variables. Each variable represents some feature of the world, such as: the

grass is wet, a customer purchased bookA, the word ”cat” was spoken.

A probability is a value ranging from zero to one corresponding to the likelihood of a feature

occurring. A conditional probability is the probability of some variables given information about

other known or evidence variables. The probability of it raining regardless of location may be

P(raining) = 0.1. If we condition the probability on the knowledge that we are in Pittsburgh we

may findP(raining|Pittsburgh) = 0.3.

Sometimes the knowledge of an evidence variable provides no additional information for com-

puting the probability of a hidden variable. For example, when computing the probability of it rain-

ing the knowledge that its Tuesday provides no additional information. In this example we would

say ”raining” is independent of ”Tuesday”. Two variables may also be conditionally independent,

that is two variables may be independent given the knowledge of the other evidence variables. If we

are computing the probability of the grass being wet, the knowledge of whether its cloudy or not

can help us refine our estimate. If it’s cloudy, it is more likely that it is raining and thus the grass

being wet. However, if we know whether it has rained, the knowledge of ”cloudy” doesn’t provide

any additional information. Then the probability of ”wet grass” is conditionally independent of

”cloudy” given the knowledge of ”rain”,P(wetgrass|cloudy, rain) = P(wetgrass|rain).

Typically, in problems with large domains many variables will be independent and an even

larger number are conditionally independent. A variable is considered to be of high-order if it is

1

2 Chapter 1. Introduction

directly dependent on many variables and low-order if it is not. We will demonstrate that for many

real world problems, dependencies between variables can be modeled accurately using low-order

interactions. More over, the training data will rarely exist in large enough quantities to support or

learn high-order interactions.

To demonstrate the amount of data that would be needed to learn a high-order model let us

consider the following case: We have a database of 10,000 books and we’d like to compute the

probability of a customer purchasing each book given five books they’ve previously purchased. The

probabilities are computed using data from previous customers who have purchased the same five

books. Given that there are 10,000 books total, there are approximately 10,0005 = 1020 different

sets of five books our current customer may have purchased. If each training case contained about

ten books bought by a single previous customer, then we’d need approximately1020

(10
5)
≈ 4 × 1018

training cases to cover the entire set of possibilities. Even if we condition upon three books, the

approximate number of training cases is still 83,000,000,000. Clearly, the number of high-order

interactions supported by the data will be small fraction of the total possible.

Regardless of the computational costs of computing high-order interactions, it is impossible

to accurately model them since there will never exist enough training data. This tradeoff between

model complexity and data to support the model is well known in literature [22]. This tradeoff is

commonly viewed as a balance betweenbiasandvarianceerrors. The bias refers to the error related

to the representational power of the model. If a model has low bias, that means on average it will

accurately model the training data. Variance refers to the change in the model as the data varies. A

model with low variance will be robust with respect to noise in the training data.

1.1 Balancing Bias and Variance Errors Through Constraints

Our variables are related by some hidden underlying joint probability distributionP∗. Our goal

is to modelP∗ from the training data. Givenn binary variables, the size of the joint probability

distribution P∗ is 2n. For n = 100 the number of entries inP∗ is equal to 2100 > 1030, which

outnumbers the size of any real-world training data sets. While we may not be able to directly

compute each individual entry ofP∗ we can place constraints on sets of its entries. For example we

may have enough data to accurately computeP(rain) from the observed probabilitȳP(rain) that is

computed directly from the training data. Thus we can impose a constraint onP such thatP(rain)

is equal toP̄(rain).

The training data can be analyzed to find a set of constraints with high confidence. That is, a

set of constraints that have corresponding values that can be accurately computed. Thus, the confi-

1.1. Balancing Bias and Variance Errors Through Constraints 3

dence of a constraint is related to the variance of its value. In our above example, the constraint’s

value is P̄(rain), the observed probability. The variance of the observed probability is equal to
P(rain)(1.0−P(rain))

m , wherem is the number of times we observed the value of rain in the training data.

Since the value ofP(rain) is unknown (it is the value we’re trying to estimate) we may only be able

place upper bounds on the variance of the constraint’s value. Regardless, a set of constraints may be

found with values having low variance. By basing our algorithm on these low variance constraints,

the errors of the algorithm due to variance will be minimal.

The remaining problem is that the set of high confidence constraints will still not fully constrain

our estimate ofP∗. For all but the smallest problem domains, the constraints will not even come

close to fully determiningP∗.

If we make assumptions about the probability distribution that aren’t supported by the con-

straints, then the results may have large errors due to bias. Ideally, we’d like to find a distribution

that obeys the constraints while assuming nothing else. Imagine a case when we have no constraints

other than the probabilities must sum to one, such as computing the probability of a roll of a die.

What distribution should be given? Given the lack of information, most people would resort to

assigning an equal probability to all sides of the die. This uniform distribution is viewed as the

least committal. Similarly, the distribution that lies closest to the uniform distribution but obeys

the constraints can be viewed as the least committal or as making the fewest assumptions given the

constraints.

The distance between any distribution and the uniform distribution may be measured by their

relative entropy. Entropy is a measure of the average amount of information needed to describe

the variables at any particular time. For example, the amount of information needed to describe the

outcome of a fair die will be larger than that required for a loaded die which yields ”6” half the time.

Since the uniform distribution is the distribution with highest entropy we may simplify the task to

just maximizing the entropy of the constrained distribution [33, 44]. Why maximize entropy? It has

been proposed [57] that maximum entropy (ME) is the only solution that obeys a set of ”common

sense” rules for probabilities. As a measure of information it is the only solution that is consistent

with a set of fundamental rules developed by Shannon [73]. Jaynes [32] has stated that the ME

solution ”agrees with everything that is known, but carefully avoids anything that is unknown.” One

consequence of the ME solution finding the smoothest distribution, i. e. closest to the uniform, is

that variables will be assumed to be independent until proven otherwise by the set of constraints.

Let us provide an example for how maximum entropy can be used. Consider the problem of

trying to figure out if your neighbor’s dog is outside. You’ve noticed that when its raining the dog

4 Chapter 1. Introduction

p2 + p4 = 0.03
p3 + p4 = 0.08
p1 + p2 + p3 + p4 = 0.3

Figure 1.1: Probability diagram for dog example: Each box in the diagram corresponds to a different
combination of values for ”rain” and ”mailman” while the dog is out.

is rarely outside,P(dog|rain) = 0.1. You’ve also noticed that the dog likes to run out of the house

to chase the mailman,P(dog|mailman) = 0.8. The probability of rain and mailman are independent

with values 0.3 and 0.1 respectively. We also know from our experience that the dog is outside about

a third of the time in general,P(dog) = 0.3. Suppose one day its raining and your friend stops by

and tells you the mailman is there. What is the probably of the dog being outside? The problem is

when its raining you rarely go outside, and you’ve never seen the mailman in the rain. Thus you

have no firsthand data to computeP(dog|rain,mailman). Regardless of this fact, most people would

still offer a guess to the probability.

Figure 1.1 illustrates the problem. The probabilityp1 corresponds toP(dog,¬rain,¬mailman).

That is, the probability of the dog being out, the mailman isn’t around and it isn’t raining.p2, p3 and

p4 represent the other combinations of rain and mailman while the dog is out. From our knowledge

above we can construct the constraintp2 + p4 = 0.03 sinceP(dog|rain) = 0.1 andp3 + p4 = 0.08

sinceP(dog|mailman) = 0.8. We also know the probability of the dog being outside is 0.3, which

implies p1 + p2 + p3 + p4 = 0.3. Thus we have three constraints with four variables. In a strict

Bayesian sense the problem is not solvable and the real answer could lie anywhere from 0 to 1.

However, we can find a solution by maximizing the entropy of the distribution while enforcing our

constraint above. We will use the measure of entropy proposed by Shannon [73]:

H(x) = −
∑

x∈[1,4]

px log(px) (1.1)

The solution with maximum entropy is shown in figure 1.2.

Using:

P(dog|rain,mailman) =
P(dog, rain,mailman)

P(rain,mailman)
(1.2)

we find our ME estimate ofP(dog|rain,mailman) to be 0.267. This is a reasonable guess, given

1.1. Balancing Bias and Variance Errors Through Constraints 5

0.022+ 0.008= 0.03
0.072+ 0.008= 0.08
0.198+ 0.022+ 0.072+ 0.008= 0.3

Figure 1.2: Distribution with maximum entropy for dog example.

we’d expect the dog to be out more likely than if we just knew it was raining but less likely than if

we just knew the mailman was outside. Throughout our everyday lives we’re asked to make these

type of calculations even though the amount of data we have is lacking. ME is one possible method

to find reasonable guesses under these circumstances.

Unfortunately, the computational complexity of computing the ME distribution given a set of

constraints is exponential with respect to the number of variables. This is due to the fact that the ME

algorithm requires summing over the entire joint probability distribution [13, 14, 63]. In previous

works this has been simplified to only include entries that occur in the training data set [68]. Even

with this approximation, ME still requires a large amount of computation.

Approximately ten years after Shannon first introduced his measure of entropy 1.1, a mathe-

matician named Ŕenyi [64, 65, 66] developed a generalization of Shannon’s measure. Within the

family of entropies found by Ŕenyi lies the following measureH2:

H2(x) = − log(
∑

x

p2
x) (1.3)

Rényi’s family of entropies are found by relaxing one of Shannon’s three properties for measures

of entropy. As a result, some of the results for Shannon’s entropy, such asH(X,Y) = H(X)+H(Y|X)

don’t hold forH2. For most applications this is will not be an issue.

Since we’re maximizing the entropy we can drop the log from the equation leaving us with

the task of minimizing the squared probabilities. If we ignore the fact that all probabilities must

lie within the range of 0 to 1, minimizing the squared probabilities with respect to the constraints

reduces to a set of linear equations that can be efficiently solved. The resulting values cannot

be directly interpreted as probabilities since their values may lie below 0 or above 1, but we can

view them as approximations of the true probabilities. As we will explore in later chapters, the

results of minimizing the squared probabilities to find approximations of the entire joint distribution

6 Chapter 1. Introduction

can have varying results. However, if our goal is to compute the conditional probability of each

variable individually given the set of evidence variables, the results can be as accurate as those found

using Shannon’s measure. Therefore for this special case, we can view minimizing the squared

probabilities given the constraints as an efficient approximation of the ME method.

1.2 Applications of Maximum Entropy

Do applications exist in which we are only concerned with computing the conditional probability of

each variable individually? There are many applications that fall under this category: collaborative

filtering, language modeling, and image retrieval to name a few.

Collaborative filtering is the task of predicting a user’s actions based on their and others’ previ-

ous actions. A typical example is predicting what books a user might buy given their past buying

history and the purchasing history of others. That is, the probability of a user purchasing each book

conditioned upon past purchases. When deciding whether to recommend a specific bookA to a user,

we’re only concerned with the probability of a user liking that particular book. The probability of

the user liking bookA along with some other bookB is of little relevance.

For the task of image retrieval, we’re only concerned with the probability of a user finding each

particular image desirable, and not a set of images. In language modeling the task is to predict the

next word in the sentence given some set of previous words. Once again the probability of each

individual word is what we’re concerned with.

Language modeling in many ways is an ideal task for ME [1, 46, 47, 68]. Given vocabularies of

20,000 words, the amount of data needed to cover every possible combination of just four previous

words ranges well over a trillion. Given the substantially smaller subset of constraints that can be

supported by the data, ME can find accurate estimations.

There is a fundamental difference between language modeling, for which ME has been previ-

ously applied, and other tasks. The nature of language modeling is that the features are either strictly

inputs or outputs. In contrast, the role of each feature changes for the tasks of collaborative filtering

and image retrieval. In the book example, if we know a user purchased bookA then the variable

corresponding to bookA will be an input, otherwise if a user has not purchased the book it will be

an output. In standard ME approaches the parameters for the model would need to be recomputed

for every combination of inputs and outputs. Given the increased efficiency of our approach based

on Ŕenyi’s entropy instead of Shannon’s entropy, these tasks with varying inputs become compu-

tationally feasible. Therefore, the use of ME can be applying to a wider range of applications than

those previously considered.

1.3. Outline of Work 7

1.3 Outline of Work

In the following chapter, we will examine the relationship between Shannon’s entropy and Rényi’s

entropy for computing both the joint distribution and conditional probabilities. We will also discuss

the relation of Bayesian methods to maximum entropy.

In chapter 3, we’ll describe two algorithms for computing Rényi’s quadratic entropy without

bounds. The methods produce identical results, but are computationally more efficient on different

types of problems. We will propose an extension to the algorithms that allows us to partially enforce

constraints based on their confidence values.

Chapter 4 discusses the issues related to using complex feature functions as constraint functions.

A complex feature function is a function that has multiple variables as inputs. Several methods for

finding complex functions that are useful to the algorithms will be discussed.

Concerns while implementing the algorithms in large domains are addressed in chapter 5. Sev-

eral methods for increasing efficiency are proposed.

Results using Ŕenyi’s quadratic entropy without bounds are shown in chapter 6. We compare

our method to Bayesian networks, naive Bayes and nearest neighbor approaches using synthetic

data. Our method is compared against other collaborative filtering algorithms using two databases

containing data on web browsing behavior and movie ratings. To demonstrate the methods in a

large domain we show results for the task of image retrieval on a 10,000 image database. Finally,

we examine the creation of complex feature functions in the language modeling task.

The main contributions of the dissertation are as follows:

An Efficient Approximation to Maximum Entropy - Rényi developed a family of entropy

measures by generalizing the properties of entropy first proposed by Shannon. Within this family

lies an entropy measure called Rényi’s quadratic entropy. If we ignore the constraints that all prob-

abilities must lie between 0 and 1, we may maximize this measure relative to our constraints using

a set of linear functions that can be solved in polynomial time.

Computing Accurate Conditional Probabilities - Using Ŕeny’s quadratic entropy without

bounds is largely inaccurate for computing estimates to the joint distribution. However, when com-

puting the conditional probability of each variable given the set of evidence variables, Rényi’s mea-

sure without bounds produces accurate results similar to those using Shannon’s measure.

Recurrent Linear Network and Inverse Probability Method - We proposed two methods for

finding estimates of conditional probabilities, the recurrent linear network and the inverse probabil-

ity method. The recurrent linear network is an iterative approach that is most efficient when many

variables have know values. The inverse probability method is a closed-form solution that is more

8 Chapter 1. Introduction

efficient when the number of evidence variables is small.

Learning Efficiency -The parameters for either method can be learned quickly using a matrix

of pairwise probability values generated from the data. This matrix of probability values can be

quickly updated given new data.

Constraint Confidence -Each constraint has a corresponding confidence value that controls

the degree to which it affects the final outcome. The confidence values are based on the estimated

variance of the constraint values. Thus new constraints can be added to the algorithm without risking

an increase in error due to variance.

Experimental Results -We demonstrate the algorithms on several applications including: col-

laborative filtering, image retrieval and language modeling. We demonstrate the algorithm is ca-

pable of handling large domains, i.e. with over 10,000 variables, within the image retrieval and

language modeling applications.

Chapter 2

Maximum Entropy

Our world is described by a set of variablesX = {X1, . . . ,Xa} with a corresponding set of values

x = {x1, . . . , xa}. Each variable,Xi , represents an observable feature of the world. A variable is

assigned the value of one if its corresponding world feature occurs, and a value of zero if it doesn’t

occur. We will abbreviateP(X = x) as P(x). The variables are related based on some hidden

underlying world model represented by the joint distributionP∗ = {p1, . . . , pn}, with n = 2a. Given

a training setT = {t1, . . . , tm} of variable values, wheret j,i is the value of variableXi at time j, we

can compute the observed probability distributionP̄. Since the training set is of finite size,̄P is only

a crude approximation of the underlying probability distributionP∗.

P̄(X = x) =
1
m

∑
j∈m

δ(x, t j) (2.1)

where

δ(x, t j) =

 1 x = t j

0 x , t j

 (2.2)

At any particular time, some of the variables will be observed while others are not. The evidence

variables representing the set of observed or known variables will form the setXE. The hidden

variables that are unobserved will form the setXH = X − XE. It is our goal to compute the value of

the conditional probabilitiesP(Xi | XE) for all Xi ∈ XH.

Before discussing the the more specific case of computingP(Xi | XE) we will address the more

general case of computingP(X).

9

10 Chapter 2. Maximum Entropy

2.1 Maximum Entropy Methods

We assume our variables are binary valued, thus the number of entries in the joint distributionP(X)

is n = 2a. Clearly, for all but the smallesta there will not be enough data to accurately compute

P∗(X) directly from P̄(X). For a 25 variable problem we would need at a minimum 33,554,432

training examples to just observe each possiblex once. Since we are concerned with problems

potentially containing thousands of variables we need an alternative approach.

While we may not be able to accurately computeP∗(x) for mostx, there typically exists a set of

feature functionsF = { f1, . . . , fc} such thatP∗(fi(X)) ≈ P̄(fi(X)) can be accurately computed. For

example, a functionfi might have the following form:

fi(x) =

 1 x1 = 1 andx3 = 0

0 otherwise

 (2.3)

The set of functionsF and their observed values̄P(fi) form a set of constraints on our computed

distributionP:

P(fi) = P̄(fi) =
1
m

∑
j∈m

fi(t j) (2.4)

The set of constraints will not fully constrain that values of the joint distribution, withc � n

typically. We will discuss the method for choosing the constraints later, but for now we will assume

that each constraint corresponds to a marginal that can be accurately computed from the training

set.

When computing our estimate ofP∗ we’d like to enforce the constraints while not otherwise

biasing the probabilities. If we imagine a case when we have no constraints, the uniform distribution

is typically regarded as the most unbiased distribution. For example, if we know nothing about a

coin, it is usually assumed to be fair. Similarly, if we’d want to find the most unbiased distribution

given the constraints, we should find the distribution that lies closest to the uniform distribution that

also obeys the constraints.

The distance between any distribution and the uniform distribution may be measured by their

relative entropy. Entropy is a measure of the average amount of information needed to describe the

variables at any particular time. For example, the amount of information needed to describe the

outcome of a fair die will be larger than that required for a loaded die which yields ”6” half the

time. Since the uniform distribution is the distribution with highest entropy, we may simplify our

task to just maximizing the entropy of the constrained distribution [33, 44]. Entropy measures were

first developed for measuring information [73]. They have also been applied to spectral analysis

2.1. Maximum Entropy Methods 11

[8], reliability engineering [79], image reconstruction [28], language modeling [68] and economics

[23].

Maximum entropy methods have the advantage that they choose the least committal solution to

a problem given the constraints, i. e. assume independence until proven otherwise. Similarly, Jaynes

[32] has said

Maximum entropy agrees with everything that is known, but carefully avoids anything

that is unknown.

Is the least committal solution the best solution? This point has been argued over the last 40

years with no clear consensus being reached [26, 35, 53, 54, 55, 56, 72, 81, 82]. Paris and Venkovska

[57] argued for maximum entropy by showing that the approach is the only one that obeys a set of

”common sense” rules for probabilities. An additional property of maximum entropy methods is

they will assume two variables are independent until proven otherwise by the set of constraints.

Another argument in favor of maximum entropy is as follows [35]: If we consider all possible

probability distributions given the constraints, they will typically be clustered around the distribution

with maximum entropy. Figure 2.1, illustrates this point. We randomly sampled joint distributions

with 2, 3 and 4 entries. We then created a histogram of the distribution’s entropies. Clearly, the num-

ber of distributions with high entropy greatly outnumbers the distributions with low entropy, with

the graphs becoming more skewed towards higher entropies as the number of variables increase.

Therefore, if we consider all distributions equally likely, the true distribution will most likely have

a high entropy.

(a) (b) (c)

Figure 2.1: Histogram of entropies for uniformly sampled distributions with 2, 3 and 4 entries.

12 Chapter 2. Maximum Entropy

2.1.1 Shannon’s Entropy

One of the first measures of entropy and still most popular is that of Shannon [73]. Shannon’s

entropy measures the amount of information in a communication stream. Later research has ap-

plied his measure to a wide range of applications including but not limited to spectral analysis [8],

language modeling [1, 62, 68] and economics [23]. Shannon constructed his measureH so that it

satisfied the following properties for allpi within the estimated joint probability distributionP1:

1. H is a continuous positive function.

2. If all pi are equal,pi =
1
n, thenH should be a monotonic increasing function ofn.

3. For alln ≥ 2, H(p1, . . . , pn) = H(p1 + p2, p3, . . . , pn) + (p1 + p2)H(p1
p1+p2

,
p2

p1+p2
).

Shannon showed the only function that satisfied these properties is:

H(P) = −
∑

i

pi log(pi) (2.5)

Using Lagrangian multipliers the joint probability distributionP1 that satisfies our constraints while

maximizing the entropy functionH has the following form:

P1(x) =
∏

i

µ
fi (x)
i (2.6)

The set of unknown parametersµi can be computed using the ”Generalized Iterative Scaling” algo-

rithm (GIS) [14] or by using some variant of gradient descent. A short outline is as follows:

1. Initializeµ j = 1.

2. At iterationk, compute

Pk
1(fi) =

∑
x

fi(x)
∏

j

µ
f j (x)
j (2.7)

3. Update the parametersµ j by GIS or gradient descent usinḡP(fi) as the target value andPk
1(fi)

as the predicted value.

4. Repeat steps 2 and 3 until convergence.

The GIS or gradient descent algorithm is guaranteed to converge since the error space is convex

[14]. Unfortunately, step 2 of the algorithm can be quite computationally expensive. Theoretically,

2.1. Maximum Entropy Methods 13

step 2 requiresO(n) summations, which is exponential ina. However, in practice only values that

show up in the training set are generally used [14]. Even with this simplification learning in large

domains can be prohibitively expensive.

2.1.2 Ŕenyi’s Entropy

About ten years after Shannon introduced his measure of entropy a mathematician from Hungary

named Ŕenyi [64, 65, 66] generalized his work. Rényi relaxed Shannon’s third property for mea-

sures of entropyHα as follows:

For two independent distributionsP andṔ : Hα(PṔ) = Hα(P) + Hα(Ṕ) (2.8)

Rényi found that the following family of functions satisfies Shannon’s first two properties and his

generalization of the third (Ŕenyi referred to his family of information measures asIα = Hα):

Hα(P) =
1

1− α
log

∑
i

pαi

 for α > 0 (2.9)

As α approaches one, equation 2.9 reverts back to Shannon’s equation 2.5, that is:

lim
α→1

Hα(P) = H(P) (2.10)

Of particular interest to us is the case whenα is equal to two. This measure has been called Rényi’s

Quadratic Entropy (RQE):

H2 = − log

∑
i

p2
i

 (2.11)

Since we are only concerned with maximizing the entropy we can drop the log from the equation

which results in:

−
∑

i

p2
i (2.12)

with

0 ≤ pi ≤ 1 for all pi (2.13)

Therefore, to maximize RQE we need to minimize the sum of the squared probabilities. In the past

Jaynes [33] has stated the following concerning 2.12:

In particular, the quantity−
∑

p2
i has many of the qualitative properties of Shannon’s

14 Chapter 2. Maximum Entropy

information measure, and in many cases leads to substantially the same results. How-

ever, it is much more difficult to apply in practice. Conditional maxima of−
∑

p2
i

cannot be found by a stationary property involving Lagrangian multipliers, because the

distribution which makes the quantity stationary subject to prescribed averages does

not in general satisfy the conditionpi ≥ 0.

It is true that if we use Lagrangian multipliers as we did for Shannon’s measure, some probability

estimates will be found to be less than zero. For this reason and others RQE has never achieved the

popularity of Shannon’s. Algorithms for minimizing functions given inequality constraints such as

Zangwill’s penalty function [85] or Fiacco and McCormick’s barrier function [21] exist. However,

these algorithms can be computationally expensive.

Despite this problem, Ŕenyi’s quadratic entropy has been successfully used in time-delay neural

networks [19] and multi-layer perceptrons [20]. In econometrics, the use of Rényi’s generalized

family of entropies has been proposed for use in solving sets of linear equations [23, 24]

We will denote the probability distribution that maximizes theHα measure of entropy asPα.

ThusP1 is the probability distribution that maximizes Shannon’s entropy given the constraints and

P2 is the distribution that maximizes RQE.

2.1.3 Unbounded Ŕenyi Quadratic Entropy

If we ignore the bounding constraints for RQE we can use Lagrangian Multipliers to find a set of

valuesY that maximizes
∑

x y2
x given the constraints

∑
x yx fi(x) =

∑
x p̄(x) fi(x) = P̄(fi). Since it

is possible foryx < 0 or yx > 1 we cannot call the resultantY a probability distribution. Thus the

valuesyx should be viewed as an approximation of a probability distribution and not as a probability

distribution themselves. For a particular problem, if 0≤ yx ≤ 1 for all yx thenyx = P2(x) for all x.

To solve for the Lagrangian Multipliers we need to maximize:

Λ(y, κ) =
∑

x

y2
x −

∑
i

κi

∑
x

yx fi(x) −
∑

x

p̄(x) fi(x)

 (2.14)

Setting∇Λ(y, κ) = 0 we find:

0 =
∂Λ(y, κ)
∂y

= 2yx −
∑

i

κi fi(x) (2.15)

2.1. Maximum Entropy Methods 15

Thus, ifλi =
κi
2 :

yx =
∑

i

λi fi(x) (2.16)

for some set ofλs.

Using our constraints we can solve for theλs using the following set of equations:

∑
x

∑
j

λ j f j(x) fi(x) =
∑

x

p̄(x) fi(x) = P̄(fi) (2.17)

Rearranging the summations we find:

∑
j

λ j

∑
x

f j(x) fi(x) = P̄(fi) (2.18)

An alternative approach to achieve the same results is to use Least Squares (LS). We know from

2.16 that the maximum of
∑

x y2
x is a linear combination of the feature functions. Thus we can use

LS to find the hyper-plane that minimizes the error between the hyper-plane and the training data:

χ2 =
∑

x

P̄(x) −
∑

j

λ j f j(x)

2

(2.19)

The minimum occurs when the derivative ofχ2 is zero. That is:

0 =
∑

x

P̄(x) −
∑

j

λ j f j(x)

 fi(x) (2.20)

Rearranging the order of the summations we find:

0 =
∑

x

P̄(x) fi(x) −
∑

j

λ j

∑
x

f j(x) fi(x) (2.21)

Since
∑

x P̄(x) fi(x) = P̄(fi)

0 = P̄(fi) −
∑

j

λ j

∑
x

f j(x) fi(x) (2.22)

Which is equivalent to 2.18.

Therefore we may view minimizing 2.12 without the bounds as doing least squares with the fea-

ture functions as axes and the parametersλ as regression coefficients. For the remaining of the paper

we will refer to RQE as maximizing 2.12 with bounds and Unbounded Rényi Quadratic Entropy

16 Chapter 2. Maximum Entropy

(URQE) as maximizing 2.12 without bounds. The values they produce will form the setsP2 and

Y respectively. In previous work, Csiszár [13] has examined the relationship of least squares and

maximum entropy in developing a rational for using the methods. Grünwald and Dawid [26, 27]

have also examined minimizing the squared probabilities when considering alternative loss func-

tions other than log loss when applied to game theory.

One advantage of using URQE is that it is computationally efficient. We can construct a matrix

of pairwise frequencies
∑

x fi f j for all i, j ∈ c wherec is the number of constraints:

F =

∑

f0
∑

f1 f0 · · ·
∑

fc f0
...

...
. . .

...∑
f0 fc

∑
f1 fc · · ·

∑
fc

 (2.23)

Then we can directly compute the parameters from the following equation:

F

λ0

λ1
...

λc

=

P̄(f0)

P̄(f1)
...

P̄(fc)

(2.24)

Since inverting a matrix takes onlyO(c3) time, the amount of computation required to find the values

Y can be greatly reduced over finding the distribution using Shannon’s entropy.

2.1.4 Comparison of Shannon’s and Ŕenyi’s Entropy Measures

As stated by Jaynes [33] both measures of entropy will result in similar predictions for many cases.

To explore this statement let us consider the simple case when our joint distribution consists of three

points. An example problem of this type would be determining if a person is currently in Mexico,

U.S. or Canada. The person can only be in one country at a time so we knowP(Mexico)+P(U.S.)+

P(Canada) = 1.0. A common method for illustrating this type of distribution is to use asimplex,

figure 2.2. A simplex is a triangle that represents the set of probability distributions. The three

points of the triangle correspond to each outcome having a probability of one. If we impose a linear

constraint on the probability distribution, such asC1 that enforcesP(Canada) = 0.5 in figure 2.2,

the set of possible probability distributions will be limited to a line. The goal of maximum entropy

methods is to find the point that satisfies the constraints, i. e. lies along the line, that has the greatest

entropy.

2.1. Maximum Entropy Methods 17

Figure 2.2: The set of probabilities is represented by a triangle with each corner corresponding to an
outcome having a probability of one. If we impose a linear constraint such asC1 the set of possible
probability distributions is restricted to a line.

To illustrate how the entropy varies within the simplex we have created two topographic plots.

The first shows Shannon’s entropy, figure 2.3. The entropy is greatest at the center of the simplex

and decreases as it approaches the edges. The second is a plot of RQE, figure 2.4. It is similar to

that of Shannon’s except around the edges or points of the simplex. With both measures, the entropy

decreases in a mostly circular pattern near the center of the simplex. Towards the edges or points of

the simplex the entropy measures differ. While Ŕenyi’s measure continues a circular pattern towards

the edges, Shannon’s begins to warp into a triangular shape. From these figures we might suspect

that the entropy measures would produce similar results for problems in which the true underlying

distribution lies close to the center of the simplex.

To test this hypothesis we tested both measures along with URQE on a set of pseudo-randomly

selected joint distributions with five and ten binary valued variables. The marginals of all single

and pair-wise probabilities were enforced using 15 constraints for the five variable case and 55

constraints for the ten variable case. The joint distributions had 32 and 1024 entries respectively.

18 Chapter 2. Maximum Entropy

Figure 2.3: Shannon’s entropy over the
simplex.

Figure 2.4: Ŕenyi’s quadratic entropy
over the simplex.

Errors were computed by finding the absolute difference between the true distributionP∗ and that

found by each methodPf ound:

error(Pf ound) =
1
n

∑
x

|P∗(x) − Pf ound(x)| (2.25)

wherePf ound(x) is equal toP1(x), P2(x) and yx. Finally, we’ve plotted the error results against

Shannon’s entropy of the true distribution. The tests where run several thousand times for each data

point.

(a) (b)

Figure 2.5: Comparison of Shannon’s entropy, RQE and URQE using 5(a) and 10(b) variables.

2.1. Maximum Entropy Methods 19

As shown in figure 2.5, Shannon’s measure consistently out performs RQE for smaller entropies.

As the true distribution’s entropy increases, the results using RQE improve until there is no mea-

surable difference between RQE and Shannon. This is in agreement with our expectations from

studying figure 2.3 and 2.4. The greater the true entropy the more likely the two methods are to

agree. URQE does much worse since the bounding constraints are not enforced. For comparison

we’ve also included the URQE results with the values thresholded, labeledThresin figure 2.5. Any

value greater than one was set to one and any value less than zero was set to zero. After threshold-

ing, the values of theThresexample do not sum to one. While this improved the results over URQE

the errors were still not as good as RQE or Shannon’s measure.

Figure 2.6 illustrates why the errors differ. The true distribution has low entropy and the con-

straintC1 only allows distributions with low entropy. Shannon’s measure and RQE both produce

distributions in the tip of the simplex. Typically, Shannon’s measureP1 will find distributions closer

to the center than RQE,P2, for problems of this type. URQE does much worse since it finds values

Y that don’t represent a true probability distribution, i. e. its values lie outside the simplex. In this

case, it would assign a negative value toyCanada. The values fromThresdon’t lie on the same plane

as the simplex since the values don’t sum to one.

Figure 2.6: A constraintC1 that has a minimumY that lies outside the simplex.

As the entropy of the true joint distribution increases, the likelihood of the valuesY forming a

real distribution increases. Figure 2.7 displays the average percentage of values withinY that are

negative as a function of entropy. If all values withinY range between 0 and 1 thenY = P2. For

reasons of round-off error we tested the values atyx < −0.001, instead ofyx < 0.

As the number of variables increase, the results using URQE worsen. For any problem with a

large number of variables, the use of URQE in predicting the joint distribution is highly inaccurate

for low entropy distributions since the constraints 0≤ yx ≤ 1 aren’t enforced. Unfortunately

20 Chapter 2. Maximum Entropy

Figure 2.7: Average percentage of values withinY that are negative for the 5 variable example.

the enforcement of 0≤ yx ≤ 1 removes the computational advantages of using URQE. While

using URQE may result in poor predictions for joint distributions we will show in the following

section that URQE can be a good alternative to Shannon’s entropy when predicting conditional

probabilities.

2.2 Maximizing Conditional Entropy

In many real world problems we would like to compute conditional probabilities, that is the prob-

ability of xH given xE. A simple method for computing these probabilities is to compute the en-

tire joint distribution as above and computeP(xH |xE) = P(xH ,xE)
P(xE) [48]. Unfortunately, computing

the joint distribution using Shannon’s entropy or RQE is too computationally expensive and using

URQE is too inaccurate. A vastly more efficient method for computing conditional probabilities is

to maximize conditional entropy rather than the joint distribution’s entropy. From the perspective

of measuring information, the conditional entropy measures the amount of information needed to

expressXH given that we knowXE.

2.2.1 Shannon’s Conditional Entropy

The conditional form of Shannon’s entropy is:

H(XH |XE) = −
∑

xH ,xE

P(xE)P(xH |xE) log(P(xH |xE)) (2.26)

2.2. Maximizing Conditional Entropy 21

This is the expectation of Shannon’s entropy conditioned uponXE. For reasons of computational

efficiency the following approximation of conditional entropy is typically used [68]:

H(XH |XE) ≈ −
∑

xH ,xE

P̄(xE)P(xH |xE) log(P(xH |xE)) (2.27)

That is, only casesxE that appear in the training set are used, for all other cases it is assumed

P(xE) = 0. This provides a large computational savings over maximizing the entropy over the entire

joint distribution, but the maximization algorithm still has to sum over the entire training set during

each iteration.

It is interesting to note the following:

H(XH ,XE) = H(XE) + H(XH |XE) (2.28)

Proof:

H(XH ,XE) =

−
∑

xH ,xE

P(xE)P(xH |xE) log(P(xE)P(xH |xE)) =

−
∑

xH ,xE

P(xE)P(xH |xE) log(P(xE)) −
∑

xH ,xE

P(xE)P(xH |xE) log(P(xH |xE)) =

Since
∑

XH
P(xH |xE) = 1:

−
∑
XE

P(xE) log(P(xE)) −
∑

XH ,XE

P(xE)P(xH |xE) log(P(xH |xE)) =

H(XE) + H(XH |XE)

�

Resulting from equation 2.28, the conditional probabilities found by maximizing the condi-

tional entropy or the joint’s distributions entropy, with the proper constraints placed onXE, will be

equivalent.

To compute the distribution with maximal conditional entropy the same algorithm is used as

above exceptPk
1(fi) is computed by:

Pk
1(fi) =

∑
xH ,xE

P̄(xE)Pk
1(xH |xE) fi(xH , xE) (2.29)

22 Chapter 2. Maximum Entropy

with

Pk
1(xH |xE) =

1
Z(xE)

∏
j

µ
f j (xH ,xE)
j (2.30)

where

Z(xE) =
∑
xH

∏
j

µ
f j (xH ,xE)
j (2.31)

to enforce
∑

xH
P(xH |xE) = 1.

2.2.2 Ŕenyi’s Conditional Entropy

The conditional form of RQE is:

H2(XH |XE) = −
∑
XE

P(xE) log

∑
XH

P(xH |xE)2

 (2.32)

Since Ŕenyi relaxed Shannon’s third property for measures of entropy,H2(XH ,XE) isn’t equal to

H2(XE) + H2(XH |XE). For this reason the conditional probabilities obtained by maximizing 2.32

will not in general be equal to the probabilities found by maximizing RQE over the entire joint

distribution. As Shannon first stated, any measure of entropy other thanH will be inconsistent in

this manner.

As we did for Shannon’s conditional entropy, the following approximation can be made:

H2(XH |XE) ≈ −
∑
XE

P̄(xE) log

∑
XH

P(xH |xE)2

 (2.33)

An alternative to using the conditional form of Rényi’s quadratic entropy is to first simplify

equation 2.11 by dropping the log; resulting in equation 2.12. We can then find the expectation of

2.12 given the evidence variablesXE:

−
∑

XH ,XE

P̄(xE)P(xH |xE)2 (2.34)

with

0 ≤ P(xH |xE) ≤ 1 (2.35)

Equation 2.34 is similar to equation 2.12 with conditional probabilities except it is weighted by

P̄(xE). As we will demonstrate the weighting of̄P(xE) has a large effect on the errors found when

using URQE.

2.2. Maximizing Conditional Entropy 23

Maximizing equation 2.33 will not result in exactly the same distribution as maximizing 2.34.

However, the distributions will be nearly identical since 2.34 acts as a upper bound on 2.33 as shown

in figure 2.8. Due to the ease of maximizing equation 2.34, we will use it instead of equation 2.33.

Figure 2.8: Plot of RQE and scaled squared probabilities for the case of one variable.

2.2.3 Independent Hidden Variables

We have already demonstrated through a couple simulations that using URQE to compute the joint

distribution produces worse results than using Shannon’s entropy or RQE when the true disribu-

tion has low entropy. Computing conditional probabilities is essentially the same problem except

we’re computing the joint distribution ofXH conditioned uponXE. Once again the errors produced

using URQE to approximateP(XH |XE) will be larger than those produced by using either RQE or

Shannon’s entropy.

For many applications the desired result isn’t to computeP(XH |XE), but to computeP(Xi |XE) for

all Xi ∈ XH. For example, when computing which books a user will purchase given their previous

buying history we aren’t concerned with the probability of whether they will buy both bookA and

book B at the same time. We are only concerned with whether they will buy bookA or buy book

B. That is, we may consider the probability of buying bookA independent of buying bookB. Many

applications fall under this category, such as collaborative filtering, image retrieval and language

modeling. If the probability of some combination of variables is desired we can always create a

”new” feature function that corresponds to this combination.

Previously, to compute the valueP1(Xi |XE) using Shannon’s entropy we would need to compute:

P1(Xi = 1|xE) =
1

Z(xE)

∑
xH

xi

∏
j

µ
f j (xH ,xE)
j (2.36)

24 Chapter 2. Maximum Entropy

Since we need to sum over allxH computing this value can be computationally expensive. When we

are only concerned withP1(Xi |XE), we can assume that the hidden variables are independent given

XE. Thus we can separately compute the value ofP1(Xi |XE) for all Xi ∈ XH.

For computing conditional probabilities, the constraints will be based on pairs of feature func-

tions instead of individual feature functions. Previously we wished to constrain the probability of

each feature functionfi asP(fi) = P̄(fi). Now, we will constrain the probability of each feature

function conditioned upon the evidence feature functions, i. e.:

P(Xi = 1| f j) = P̄(Xi = 1| f j) (2.37)

for all Xi ∈ XH and f j ∈ FE. A feature functionfi is an evidence or ”known” functionFE if its value

can be computed directly fromXE. All other feature functions will form the set of hidden functions

FH = F − FE.

For each hidden variableXi ∈ XH and evidence feature functionf j we compute a parameterµi, j .

Computing the conditional probabilitiesP1(Xi = 1|xE) can then be done efficiently by:

P1(Xi = 1|xE) =
∏

j

µ
f j (xE)
i, j (2.38)

Once again we can compute approximations ofP2(Xi = 1|xE) using URQE. We will denote the

URQE approximation ofP2(Xi = 1|xE) asyi,xE . When computingyi,xE we need to minimize:

∑
xi ,xE

P̄(xE)y2
i,xE

(2.39)

Using Lagrangian Multipliers we find the set of values that minimizes the above equation and satis-

fies the constraints has the following form:

yi,xE =
∑

k

λi,k fk(xE) (2.40)

Our constraints state:

P(Xi = 1| f j) =

∑
xE

P̄(xE)yi,xE f j

P̄(f j)
= P̄(Xi = 1| f j) (2.41)

2.2. Maximizing Conditional Entropy 25

After rearranging and substituting in 2.40, we can find theλs by using the following set of equations:

P̄(Xi = 1, f j) =
∑
xE

P̄(xE) f j(xE)
∑

k

λi,k fk(xE) for all j (2.42)

Rearranging the summations we find:

P̄(Xi = 1, f j) =
∑

k

λi,k

∑
xE

P̄(xE) fk(xE) f j(xE) for all j (2.43)

By replacingP̄(f j) for
∑

xE
P̄(xE) f j(xE) we may compute theλs by our final equation:

P̄(Xi = 1, f j) =
∑

k

λi,kP̄(f j , fk) for all j (2.44)

2.2.4 Comparison of Methods for Approximating Conditional Probabilities

Similar to our experiments for joint distributions, we’ve compared URQE to Shannon’s entropy

using a set of pseudo-random joint distributions with 5 and 10 binary valued variables. In each case

we attempted to compute the conditional probability of the last variableXi given the othersXE by

maximizing the conditional entropy. The error values were computed from the following:

error(Pf ound) =
∑

x

P∗(xE)
∣∣∣P∗(Xi = 1|xE) − Pf ound(Xi = 1|xE)

∣∣∣ (2.45)

WherePf ound(xH |xE) is P1(Xi = 1|xE) andyi,xE . As shown in figure 2.9, the error results using

URQE or Shannon’s entropy are nearly identical. Unlike the results when computing the joint

distribution, the errors don’t diverge as the true entropy decreases. Even though the error results

relative to the true distribution are very similar, the values computed using the two methods vary.

The error between the two methods is displayed in figure 2.9 as the ”difference” curve.

When using URQE, why do we get better results computing conditional probabilities than we do

for joint distributions? When computing the joint distribution we’re trying to estimate 2E+H values

given about (E+H)2 parameters, whereE is the number of evidence variables andH is the number

of hidden variables. In contrast, when we are computingP(Xi |XE), we are trying to estimateH2E

values from (E + H)2 parameters. Clearly, the number of values we’re trying to estimate is much

smaller. As the entropy of the true distribution decreases, the number of values forXE with high

probability valuesP̄(xE) decreases. Thus, the number of values we need to estimate will in essence

decrease. For this reason the error results improve for smaller entropies.

26 Chapter 2. Maximum Entropy

(a) (b)

Figure 2.9: Comparison of maximizing Shannon’s entropy and URQE measures using 5(a) and
10(b) variables.

In agreement with the error results, figure 2.10 shows the percentage of values foryi,xE that are

negative. The percentage of negative values is much better than that for joint distributions.

Figure 2.10: Average percentage of values withinY that are negative for the conditional 5 variable
example.

2.3 The Relation of Bayesian Approaches to Maximum Entropy

Throughout the last 50 years there has been much debate between proponents of Bayesian vs. maxi-

mum entropy approaches [26, 35, 34, 54, 55, 56, 72]. There is good reason for this. Both approaches

produce different results that cannot be duplicated using the other. We will not go into much detail

2.3. The Relation of Bayesian Approaches to Maximum Entropy 27

as to why this is the case, but we will give some simple examples to illustrate some differences.

Once again let us consider the simplex previously described. The Bayesian approach would

assign a prior probability to each allowable joint distribution. Using the priors as weights the pre-

dicted joint distribution can be found. Let us consider the simple case when we have uniform priors.

Is there an entropy measureH∗ that we can maximize that would give us the same results as the

Bayesian approach for any set of constraints?

Figure 2.11: For each constraintCi the Bayesian approach with uniform priors predicts a distribution
Pi . If the same result were to be found by maximizing an entropy measureH∗ then H∗(P1) >
H∗(P3) > H∗(P2) > H∗(P1) which is a contradiction.

If we examine figure 2.11 this is clearly not the case. The Bayesian approach predicts the joint

distributionP1 that lies at the midpoint when constraintC1 is enforced. ThusH∗(P1) must have a

higher value than any other point alongC1, i. e. H∗(P1) > H∗(P3). Using this logic for constraints

C2 andC3 we find thatH∗(P1) > H∗(P3) > H∗(P2) > H∗(P1) which is a contradiction. Therefore

there exists no functionH∗ that would produce the same results as the Bayesian approach using

uniform priors.

The converse is also true. Given a constraintC1 and the probability distributionP1 found by

RQE, there may not exist a set of prior probabilities that produce the same results. The simplest

example is that of figure 2.12. The probability distributionP1 found by RQE lies on the edge of the

simplex. Given any non-zero assignment of prior probabilities, the Bayesian approach will never

find a probability distribution on the edge of the simplex.

These results shouldn’t be surprising since the Bayesian and maximum entropy approaches

make different assumptions and answer different questions. The Bayesian approach finds expecta-

tions while making some assumption about the prior probabilities of the distributions. The maxi-

mum entropy approach attempts to to find the distribution in which the variables are least dependent

28 Chapter 2. Maximum Entropy

Figure 2.12: Using RQE, the probability distributionP1 found with constraintC1 lies on the edge
of the simplex. A Bayesian approach with non-zero priors will never find a probability distribution
on the edge of the simplex.

on each other, i. e. the distribution that is closest to the uniform distribution.

To illustrate these differences consider the following problem: A person lives in one of three

countries, Canada, United States or Mexico. The only information we have is that the probability

of the person living in Canada is equal to the probability of the person living in the United States.

A Bayesian approach, which assumes uniform priors, uses the fact thatP(Canada)= P(United States)

to reduce the set of possible distributions. The expected distribution is then computed as{14,
1
4,

1
2}.

Before any additional information is given, the distribution with maximum entropy is{13,
1
3,

1
3}.

When the new information thatP(Canada)= P(United States) is given, we find that the same

distribution{13,
1
3,

1
3} already satisfies this constraint.

For this simple example the Bayesian and maximum entropy approaches produce significantly

different results. In general, if we have some information about the prior probabilities of the proba-

bility distributions the Bayesian approach can produce better results. For most real world problems

however, no information about the priors in known and the question of priors becomes more philo-

sophical. For problems of this type, we view maximum entropy as the best approach.

2.4 Naive Bayes

A problem related to finding probabilities conditioned onXE is classification. The goal of classifica-

tion is to find the variableXi ∈ XH that has the highest conditional probabilityP(Xi |xE). A common

algorithm for classification is Naive Bayes. Naive Bayes (NB) makes the simplifying assumption

that all evidence variablesXE are independent given each hidden variableXi . Thus the following is

2.4. Naive Bayes 29

assumed to be true:

P(xE|Xi = 1) =
∏

j

P(x j |Xi = 1) for all x j ∈ xE (2.46)

Using Bayes rule we know the following:

P(Xi = 1|xE) =
P(xE|Xi = 1)P(Xi = 1)

P(xE)
(2.47)

Substituting in 2.46 we find:

P(Xi = 1|xE) =

∏
j P(x j |Xi = 1)P(Xi = 1)

P(xE)
(2.48)

Due to the simplicity of computing 2.48, NB has attracted a lot of attention. Surprisingly, the results

using NB have been shown to outperform many more sophisticated algorithms on classification

tasks. Recently, it has been shown that even if the independent assumption forXE is violated, NB

classifiers can be optimal [16].

Why does NB do so well? While this question has been debated, it is understood that NB

captures many of the low-order interactions between variables. In the real world data sets used to

test NB, there is a significant trade off between bias and variance errors. NB classifiers are known

to have low variance with high bias. Given relatively small data sets in large domains there is a

lot of variance, thus algorithms such as NB will perform well. As we will show later, NB and our

algorithm for URQE have the same number of real parameters. This leads us to the question of

which algorithm is better?

Using the same simulated data as we used to compare URQE with Shannon’s entropy we com-

pared URQE with NB. Our first test was to measure the absolute difference in error between the true

probability and that computed using URQE and NB. The results can be seen in figure 2.13. While

the errors have similar shapes, URQE out performs NB across all distributions.

It is known that NB doesn’t do as well for calibration tasks, i. e. problems in which the exact

probability value must be computed. NB is typically used as a classification algorithm. To explore

URQE vs. NB in this class of problem we have repeated our experiments except we introduce a

probability threshold of 0.5. Any probability value greater than 0.5 is set to 1 while any value less

than 0.5 is set to 0. We can view this as classifying the output variable into two states. The results

for these tests can be seen in figure 2.14. Once again URQE out performs NB and in some cases

produces almost twice as accurate results.

To understand these results let us first re-examine NB. In the classification task described above,

30 Chapter 2. Maximum Entropy

(a) (b)

Figure 2.13: Comparison of URQE and Naive Bayes using 5(a) and 10(b) variables.

the values for the variables are discrete, i. e. zero or one. Due to this, as shown in [17], we can devise

a discriminant functiong(xE) for a hidden variableXi as:

g(xE) = log

(
P(xE|Xi = 1)
P(xE|Xi = 0)

)
+ log

(
P(Xi = 1)
P(Xi = 0)

)
(2.49)

If g(xE) > 0 then we assign a value of one toXi and zero otherwise. By using the relation:

P(xE|Xi = 1) =
∏

j

P(x j)
x j (1− P(x j))

1−x j (2.50)

and rearranging, we findg(xE) has the following form:

g(xE) =
∑

j

w j x j + w0 (2.51)

where

w j = log

P(x j |Xi = 1)
(
1− P(x j |Xi = 0)

)
P(x j |Xi = 0)

(
1− P(x j |Xi = 1)

) (2.52)

and

w0 =
∑

j

log

(
1− P(x j |Xi = 1)

1− P(x j |Xi = 0)

)
+ log

(
P(Xi = 1)
P(Xi = 0)

)
(2.53)

Therefore NB and URQE can each be viewed as computing a weighted linear sum of the ev-

2.5. Alternative Explanations for RQE 31

(a) (b)

Figure 2.14: Comparison of URQE and Naive Bayes using 5(a) and 10(b) variables for classifica-
tion.

idence variables using the weightsw j or λ j respectively. Our tests on synthetic data indicate that

using theλs produces better results. Later we will demonstrate both algorithms on real world data.

The simulated results shouldn’t be surprising since both methods assume the output values are

a weighted linear sum of the input values. This is the same as trying to fit a hyper-plane to a set

of points corresponding to the training data set. It is well known that least squares minimizes the

squared error between the hyper-plane and the data points. Thus, NB produces sub-optimal results

with respect to squared error.

2.5 Alternative Explanations for RQE

Rényi’s quadratic entropy has a close relationship to mean squared error [13], Brier’s score [7] and

Bregman’s distance [6] for probability distributions. Entropy can be viewed as the distance between

the proposed distributionP(x) and the uniform distributionU(x). Using mean squared error we

could minimize: ∑
x

(P(x) − U(x))2 (2.54)

Since we know
∑

P(x) = 1 this is the same as maximizing equation 2.12.

Similarly for two distributionsP andU the Brier scoring rule [7, 27] is:

∑
x

(P(x) − U(x))2 (2.55)

32 Chapter 2. Maximum Entropy

The Bregman distance between two distributionsP andU is:

Bg(P,U) =
∑

x

g(P(x)) − g(U(x)) − g′(U(x))(P(x) − U(x)) (2.56)

for some functiong. If g(x) = x2 then we obtain the mean squared distance [45]:

∑
x

(P(x) − U(x))2 (2.57)

Related to Ŕenyi’s family of entropies is the family of entropies proposed by Tsallis [80]:

HT
α = c

∑
i pαi − 1

1− α
(2.58)

His family of entropy measures has different additive properties than those of Shannon and Rényi.

Tsallis entropies don’t have Rényi’s additive property of:

For two independent distributionsP andṔ : Hα, (PṔ) = Hα(P) + Hα(Ṕ) (2.59)

or the property of Shannon’s entropy that the composite is equal to the conditional and marginal:

For any two sets of variablesX andY : H(X,Y) = H(X) + H(Y|X) (2.60)

Chapter 3

Maximizing the Unbounded Rényi

Quadratic Entropy: Two Methods

Our goal is to compute the conditional probabilitiesP(Xi |XE) for all Xi ∈ XH. That is, we want

to compute the probability of each individual variable given the set of known variables. From the

previous chapter we learned that maximizing the Unbounded Rényi Quadratic Entropy (URQE)

produces similar error results as those produced using Shannon’s entropy for problems of this type

and outperforms those of naive Bayes. The values found using URQE take the following form:

yi,xE =
∑

j

λi, j f j(xE) (3.1)

Where f j are feature functions with domains overXE, i. e. they can be directly computed from the

variables withinXE. Theλi, js can be computed using the follow set of equations for alli and j:

P̄(Xi = 1, f j) =
∑

k

λi,kP̄(f j , fk) for all j (3.2)

While it is possible to compute the conditional probabilities using the above equations, there are

computationally more efficient methods depending on the characteristics of the problem being

solved.

The main problem with solving for the conditional probabilities using the above method arises

when the role of the variables withinXE varies. For many applications the variables may either be

inputsXE or outputsXH depending on the current problem. For example, if we are trying to predict

whether our current user will purchase a bookA given they’ve purchased bookB andC, the variable

33

34 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

corresponding to bookA is an output while the variables corresponding to booksB andC are the

inputs. Our next user might have purchased bookA and not bookB, thus switching the roles of

inputs and outputs for variables corresponding to bookA andB. For the above example we would

need to recompute theλ’s for each problem wheneverXE changes. As we will show this is not

always necessary. We offer two alternative but equivalent algorithms.

The first method we will discuss, called the Inverse Probability Method (IPM), will involve

pre-computing the entire set of pair-wise probabilities for all the feature functions. The conditional

probability estimates can then be computed from a weighted linear sum of these pair-wise probabil-

ities. This method is typically most efficient when the size ofXE is small.

The second method we will describe is the Recurrent Linear Network (RLN). The RLN is a

network of feature values that are iteratively updated using a weighted linear sum of the other

features. After convergence, the values of the features correspond to the valuesY found using

URQE. This method is useful when the size ofXE is larger or when many features are conditionally

independent.

Before we describe the two methods let us define the type and role of the feature functions. The

feature function are split into three types: unit function, simple functions and complex functions.

F =

f0(x) = 1

fi(x) = xi ∀i ∈ a

fi(x) = B(x) ∀i > a

 (3.3)

The unit functionf0 always has a value of one and acts as a bias. The simple functions,f1 through

fa, are equivalence functions of a single variable. Finally, the complex functions comprise any

binary functionB(x) with multiple variables as inputs, such asx1 ∧ x4 or x3 ∨ x6 ∨ x8. The role and

creation of the complex functions will be discussed in more detail in Chapter 4. For the examples

within this chapter, we’ll only use unit and simple functions.

Combining our three types of functions we form the setF = f0, f1, . . . , fb−1 of all feature

functions over the entire setX. A feature functionfi is an evidence or ”known” functionFE if

its value can be computed directly fromXE. All other feature functions will form the set of hidden

functionsFH = F − FE. The number of evidence functionsFE will be denotedeand the number of

hidden functionsFH ash = b− e. If Xi ∈ XE then fi ∈ FE. Since f0 has a constant value of one,f0

is always a member ofFE. We will denote the list of evidence functions asfE,i for all i ∈ e and the

list of hidden functions asfH, j for all j ∈ h. The same notation applies toyE,i andyH, j .

The constraints that we place on our system will consist of conditional probabilities between

3.1. Inverse Probability Method 35

the feature functions: ∑
xE

P̄(xE)yi,xE f j(xE)

P̄(f j)
= P̄(fi | f j) for all i, j (3.4)

3.1 Inverse Probability Method

The first method, called the Inverse Probability Method (IPM), for maximizing URQE involves

initially computing a matrix. The pairwise conditional probability matrixP, wherePi, j = P̄(fi | f j).

From the entries inP we can directly compute the weightsλi, j and the valuesyi . We will abbreviate

yi,xE asyi .

Let Λ denote theh× e matrix of weightsλi, j with e equal to the number of evidence functions

andh equal to the number of hidden functions:

Λ =

λ0,0 λ0,1 · · · λ0,e
...

...
. . .

...

λh,0 λh,1 · · · λh,e

 (3.5)

If fE is a vector of values from the evidence functions:

fE =

fE,0(xE)

fE,1(xE)
...

fE,e(xE)

(3.6)

andfH is the vector of predicted valuesyi for the hidden functions:

fH =

yH,0

yH,1
...

yH,h

(3.7)

then:

ΛfE = fH (3.8)

We learned earlier that the weightsλi, j can be computed directly from the set of equations 2.44.

If PE consists of all pairwise conditional probabilities between evidence functions andPH,E consists

36 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

of all pairwise conditional probabilities between hidden and evidence functions:

PE =

1 P(fE,0| fE,1) · · · P(fE,0| fE,e)
...

...
. . .

...

P(fE,e| fE,0) P(fE,e| fE,1) · · · 1

 (3.9)

PH,E =

P(fH,0| fE,0) P(fH,0| fE,1) · · · P(fH,0| fE,e)

...
...

. . .
...

P(fH,h| fE,0) P(fH,h| fE,1) · · · P(fH,h| fE,e)

 (3.10)

then

PH,EP−1
E = Λ (3.11)

Combining 3.8 and 3.11 we find the values for the hidden functionsfH can be computed directly

from:

fH = PH,EP−1
E fE (3.12)

From which we can set the variables valuesxi equal toyi for all i ≤ a. Since its possible for the

matrixPE to be singular, a method such as Singular Value Decomposition (SVD) should be used to

invertPE.

Using IPM for computing the conditional probabilities is efficient as long ase is small. The

running time for the algorithm isO(e3 + eh).

3.2 Recurrent Linear Network

The method described above, IPM, is useful for approximating conditional probabilities when the

number of evidence functions is small, since the running time isO(e3 + eh). The Recurrent Linear

Network (RLN), as we will describe it, has a running time ofO(h2 + eh) and is more efficient when

the number of evidence functions is larger.

3.2.1 Structure of the RLN

The RLN consists of a network where each node represents a feature function. The value at each

nodeyi corresponds to the approximated probability offi , given the set of evidence variablesXE.

The nodes are fully connected with the weightsωi, j representing the relations between nodes.

Critical to the working of the network is the following theorem:

3.2. Recurrent Linear Network 37

Theorem 1:

There exists a single set of weightsωi, j , that for anyXE and for all fi ∈ FH:

yi =
∑

k

λi,kyk =
∑

j

ωi, jy j (3.13)

for all k such thatfk ∈ FE and for all j such thatf j ∈ F − fi .

Proof:

It is known that for any three variablesXi ,X j andXk:

P(xi |xk) =
∑
x j

P(xi |x j , xk)P(x j |xk) (3.14)

If fH−i is the set of hidden feature functions withoutfi then:

P(fi |xE) =
∑
fH−i

P(fi | fH−i , xE)P(fH−i |xE) (3.15)

If f−i is the set of all feature functions withoutfi andP−i is the matrix of all pairwise condition-

ally probabilities between the functions withinf−i then using 3.12:

P(fi |xE) =
∑
fH−i

Pi,−iP−1
−i f−iP(fH−i |xE) (3.16)

Rearranging the summation:

P(fi |xE) = Pi,−iP−1
−i

∑
fH−i

f−iP(fH−i |xE) (3.17)

Since
∑

fH−i
f jP(fH−i |xE) = P(f j |xE) = y j :

P(fi |xE) = Pi,−iP−1
−i y (3.18)

Therefore the set of weightsωi, j with:

ωi = Pi,−iP−1
−i (3.19)

will satisfy 3.13.�

Theorem 1 states that a single set of weightsω can be used to compute the output valuesy for

any set of evidence variablesXE. Our only problem is the valueyi is dependent on othery js that

38 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

may not be known. The values that correspond to evidence functions, i. e.fi ∈ FE, are set equal

to the values of the functions, however theyi corresponding to hidden functions must be computed

iteratively. A simple iterative method to solve for allyi is as follows:

y j+1
i = (1− σ)y j

i + σ
∑

k

ωi,ky
j
k for all fi ∈ FH (3.20)

and

y j+1
i = fi(x) for all fi ∈ FE (3.21)

The parameterσ controls the rate of convergence.

If ωE is the matrix where:

ωE
i, j =

ωi, j fi ∈ FH

1 fi ∈ FE, i = j

0 fi ∈ FE, i , j

 (3.22)

theny∞i is an eigenvector ofωE with an eigenvalue of one. The algorithm described above can be

viewed as the power method for finding eigenvectors of a matrix. As long as the largest eigenvalue

of ωE is one, the algorithm will converge to the correct result. It is known that the convergence rate

for the power method is relative to the ratio:

|ν1|

|ν2|
(3.23)

whereν1 andν2 are the two largest eigenvalues ofωE. In later sections we will discuss methods for

increasing this ratio in relation to function confidence.

Since we know the vectory has an eigenvalue of one we may also computey from the following:

(ωE − I)y = 0 (3.24)

whereI is the identity matrix. A common method for solving problems of this type is conjugate

gradient.

3.2. Recurrent Linear Network 39

3.2.2 Learning the Weights

In the previous section we learned that the weights can be directly computed using:

ωi = Pi,−iP−1
−i (3.25)

To compute the weights using this equation, the pairwise conditional probability matrixP must first

be computed. Unfortunately, there may not be enough data to computeP directly. While we can

restrict our selection of feature functions to those that occur frequently, it may still be the case that

we never know the value offi given the value of some functionf j in the training set. In these cases

there will be blank entries in the matrixP.

One method for solving this problem is to compute the weightsωi, j using a function that iterates

through the training data.

We learned in the previous chapter that the weightsλ may be computed from the following set

of functions:

P̄(Xi = 1, f j) =
∑
l∈e

λi,l P̄(f j , fl) for all j (3.26)

Similarly the weightsω can be computed from:

P̄(fi , f j) =
∑
l∈c

ωi,l P̄(f j , fl) for all j (3.27)

SinceP̄(fi) = 1
m

∑
j∈m fi(t j):

1
m

∑
k∈m

fi(tk) f j(tk) =
∑
l∈c

ωi,l
1
m

∑
k∈m

f j(tk) fl(tk) for all j (3.28)

Rearranging the summations:

∑
k∈m

fi(tk) f j(tk) =
∑
k∈m

f j(tk)
∑
l∈c

ωi,l fl(tk) for all j (3.29)

Setting the function equal to zero:

∑
k∈m

 f j(tk)

 fi(tk) −
∑
l∈c

ωi,l fl(tk)

 = 0 for all j (3.30)

For each training exampletk, we can viewfi(tk) −
∑

l∈cωi,l fl(tk) as the prediction error for feature

function fi . The error is multiplied by the amount of contributionf j(tk) from each function. The

40 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

weightsωi, j may then be updated using the following function:

∆ωi, j = δ
∑
k∈m

 f j(tk)

 fi(tk) −
∑
l∈c

ωi,l fl(tk)

 (3.31)

This equation is essentially a gradient decent method, as is commonly implemented for many neural

network algorithms. To ensure the combined magnitude of the weights is minimized a drag term

can be added to the equation:

∆ωi, j = δ
∑
k∈m

 f j(tk)

 fi(tk) −
∑
l∈c

ωi,l fl(tk)

 − drag(ωi, j) (3.32)

where:

drag(ωi, j) =

τωi, j + ψ ωi, j > 0

0 ωi, j = 0

τωi, j − ψ ωi, j < 0

 (3.33)

for someτ andψ � δ. As before, the nodes are not allowed to feedback on themselves so we force:

ωi,i = 0 for all i (3.34)

In cases where the training data is fully observable, i. e. every variable is known in each training

example, equation 3.32 can be efficiently implemented since theyis can be computed directly from

the training data. For cases in which data is missing, the valuesyi need to be iteratively computed

before the weights can be updated. If this needs to be done for each training example, it can require

a large amount of computation. For these cases, it is typically faster to compute the weights directly

from the pair-wise probability matrixP if possible.

3.2.3 Example

To demonstrate weight learning, let us consider a simple example problem. Our problem has four

variables: X1 = cloudy, X2 = sprinkler, X3 = rain andX4 = wet grass. We will use five feature

functions, the bias functionf0 and one for each variable. The network is trained using data created

from the Bayesian network in figure 3.1:

The pairwise probability matrixP is shown in table 3.1. Table 3.2 shows the weights computed

for the RLN. The same values would be found using either the matrixP directly or by computing

the weights iteratively from the data with no drag.

3.2. Recurrent Linear Network 41

Figure 3.1: Wet Grass Bayesian network:C = cloudy,S = sprinkler,R= rain andW = wet grass.

P(fi | f j) j = 0 j = 1 j = 2 j = 3 j = 4
i = 0 1 1 1 1 1
i = 1 0.500 1 0.333 1 0.735
i = 2 0.150 0.100 1 0.100 0.400
i = 3 0.250 0.500 0.167 1 0.667
i = 4 0.333 0.495 0.900 0.900 1

Table 3.1: The pair-wise probability matrixP for the Wet Grass example.

ωi, j j = 0 j = 1 j = 2 j = 3 j = 4
i = 1 0.36 0 -0.09 0.70 -0.05
i = 2 0.06 -0.03 0 -0.64 0.79
i = 3 -0.03 0.20 -0.57 0 0.78
i = 4 0.03 -0.02 0.74 0.81 0

Table 3.2: The weightsωi, j computed for the RLN in the wet grass problem.

42 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

Test Clouds Sprinkler Rain Wet Grass
1 1 0.09, 0.10 1 0.89, 0.90
2 1 0.00, 0.02 0.17, 0.10 0
3 0.96, 1.00 0 0.94, 1.00 1
4 0 0.58, 1.00 0.42, 0.00 1

Table 3.3: Several example sets of evidence values for the wet grass problem. The value of the left
is that found by the network and the value on the right is the true value. Evidence values are shown
in bold.

We can easily test that these weights agree with the pair-wise probability table, for example:

P(f2| f1) = ω2,0P(f0| f1) + ω2,1P(f1| f1) + ω2,3P(f3| f1) + ω2,4P(f4| f1) = (3.35)

0.06∗ 1.0− 0.03∗ 1.0− 0.64∗ 0.5+ 0.79∗ 0.5 = 0.1 (3.36)

The columns ofP form a set of stable states for the network. That is,y j+1
i = y j

i for all yi . Table

3.3 shows stable states for several different sets of evidence variables (evidence variable values are

shown in bold.) The RLN produces fairly accurate results for most tests. For test 4, the errors are

large, but it still considers the probability of the sprinkler being on as greater than it raining.

3.2.4 Weight Properties

An important feature of the weight matrixω is that typically most weights will be close to or equal

to zero. Theoretically, the amount of computation needed to compute the conditional probabilities

is O(h(h+ e)I) whereI is the number of iterations. Since for most real world problems, the weights

ω will be a sparse matrix the running time can be much faster.

In general, the following can be said for the weights between conditionally independent func-

tions:

Theorem 2:

ωi, j = 0 if (fi q f j | fk) for somefk (3.37)

That is, the weightωi, j will be equal to zero if there exists a feature functionfk such thatfi is

conditionally independent off j given fk.

Proof:

If fi is conditionally independent off j given fk then:

P̄(fi | f j) = P̄(fi | fk)P̄(fk| f j) + P̄(fi |¬ fk)P̄(¬ fk| f j) (3.38)

3.2. Recurrent Linear Network 43

whereP(¬ fk) = P(fk = 0) = 1.0− P(fk).

We will assume the weightsωi,l , l , j have converged. Ifwi, j = 0 after the entire set of weights

converges then the following must be true, we abbreviate
∑

l∈m fi(tl) as
∑

T fi :

∆ωi, j =
∑

T

 f j

 fi −
∑
l, j

ωi,l fl

 = 0 (3.39)

Thus we need to prove: ∑
T

f j fi =
∑

T

f j

∑
l, j

ωi,l fl (3.40)

Expanding the right hand side of 3.40 we find:

∑
T

f j

∑
l, j

ωi,l fl =
∑

T

f j fk
∑
l, j

ωi,l fl +
∑

T

f j(1− fk)
∑
l, j

ωi,l fl (3.41)

Since fi and f j and conditional independent givenfk, we know P̄(fi | f j , fk) = P̄(fi | fk), or equiva-

lently: ∑
T

fi f j fk∑
T

f j fk
=

∑
T

fi fk∑
T

fk
(3.42)

Using 3.42 and dividing 3.41 by
∑

T f j we find:∑
T

f j
∑
l, j
ωi,l fl∑

T
f j

=

∑
T

fk
∑
l, j
ωi,l fl∑

T
fk

∑
T

f j fk∑
T

f j

 +

∑
T

(1− fk)
∑
l, j
ωi,l fl∑

T
(1− fk)

∑
T

f j(1− fk)∑
T

f j

 (3.43)

Since the righthand side of 3.43 is equivalent to the righthand side of 3.38:∑
T

f j
∑
l, j
ωi,l fl∑

T
f j

= P̄(fi | fk)P̄(fk| f j) + P̄(fi |¬ fk)P̄(¬ fk| f j) = P̄(fi | f j) =

∑
T

fi f j∑
T

f j
(3.44)

Therefore: ∑
T

f j fi =
∑

T

f j

∑
l, j

ωi,l fl (3.45)

and

ωi, j = 0 if (fi q f j | fk) for somefk (3.46)

�

44 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

Figure 3.2: Alarm Bayesian network:B= burglary,E = earth quake,A= alarm,J = John calls and
M = Mary calls.

It is important to note that the weightωi, j will only be guaranteed to converge to zero iffi and f j

are conditionally independent given asinglefeature functionfk. If fi and f j are only conditionally

independent given two or more functions thenωi, j may not converge to zero. For example, the

weights in table 3.2 between ”cloudy” and ”wet grass” are not zero since they are only conditionally

independent given both ”sprinkler” and ”rain”.

To help in understanding Theorem 2 let us consider the following Bayesian network first created

by Judea Pearl [60, 42] representing the following situation:

A new burglar alarm was installed in your home. It is supposed to sound an alarm when-

ever there is a burglary; unfortunately it also goes off occasionally during an earthquake.

Whenever the alarm goes off you’ve instructed John and Mary to call you. Given that

John or Mary called you’d like to compute the probably that a burglary or earthquake

occurred. The assumption is made that burglary and earthquake are conditionally inde-

pendent of John and Mary calling given alarm.

When we train our network with six feature functions, using data generated from the Bayesian

network in figure 3.2, we get the weights in table 3.4.

Variables that were conditionally independent given a single variable in the Bayesian network

have weights equal to zero in the RLN. A graphical representation can be seen in figure 3.3. Notice

3.2. Recurrent Linear Network 45

ωi, j j = 0 j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 0 0 -0.120 0.403 0 0
i = 2 0.002 -0.335 0 0.355 0 0
i = 3 -0.001 0.864 0.271 0 0.025 0.092
i = 4 0.050 0 0 0.851 0 0
i = 5 0.010 0 0 0.685 0 0

Table 3.4: The weightsωi, j computed for the RLN in the alarm problem .

Figure 3.3: Alarm RLN network: Weights with values not equal to zero are shown.

that even though burglary and earthquake don’t have a direct link between them in the Bayesian

network they aren’t conditionally independent given alarm. Variables sharing the same children are

dependent in Bayesian networks, therefore their weights aren’t equal to zero in our network.

3.2.5 Multiple Stable States

Up to this point, we have assumed that the RLN possesses a single stable state of valuesY∞ for

each set of evidence functionsFE. We learned that the weightsω may be computed directly from

a matrix of pair-wise probability valuesP. Unfortunately, the matrixP may be singular. That is,P

may have rank less thanb. If the weights are learned from a singular matrixP, then the network

may possess multiple stable states for some sets of evidence functions.

For example, consider the probabilities in table 3.5. Notice that the probability off1 occuring

is equivalent tof2, and f3 is equivalent tof4. The matrixP will only have rank 3 which is less than

46 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

P(fi | f j) j = 0 j = 1 j = 2 j = 3 j = 4
i = 0 1.0 1.0 1.0 1.0 1.0
i = 1 0.5 1.0 1.0 0.3 0.3
i = 2 0.5 1.0 1.0 0.3 0.3
i = 3 0.5 0.5 0.5 1.0 1.0
i = 4 0.5 0.5 0.5 1.0 1.0

Table 3.5: A pair-wise probability matrixP will rank less thanb.

ωi, j j = 0 j = 1 j = 2 j = 3 j = 4
i = 1 0.0 0.0 1.0 0.0 0.0
i = 2 0.0 1.0 0.0 0.0 0.0
i = 3 0.0 0.0 0.0 0.0 1.0
i = 4 0.0 0.0 0.0 1.0 0.0

Table 3.6: The weightsωi, j computed for the RLN.

b = 5. The weights found using the weight update rule are shown in table 3.6.

This set of weights only captures a fraction of the data given to us in the probability table above.

The values ofy1 andy2 are dependent only on each other. The network failed to learn that iff3 = 1

then the probability off1 and f2 is 0.3. If FE = { f3}, there are an infinite number of stable states for

the network withf1 = f2. These multiple stable states will exist regardless of any additional feature

functions that are added to the network.

The matrixP being singular is equivalent to there being a redundant feature function in the

network. That is, there exists a feature function who’s value can be exactly computed from the other

feature functions. In our example above,f1 is redundant givenf2 and f3 is redundant givenf4. We

can find the redundant functions by simply looking at the errors produced while training network.

If there is zero absolute error when updating the function’s corresponding weights then the function

must be redundant.

We cannot just remove the redundant functions to solve the problem. For example, consider a

network that has four variables labelled ”Canada”, ”United States”, ”Mexico” and ”Cold”. Our task

is to compute the probability of someone living in either Canada, United States or Mexico. The only

additional information we’re given is whether its cold where they live or not. They can only live

in one and only one country at a time. In this example, the knowledge of two countries completely

determines whether the person lives in the third country. If the person doesn’t live in Canada or the

United States they must certainly live in Mexico. Therefore one of the three countries is redundant.

If we trained the network the weights from ”cold” to any of the countries would be zero since

3.2. Recurrent Linear Network 47

τ y∞1 y∞2 y∞3 y∞4
0.0000 1.000 1.000 0.000 0.000
0.0001 1.000 0.977 0.499 0.499
0.0010 1.000 0.971 0.485 0.485
0.0100 1.000 0.769 0.385 0.385

Table 3.7: Converged values for differentτ using equation 3.32 and table 3.5.

”cold” isn’t needed to compute any of the countries probabilities. In this case, while removing one

of the countries solves our redundancy problem we create another problem. If we removed Canada

from our network and we discovered the person didn’t live in Canada how would we convey this

information to the network? Due to this problem, we’ve devised an alternative method for handling

redundant functions without removing them.

One possible method for removing the incorrect extraneous stable states is to increase the drag

on the weight values in equation 3.32. The conditional probabilities will not be learned exactly, but

the extraneous stable states will be removed. For the above example, ifFE = f1 and f1 = 1, then

Y∞ will converge to the following values for differentτ as shown in table 3.7.

Unfortunately, this solution has a couple problems. First, the rate of convergence forY is in-

versely proportional to the drag coefficientτ. The greater the accuracy, the longer it takes to con-

verge. A small value forτ creates multiple eigenvectors with eigenvalues close to 1 for the matrix

ωE. Since theys are essentially computed using the power method for finding eigenvectors onωE,

this will result in slow convergence. Second, asτ approaches 0, the changes in weight values are

minimal, however variable values computed from the weights can change substantially. We would

like the network to be fairly stable with respect to small changes in weight values. Despite these

problems this is still the easiest and most effective method for handling multiple stable states that

we’ve found.

3.2.6 Large Scale Domains

The naive approach to implementing the Recurrent Linear Network (RLN) may be too computa-

tionally inefficient for large scale databases. Many real world problems can have well over 10,000

variables. The standard approaches to implementing the RLN areO(h2 + eh). For problems within

large domains, we need the algorithm to run in approximatelyO(h+e) time to obtain timely results.

If the number of evidence variables is small the Inverse Probability Method (IPM) should be

used. Its complexity isO(eh+ e3), which in roughly linear whene is small. For largee, the

RLN is more efficient, but still is not close to running in linear time. Fortunately, there are many

48 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

improvements that we can make on the RLN to increase efficiency.

When computing the output values for the RLN, we proposed a simple gradient descent algo-

rithm. To increase the convergence rate various well known methods can be used such as momentum

or conjugate gradient. We will discuss several additions that are more specific to the RLN below.

Sparse Weight Matrix

The following equation is used to update the function values using the RLN:

y j+1
i = (1− σ)y j

i + σ
∑

k

ωi,ky
j
k for all fi ∈ FH (3.47)

If some weightωi, j is zero it will have no effect on the output of the network. Thus we may

ignore all weights with zero value. If a significant number of the weights are zero we can create a

list of all the non-zero weights and compute the outputs directly from them, without wasting time

computing the contribution from the zero weights.

We have already discussed that a weightωi, j will equal zero if function fi is conditionally

independent of functionf j given some functionfk. The weight will also equal zero if the value

of function fi is never observed at the same time as functionf j .

While most functions will not be strictly conditionally independent, many will be nearly so. In

such cases the weightωi, j between two functionsfi and f j will be small. If we wish to increase

computational efficiency, we can force all such small weights to zero with minimal loss of accuracy.

The RLN is fairly robust with respect to weight removal, i.e forcing weights to zero that lie close to

zero.

Push vs. Pull

In the previous section we discussed how to increase the efficiency of the network by taking advan-

tage of zero weights. The efficiency of the network may also be increased by taking advantage of

outputsyk that have zero values.

The function update rule is:

y j+1
i = (1− σ)y j

i + σ
∑

k

ωi,ky
j
k for all fi ∈ FH (3.48)

We will call this the ”pull” model. Using the above equation the new valuey j+1
i is found by

computing the sum of the other outputs multiplied by their respective weights. That is, we pull the

3.2. Recurrent Linear Network 49

value of each outputyk to find the value ofyi .

Another method for computing the output values is to add a small amount to eachyi for every

otheryk. That is:

∆y j+1
i = σωi,ky

j
k for all i (3.49)

We are ”pushing” the value of each output onto the other outputs, essentially reversing the order in

which the calculations are done.

If an outputyk has a value of zero it has no effect on the outputs of the network. If we ”push”

the weights instead of ”pulling” them, we can check to see ifyk is equal to zero before doing the

calculations. Ifyk = 0 for a significant number of outputs we can reduce the number of calculations

that need to be done.

Under certain circumstance, we may ignore all outputs that lie below some threshold. This can

greatly decrease the computational requirements of the network. Unfortunately, the accuracy of the

network is also degraded. The final values of the network will be less than those generated without

using a threshold. If only the relative values of the outputs are needed the network will still produce

reliable results. However, using a threshold can result in gross errors when exact values are needed.

Stability

As the size of the network increases it becomes more prone to instabilities. As we mentioned earlier,

the RLN will have multiple stable states if the probability matrixP is singular. A nearly singular

matrix can have a similar effect. While there may still be a single stable state, the convergence rate

will become increasing slow as the matrix approaches one that is singular.

As the number of variables increase, the chances of finding a singular matrix increases. Trying

to find the bottom of an error space when it is shallow can lead to instabilities. The instabilities may

be caused by approximations made or numerical round-off.

Currently, the only reliable method we’ve found for reducing instabilities and ensuring a rea-

sonable convergence rate is to increase the drag coefficientτ. While this may increase the error of

the network, the gains in efficiency typically make this a reasonable tradeoff.

If the IPM is used instead of the RLN, then instabilities are less likely to occur. A matrix

inversion technique such as SVD can handle singular matrices without problems while maintaining

a reasonable amount of efficiency.

50 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

Figure 3.4: A constraintC1 that has a minimumY that lies outside the simplex.

3.3 Other Concerns

We have described the basic algorithm for the IPM and RLN. In this section we will discuss several

issues involving problems with the algorithms.

First, we will discuss methods for restricting the output values to lie between 0 and 1 for the IPM

and RLN. For sets of evidence values that don’t frequently occur this can be a common problem.

Our second problem deals with inconsistencies when computing probabilities estimates such as

P(Xi ,X j |xE).

3.3.1 Bounding the Probability Values

Since we are not enforcing the bounding constraints, it is possible for some of the output valuesy to

be greater than 1 or less than 0. To illustrate this point consider the simplex and constraint in figure

3.4. The value along the constraintC1 that minimizes the squared valuesy actually lies outside

of the simplex. Thus the algorithm as it is described to this point will produce probability values

outside the range of 0 to 1. The naive approach to solving this problem is to compute theY values

and set any value greater than one to one and any value less than zero to zero. It is possible to do

slightly better.

When using the RLN, we can bound theyis during each iteration, instead of just bounding the

final values. Thus during each iteration the following step would be added:

y j
i =

0 y j

i < 0

y j
i 0 ≤ y j

i ≤ 1

1 y j
i > 1

 (3.50)

3.3. Other Concerns 51

Using this addition, if one of the valuesyi lies above 1 or below 0 its corresponding feature function

is essentially added to the evidence functionsFE. This can produce better results since the network’s

values are updated appropriately given the new information, i. e. that values can only range from 0

to 1.

We may also find the same answer by computing the conditional probability using the IPM. We

compute the values as before, except we check to see if any values lie outside the range from 0 to 1.

If a yi is greater than one, we set its corresponding feature function to one and add it to the evidence

functions and recompute the values. The same is done foryi less than zero.

3.3.2 ComputingP(Xi ,Xj |xE)

The goal of our network was to computeP(Xi |xE) for all Xi ∈ XH. For some applications we may

want to approximate more complex probabilities such asP(Xi = 1,X j = 1|xE) for someXi ,X j ∈ XH.

One method for computing such values would be to add a feature functionfk that equaled one

whenever bothXi andX j equaled one. Depending on the size of the training set, we may not be able

to compute reliable estimates for the new constraint values created by addingfk. If enough data

doesn’t exist an alternative approach is needed.

Another method for findingP(Xi = 1,X j = 1|xE) is to compute it using the following equality:

P(Xi = 1,X j = 1|xE) = P(Xi = 1|X j = 1, xE)P(X j = 1|xE) (3.51)

The problem can then be broken into two steps. We computeP(X j = 1|xE) and then addX j = 1

to the evidence valuesxE and computeP(Xi = 1|X j = 1, xE). By symmetry we may also compute

P(Xi = 1,X j = 1|xE) using:

P(Xi = 1,X j = 1|xE) = P(X j = 1|Xi = 1, xE)P(Xi = 1|xE) (3.52)

That is, we switch the roles ofXi andX j . Unfortunately, the results using the RLN or the IPM will

differ depending on what order we compute the values.

For example, in our Wet Grass example we get the following values:

yR = 0.500 withXE = {C = 1}

yW = 0.495 withXE = {C = 1}

yR = 0.755 withXE = {C = 1,W = 1}

52 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

yW = 0.900 withXE = {C = 1,R= 1}

Then we find our estimates forP(R = 1,W = 1|C = 1) to be:

0.500∗ 0.900= 0.450

or

0.495∗ 0.755= 0.374

Thus our estimates ofP(R = 1,W = 1|C = 1) vary depending on the order in which its computed.

This problem arises from Ŕenyi’s generalization of Shannon’s entropy. By relaxing the third rule

for entropy, the distributions obtained may not be consistent as we have just seen.

3.4 Function Confidence

In the previous sections we assumed that each constraint was known exactly or with the same level

of confidence. In real world problems this is not the case. For some constraints a large amount of

data will be available and thus we can be confident of its value. However, many constraints will

have less supporting data. We may not want to fully enforce a constraint that has a value for which

we’re not confident.

Previously, the value of the constraint onfi given f j was set equal tōP(fi | f j). Depending on the

amount of training data available, the approximation ofP∗(fi | f j) usingP̄(fi | f j) may not be accurate.

Instead of assigning constraint values equal toP̄(fi | f j), we will compute a new set of constraint

valuesCi, j that takes into account our confidence in the value of the observed probability. The

matrixC of constraint values can be used in place ofP in the equations used for the RLN and IPM.

The constraint values will be computed using a linear combination ofP̄(fi | f j) andP̄(fi):

Ci, j = c j P̄(fi | f j) + (1.0− c j)P̄(fi) (3.53)

The valuec j ∈ [0,1] is called the confidence value for the functionf j . If we have no confidence

in the function f j we setc j = 0 andCi, j = P̄(fi). A function with full confidence will have a

confidence value of 1 resulting inCi, j = P̄(fi | f j). If Ci, j = P̄(fi), then the constraint values will

be equivalent to those forCi,0 sinceCi,0 = P̄(fi | f0) = P̄(fi). Thus the constraintCi, j will add no

additional information to the network and the output of the network will not depend onf j . The

closer the value ofc j is to one the greater the impact off j on the network.

3.4. Function Confidence 53

Figure 3.5: Four example distributions centered aroundP(fi) = 0.5,0.7,0.9,0.95. Notice the tail of
the 0.95 case is truncated near 1.

How do we determine the confidence valuesc j? We will present a method for computingc j that

assumes the observed probabilitiesP̄ have a normal distribution. By computing the variances of the

distributions we can determinec j .

The observed probabilitȳP(fi) has a binomial distribution. It is known that as the number

of observations increase, the binomial distribution can be closely approximated using a normal

distribution. The only exception is the tails are truncated, since 0≤ P̄(fi) ≤ 1, see figure 3.5. To

simply our analysis, we will assumēP(fi) has a normal distribution.

As the number of observations for the variablefi increase, the variance of̄P(fi) decreases. Ifm

is the number of entries within the training set, the varianceσ2 will decrease relative to1m, as shown

in figure 3.6. If we know the value ofP(fi) we can compute the value of the variance asP(fi)P(¬ fi)
m .

For the rest of the section we will assume that each function is observed with high enough

frequency to allow accurate estimation ofP̄(fi). For example, ifP(fi) = 0.5 andm= 1000 then the

variance ofP̄(fi) will equal P(fi)P(¬ fi)
m = 0.5∗0.5

1000 = 0.00025 with a standard deviation of 0.0158.

We will assume the observed conditional probabilitiesP̄(fi | f j) also have normal distributions.

Unlike P̄(fi), the variance of̄P(fi | f j) decreases relative to1
mP(f j)

. Therefore, the error of the observed

probability P̄(fi | f j) may be much larger than̄P(fi) or P̄(f j) if P̄(f j) is small.

If P(f j) is close to zero then we may not be able to accurately computeP(fi | f j) since we will

not observef j = 1 with high enough frequency. The same holds forP(¬ f j) andP(fi |¬ f j). Consider

54 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

Figure 3.6: Three example distributions centered aroundP(fi) = 0.5 for m= 10,50,200.

figure 3.7, if we assume the valuesP(fi) andP(f j) are known then pointB is fixed. The values of

P(fi |¬ f j) andP(fi | f j), corresponding to pointsA andC respectively, are related as follows:

P(fi) − P(fi | f j)P(f j)

P(¬ f j)
= P(fi |¬ f j) (3.54)

That is, the three pointsA, B andC lie along a line. Thus pointA is completely determined givenB

andC, andC is completely determined givenA andB. If we constrain the value ofP(fi | f j) within

our network we are also constraining the value ofP(fi |¬ f j). Therefore we must consider the error

estimates of bothP(fi |¬ f j) andP(fi | f j) when computing our confidence inf j . Since pointB is fixed,

we are essentially trying to find the slope of the line in figure 3.7. IfP(f j) is close to one as shown in

figure 3.7(b) and 3.7(c) the variance ofP(fi | f j) decreases while the variance ofP(fi |¬ f j) increases.

The variance of the slope varies relative to 1
mP(f j)P(¬ f j)

.

If we have no confidence in our constraint, we setc j = 0 resulting inP(fi | f j) = P(fi |¬ f j) = P(fi).

Thus there will be zero slope. We may interpret this as assuming a prior distribution around the zero

slope. We will assume the prior distribution is a normal distribution with a variance ofσ2
0 and mean

0. We can convolve this with the distribution obtained from computing the slope of the observed

probabilities. Figure 3.8 plots the the prior distribution, along with the estimated distribution from

the observed slopēP(fi | f j) − P̄(fi |¬ f j). If we determine the variance of our observed slope to be

3.4. Function Confidence 55

(a) (b)

(c)

Figure 3.7: Various examples of relationship betweenP(fi |¬ f j) → A, P(fi) → B andP(fi | f j) → C.
As pointB approaches pointC, the variance ofC decreases.

56 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

Figure 3.8: Example distributions for the slope having a value of zero (the wide distribution) and a
value equal to the observed slope (the narrow distribution.)

σ2
j =

ϕ
mP(f j)P(¬ f j)

, then the mean or expected value of the two combined distributions will equal:

σ2
0

ϕ
mP(f j)P(¬ f j)

+ σ2
0

(
P̄(fi | f j) − P̄(fi |¬ f j)

)
(3.55)

Using both 3.54 and 3.55 we find the confidence valuec j is equal to:

c j =
σ2

0
ϕ

mP(f j)P(¬ f j)
+ σ2

0

(3.56)

All that remains for computingc j is setting the values ofσ2
0 andϕ. Sinceϕ is a function of unknown

values, namelyP(fi , f j) andP(fi ,¬ f j), we will set its value to a ratio ofσ2
0. Usingϕ = rσ2

0 equation

3.56 reduces to:

c j =
mP(f j)P(¬ f j)

r +mP(f j)P(¬ f j)
(3.57)

The value ofr may be set to a wide range of values depending on how much we’d like to bias the

network’s results towards the prior probabilities. In practice,r is typically set between 2 and 10. A

graph of confidence values for several values ofr and increasingm is shown in figure 3.9.

Within this section we have discussed how to compute the confidence valuesc j that are used to

3.4. Function Confidence 57

Figure 3.9: Example confidence values for varying values ofr as the number of observations in-
crease.

find the final constraint valuesCi, j = c j P̄(fi | f j)+ (1.0−c j)P̄(fi). If we compute the network weights

directly from the probability matrixP we may substitute the values of̄P(fi | f j) with Ci, j to find the

appropriate weights. We may also use confidence values if we wish to compute the weight values

directly from the data using 3.32.

3.4.1 Computing the Weights Directly From Data

Achieving the same results using 3.32 is surprisingly simple using the drag coefficientτ. After the

weightωi, j has converged∆ωi, j = 0:

∆ωi, j = 0 = δ
∑
k∈m

 f j(tk)

 fi(tk) −
∑
l∈c

ωi,l fl(tk)

 − τωi, j (3.58)

By adjusting the value ofτ, we can achieve the same results as computing the weights directly from

C. We’ll derive the equation forτ as a function ofr andδ for the case when the network contains

three constraint functions,f0, fi and f j . The same result applies to networks with any number of

constraints, but the mathematics are more complicated.

58 Chapter 3. Maximizing the Unbounded Ŕenyi Quadratic Entropy: Two Methods

Expanding the weight update equation we find:

0 = δ
∑
k∈m

f j fi − δ
∑
k∈m

f jωi, j − δ
∑
k∈m

f jωi,0 − τωi, j (3.59)

Dividing by m and using
∑

m fi
m = P̄(fi):

0 = δP̄(f j fi) − δP̄(f j)ωi, j − δP̄(f j)ωi,0 −
τωi, j

m
(3.60)

Since we assume there exists only three functions we know:

P̄(f j)ωi, j + ωi,0 = P̄(fi)⇒ ωi,0 = P̄(fi) − P̄(f j)ωi, j (3.61)

Substituting 3.61 in 3.60 and dividing bȳP(f j):

0 = δP̄(fi | f j) − δωi, j − δP̄(fi) + δP̄(f j)ωi, j −
τωi, j

mP̄(f j)
(3.62)

Solving forωi, j :

ωi, j =

δ
(

P̄(fi | f j)
P̄(¬ f j)

−
P̄(fi)

P̄(¬ f j)

)
δ + τ

mP̄(¬ f j)P̄(f j)

(3.63)

Rearranging we find:

ωi, j =
δ
(
P̄(fi | f j) − P̄(fi |¬ f j)

)
δ + τ

mP̄(¬ f j)P̄(f j)

(3.64)

We will setc j equal to:

c j =
δ

δ + τ
mP̄(¬ f j)P̄(f j)

(3.65)

The value of the constraintCi, j can be found using:

Ci, j = ωi, jC j, j + ωi,0C0, j (3.66)

The values ofC j, j andC0, j are always equal to 1. Using equation 3.61 and 3.64 we find:

Ci, j = c j

(
P̄(fi | f j) − P̄(fi |¬ f j)

)
+ P̄(fi) − c j P̄(f j)

(
P̄(fi | f j) − P̄(fi |¬ f j)

)
(3.67)

3.4. Function Confidence 59

After rearranging the equation we find our final result:

Ci, j = c j P̄(fi | f j) + (1− c j)P̄(fi) (3.68)

Equation 3.68 is identical to equation 3.53. Therefore, by using the appropriate value ofτ we may

achieve the same results as above with:

c j =
δ

δ + τ
mP̄(¬ f j)P̄(f j)

=
mP(f j)P(¬ f j)

r +mP(f j)P(¬ f j)
(3.69)

If we assumeδ is fixed we may computeτ by:

τ = rδ (3.70)

Chapter 4

Complex Feature Functions

The proper choice of complex feature functions can greatly increase the accuracy of the Recurrent

Linear Network (RLN) or the Inverse Probability Method (IPM). A complex feature function is any

binary function of multiple variables, such as:

f j(x) = x2 ∧ x5

f j(x) = x1 ∨ x4 ∨ x8

f j(x) = (x2 ∨ x5) ∧ (x6 ∨ x8)

f j(x) = x1 ⊕ x2 ⊕ x3

(4.1)

The role of the complex feature function is to account for higher order interactions between vari-

ables. The unit feature function imposes constraints on our estimates of the prior probabilitiesP(xi),

while simple functions place constraints on probabilities conditioned on single variablesP(xi |x2) for

f2(x) = x2. Complex feature functions can impose higher order constraints such asP(xi |x2, x5), if

f j(x) = x2∧x5. By properly choosing the correct higher order constraints to enforce, we may greatly

increase the accuracy of our methods.

When creating complex feature functions many aspects need to be considered. Is there enough

data to accurately compute the constraint values? Will the feature function be mainly used as an

evidence or hidden feature? Will other features be dependent on it, i. e. will it be useful to the

network?

While our complex functions may be any binary function, traditionally only binary functions

that can be represented using theAnd operator are usually considered. Previously,And functions

have been used in naive Bayes networks [43, 59].

Within this chapter, we will describe several methods for adding complex feature functions. A

61

62 Chapter 4. Complex Feature Functions

couple of these methods will only apply to the RLN since the magnitude of the weights between

functions is used. Two methods, which use variable frequency and average error, can be applied to

both the IPM and the RLN.

While complex functions may increase the accuracy of both methods, they can also increase the

efficiency of the RLN. We will discuss the complex functions in relation to weight magnitude in the

last section.

4.1 Adding Complex Functions for the IPM and the RLN

Within this section we will describe two methods for adding complex function when using the IPM

and the RLN. Both methods will consider adding the traditional style ofAnd functions.

4.1.1 High Frequency Pairs

For a function to be useful to our methods, it needs to have high discriminatory power. That is,

we’d like a complex function to have a value of one as close to 50% of the time as possible. One

method for finding potential complex functions is to consider all pairs of functionsfk and fl such

thatP̄(fk, fl)(1.0− P̄(fk, fl)) is high. For all pairs of functionsfk and fl that are above some threshold

we create a new complex function equal to:

f j = fk ∧ fl (4.2)

We may also consider the negatives¬ fk and¬ fl of fk and fl . Using this method we guarantee that

the value ofP(f j) will be as close to 0.5 as possible.

4.1.2 Analyzing Error Values

The real goal of adding complex functions to the network is to reduce error. If we know which

variables have the most error associated with them, then we can add complex functions to help in

computing these variables.

The average error for each variableXi can be computed from the training data using:

error(xi) =
1
m

∑
j∈m

∣∣∣t j,i − yi

∣∣∣ (4.3)

For each variableXi that has a large error or an error above some threshold we can search for

4.2. Adding Complex Functions for the RLN 63

complex functions that may help in computing its value. If the functionsfk and fl frequently have

a value ofP̄(fk, fl)(1.0− P̄(fk, fl)) whenXi has a large error, we can create a new complex function

equal to:

f j = fk ∧ fl (4.4)

4.2 Adding Complex Functions for the RLN

We can view creating complex functions for the RLN as a two step process. First, we analyze the

training data, error rates and current network structure to find functions that are likely to be of high

utility to the network. The second is to measure the utility of the complex functions once they are

added to the network and the network is retrained. The complex functions with low utility are then

pruned. We may be fairly liberal in adding complex functions in the first step since any functions

that aren’t useful to the network will be removed in the second step.

We will first discuss a method for computing the utility of a function using the weights of the

RLN and issues related to pruning functions. Second we will discuss an additional method for

adding complex functions to the RLN by analyzing weight values.

4.2.1 Utility of a Complex Function

A complex function is useful to the network if it reduces the overall error of the network. That is,

after adding a new complex function the following should decrease:

error =
∑
xE

P̄(xE)
∣∣∣P̄(Xi = 1|xE) − yi

∣∣∣ (4.5)

Each complex function adds to the computational burden of the network. If it doesn’t reduce the

network error in proportion to the added computational costs, then the complex function shouldn’t

be added.

Unfortunately, computing the error reduction due to each complex function can itself be com-

putationally expensive. Each complex function would need to be checked in conjunction with the

other complex functions, since the reduction in error may not be independent of the other complex

functions. Thus, all sets of complex functions under consideration would need to be added to the

network in turn and the errors found. For large scale networks this method is computationally too

inefficient.

An alternative or approximation of the above method is to view the magnitude of the weights

64 Chapter 4. Complex Feature Functions

for a complex functionf j as a measure of its utility:

∑
i

∣∣∣ωi, j

∣∣∣ (4.6)

While the summed magnitude of the weights can be a good predictor of utility, it is important to

also consider the probability off j . If P(f j) is close to 0 the weightsωi, j will have little effect on the

final values of the network sinceωi, jyi will be close to zero in almost all cases. Similarly ifP(f j) is

close to 1 the weights will have little overall effect, sincef j ≈ f0. For this reason we multiply the

summed magnitude of the weights byP(f j)(1.0− P(f j)) to obtain our final measure of utility:

P(f j)(1.0− P(f j))
∑

i

∣∣∣ωi, j

∣∣∣ (4.7)

4.2.2 Pruning Complex Functions

After the functions are added, the network is retrained and the utility of the complex functions can

be computed using 4.7. Complex functions that have a utility below a certain threshold can be

pruned from the network, after which the network must once again be trained.

When we are retraining the network, we must apply the appropriate drag coefficients to assure

we minimize the weight values and create an efficient network. In the previous chapter, we discussed

how the drag coefficientτ can be used to adjust the amount of confidence we have in each constraint.

The drag coefficientψ has a different purpose. By assigning a value greater than 0 toψ, we can

assure that the solution with the smallest number of non-zero weights is found.

For example, consider the case whenx1 = x2⊕ x3⊕ x4; the parity function. Assume our current

set of functions consists of those in table 4.1. Then the network will find the weights shown in

table 4.1 whenψ is set to zero. The set of complex functionsf5, f6, f7 and f8 can together exactly

compute the parity function. Complex functionf9 computes the parity function directly. Withψ set

to zero the weights are equally divided between them.

If we add a small amount of drag withψ = 0.0001 we find the weights in table 4.2. Each weight

gets the same amount of drag fromψ. Thus, the solution forX1 given f5, f6, f7 and f8 gets four

times the amount of drag as the solution using justf9. This difference in drag causes the weights for

f5, f6, f7 and f8 to converge to zero while the weight forf9 converges to one.

The role ofψ in complex function pruning is very important. If all of the complex functions

in table 4.1 were added to the network simultaneously andψ was set to zero our measure of utility

would be high for all complex functions, even though four of them are redundant. Withψ set to

4.2. Adding Complex Functions for the RLN 65

f j ω1, j

f0 = 1 0.0
f2 = x2 0.0
f3 = x3 0.0
f4 = x4 0.0

f5 = x2 ∧ ¬x3 ∧ ¬x4 0.2
f6 = ¬x2 ∧ x3 ∧ ¬x4 0.2
f7 = ¬x2 ∧ ¬x3 ∧ x4 0.2

f8 = x2 ∧ x3 ∧ x4 0.2
f9 = x2 ⊕ x3 ⊕ x4 0.8

Table 4.1: Weights for functions in the parity example whenψ is set to zero.

f j ω1, j

f0 = 1 0.0
f2 = x2 0.0
f3 = x3 0.0
f4 = x4 0.0

f5 = x2 ∧ ¬x3 ∧ ¬x4 0.0
f6 = ¬x2 ∧ x3 ∧ ¬x4 0.0
f7 = ¬x2 ∧ ¬x3 ∧ x4 0.0

f8 = x2 ∧ x3 ∧ x4 0.0
f9 = x2 ⊕ x3 ⊕ x4 1.0

Table 4.2: Weights for functions in the parity example withψ is set to 0.0001.

66 Chapter 4. Complex Feature Functions

some value slightly greater than zero the network is able to discover the redundancies and remove

the proper complex functions.

4.2.3 Analyzing Weight Values

Our final method for finding complex functions analyzes only the network weights. If we’d like to

create a complex functionf j for which
∑

i

∣∣∣ωi, j

∣∣∣ is high, we may look at sets of functions that have

similar weights. We will measure the similarity of the weights between two functionsfk and fl by:∑
i ωi,k · ωi,l√∑

i ω
2
i,k

√∑
i ω

2
i,l

(4.8)

Equation 4.8 computes the cosine of the angle between the weights for functionfk and fl . The closer

to one, the more similar the weights. If a pair of functions has similar weights, we can combine them

to form a new complex functionf j equal to:

f j = fk ∨ fl (4.9)

Notice that in this case we are using theOr function instead of theAnd function. If two functions

have similar weights they are likely to represent similar features, thus using anOr function is more

appropriate. For example, consider the language modeling task. We are trying to predict what word

is coming next in a sentence given some set of previous words. If we analyze the weights we might

find the words ”North” and ”South” are similar. This is not surprising since similar words typically

follow the two words ”North” and ”South.” By grouping the words ”North” and ”South” together

we are forming a more general function that may better represent the underlying sentence structure.

When forming groupings, it is typically most efficient to group many functions together at once

rather than two at a time. This creates fewer complex functions and thus creates a more efficient

network.

All methods for finding potential complex functions may be used in conjunction or separately.

Typically the method that analyzes weight values is used first to form groupings. The previous two

methods can then be used to handlenth order interactions within the data, or handle ”special cases.”

4.3. Increasing the Efficiency of the RLN 67

x2 x3 P(X1 = 1|x2, x3)
0 0 0.10
0 1 0.70
1 0 0.73
1 1 0.68

Table 4.3: Probability ofX1 = 1 conditioned uponX2 andX3 whenX1 ≈ x2 ∨ x3. P(X2 = 1) =
P(X3 = 1) = 0.5

4.3 Increasing the Efficiency of the RLN

When it comes to constraining the probability distribution we can show that many binary functions

will produce the same results. Any function that is the logical opposite of another function will

produce identical results. For example, consider the functionf j = x2 ∧ x3 and f ′j = ¬x2 ∨ ¬x3.

The function f j is the logical opposite of functionf ′j with f j = 1 − f ′j . If we are computing

P(X1 = 1|x2, x3), then f j constrains the probabilityP(X1 = 1|X2 = 1,X3 = 1) = P(X1 = 1| f j) and

f ′j constrains the probabilityP(X1 = 1|X2 = 0 or X3 = 0) = P(X1 = 1| f ′j). The constraints are

equivalent since we knowP(X1 = 1) and:

P(X1 = 1| f j)P(f j) = P(X1 = 1)− P(X1 = 1| f ′j)P(f ′j) (4.10)

It is possible for the network to produce the same results using different functions that aren’t

logical opposites. In the two evidence variable case if we are trying to computeP(xi |x2, x3) we need

four constraints to fully represent all possible combinations ofx2 andx3. The three functionsf0, f2

and f3 provide us with three constraints, so we only need one more. Adding a complex function,

eitherx2 ∧ x3 or x2 ∨ x3, will provide us with a fourth constraint. The final result produced by the

network will be equivalent regardless of the complex function used, however the magnitude of the

weights for the network my vary greatly. For instance, if we have three variables in our network

and the value of the first variable is roughly a function ofx2 ∨ x3 as shown in table 4.3, the total

magnitude of the weights will vary greatly depending on our choice of function.

Table 4.4 shows the combined magnitude of the weights using anOr function corresponding

to x2 ∨ x3 and anAnd function corresponding to¬x2 ∧ ¬x3. The same may also be true forAnd

functions. If the third variable is roughly a function ofx2 ∧ x3, table 4.5, then we obtain the results

in table 4.6.

In our two examples above we’ve demonstrated that the choice of usingAnd or Or functions

can affect the overall magnitude of the weights for the network. This effect can be very dramatic

68 Chapter 4. Complex Feature Functions

∑
|wi, j | # |wi, j | > 0.01 Prediction Error

No Complex 2.37 9 0.163
Or 5.23 14 0.008
And 8.73 16 0.008

Table 4.4: Weights of network whenX1 ≈ x2∨ x3: Given no complex functions, anOr function and
anAnd function.

x2 x3 P(X1 = 1|x2, x3)
0 0 0.10
0 1 0.11
1 0 0.09
1 1 0.68

Table 4.5: Probability ofX1 = 1 conditioned uponX2 andX3 whenX1 ≈ x2 ∧ x3. P(X2 = 1) =
P(X3 = 1) = 0.5

∑
|wi, j | # |wi, j | > 0.01 Prediction Error

No Complex 2.61 9 0.160
Or 7.65 16 0.003
And 6.02 12 0.003

Table 4.6: Weights of network whenX1 ≈ x2∧ x3: Given no complex functions, anOr function and
anAnd function.

4.3. Increasing the Efficiency of the RLN 69

Set 1
fi ω1,i

1 0.0
x2 1.0
x3 1.0
x4 1.0

x2 ∧ x3 -2.0
x2 ∧ x4 -2.0
x3 ∧ x4 -2.0

x2 ∧ x3 ∧ x4 4.0
Set 2

fi ω1,i

1 0.0
x2 0.0
x3 0.0
x4 0.0

x2 ∧ ¬x3 ∧ ¬x4 1.0
¬x2 ∧ x3 ∧ ¬x4 1.0
¬x2 ∧ ¬x3 ∧ x4 1.0

x2 ∧ x3 ∧ x4 1.0
Set 3

fi ω1,i

1 0.0
x2 0.0
x3 0.0
x4 0.0

x2 ⊕ x3 ⊕ x4 1.0

Table 4.7: Varying sets of functions with corresponding weights generated for the RLN.

depending on the properties of the training data. If a variable is dependent on other variables based

on a function such as the parity function, the choice of complex functions can become very impor-

tant. Let us assume we have four variables with the first variablex1 dependent on the other threex2,

x3 andx4 based on the parity function. The parity function assigns a value of 1 to a function if the

sum of the inputs is odd and a value of 0 otherwise. Figure 4.7 shows the weights forx1 given three

different sets of complex functions.

The magnitude and number of non-zero weights varies greatly for each set of complex functions,

even though the network will produce identical results regardless of the complex function set used.

In set one, seven weights are non-zero, and the magnitude of the weights grows exponentially. Set

two does a better job since only 4 non-zero weights exist and the magnitude of the weights stays

70 Chapter 4. Complex Feature Functions

constant at 1.0. The final set contains a complex function that exactly computes the parity function,

and thus only a single complex function is needed.

Each set of complex functions has its own advantages and disadvantages. If we were to incre-

mentally add complex functions to our network, starting with complex functions with 2 inputs and

then 3, we would probably end up with a set of complex functions such as set one. While set one

produces the correct output, it has more non-zero weights than the other sets and the magnitude of

the weights is large. As the number of inputs for the parity function increase, the magnitude of the

weights will increase exponentially. Large weights can lead to instability in the network and other

problems.

Set two creates a complex function for each instance ofx2, x3 andx4 for which x1 = 1. Using

this method the magnitude of the weights stay fixed at 1.0. Unfortunately, the number of complex

functions needed to correctly represent the output function is exponential with respect to the number

of inputs for the parity function.

Set three is ideal since it contains a single complex function that exactly computes the parity

function. However, in real world applications there will typically not exist enough data or it will be

computationally too expense to find the exact function.

Chapter 5

Experimental Results

We will examine the results of using URQE within several applications and in comparison to other

methods. Our applications include: collaborative filtering, image retrieval and language modeling.

Along with these applications, we will examine URQE in relation to Bayesian networks on some

synthetic data sets. We implement URQE using both IPM and RLN, depending on which is more

efficient for the specific application.

The accuracy of the network will be tested in the collaborative filtering and language modeling

data sets. The image retrieval application will mainly test the efficiency of the network. We will

explore the results of adding complex functions in the collaborative filtering and language modeling

applications.

5.1 Amount of Data vs. Accuracy

Within this section we will explore the results of the using URQE vs. other algorithms when there

exists a varying amount of training data. Thus we can examine how each algorithm balances errors

due to bias and variance. The algorithms used for comparison include: nearest neighbor, naive

Bayes, and Bayesian networks.

Our data set is comprised of 7 variables from a hypothetical medical diagnosis problem first

proposed in [49]. The problem is comprised of three diseases: tuberculosis, lung cancer and bron-

chitis, two causes: visiting Asia and smoking, and two symptoms: positive X-ray and Dyspnoea.

Our task is to predict the probability of the diseases given the causes and symptoms.

The problem is described as follows:

Shortness-of-breath (Dyspnoea) may be due to tuberculosis, lung cancer or bronchitis,

71

72 Chapter 5. Experimental Results

or none of them, or more than one of them. A recent visit to Asia increases the chances

of tuberculosis, while smoking in known to be a risk factor to both lung cancer and

bronchitis. The results of a single chest X-ray do not discriminate between lung cancer

and tuberculosis, as neither does the presence or absence of Dyspnoea.

The nearest neighbor (NN) algorithm computes probabilities as follows:

P̄(Xi = 1|xE) =

∑
j∈m t j,iδ(j)∑

j∈mδ(j)
(5.1)

where

δ(j) =

 1 t j,k = xk for all Xk ∈ XE

0 otherwise

 (5.2)

If there exist zero corresponding samples in the training data, then the probabilities are assigned a

value equal to their prior probabilitiesP(Xi |xE) = P(Xi).

Our tests using Naive Bayes consists of three separate Bayesian networks, one for each disease

as in figure 5.2. For the Bayesian network we will assume we know beforehand the actual relation

of the variables to each other as shown in figure 5.1, i. e. which variables are independent of others.

Thus the Bayesian network is given more knowledge than the other algorithms. We could attempt to

compute the structure of the network directly from the data [30, 61, 75, 76], but there doesn’t exist

enough data in many cases to find it correctly. The parameters, i. e. the conditional probabilities for

each node, are computed from the data. If a certain combination of evidence variables are found

to be impossible given the networks computed parameters, then the conditional probabilities were

assigned values equal to their prior probabilitiesP(Xi |xE) = P(Xi).

URQE was implemented using IPM. For our initial tests we used 11 complex functions cor-

responding to each combination of ”Asia”, ”Smoking”, ”X-ray” and ”Dyspnoea”, table 5.1. The

confidence coefficientr was set to 8.

Four experiments were run giving the algorithms 1, 2, 3 and 4 evidence values. Every combi-

nation of values was chosen from ”Asia”, ”Smoking”, ”X-ray” and ”Dyspnoea.” Thus there were

8 combinations for the 1 evidence variable case, 24 for the 2 variable case, 32 for the 3 variable

case and 16 for the 4 variable case. We tested each algorithm on data sets ranging from 20 to 1,000

training cases and 2,000 to 20,000 training cases. The error is computed from the average absolute

deviation for the diseases ”tuberculosis”, ”lung cancer” and ”bronchitis.” The results in 5.3 and 5.4

display the average from 5,000 tests. The results weren’t weighted by the probability of the evidence

values occurring.

5.1. Amount of Data vs. Accuracy 73

Figure 5.1: Structure of Bayesian network.

Figure 5.2: Structure of naive Bayes networks.

74 Chapter 5. Experimental Results

(a) (b)

(c) (d)

Figure 5.3: Results for training sizes of 20 to 1,000 for the Inverse Probability Method (IPM), Naive
Bayes (NB), Nearest Neighbor (NN) and Bayesian Network (BN). Errors are measured using the
absolute deviation between the predicted and actual values for the diseases. Four tests were run
using 1 (a), 2 (b), 3 (c) and 4 (d) evidence variables. Confidence intervals are too small to be
displayed.

5.1. Amount of Data vs. Accuracy 75

(a) (b)

(c) (d)

Figure 5.4: Results for training sizes of 2,000 to 20,000 for the Inverse Probability Method (IPM),
Naive Bayes (NB), Nearest Neighbor (NN) and Bayesian Network (BN). Errors are measured using
the absolute deviation between the predicted and actual values for the diseases. Four tests were run
using 1 (a), 2 (b), 3 (c) and 4 (d) evidence variables.

76 Chapter 5. Experimental Results

Complex Functions

Asia∧ Smoking
Asia∧ X-ray

Asia∧ Dyspnoea
Smoking∧ X-ray

Smoking∧ Dyspnoea
X-ray∧ Dyspnoea

Asia∧ Smoking∧ X-ray
Asia∧ Smoking∧ Dyspnoea

Asia∧ X-ray∧ Dyspnoea
Smoking∧ X-ray∧ Dyspnoea

Asia∧ Smoking∧ X-ray∧ Dyspnoea

Table 5.1: Complete set of complex functions used for the IPM.

The best algorithms vary depending on the number of evidence variables and the number of

training cases provided. NB produces better results relative to the other algorithms when fewer

training cases are used. Since NB isn’t capable of exactly learning the distribution for 2 or more

evidence variables, the errors plateau for larger training sizes. NN typically produces worse results

than the other algorithms for smaller training sizes. However, as the number of training cases

increase, NN is capable of learning the exact probabilities and can surpass the results given by NB.

BN is more accurate when more evidence variables are known. For fewer evidence variables, the

errors in predicting the network’s parameters can compound to increase the overall error of the

network.

The results for URQE implemented using the IPM out perform the other algorithms across all

training sizes and experiments. Since 11 complex functions were used, the algorithm is capable of

fully learning the probability values; resulting in reduced error due to bias. The constraint confi-

dence values guaranteed that only constraint values with low variance were used. Thus minimizing

the error due to variance. The other algorithms’ parameters didn’t have corresponding confidence

values so their variance errors were larger. NB doesn’t have as many parameters so it performed

better in cases with small training sizes, but its inability to fully learn the distribution resulted in a

large bias errors.

For larger problem domains it will typically be too computationally expensive to add complex

functions corresponding to every combination of evidence values. Thus the IPM will exhibit some

bias error. To explore the consequences of adding fewer complex functions we tested the IPM with

0, 3 and 6 complex functions, shown in tables 5.2 and 5.3, along with the complete set of 11. The

5.1. Amount of Data vs. Accuracy 77

Complex Functions

Smoking∧ X-ray
Smoking∧ Dyspnoea

X-ray∧ Dyspnoea

Table 5.2: Set of 3 complex functions used for the IPM.

Complex Functions

Asia∧ Smoking
Asia∧ X-ray

Asia∧ Dyspnoea
Smoking∧ X-ray

Smoking∧ Dyspnoea
X-ray∧ Dyspnoea

Table 5.3: Set of 6 complex functions used for the IPM.

sets of complex functions were chosen by selecting those with highest utility. The results for 2,000

to 50,000 training cases can be seen in figure 5.5. As expected the results degrade as the number of

complex functions decrease. However, the results using 6 complex functions is nearly as accurate

as those for the set of 11. For fewer than 5,000 training cases the results using only 3 complex

functions are nearly identical to the complete set.

78 Chapter 5. Experimental Results

(a) (b)

(c) (d)

Figure 5.5: Results for training sizes of 2,000 to 50,000 for the Inverse Probability Method (IPM)
using varying numbers of complex functions. Errors are measured using the absolute deviation
between the predicted and actual values for the diseases. Four tests were run using 1 (a), 2 (b), 3 (c)
and 4 (d) evidence variables.

5.2. Collaborative Filtering 79

5.2 Collaborative Filtering

Collaborative Filtering (CF) is the task of predicting a user’s actions based on their and others’

previous actions [3, 5, 31, 37, 50, 67]. A simple example is predicting what books a customer might

purchase given their previous buying history and the buying histories of others.

We model the problem as predicting the probability of a user choosing itemA given previous

histories of choices. Each item has a corresponding variable and feature function. A value of one

for a variable corresponds to the user choosing, buying or liking the item. Similarly, a value of zero

corresponds to a user not choosing, not buying or disliking the item.

Since the number of evidence variables for CF is relatively small with respect to the total number

of variables, we use the IPM which is more efficient for these types of problems instead of the RLN.

Related to collaborative filtering is the application of information retrieval. ME has been used

for document retrieval by combining knowledge from keywords [12, 11, 25, 38, 39, 40]. Unlike our

use of ME for collaborative filtering, ME is only used to relate keywords to documents rather than

documents to documents. Even though the initial results are discouraging [40], we believe ME may

be used effectively for information retrieval [25].

5.2.1 Web Browsing Behavior

Our first CF task is predicting which web pages a user will visit given their previous browsing

history. Our database consists of 32,711 training cases, where each case is a list of web pages an

individual user visited. The testing database consists of 5,000 cases. The data sets are supplied

courtesy of Microsoft Corporation from users logs generated during one day in 1996.

To measure the accuracy of our results we will use the same error metric as described in [5, 31,

37]. For each test case the web pages visited will be split randomly into input and measurement

sets. The input set will be given to the IPM as a set of evidence values to compute the probability

of the user visiting the other web pages. The web pages are then ranked based on their computed

probabilities. IfKi is the number of items in the measurement set,Ri is the number of items on

the recommendation list andM is the total number of test cases, the accuracy over the entire set is

computed as:

c f accuracy=
100
M

M∑
i

∑Ri
k δi,kh(k)∑Ki

k h(k)
(5.3)

If the kth item on the ith recommendation list is in the measurement set thenδi,k = 1, otherwise it is

80 Chapter 5. Experimental Results

Algorithm Given 2 Given 5 Given 10 All But 1
IPM 61.07 60.20 55.58 64.61
BN 59.95 59.84 53.92 66.69

CR+ 60.64 57.89 51.47 63.59
VSIM 59.22 56.13 49.33 61.70

BC 57.03 54.83 47.83 59.42
NB 60.16 46.44 30.43 59.66

Baseline 49.14 46.91 41.14 49.77
RD 0.91 1.82 4.49 0.93

Table 5.4: Results for the MS Web data set. The higher the score the better the results.RD is
the required difference between scores to be deemed statistically significant at the 90% confidence
level.

equal to 0. The functionh(k) is defined as:

h(k) = 2
−k
a (5.4)

wherea can be viewed as the ”half-life” ofh(k), that ish(k) will equal 0.5 whenk = a. We use a

value of 5 fora.

As in [5], we tested our algorithm on four experiments. For the first three experiments we gave

the network 2, 5 and 10 web pages from each test case and asked it to predict the remainder. For the

fourth we gave the network all but 1 web page visited by the user and asked it to predict the final

web page. For the experiments given 2, 5 and 10 web pages if fewer than that many pages were in

the test case the test case wasn’t used. At least 2 web pages needed to be present in the test case for

use in the all but 1 experiment. Thus each experiment used a different number of test cases.

For comparison we’ve supplied results from 5 other algorithms: Bayesian Networks (BN), Cor-

relation technique (CR+) that uses inverse user frequency, default voting and case amplification ex-

tensions, Vector Similarity (VSIM) method with an inverse user frequency transformation, Bayesian

Clustering (BC) and Naive Bayes (NB). The results for BN, CR+, VSIM and BC are supplied by [5].

Naive Bayes was implemented by creating a Bayesian network for each hidden variable in which

the hidden variable was the parent of the set of evidence variables. The same set of conditional

probabilities was used for NB as with the IPM. The confidence coefficientr is set to 5. The baseline

results are found using the prior probabilities for each web page, i. e. whatever web pages are most

visited overall are always chosen regardless of the data given the network. The valueRD is the

required difference between two values to be deemed significantly different at the 90% confidence

level [5].

5.2. Collaborative Filtering 81

Given 2 Given 5 Given 10
9,090 5,495 2,857

Table 5.5: Recommendations per second for the MS Web data set, given 2, 5 and 10 ratings. All
tests are done on a 1 GHz Pentium running Windows 2000.

Complex Functions Threshold Given 2 Given 5 Given 10 All But 1
0 None 61.07 60.20 55.58 64.61
28 1000 61.30 60.37 55.34 64.68
326 100 61.34 60.14 54.19 64.54
647 50 61.37 60.07 53.46 64.52

Table 5.6: Results for the MS Web data set using different sets of complex functions.

The results in table 5.4 show the IPM producing better results in the given 2, 5 and 10 ex-

periments. However, the results are not significantly better. In the all but 1 experiment the IPM

outperforms all methods except BN.

While producing some of the most accurate results, the IPM is efficient. The IPM is capable of

producing between 2,000 and 9,000 queries per second while taking only 5 seconds for learning on

a 1GHz Pentium PC, table 5.5.

In our tests above the IPM didn’t contain any complex functions. Table 5.6 displays the results

of the IPM with several different sets of complex functions. We tested three sets using pairs of

visited web pages. We added a new complex function to the IPM if a pair of web pages were visited

more than a threshold of 50, 100 and 1,000 times within the training data set. The results aren’t

conclusively better or worse. All of the tests lie well within the confidence interval of each other.

We believe the reason for this is that there aren’t many high order dependencies in predicting web

browsing behavior. The likelihood of a user visiting a web page is generally related to each page the

user visited individually and not groups of pages. It may also be possible that the IPM didn’t capture

the higher order dependencies, i. e. the wrong pairs were chosen or more than two web pages need

to be grouped at a time.

5.2.2 Movie Ratings

Our second set of tests involves a database of movie ratings. The database is from the EachMovie

collaborative filtering site run by Digital Equipment Research Center from 1995 to 1997. For more

information visithttp://research.compaq.com/SRC/eachmovie/. Each user was asked to rank movies

on a 0 to 5 scale. Out of a total of 1,623 movies each user ranked on average 46.4 movies with a

median at 26. There were 4,119 total users in the test set and 5,000 users in the training set. Once

82 Chapter 5. Experimental Results

Algorithm Given 2 Given 5 Given 10 All But 1
IPM 1.059 1.014 0.982 0.928
CR 1.257 1.139 1.069 0.994
BC 1.127 1.144 1.138 1.103
BN 1.143 1.154 1.139 1.066

VSIM 2.113 2.177 2.235 2.136
Baseline 1.106 1.105 1.103 1.133

RD 0.022 0.023 0.025 0.043

Table 5.7: Results for the EachMovie data set. Absolute deviation from the true user ratings. Lower
scores indicate better results.RD is the required difference to be deemed statistically significant.

again we tested the algorithm on four tasks. The first three gave 2, 5 and 10 movie ratings to the

network and the network was asked to predict the remaining ratings given by the user. Our forth task

provided the network with all the movie ratings for a user except one and was asked to predict the

rating of the final movie. In all cases the movie ratings given to the network were chosen randomly

from the list of rated movies given by each user. In the given 2, 5 and 10 tasks if a user provided

fewer than the respective number of ratings the user was not included in testing. The all but 1 task

only included users with at least 2 ratings.

We computed errors based on the absolute deviation between the predicted rating and that given

by the user. Once again we provide results from several algorithms provided courtesy of [5]. More

details on the implementation of CR, BC, BN and VSIM can be found in [5]. The baseline results

use the average rating given to the movie by the users.

For the IPM we need to compute the conditional probability matrixP. This is made more

difficult since the movie ratings are on a scale from 0 to 5 and not binary. To transfer the ratings to

a 0 to 1 scale we used the following equation:

P̄(fi | f j) =

∑
k min(fi(tk), f j(tk))∑

k f j(tk)
(5.5)

If tk,i is unknown for somei then training casek was not used to computēP(fi | f j) or P̄(f j | fi) for any

j. The final movie ratings are computed by multiplying the computed probability estimates by 5.

The confidence coefficientr was set to 100 and no complex functions are used.

Surprisingly, the baseline results outperform all the algorithms in the given 2 and 5 experiments

except the IPM, table 5.7. Correlation (CR) does outperform the baseline results for the given 10

and all but 1 experiments. The IPM produces significantly better results in all of the experiments.

For learning, the IPM took less than a minute on a 1 GHz Pentium running Windows 2000.

5.2. Collaborative Filtering 83

Given 2 Given 5 Given 10
1,852 1,010 581

Table 5.8: Recommendations per second for the EachMovie data set, given 2, 5 and 10 ratings. All
tests are done on a 1 GHz Pentium running Windows 2000.

The learning times for the probabilistic models from [5] took up to 8 hours for learning on a 266

MHz Pentium. The correlation based method (CR) was capable of generating 3.2 recommenda-

tions per second while the Bayesian network (BN) can generate 12.9 recommendation per second

on a 266 MHz Pentium II. In contrast the IPM is capable of generating between 581 and 1,852

recommendations per second, table 5.8, on a 1 GHz PC.

The EachMovie data set contains approximately 74,000 users. To maintain consistency with [5]

we only used 5,000 users for training. The first 4,119 users with more than 2 ratings were used for

the testing set and the following 5,000 users with more than 2 ratings were used for the training

set. We tested the results of the network across several different subsets of the user data and found

comparable results with those shown above.

5.2.3 Serendipity

When recommending items such as movies we might want to consider more than just how high a

user will rate the movie. If a user gives a high rating to the movie ”Star Wars: Return of the Jedi”

they will most likely also give a high rating to ”Star Wars: The Empire Strikes Back.” Should the

second Star Wars movie be recommended if we know the user has given a high rating to the first?

It is true that the user will most likely enjoy the second movie. However, it is also very likely that

the user already knows about the second Star Wars movie. A recommendation the user is already

aware of is not of much value to the user. Ideally, we’d like to recommend movies to the user that

they aren’t aware of and that they’d find worth watching, i. e. we’d like to increase the serendipity

[2] [4] of the recommendations.

One possible method to increase the serendipity of the recommendation is to rank them not only

on their rating but also on the probability that a user has rated the movie. If a user has rated a movie

then they must be aware of it and less likely to be aware of it otherwise. In our movie database each

user has only rated a subset of movies from the database. Thus we can create two networks, one to

compute the predicted ratings of the movies and one to predict the probability that a user has rated

the movies. The movie recommendations may then be ranked using:

yi = yrating
i yrated

i (5.6)

84 Chapter 5. Experimental Results

Whereyrating
i is the predicted rating for moviei andyrated

i is the estimated probability of the user

rating moviei.

5.3 Image Retrieval

Content-based image retrieval has received a large amount of attention over the last 10 years [18]

[74]. As this technology matures and is adopted by more users, another source of information for

image retrieval becomes available. When a user enters a keyword, draws a sample image or selects a

query image a new list of images, typically thumbnails, is generated with the hope that the user will

find them useful. As the user scans the generated list they will select some images while ignoring

others. Since the user is looking for a certain type of image during a specific query, the selected

images must be related in some manner. This relation could have several forms; a user could be

interested in images that contain a specific object, relate to a certain topic, have a specific kind of

texture or have any other conceivable relation. By analyzing the user selections, relations between

images within the database can be discovered. After enough user data is accumulated, an algorithm

for computing image relevance could be completely content-free. That is, it is conceivable that an

image retrieval system could rely completely on user feedback without explicit knowledge about

the actual appearance of the images.

Several systems use relevance feedback from users to refine their searches [29, 71, 77, 78, 84].

Most of these systems only apply user feedback to the current query. Recently, some research has

been done in long-term learning from user interactions [29].

To demonstrate the RLN on a large image database we obtained 9,900 images from [51, 83].

Along with the images, we selected 80 keywords such as ”Butterflies, Mountains, Autumn, Chil-

dren, Planets, Bridge, Colorful Texture, etc.” Several users were asked to select images they thought

were similar along with any keywords they thought were relevant. In total, approximately 1,600

entries were made. In a real world system, used by thousands of users, a much larger amount of

input data would be available.

The keywords and images were treated identically with each assigned a variable. No complex

feature functions were used, resulting in 9,981 feature functions. Training of the RLN takes ap-

proximately 10 minutes. All running times are generated on a 1GHz PC, Pentium 3. The computed

weight matrix was sparse with only 1,147,680 non-zero weights out of a possible 99,800,100.

To decrease the computation time needed for each query we made the following optimization.

The values ofy j+1
i were computed using onlyy j

i that had values greater than a threshold. For our

5.3. Image Retrieval 85

experiments we set the threshold at 0.01. This optimization has a minimal effect on the recommen-

dation ordering of the images.

On average, between 5 to 20 queries can be made per second using the RLN. The queries

typically had between 5 and 50 user labelled images or keywords. Since the keywords were treated

identically to the images, keywords are also suggested to the user given their preferences for images

and other keywords. For example if image (a) from figure 5.7 was labelled as desired, the RLN

would suggest keywords ”Space, People and Space Ships.”

We also tested the results of the IPM on the database. Given our training data there are 1,169,527

non-zero pairwise probabilities taking about 30 seconds to compute. 40 to 500 queries can be made

per second. This is about one order of magnitude faster than computingyi using the RLN.

Figures 5.6 and 5.7 show some sample queries using the system. In query 1, three images are in

XE with values equal to one. The images show sunsets next to the ocean with two of them containing

people. The RLN returns images of ocean sunsets. In contrast, query 2 contains images with people

and two of them are ocean scenes. The RLN in this case returns images with people in sunsets.

Query 3 contains a single image of an astronaut with the space shuttle. Varying images of

astronauts and space shuttles are returned. In query 4 the value of an astronaut image is set to zero,

i. e. undesirable. The RLN then returns space shuttle images.

It is important to remember that the results of the RLN are based heavily on the quality of the

input training data. These results are merely meant to show the potential of the system.

86 Chapter 5. Experimental Results

Figure 5.6: Query 1 and Query 2: Top row contains evidence images followed by the six most
relevant images as predicted by the RLN.

5.3. Image Retrieval 87

Figure 5.7: Query 3 and Query 4: Top row contains evidence images followed by the six most
relevant images as predicted by the RLN.

88 Chapter 5. Experimental Results

5.3.1 Providing Similar and Unique Images

Until this point, we’ve assumed that the images that are most similar to the query images will be of

greatest interest to the user. At first this may appear to be true, but for many cases the user might

not want the most similar images, but images that are just related. For example consider figure

5.8 (a). Three images are selected by the user; a picture of Saturn, the Earth and an astronaut.

Within the database, there are several Saturn pictures that are almost exactly the same as the Saturn

picture in the query. As a result, these Saturn pictures are returned as the top recommendations.

Does the user really want images of Saturn that look almost exactly the same? Within the top ten

recommendations there doesn’t exist a single image of an astronaut, due to so many similar images

of Saturn and the Earth.

Let us examine an alternative approach for recommending images. For our first recommendation

we will return the most similar image, as we did before. For the second image, we will return

the most similar image to those in the query while assuming that the user doesn’t like the first

recommended image. Thus, to find the second image we can add the first recommended image to

the evidence images with a value of zero and then recompute the recommendations. Similarly, for

each following recommendation we assume the user doesn’t like the proceeding recommendations.

Using this method we obtain the results in 5.8 (b). The results using this method still recommend

similar images. However, more unique results are also returned. After the first Saturn image is

recommended its value is set to zero, thus the values of the other Saturn images are reduced. This

results in the Saturn images being pushed further down the recommendation list.

5.3. Image Retrieval 89

(a)

(b)

Figure 5.8: User recommendations using (a) the most similar images and (b) the most similar images
assuming the user doesn’t like the previous recommendations.

90 Chapter 5. Experimental Results

5.3.2 Overcoming the Cold Start Problem using CBIR

A common problem for collaborative filtering algorithms such as ours is the ”cold start” problem

[52, 70]. That is, our algorithm needs a large amount of training data from users before it can start

producing good results. Unfortunately, users won’t use the system until it produces good results. We

see two methods for solving this problem. First, content or keyword based image retrieval systems

could find sets of similar images that are used as seeds to initially train the system. Second, results

could be initially found using the content or keyword image retrieval system and as more user data

becomes available the collaborative filtering algorithm could be used. In this way, we believe a

hybrid system that combines the strengths of several systems will prove to be most beneficial.

5.4 Language Modeling

Language modeling is the task of predicting the next word in a sentence or utterance given the set

of preceding words. Traditionally, probabilities are computed using a trigram model which only

considers the previous two words. Within the trigram model probabilities are computed directly

from training data. The training data sets are typically quite large with some having over 50 million

words with vocabularies of around 20,000.

The main difficulty in implementing the trigram model is that all pairs of words that may exist

in the testing data set may not appear in the training data set. A standard method for dealing with

these cases is to use a bigram model, i.e. only use the previous word, when there doesn’t exist

enough data to compute the probabilities based on the trigram model. When their doesn’t exist

enough data for the bigram model then a unigram model is used, i.e. compute probabilities based

solely on how often the words appear in the training data set. This method is referred to as the

back-off method [41]. Other methods include combining the trigram, bigram and unigram models

using linear interpolation [15, 36]. The trigram model performs surprisingly well, and is used in

many speech recognition algorithms. Obtaining results that significantly outperform the model is

difficult [10, 69].

Maximum entropy was first applied to language modeling by [1, 62] and later using word trig-

gers by [46, 68]. Maximum entropy is well suited for language modeling since the complete prob-

ability distribution, i.e. the trigram model, can not be computed directly for the data. Maximum

entropy can combine the information from the trigram, bigram and unigram models efficiently and

intelligently. Rosenfeld [68] added another source of information to the model called triggers. Trig-

gers are words that have occurred in the relatively recent past, such as in the last fifty words. For

5.4. Language Modeling 91

unigram P(w3)
bigram P(w3|w2)

distance two bigram P(w3|w1)
trigram P(w3|w1,w2)

Table 5.9: Different types of N-gram models. The words occur in the following order:w1, w2 and
w3.

example, if we see the word ”stock” it is more likely that we’ll see the word ”shares” in the next sev-

eral sentences. Using maximum entropy, Rosenfeld was able to easily incorporate this information

into the model and obtain improved results.

The previous methods using maximum entropy for language modeling have all used Shannon’s

measure. We’ll attempt to use URQE and explore some methods for adding additional complex

functions.

Our experiments will use a combination of trigrams, bigrams, distance two bigrams and uni-

grams. A distance two bigram is computing the probability of the current word given the word that

occurred two words before it. If we have two wordsw1, w2 that occur in order and we want to

compute the probability ofw3, then our four sources of information are shown in table 5.9.

For each model and set of words, we can add a constraint to our algorithm. Each constraint will

have a different amount of confidence based on how often its corresponding feature function occurs

within the training data set.

Our first test uses only bigrams, distance two bigrams and unigrams. We train an RLN using

a 5 million word training data base with a vocabulary of 19,980 words, see Appendix B. Thus our

set of inputs consists of 39,961 feature functions. One for each bigram and distance two bigram,

along with the bias feature function for the unigram model. Since the number of evidence feature

functions is so large, we use an RLN to compute the probability estimates instead of the IPM. To

minimize the size of the network, the weightsω j,i are pruned based on the weight’s utility:

P(fi)(1.0− P(fi))
∣∣∣ω j,i

∣∣∣ (5.7)

If the utility of the weight was below the threshold of 10−7, its value was set to zero. If the weights

weren’t pruned the total number of weights would be 39,961× 19,980 = 798,420,780. After

pruning, as shown in tables 5.10 and 5.12, between 0.3% and 0.6% of the weights remain. The value

of the drag coefficientτ was set to 10−9 with r = 10−5. The accuracy of the results are measured

using perplexity. Perplexity measures the average branching factor for the language model and is

92 Chapter 5. Experimental Results

Algorithm Perplexity Number of Weights Weight Magnitude #Ands
Bigrams 252 2,586,537 12,878 0
Trigram 211 12,307,839 51,244 336,268

Table 5.10: Language modeling results for the RLN when using bigram and trigram models.

computed from [9]:

2
1

mtest

∑
log2(ycorrect) (5.8)

Where we sum over the entire testing data set andycorrect is the computed probability estimate for

the correct word. The number of words in the testing data set is equal tomtest= 325,196. The lower

the perplexity of the language model, the more accurate it is. To ensure our probability estimates

actually correspond to a true distribution we limit the minimum of any estimate to be 10−5 and then

divide all of the estimates by their combined sum.

The results for the RLN bigrams model using only bigram, distance two bigram and unigram

constraints is shown in table 5.10. The weight magnitude is the total absolute magnitude of all

the weights in the network. The total number of weights corresponds to the number of non-zero

weights. The perplexity of the bigrams model is 252.

Our second test uses trigram constraints along with the constraints used in the previous bigrams

test. A new And function was created for each pair of words that occurred together at least 2 times in

the training data for a total of 336,268 new And functions. Otherwise, the network was trained using

the same parameters. The resulting perplexity for the RLN trigram was 211 as shown in table 5.10.

The back-off method on the same data set is capable of obtaining a perplexity of 173. There are

several optimizations used in the back-off model that we didn’t use in our method. Another reason

for the larger error may be the RLN minimizes the squared error. Thus the difference between 0.5

and 0.51 is the same as the difference between 0.001 and 0.011. Since the perplexity measure is log

based, the difference between 0.001 and 0.011 is much greater than the difference between 0.5 and

0.51. Therefore, the RLN may be minimizing the wrong measure for this problem domain.

The learning times for the RLN were 16 hours for the bigrams network and 82 hours for the

trigram network. We implemented a simple iterative method for weight learning. Learning times

could be reduced by using a more complex algorithm, such as biconjugate gradient or methods that

incorporate momentum.

5.4. Language Modeling 93

5.4.1 Grouping Words

In the previous section we created new constraints for each pair of words that occurred at least

twice in the training data set. As our vocabulary and size of the training data base increase, the

number of constraints can get quite large. Many of these constraints can be redundant. For example

the word pairs ”three dollars” and ”four dollars” will probably have similar words following them.

The words ”three” and ”four” have similar meaning and even though they are different the words

following them will be very similar.

Most words have other words that are very similar to them, such as: ”a” and ”the”, ”Harvard”

and ”Yale”, ”dropped” and ”gained”, and ”may” and ”can.” If our network can group these words

together before creating the word pairs, many fewer constraints can be used. For example, instead or

having two constraints for ”three dollars” and ”four dollars”, we have one constraint corresponding

to ”three” or ”four” followed by ”dollars.”

In section 4.2.3 we described a method for grouping similar feature functions together. This is

done for two feature functionsf j and fk by computing the dot product of their normalized weights:∑
l ωl, j · ωl,k√∑

l ω
2
l, j

√∑
l ω

2
l,k

(5.9)

This equation computes the cosine of the angle between the weights of the feature functions. The

closer the value is to one the more similar the weights. If we group words with weights less than 45

degree apart we find the groupings in table 5.11. All words with less than 10 non-zero weights were

not considered.

94 Chapter 5. Experimental Results

THE FROM SAYS
A POUNDS CONSULTANT

AN EARNED TOWN
TOTALED MESSRS.

End of Sentence EXPLAINS
THAT MILLION Q.
BUT BILLION COMPLAINS

WHILE TRILLION JEAN
DECLARES

TO HE ACTOR
WILL ANALYSTS ERNEST

WOULD SHE GOODMAN
COULD POLITICAL PRONOUNCED
HELP SOURCES BOASTS

HELPED WEREN’T INGREDIENT
COMING EDGAR

ONE QUITE SHIPYARD
TWO PEACE HANS
FIVE CONSULTING CLIFFORD

THREE SYMBOL
SEVEN SEASONAL THOUSAND

SIX PERSPECTIVE TRANSPORTATION
FOUR SHAREHOLDERS’ UTILITIES
EIGHT FORECASTING FRANCS
NINE COPYRIGHT POOR’S

ELEVEN TERRIBLE FORTUNE
THIRTEEN UNILATERAL LOSERS

ET EQUALING
IS DISTANT PROPOSITION

ARE CHARITABLE RECALLING
IT’S POSTWAR

ISN’T PETROCHEMICAL THEIR
TOO ANYTIME OWN

ENOUGH GIBBS MILITARY
ASKED EVERYDAY FACE
WE’RE NAUTILUS UNDISCLOSED

EXPECT
ALLOW BE UP

REQUIRE WAS DOWN
URGED BEEN ROSE

ALLOWING WERE OFF
ALLOWS BEING FELL
APPLY AREN’T DAYS

ENCOURAGE WASN’T AVERAGING
REQUIRING YIELDED

PERMIT HAS
I’D HAVE SOME

SUFFICIENT HAD MOST
GENEVA MANY
ENABLE COMPANY
YOU’VE INCORPORATED PRESIDENT

AIM CORPORATION CHAIRMAN
DECIDING COMMANDER
FIDUCIARY TWENTY

THIRTY MAY
AS FIFTY CAN

DESCRIBE FORTY SHOULD
REOPEN SEVENTY MIGHT

BUYBACK SIXTY
PORTRAYED NINETY YORK

AMERICAN
MR. ABOUT SECURITIES
MS. ROUGHLY TORONTO

DOCTOR APPROXIMATELY LONDON’S

DON’T MORE SALES
DIDN’T LESS REVENUE

DOESN’T FEWER LOSS
WON’T

Table 5.11: A sampling of the 111 word groups.

5.4. Language Modeling 95

Algorithm Perplexity Number of Weights Weight Magnitude #Ands #Ors
None 252 2,586,537 12,878 0 0
Or 253 2,840,565 12,726 0 222

And 222 3,653,641 21,320 10,832 0
And Or 220 3,771,004 20,521 10,242 222

And only Or 244 2,791,659 13,442 724 222

Table 5.12: Language modeling results for the RLN when adding And and Or complex functions.

If we only add complex Or functions corresponding to the groups found, the results of the

network will not change since only a single word has a value of one at anytime for each position in

time. To illustrate this point, consider three feature functions corresponding to ”three”, ”four” and

”three or four” at some particular time instance. If the weights from our feature functions to the

outputyi are 0.3, 0.4 and 0.2 respectively, then we can achieve the same results with ”three” having

a weight of 0.3 + 0.2 = 0.5 and ”four” having a weight of 0.4 + 0.2 = 0.6. Solely adding the Or

complex functions may decrease the overall magnitude of the weights but it will not increase the

accuracy of the network as shown in table 5.12. In general for other types of problems, adding Or

functions will increase the accuracy. The only case when Or functions will not increase accuracy is

when the variables that are being grouped together occur exclusively.

The accuracy of the network is increased by adding And complex functions. We have run three

experiments using And functions. The first called ”And” doesn’t use any Or functions. The second

called ”And Or” adds And functions that combine single words and word groupings. The final test

called ”And only Or” adds And functions that only combine word groupings. Each test combined

words or groups if the pair occurred at least 50 times in the training data set. The ”And Or” test

produced the best results, but only by a small amount over the ”And” results. The weight magnitude

for the ”And Or” test was slightly less but the total number of weights was greater than the ”And”

test. The ”And only Or” test has many fewer weights and feature functions but also produces worse

results.

These results show little improvement when adding Or complex functions. However, we believe

that Or complex functions will become a computational necessity when more than two words are

used for prediction. If we increase the number of words used for prediction to just 4, the number

of And complex functions needed may increase beyond what is computationally feasible to handle.

Thus Or complex functions may provide a method for increasing the number of words used in

prediction while still allowing the algorithm to be computationally feasible.

Chapter 6

Conclusion

When computing conditional probabilities in large domains, that is problems with hundreds if not

thousands of variables, low-order interactions may not just be the only interactions supported by the

data, but they can produce accurate results. The training data will typically support only a limited

number of constraints, with most involving sets of just a few variables. Given these constraints,

which don’t fully constrain the distribution, we must compute estimates for the conditional proba-

bilities. To make assumptions or constraints on the distribution other than those supported by the

data will lead to results with high bias. If we impose too many constraints that are only partially

supported by the data, the results may possess high variance.

To balance the tradeoffs between bias and variance we’ve described a method based on maxi-

mum entropy. Maximum entropy attempts to find the distribution that makes the least amount of

assumptions other than those given by the constraints, resulting in low bias. Variance is reduced by

assigning each constraint a confidence value. If a constraint has a high variance itself, then it will

be assigned a low confidence value and have less effect on the final probabilities computed. This

results in the estimated conditional probabilities having themselves lower variance.

6.1 Contributions

The main emphasis of this dissertation were two algorithms, the RLN and the IPM, for computing

approximations to the maximum entropy distribution. While the results produced using these two

algorithms are identical, the efficiency of the algorithms varies depending on the problem domain.

The main points of the dissertation include:

An Efficient Approximation to Maximum Entropy - Rényi developed a family of entropy

97

98 Chapter 6. Conclusion

measures by generalizing the properties of entropy first proposed by Shannon. Within this fam-

ily lies an entropy measure called Rényi’s quadratic entropy. If we ignore the constraints that all

probabilities must lie between 0 and 1, we may maximize this measure relative to our constraints

using a set of linear functions. Maximizing this measure is equivalent to minimizing the squared

probabilities.

Computing Conditional Probabilities using URQE - Using the unbounded Ŕenyi quadratic

entropy is largely inaccurate for computing estimates to the joint distribution. However, when

computing the conditional probability of each variable given the set of evidence variables, URQE

produces accurate results similar to those using Shannon’s measure.

RLN and IPM - We proposed two methods for finding estimates of conditional probabilities,

the recurrent linear network and the inverse probability method. The recurrent linear network is

an iterative approach that is most efficient when many variables have known values. The inverse

probability method is a closed-form solution that is more efficient when the number of evidence

variables is small.

Learning Efficiency -The parameters for either method can be learned quickly using a matrix

of pairwise probability values generated from the data. This matrix of probability values can be

quickly updated given new data.

Constraint Confidence -Each constraint has a corresponding confidence value that controls

the degree to which the constraint affects the final outcome. The confidence values are based on

the estimated variance of the constraint values. Thus new constraints can be added to the algorithm

without risking an increase in error due to variance.

Experimental Results - We demonstrated the algorithms on several applications including:

collaborative filtering, image retrieval and language modeling. The results for collaborative filtering

were at least as accurate if not more than the other algorithms tested, while being one or two orders

of magnitude more efficient. We demonstrated the algorithm is capable of handling large domains,

i.e. with over 10,000 variables, within the image retrieval and language modeling applications.

6.2 Future Work

While the experimental results for our approach appear promising, more testing needs to be done.

Larger databases are needed to explore higher-order interactions between variables. Databases such

as the web log from Microsoft and the movie ratings from Compaq only allow us to accurately

compute a small number of constraint values for complex functions. The results using the synthetic

data showed our method outperforms others across varying training data sizes, but we need large

6.2. Future Work 99

real world databases to support this claim. Given these large databases, is it possible to find a set

of complex functions that increases the accuracy of the network while not overly decreasing the

efficiency?

Even if our results are better given the comparison criteria, this does not mean the user experi-

ence will be improved. We might be able to produce better movie ratings, but are we recommending

movies for which the user is unaware and will like? For the image retrieval task, we may be able to

compute the relationship between images, but does this really help the user find their desired image

faster? Similarly, it has been shown for the language modeling task that reducing the perplexity

does not always lead to a reduction in word error rate in speech recognizers [9]. To answer these

questions more tests and user studies need to be done.

Within this dissertation we’ve discussed finding the conditional probability of each variable in-

dividually. For many applications the most likely state for several variables might be desired. For

example we might like to find the maximum a posteriori or the maximum expected utility values

for some set of variables. We have not investigated beyond simple greedy search algorithms how

this may be done in relation to the RLN or IPM. Since estimated probabilities can be generated effi-

ciently using our methods we believe there may also be promise in computing maximum a posteriori

estimates.

100 Chapter 6. Conclusion

Bibliography

[1] Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. A maximum entropy

approach to natural language processing.Computational Linguistics, 22(1):39–71, 1996.

[2] P. Bieganski. System, method and article of manufacture for increasing the user value of

recommendations, July 1998. U.S. Patent Number 6,321,221.

[3] Daniel Billsus and Michael J. Pazzani. Learning collaborative information filters. InProc. 15th

International Conf. on Machine Learning, pages 46–54. Morgan Kaufmann, San Francisco,

CA, 1998.

[4] J. Breese, D. Heckerman, E. Horvitz, C. Kadie, and K. Kanazawa. Methods and apparatus for

retrieving and/or processing retrieved information as a function of a user’s estimated knowl-

edge, February 1997. U.S. Patent Number 6,006,218.

[5] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive algorithms

for collaborative filtering. In Gregory F. Cooper and Serafı́n Moral, editors,Proceedings

of the 14th Conference on Uncertainty in Artificial Intelligence (UAI-98), pages 43–52, San

Francisco, July 24–26 1998. Morgan Kaufmann.

[6] L. M. Bregman. The relaxation method to find the common point of convex sets and its applica-

tions to the solution of problems in convex programming.USSR Computational Mathematics

and Mathematical Physics, 7:200–217, 1967.

[7] G. W. Brier. Verification of forecasts expressed in terms of probabilities.Monthly Weather

Review, 78:1–3, 1950.

[8] J. P. Burg. Maximum Entropy Spectral Analysis, October 1967.

[9] S. Chen, D. Beeferman, and R. Rosenfeld. Evaluation metrics for language models. InDARPA

Broadcast News Transcription and Understanding Workshop, 1998.

[10] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for lan-

guage modeling. In Arivind Joshi and Martha Palmer, editors,Proceedings of the Thirty-

Fourth Annual Meeting of the Association for Computational Linguistics, pages 310–318, San

Francisco, 1996. Morgan Kaufmann Publishers.

[11] W.S. Cooper. Exploiting the maximum entropy principle to increase retrieval effectiveness.

Journal of the American Society for Information Science, 34(1):31–39, 1983.

BIBLIOGRAPHY 101

[12] W.S. Cooper and P. Huizinga. The maximum entropy principle and its application to the

design of probabilistic retrieval systems.Information Technology, Research and Development,

1:99–112, 1982.

[13] I. Csisźar. A geometric interpretation of darroch and ratcliff’s generalized interative scaling.

The Annals of Statistics, 17(3):1409–1413, 1989.

[14] J. N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models.Annals of

Mathematical Statistics, 43:1470–1480, 1972.

[15] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via

the EM algorithm (with discussion).Journal of the Royal Statistical Society series B, 39:1–38,

1977.

[16] Pedro Domingos and Michael J. Pazzani. On the optimality of the simple bayesian classifier

under zero-one loss.Machine Learning, 29(2-3):103–130, 1997.

[17] R. O. Duda and P. E. Hart.Pattern Classification and Scene Analysis. John Wiley and Sons,

New York, 1973.

[18] M. S. Lew (Ed.). Principles of Visual Information Retrieval. Springer-Verlag, New York,

2001.

[19] D. Erdogmus and J. C. Principe. Comparision of entropy and mean square error criteria in

adaptive system training using higher order statistics. In P. Pajunen and J. Karhunen, editors,

Proceedings of the Second International Workshop on Independent Component Analysis and

Blind Signal Separation, pages 75–80, Helsinki, Finland, 2000.

[20] D. Erdogmus and J. C. Principe. Principe entropy minimization algorithm for multilayer per-

ceptrons. InProceedings of the International Joint Conference on Neural Networks, Washing-

ton, D.C., 2001.

[21] A. V. Fiacco and G. P. McCormick.Nonlinear Programming. Wiley, 1968.

[22] Jerome H. Friedman. On bias, variance, 0/1-loss, and the curse-of-dimensionality.J. Data

Mining and Knowledge Discovery, 1(1):55–77, April 1997.

[23] A. Golan, G. Judge, and D. Miller.Maximum Entropy Econometrics: Robust Estimation with

Limited Data. John, Wiley and Sons, New York, 1996.

102 Chapter 6. Conclusion

[24] A. Golan and J. Perloff. Comparison of maximum entropy and higher-order entropy estimators.

J. Stat. Physics, 107(1), 2002.

[25] Warren R. Greiff and Jay M. Ponte. The maximum entropy approach and probabilistic IR

models.ACM Trans. on Information Systems, 18(3):246–287, 2000.

[26] P.D. Grnwald and A.P. Dawid. Game theory, maximum entropy, minimum discrepancy, and

robust bayesian decision theory. Technical Report 223, University College London, London,

2002.

[27] P.D. Grnwald and A.P. Dawid. Game theory, maximum generalized entropy, minimum dis-

crepancy, robust bayes and pythagoras. InProceedings of ITW, Bangalore, India, October

2002.

[28] S. F. Gull and G. J. Daniell. Image reconstruction from incomplete and noisy data.Nature,

272:686–690, April 1978.

[29] X. He, W. Ma, O. King, M. Li, and H. Zhang. Learning and inferring a semantic space from

users relevance feedback for image retrieval. Technical Report MSR-TR-2002-62, Microsoft

Research, Redmond, Washington, 2002.

[30] D. Heckerman, D. Geiger, and M. Chickering. Learning Bayesian networks: The combination

of knowledge and statistical data. Technical Report MSR-TR-94-09, Microsoft Research,

Redmond, Washington, 1994.

[31] David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounthwaite, and

arid Carl Kadie. Dependency networks for collaborative filtering and data visualization. In

Craig Boutilier and Moiśes Goldszmidt, editors,Proceedings of the 16th Conference on Un-

certainty in Artificial Intelligence (UAI-00), pages 264–273, SF, CA, June 2000. Morgan Kauf-

mann Publishers.

[32] E. Jaynes. Notes on present status and future prospects, 1990.

[33] E. T. Jaynes. Information theory and statistical mechanics.Physical Review, 106:620–30,

1957. continued in volume 108, pages= 171-190.

[34] E. T. Jaynes. Where do we stand on maximum entropy inference. In R. D. Levine and

M. Tribus, editors,The Maximum Entropy Formalism. 1978.

BIBLIOGRAPHY 103

[35] E. T. Jaynes. On the rationale of maximum-entropy methods.Proc. IEEE, 70(9):939–952,

1982.

[36] F. Jelinek and R. Mercer.Interpolated estimation of Markov source parameters from sparse

data, pages 381–397. Amsterdam : North Holland Publishing Co., 1980.

[37] C. Kadie, C. Meek, and D. Heckerman. Cfw: A collaborative filtering systen using pos-

teriors over weights of evidence. Technical Report MSR-TR-2002-46, Microsoft Research,

Redmond, Washington, 2002.

[38] Paul B. Kantor. Maximum entropy and the optimal design of automated information retrieval

systems.Information Technology, Research and Development, 3(2):88–94, 1984.

[39] Paul B. Kantor and Jung Jin Lee. The maximum entropy principle in information retrieval.

In Proceedings of the Ninth Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, Probabilistic Retrieval, pages 269–274, 1986.

[40] Paul B. Kantor and Jung Jin Lee. Testing the maximum entropy principle for information

retrieval.Computational Complexity, 49(6):557–566, 1998.

[41] Slava M. Katz. Estimation of probabilities from sparse data for the language model compo-

nent of a speech recognizer.IEEE Transactions on Acoustics, Speech and Signal Processing,

35(3):400–401, March 1987.

[42] Jin H. Kim and Judea Pearl. A computational model for combined causal and diagnostic

reasoning in inference systems. InProceedings of the Eighth International Joint Conference on

Artificial Intelligence (IJCAI-83), pages 190–193, Karlsruhe, Germany, August 1983. Morgan

Kaufmann.

[43] I. Kononenko. Semi-naive bayesian classifier. In Y. Kodratoff, editor, Proceedings of the

European Working Session on Learning : Machine Learning (EWSL-91), volume 482 ofLNAI,

pages 206–219, Porto, Portugal, March 1991. Springer Verlag.

[44] S. Kullback.Information Theory and Statistics.Wiley, 1959.

[45] J. Lafferty, S. Della Pietra, and V. Della Pietra. Statistical learning algorithms based on

bregman distances. InProceedings of the 1997 Canadian Workshop on Information Theory,

Toronto, Canada, 1997.

104 Chapter 6. Conclusion

[46] R. Lau, R. Rosenfeld, and S. Roukos. Trigger-based language models: A maximum entropy

approach. InProc. ICASSP ’93, pages II–45–II–48, Minneapolis, MN, April 1993.

[47] R. Lau, R. Rosenfeld, and S. Roukos. Adaptive language modeling using the maximum en-

tropy principle. InProc. ARPA Human Language Technology Workshop ’93, pages 108–113,

Princeton, NJ, March 1994.

[48] R. Lau, R. Rosenfeld, and S. Roukos. Adaptive language modeling using the maximum en-

tropy principle. InProc. ARPA Human Language Technology Workshop ’93, pages 108–113,

Princeton, NJ, March 1994. distributed asHuman Language Technologyby San Mateo, CA:

Morgan Kaufmann Publishers.

[49] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical

structures and their application to expert systems.Journal of the Royal Statistical Society,

50(2):157–224, 1988.

[50] Wee Sun Lee. Collaborative learning for recommender systems. InProc. 18th International

Conf. on Machine Learning, pages 314–321. Morgan Kaufmann, San Francisco, CA, 2001.

[51] J. Li, J. Wang, and G. Wiederhold. Irm: Integrated region matching for image retrieval. In

Proc. ACM Int. Conf. on Multimedia, pages 147–156, October 2000.

[52] P. Melville, R. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for im-

proved recommendations. InProc. Conf. on Artificial Intelligence (AAAI-2002), pages 187–

192, July 2002.

[53] H. Nguyen, O. Kosheleva, and V. Kreinovich. Invariance-based justification of the maximum

entropy method and of generalized maximum entropy methods in data processing, 2000.

[54] J. Paris. Common sense and maximum entropy.Synthese, 117 (1):75–93, 1999.

[55] J. Paris and A. Vencovshá. On the Applicability of Maximum Entropy to Inexact Reasoning.

International Journal of Approximate Reasoning, 3:1–34, 1989.

[56] J. Paris and A. Vencovshá. In Defense of the Maximum Entropy Inference Process.Interna-

tional Journal of Approximate Reasoning, 17:77–103, 1997.

[57] J. B. Paris and A. Vencovská. A note on the inevitability of maximum entropy.International

Journal of Approximate Reasoning, 4(3):183–224, 1990.

BIBLIOGRAPHY 105

[58] D. Paul and J. Baker. The design for the wall street journal-based csr corpus. InProceedings

of the DARPA SLS Workshop, 1992.

[59] Michael Pazzani. Searching for attribute dependencies in Bayesian classifiers. In D. Fisher

and H. Lenz, editors,Proceedings of the Fifth International Workshop on Artificial Intelligence

and Statistics, pages 424–429, Ft.Lauderdale, FL., 1995.

[60] Judea Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. In

David Waltz, editor,Proceedings of the National Conference on Artificial Intelligence, pages

133–136, Pittsburgh, PA, August 1982. AAAI Press.

[61] Judea Pearl and Tom S. Verma. A theory of inferred causation. In Dag Prawitz, Brian Skyrms,

and Dag Westerstahl, editors,Logic, Methodology and Philosophy of Science IX, pages 789–

811, Amsterdam, 1994. Elsevier Science Publishers.

[62] S. Della Pietra, V. Della Pietra, R. Mercer, and S. Roukos. Adaptive language modeling based

using minimum discriminant estimation. InProc. ICASSP ’92, pages 633–636, San Francisco,

CA, March 1992.

[63] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random

fields. Technical Report CS-95-144, Carnegie Mellon University, School of Computer Sci-

ence, May 1995.

[64] A. Rényi. On measures of entropy and information.Selected Papers of Alfred Rényi,

2(180):565–580, 1976.

[65] A. Rényi. On the foundations of information theory.Selected Papers of Alfred Rényi,

3(242):304–318, 1976.

[66] A. Rényi. Some fundamental questions of information theory.Selected Papers of Alfred Rényi,

2(174):526–552, 1976.

[67] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. GroupLens: An Open Archi-

tecture for Collaborative Filtering of Netnews. InProceedings of ACM 1994 Conference on

Computer Supported Cooperative Work, pages 175–186, Chapel Hill, North Carolina, 1994.

ACM.

106 Chapter 6. Conclusion

[68] R. Rosenfeld.Adaptive Statistical Language Modeling: A Maximum Entropy Approach. PhD

thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, April 1994.

also appears as technical report CMU-CS-94-138.

[69] R. Rosenfeld. Two decades of statistical language modeling: Where do we go from here.

Proceedings of the IEEE, 88(8), 2000.

[70] Andrew I. Schein, Alexandrin Popescul, and Lyle H. Ungar. Methods and metrics for cold-start

recommendations. InProceedings of the 25’th annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, 2002.

[71] C. Schmid. Constructing models for content-based image retrieval. InProc. IEEE Conference

on Computer Vision and Pattern Recognition, 2001.

[72] T. Seidenfeld. Why i am not an objective bayesian; some reflections prompted by rosenkrantz.

Theory and Decision, 11:413–440, 1979.

[73] Claude E. Shannon and Warren Weaver.The Mathematical Theory of Communication. Univ

of Illinois Pr., 1963. ISBN: 0–252–72548–4.

[74] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image

retrieval at the end of the early years.IEEE Trans. Pattern Analysis and Machine Intelligence,

22(12):1349–1380, 2000.

[75] D. Spiegelhalter, P. Dawid, S. Lauritzen, and R. Cowell. Bayesian analysis in expert systems.

Statistical Science, 8:219–282, 1993.

[76] Bo Thiesson, Christopher Meek, David Maxwell Chickering, and David Heckerman. Learning

mixtures of DAG models. In Gregory F. Cooper and Serafı́n Moral, editors,Proceedings of

the 14th Conference on Uncertainty in Artificial Intelligence (UAI-98), pages 504–513, San

Francisco, July 24–26 1998. Morgan Kaufmann.

[77] K. Tieu and P. Viola. Boosting image retrieval. InIEEE Conf. Computer Vision and Pattern

Recognition, pages 228–235, 2000.

[78] S. Tong and E. Chang. Support vector machine active learning for image retrieval. InProc.

ACM Int. Conf. on Multimedia, pages 107–118, October 2001.

[79] M. Tribus. Rational Descriptions, Decisions and Designs. Pergamon Press, New York, 1969.

BIBLIOGRAPHY 107

[80] C. Tsallis. Possible generalization of boltzmann-gibbs statistics.Statistics, 52:479–487, 1988.

[81] J. Uffink. Can the maximum entropy principle be explained as a consistency requirement.

Studies in History and Philosophy of Modern Physics, 26:223–261, 1995.

[82] J. Uffink. The constraint rule of the maximum entropy principle.Studies in History and

Philosophy of Modern Physics, 27(1):47–79, 1996.

[83] J. Wang, J. Li, and G. Wiederhold. Simplicity: Semantics-sensitive integrated matching for

picture libraries. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(9):947–963,

2001.

[84] Y. Wu, Q. Tian, and T. S. Huang. Discriminant-em algorithm with application to image re-

trieval. In IEEE Conf. Computer Vision and Pattern Recognition, pages 222–227, 2000.

[85] W. J. Zangwill.Nonlinear Programming: A Unified Approach. Prentice-Hall, 1969.

Appendix A

A.1 Notation

X = {X1, . . . ,Xa} Set of variables

XE Set of evidence variables

XH Set of hidden variables

x = {x1, . . . , xa} Set of variable values

xE Set of evidence variable values

xH Set of hidden variable values

a Number of variables

P(Xi) P(Xi = 1)

P(xi) P(Xi = xi)

P(fi) P(fi = 1)

P∗ = {p1, . . . , pn} True underlying probability distribution

P̄ Observed probability distribution

P1 Probability distribution computed using Shannon’s measure of entropy

P2 Probability distribution computed using Rényi’s quadratic entropy

n Number of entries in the joint probability distribution

T = {t1, . . . , tm} Set of training data

t j,i The value of theith variable in thejth entry of the training data

F = { f0, . . . , fb−1} Set of all feature functions

FE Set of all evidence feature functions

FH Set of all hidden feature functions

b Number of feature functions

e Number of evidence feature functions

h Number of hidden feature functions

109

110 Chapter A.

H(P) or H1(P) Entropy of the probability distributionP using Shannon’s measure

Hα(P) Entropy of the probability distributionP using Ŕenyi’s measureα

H2(P) Entropy of the probability distributionP using Ŕenyi’s quadratic entropy

µ Weights used to computeP1 for a specific set of evidence variablesXE

λ Weights used to compute the URQE solution for a specific set of evidence variablesXE

ω Weights used to compute the URQE solution for any setXE

Pi, j = P̄(fi | f j) Pairwise conditional probability matrix for the functionsF

A.2 Abbreviations

BN Bayesian Network

CF Collaborative Filtering

IPM Inverse Probability Method

LS Least Squares

NB Naive Bayes

NN Nearest Neighbor

RLN Recurrent Linear Network

RQE Ŕenyi’s Quadratic Entropy

SVD Singular Value Decomposition

URQE Unbounded Ŕenyi Quadratic Entropy

Appendix B

B.1 Language Modeling Database

Our language database consist of the ARPA CSR Wall Street Journal corpus. Articles within the

database were published in the Wall Street Journal from December 1986 through November 1989.

We used a non-verbalized-punctuation version of the corpus. That is, we assumed all punctuation

was not verbalized and was removed from the data. The data was further processed by [58] to clean

up the data and make it suitable for language modeling.

For training we used the following subsets of the data:

Number of words total: 4,949,093

111

112 Chapter B.

Year 1987 Year 1988

W7 001 W8001

W7 002 W8002

W7 003 W8003

W7 004 W8004

W7 006 W8006

W7 007 W8007

W7 008 W8008

W7 010 W8010

W7 011 W8011

W7 012 W8012

W7 013 W8013

W7 014 W8015

W7 015 W8016

W7 016 W8017

W7 017 W8018

For testing we used the following subsets of the data:

Number of words total: 325,196
Year 87 Year 88

W7 009 W8009

