Chapter 3

Computing Homology

3.1 Intr oduction

We now turn our attentionto themoredifficult problemof deducinghehomologyof acompact
metric spacefrom a finite amountof data. The homologygroupsof a spacecharacterizéhe
numberand type of holesin that spaceand thereforegive a fundamentaldescriptionof its
structure. This type of informationis used,for example,in understandinghe structureof
attractorsfrom embeddedime seriesdata[58, 60], or for determiningsimilarities between
proteinsin molecularbiology [13].

Thecomputabilityof homologygroupsfrom agiventriangulationis well-knowvn andtheal-
gorithmusessimplelinearalgebrg61]. Thisalgorithmhasextremelypoornumericabehaior,
however, sothe studyof computationahomologyremainsanactive areaof researchln mary
applicationsknowledgeof the entiregroupstructureis unnecessary— all thatis neededs the
rankof thehomologygroup,i.e.,the Betti number Thisinformationcanbecomputedndirectly
from atriangulation;mary algorithmsexist [11, 14, 26, 37]. Theextractionof homologyfrom
datainvolvesthe additionalproblemof generatinga triangulationor otherregular cell-comple
thatreflectsthe topologyof the underlyingspace.Therearemary differentapproacheso this
[18, 37, 60].

Our goalis to develop computationatechniqueghatallow usto extrapolatethe homology
of an underlyingcompactspace,X, givenonly a finite approximation,S. We assumehat S
approximatesX in ametricsensej.e., thatevery pointof S is within distancep of X andvice
versa. As in Chapter2, the basictrick is to coarse-grairihe dataat a sequencef resolutions
thattendto zero.Of coursetheextrapolationwill alwaysbe constrainedy theaccurag of the
data— thisis measuredy p, the cutoff resolution.We modelthe coarse-grainingf a set, X,
by closede-neighborhoods:

Xe={z|d(z,X) <€}

Ourmaincontrikbutionto theliteratureon computationahomologyis soundmathematicaloun-
dationsfor relatingthe homologyof the e-neighborhood®f S to the homologyof X. Our
multiresolutionapproactasthe additionaladvantageof beingapplicableto fractalsets.

We begin this chapterwith anoverview of the relevantconceptsfrom homologytheoryin
Section3.2. The sectionstartsby describingsimplicial homologytheory This theoryis based
on finite triangulationsso is readily adaptedo computerimplementation.Fractalsetsdo not

1This is adifferentcoarse-grainingrocedureo thatin Chapter2 — theresolutionparametethereis relatedto
thedistancebetweerpoints. A setis e-connectedn the senseof Chapter2 if its e/2-neighborhoods connected.
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have finite triangulations so a more generalhomologytheoryis needed.The appropriatefor-

mulationis Cechhomology Thebasisof Cechhomologyis aninversesystenof finite triangu-
lationsthatapproximatea space Thisideais extendedoy shapeheorywhich considersnverse
system®f approximatingspacesn amoregeneraklass.Our sequencef e-neighborhoodéits

this framework.

Thecentralresultsof thischapteraregivenin Section3.3. This sectiondescribesheinverse
systemof e-neighborhood®f X andthe correspondingnversesystemsof homologygroups.
We would like to quantify the topologicalstructureby computingBetti numbersasfunctions
of e. Thereis a problemwith this however, sincethe e-neighborhoodX, canhave holesthat
do not exist in X. We resole this problemby introducingthe conceptof persistentBetti
number which countsthe numberof holesin X, that correspondo a holein X. When X
hasfractal structure,it is possibleto seeunboundedyrowth in the persistenBetti numbersas
e — 0. We characterizehis gronvth by assumingan asymptoticpower law. The next part of
this sectionderivesformal relationshipdetweenhe e-neighborhoodef X anda finite point-
setapproximation. For the finite approximationswe shav thatit is possibleto reducethe
computatiorof p-persistenBetti numberdo linearalgebra.

In Section3.4, we turn to the practical problemof how to implementtheseideascom-
putationally As mentionedabove, thereare a numberof existing approachegor generating
triangulationsand computingBetti numbers. The onethatis closestto our needsis dueto
Edelsbrunneetal. [11, 18]. Theiralgorithmsarebasedon subcomplgesof the Delaunaytri-
angulationcalled alphashapes.We describetheir approachin somedetail sincewe usethe
NCSA implementatiorof thesealgorithmsto generatedatain Section3.5. We alsogive a brief
overvien of someothercomputationahomologyalgorithms. In the final part of this section,
we outline a multiresolutionapproachto computationahomologythatmay be a moreefficient
implementatiorof ourideas.

We usethe Sierpinskitriangle relatives as test examplesagainin Section3.5. Sincewe
have notyetimplementedalgorithmsfor computingthe persistenBetti numberswe give data
for theregular Betti numbers.This distinguishedbetweertheconnectedsierpinskitriangleand
the simply connectedelative. The examplesdemonstratéhatthe regular Betti numberscanbe
misleadingandthatthe persistenBetti numbersarenecessaryor a propercharacterizatiormf
theunderlyingtopology

Thematerialin Sections3.3-3.5is publishedn [69].

3.2 An overview of homologytheory

Homologytheoryis a branchof algebraidopologythatattemptgo distinguishbetweerspaces
by constructingalgebraicinvariantsthat reflectthe connectiity propertiesof the space.The
field hasit originsin thework of Poincaé. In Section3.2.1we review the basicdefinitionsfor
simplicial homology— atheorybasedon triangulationsof spacesSimplicial homologylends
itself to computationaimplementatiorbecausdriangulationsof dataare commonnumerical
constructionsand thereis a well definedalgorithm for computinghomology groupsfrom a
giventriangulation.Fractalstypically requireinfinitely mary simplicesin their triangulations.
This meanghe groupsassociatedvith a fractal shouldalsobe infinite, but this is not possible
with simplicial homology A differentapproachs neededthereforeto describespaceswith
infinitely detailedstructure. The appropriateformulation of limit for this situationis given
by the machineryof inversesystemswhich we describein Section3.2.3. An inverselimit
systemis thenusedto defineCechhomologyin Section3.2.4. We alsogive a brief outline of
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Figure3.1: Two triangles(2-simpliceswith oppositeorientations.
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Figure3.2: A triangulationof the circle. The simplicial complex containsthe 0-simplicesa, b,
andc, andthe 1-simplices|ab], [bc], and[ca]. The homeomorphisnirom the comple to the
circleis denotedoy h.

shapeheory anothetbranchof algebraictopology The basicresultof shapeheoryis thatary
compacimetricspacecanbeapproximatedy aninversesystemof polyhedraWe usethisidea
to formulatethe mathematicafoundationdor our approacho computationahomology

3.2.1 Simplicial homology

Thereareanumberof different,but equivalent,formulationsof homologytheory The simplest
to understands simplicial homology This theoryis basedon triangulationsof topological
spacegsimplicial complees). Singularhomologyis a moregeneratechniguethatusesmaps
of simplicesinto a generatopologicalspace . AnothercommonapproachusesCW-complees
thatarebuilt from generalh-dimensionatellsratherthansimplices.Thisis probablythe most
populartool in currentresearchandthereis a goodintroductionto algebraictopology from

this perspectie by Hatcher[32]. We focuson simplicial homology sinceit is the easiesto

adaptfor implementatioron a computer The notationwe usein this sectionis basecdn thatof

Munkres[61].

Simplicial complexes

Thebasicbuilding blockis anorientedk-simple, o* — the corvex hull of & + 1 geometrically
independenpoints,{zg, z1, ... ,z5} C R?, with ¥ < n. For example,a0-simple is justa
point,al-simplex is aline segment,a2-simplex atriangle,anda 3-simplex is atetrahedronWe
write % = [zg, 21, ... , 3] to denotea k-simplex andits vertices.The orderingof the vertices
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definesan orientationof the simplex. This orientationis chosenarbitrarily but is fixed. Any
evenpermutationof theverticesin a simplex givesanothersimplex with the sameorientation,
while anoddpermutatiorgivesa simplex with negative orientation;seeFigure3.1.

An abstracsimplicialcomple, C, is acollectionof orientedsimpliceswith the propertythat
a non-emptyintersectionof two simplicesin C mustitself bea simplex in C. If thesimplicial
comple is finite thenit canalwaysbe embeddedn R” for somen; certaincomplexes with
infinitely mary simplicescanalsobe embeddedn finite-dimensionakpace(seeFigure 3.10
for anexample).Suchanembeddeadomples is ageometricrealizationof C. The subsebf R"
occupiedby thegeometriccomple is denotedby |C| andis calleda polytopeor polyhedon.

When a topologicalspaceX is homeomorphido a polytope, |C|, it is called a triangu-
lated space andthe simplicial comple C is a triangulation of X. For example,a circle is
homeomorphi¢o the boundaryof atriangle,sothethreeverticesa, b, c andthreel-simplices,
[ab], [be], [ca] areatriangulationof the circle; seeFigure3.2. A completecharacterizatiorof
the classof topologicalspaceshathave atriangulationis notknown.

Homology groups

We now definethe groupstructuresassociatedavith a space X, thatis triangulatedoy a finite
simplicialcomple, C. Althoughthetriangulationof aspaces notunique thehomologygroups
for ary triangulationof the samespaceare identical; this makes simplicial homology well-
defined.The essentialngredientdor constructinghe homologygroupsarethe free groupsof
sumsof k-simplices andthe boundaryoperatotthatmapsa k-simplex to the (k — 1)-simplices
in its boundary

Thesetof all k-simplicesfrom C form thebasisof a free groupcalledthe kth chain group,
Cr(X). Thegroupoperationis an additive one;recall that —g* is just o* with the opposite
orientation,so this definesthe inverseelements.In general,a k-chain is the formal sumof a
finite numberof orientedk-simplices: ¢, = >, aiaf. The coeficients, a;, are elementsof
anothergroupthatis typically the integers: a; € Z, but canbe ary abeliangroup. For Cech
homologyandour computationaivork we userationalor real coeficients.

Whenk > 1, theboundaryopemtor, d, : C, — Ci_1, mapsak-simplex ontoasumof the

(k — 1)-simplicesin its boundaryIf o* = [zg, 21, ... ,z] is ak-simple, we have
k .
O(o®) =D (~1)[zo,- . , iy .., 2k] (3.1)
i=0
where[zg, ... , &, ... , x| representshe (k — 1)-simplex obtainedby deletingthe vertex ;.

The actionof the boundaryoperatoron generalk-chainsis obtainedby linear extensionfrom
its actionon the k-simplices: 9y (3>, aio¥) = Y, aifk(cF). We drop the subscriptfrom the
boundaryoperatomwhenthe dimensionis understood.

Therearetwo waysto definethe boundaryoperatord, on0-chains.Thefirst approachs to
make 9y(co) = 0 for all 0-chains.With this definition,thedimensionof theresultinghomology
groupcountsthe numberof path-connectedomponent®f a space An alternatve definitionis
to saythatthe boundaryof a 0-chaincy = 3, a;0? is zeroonly whentheinteger coeficients
addto zero:) -, a; = 0 — thisis calledaugmentethomology Thedimensiorof theaugmented
homologygroupis onelessthanthe numberof path-connectedomponentsWe usethe first
definition, becausat links backto the work in Chapter2, wherewe countedthe numberof
e-connecteccomponents.
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Figure3.3: Theboundaryof a 2-simple is the sumof its threeedgesandthe boundaryof this
1-chainis zero.

As an example,considerthe simplicial complex consistingof a triangleandall its edges
andvertices,asshavn in Figure3.3. Theboundaryof the 2-simple [a, b, c] iS

9([abe]) = [bc] — [ac] + [ad],
andthe boundaryof this 1-chainis:
([bc] — [ac] + [ab]) = (c—b) — (c—a)+ (b—a) =0.
Thisillustratesthe fundamentapropertyof the boundaryoperatornamelythat
Ok 0 Opy1 = 0. (3.2)

Theproofis straightforvard, andinvolvessomecombinatoricsseg[35].

We now considertwo subgroup®f Cj, thathave importantgeometricinterpretations.The
first subgroupconsistof k-chainsthatmapto zerounderthe boundaryoperator This groupis
the cyclegroup denotedZ;, — it is thekernelof 9, andits elementsarecalledk-cycles. The
seconds thegroupof k-chainsthatbounda k + 1-chain. Thisis theboundarygroup By — it
is theimageof 1. It follows from (3.2) thatevery boundaryis acycle, i.e. By, is asubgroup
of Zy.

SinceBy, C Z, we canform the quotientgroup, Hy = Z,/By. Thisis the preciselythe
homol@y group. Theelementof H;, areequivalenceclasse®f k-cyclesthatdo notboundary
k + 1 chain— thisis how homologycharacterize&-dimensionaholes.Formally, two k-cycles
z, %2 € Zy arein the sameequivalenceclassif z; — 22 € By. Suchcyclesaresaidto be
homologousWe write [z] € Hy, for the equivalenceclassof cycleshomologoudo zy.

The homologygroupsof a finite simplicial complex arefinitely generatedbeliangroups,
sothefollowing theorentells usabouttheir generaktructure.

Theorem 6 (Munkr es,Thm 4.3). If G is a finitely geneatedabeliangroup thenit is isomor
phicto thefollowing directsum:

C(Z® - ®L)DL/H B L/t (3.3)

The numberof copiesof the integer group Z is called the Betti number3. The cyclic
groupsZ/t; arecalledthetorsion subgoupsandthet; arethetorsioncoeficients Thetorsion
coeficients have the propertythat¢; > 1 andt; dividesty which dividestg andsoon. The
torsion coeficientsof Hy(C) measurehe twistednesf the spacein somesense.The Betti
numberof the kth homologygroup Hy, is denotedf,. For k > 1, B is the numbernon-
eguialentnon-boundingk-cyclesandthis canbe interpretedasthe numberof k-dimensional
holes. As we mentionedearlier 3, countsthe numberof path-connectedomponent®f |C|.
The Betti numbersarethereforeexactly the type of informationwe seek.
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Figure3.4: (a) Thetorushastwo non-equialent,non-boundindl-cyclesasshavn. Thehomol-
ogygroupsareHy = Z, H, = Z & 7Z,and H, = Z. (b) A triangulationof thetorus. The left
andright edgesf therectangleareidentified,andthetop andbottomedges.

Examples

Two simpleexamplesarethecircle, Figure3.2,andthetorus,Figure3.4. Thecircle is homeo-
morphicto thetriangle,andthe chaingroupshave thefollowing bases:

Cg : {0}
C1: {[ab], [bc], [ac]}
Co: {a,b,c}.

Thereis asinglegeneratofor the 1-cycles,[ab] + [be] — [ac] andit is notboundaryof a2-chain.
Thecircle is path-connectedndthereareno 2-simplices sothe homologygroupsare:

Hy =7
Hy =7
H, ={0}.

The torus is triangulatedby the simplicial complex in Figure 3.4(b). It hastwo non-
homologousl-cycles,[ab] + [bc] + [ca] and[ae] + [ed] + [da]. Thesecorrespondo theloopsin
Figure3.4(a). Thereis alsoa non-boundin@-cycle, o equalto the sumof all the 2-simplices.
Thehomologygroupsaretherefore:

Hy =7
Hi=7&Z
Hy; =7

Hs ={0}.

Smith normal form

Thereis a well definedalgorithmfor computingthe homology groupsof a given simplicial
comple. Thisalgorithmis basedon finding the Smithnormal form (SNF) for a matrix repre-
sentatiorof theboundaryoperatorsRecallthattheorientedk-simplicesform abasisfor the kth
chaingroup,C}. Thismeanst is possibleo representhe boundaryoperatordy : Cr, — Cx 1,
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by a matrixwith entriesin {0, 1, —1}. We denotethe SNFof theboundarymatrixby Dy. If my,
is the numberof k-simplicesthen D, hasmj columnsandmy_; rows.

Thealgorithmto reduceaninteger matrix to SNFis similarto Gaussiarelimination,but at
all stagegheentriesremainintegers.Theresultingmatrix hasthe form:

B by 0
Dy = [Ok 8] , Where By = . (3.4)

0 b

Thenonzercentriessatisfyb; > 1 andb; dividesbs, dividesbs, andsoon. For afull description
of thebasicalgorithmseeMunkres[61].

The SNF matricesfor dy; anddy, give a completecharacterizatiorof the kth homology
group, Hy. Thetorsioncoeficientsof Hy arethediagonalentriesb;, of Dy, thataregreater
thanone. Therankof the cycle group, Zy, is the numberof zerocolumnsof Dy, i.e.,myg — .
Therankof the boundarygroup, By, is the numberof non-zerorows of Dy 1, i.e.,lx1+1. The
kth Betti numberis therefore

Br = rank(Zy) — rank(By) = my — I — lg41-

Basesfor Z;, and By, (andhenceH},) are determinedby the row operationsusedin the SNF
reduction.

Thereare two practicalproblemswith the algorithm for reducinga matrix to SNF asit
is describedin Munkres[61]. First, the time-costof the algorithmis of a high polynomial
degreein the numberof simplices;second the entriesof the intermediatematricestypically
becomeextremely large and createnumericalproblems. Devising algorithmsthat overcome
theseproblemsis an areaof active research.Whenonly the Betti numbersarerequired,it is
possibleto do better In fact, if we constructthe homologygroupsover the rationals,rather
thanthe integers,thenwe needonly apply Gaussiareliminationto diagonalizethe boundary
operatomatrices— a procesghatrequiresontheorderof n?® arithmeticoperationsDoing this
meanswe loseall informationaboutthe torsion,however. We discusssomeotherapproaches
to computationahomologyin Section3.4.

3.2.2 Therole of homotopyin homology

The study of homotoly leadsto a substantiabranchof algebraictopology In this sectionwe
give someelementanygefinitionsthatarenecessarfor consideringequivalenceclasse®f maps
betweerspacesndthe correspondindjomomorphismef homologygroups.For moredetails,
seeMunkres[61] or HockingandYoung[35].

Homotopy equivalence

Two mapsor two spacesrehomotoly equivalentif thereis a continuousleformationfrom one
to the other This type of equivalenceis usuallyeasyto visualizeandgivesus a powerful tool
for computinghomologygroups. We startby defininga homotoly betweentwo continuous
maps.

Let X andY beary topologicalspaces.Two mapsf,g : X — Y arehomotopicif their
images,f[X] andg[X], canbe continuouslydeformednto oneanother Formally, f,g : X —
Y arehomotopidf thereisamappingF' : X xI — Y suchthatfor eache € X, F(z,0) = f(x)
and F(z,1) = g(z). Themap F is calleda homotopybetweenf andg, and X x I is the
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Figure3.5: An annulusanda Moébiusbandarebothhomotoly equivalentto acircle.

homotopycylinder. We usethe notationf ~ g when f is homotopicto g. For example,let

f,g: 8t =10,2m) — [-1,1], bedefinedas f(§) = 0 andg(f) = sinf. A homotoly between
f andg isgivenby F(6,t) = tsin@. If Y isacorvex subsebf R", and X is anarbitraryspace,
thenary two functionsf,g : X — Y arehomotopicvia F'(z,t) = tg(z) + (1 — t)f(z) [77].

In generalhowever, it canbea difficult problemto find ahomotogy betweerntwo maps,f one
exists.

Two spaces X andY have the samehomotoly type, or are homotopicallyequivalent if
therearemappingsf : X — Y andg : Y — X suchthatfg : Y — Y is homotopicto the
identityonY andgf : X — X is homotopicto theidentity on X (notethatthroughoutthis
chapterthe compositionof two functions, f andg is writtenas f g). We canshaw thatthe unit
circle, ST, andtheannulus,4, have the samehomotoy typeasfollows. Let

St={(r0)|r=1} and A={(r0)|1<r <2}

Let f : S — A betheinclusionmapf(1,8) = (1,6), andg : A — S mapall pointswith the
sameangleto the correspondingoint onthe unit circle: g(r,8) = (1,6). Thengf : St — S*
is givenby ¢gf(1,6) = (1,6), which is exactly the identity map. The other compositionis
fg: A — Ais fg(r,0) = (1,8). Thisis homotopicto the identity, i4 = (r,8), via the
homotoyy F(r,6,t) = (1 — t(r — 1),6).

The following theoremis one of the centralresultsin homologytheory The proof uses
constructiongrom thefollowing section;see[61] for details.

Theorem 7. Homotopicallyequivalentspacedaveisomorphichomolay groups.

This meanghathomologyclassifiesspacesp to homotoly equivalence.Homeomorphic
spacesare necessarijhomotopicallyequialent, sinceif h : X — Y is a homeomorphism,
thenit hasaninverse,h ! : Y — X, andby definitionhh~! = iy, andh~1h = ix. Thisfact,
togethemwith Theorem?, imply thathomologygroupsaretopologicalinvariants. It is not the
casethathomotoly equivalentspacesare homeomorphic.For example,a circle is homotopy
equialentto anannulusandto theMdbiusband but notwo of thesespacesarehomeomorphic;
seeFigure 3.5. Theorem? is alsoa usefultool for determininghomologygroups:if a given
spacds homotoly equivalentto asimplerone,thenwe needonly find homologygroupsfor the
latter

Induced Homomorphisms

Whenwe studythe systemof e-neighborhood# Section3.3,we needto considethow contin-
uousmappinggrom oneneighborhoodnto anotheinducehomomaorphismentheirhomology
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groups. A large amountof machineryhasbeendevelopedfor studyingthis type of problem.
We give a brief summaryhereandreferto Munkres[61] for moredetails.

SupposeK and L aretwo simplicial complees and considera continuousmap of their
underlyingspacesf : |K'| — |L|. Thefirst stepis to make a continuouspiecavise linear
approximatiorof f, calleda simplicial appoximation h : K — L. The simplicial complex K
is asubdvision of K, so|K'| = |K|. Thesubdvision is constructedo ensurethath is close
to f. “Close” meanghatgivenz € |K'|, thenf(x) andh(z) lie in the samesimplex of L.

The simplicial approximation ), mapsverticesof K to verticesof L andextendslinearly
to eachsimplex of K. Sucha simplicial map,induceshomomorphism®n the chaingroups
hy : Cx(K) — Ci(L) in anaturalway. If o* = [zo,... , ;] is anorientedk-simplex of K,
thenwe define

hy(a®) =[h(zo), ... , k(zx)] if [h(zo),...,h(zx)] € L,
hy(c*) =0 otherwise

This definitionis extendedinearly to all chainsc; € Cy(K).

Thecrucialpropertyof thechainmaphy is thatit commutesvith theboundaryoperatori.e.,
O(hy(ck)) = hy(0(ck)). Thisimpliesthathy mapscyclesin Z(K) to cyclesin Z (L) andalso
boundarieso boundariesThisin turnmeanghathy inducesahomomorphisnof thehomology
groups,h, : Hx(K) — Hy(L). This homomorphisms definedon equivalenceclassef k-
cycles[zy] € Hiy(K) by: hy([zx]) = [hy(2x)].- See[35] for a proof thatthis definitionsatisfies
the propertiesof ahomomorphism.

In the specialcasethath : |K| — |K| is theidentity map,thenh, is the identity homo-
morphism. If h : |K| — |L| is a homeomorphisnof the underlyingspacesthenh, is an
isomorphismof the correspondingnomologygroups.

For acontinuousmap, f, ary simplicialapproximatiorto f induceshe samegrouphomo-
morphism,denotedf,. The resultwe needfor Sections3.2.4and 3.3 is thathomotopicmaps
induceidenticalhnomomorphisms.

Theorem 8. Supposef, g : |K| — |L| are two continuousmapsandthat f is homotopido g.
Thenthey inducethe samehomomorphisnof the homol@y groups,i.e., f« = gs.

Thisis astandardesultin homology;see[61] for a proof.

3.2.3 Inversesystems

In orderto generalizenomologyto spaceswvith infinite structurewe needto usealimit. There
aretwo waysto generalizéhenotionof limit to generaindex setsandspacesdirectandinverse
limit systemsOur probleminvolvesthelatterandwe describeheassociatedefinitionsbelow;
seeHockingandYoung[35] or Spaniel{77] for moredetails.

An inverse systenof topologicalspacesonsistsf collectionof spacesX,, indexed by a
directedset(A, >), andcontinuousmapping,, : X, — X, for eachpairp = A. Themaps
arecalledbondingmorphismsandmustsatisfythefollowing two conditions.

pa = lx,, theidentitymapon X,, and (3.5)

PauPuv = Pav, forary choiceof v = p = A (3.6)
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Notice thatthesemapsact againstthe orderrelation,which is why the systemis an“inverse”
one. We write X = (X, pau, A) for the inversesystem,or (X, py,) whentheindex setis
clearfrom context.

Theinverselimit spacelim, . X, is the subspacef T, X, consistingof all “preorbits”in
X. Thatis,

1£nx = {(za) | zx € Xy andpy,(z,) = ) for p > A} (3.7)

The projections p, : lim,. X — X, arethe continuousmapsp,((z,)) = z,. In fact,the
inversdimit spacds definedupto anisomorphismary spacehatis homeomorphitolim, . X
is alsoaninverselimit of X.

We canoftensimplify theinverselimit calculationby usinga subsebf theindex set,A’ C
A. The subsetmustbe cofinal for this restrictionto work, i.e., givenary A € A, thereis an
elementy € A’ with u = X. We thenhave thefollowing theoren{52].

Theorem9. If A’ isacofinalsubsebf A, thentheinversesystem$ Xy, pa,, A) and(Xx, pau, A')
haveisomorphiclimits —i.e., their inverselimit spacesare homeomorphic.

As anexampleof aninversesystem supposeheindex setis the non-ngatie integers,N,
andlet Xo = [0,1], X; = [0, ] U [2,1] and X, bethelevel-k approximatiorto the middle-
third Cantorset(c.f., Section2.2). SinceXy; C X, for all k, thebondingmorphismsarejust
inclusionmaps:

pkj:Xj — X when j > k.

It is easyto shaw thatthesemapssatisfythetwo conditions(3.5) and(3.6). Theinversesystem
is representetty the diagram:

PR X PR X BB X B X,
Theinverselimit spaceconsistsof sequencesey) suchthatzy, € X, for all k, andpy;(z;) =
zy. Sincethe projectionsareinclusionmaps,this meanse, = ;. It follows thata sequence
in the inverselimit spacgust repeatdhe samepoint, andthis point mustbe in the Cantorset.
Thereforetheinverselimit spaces homeomorphido the middle-thirdCantorset.

The conceptof inverselimit systemalsoexistsfor the catgyory of groups.In this casethe
bondingmorphismsaregrouphomomorphismsndtheinverselimit is a subgroupf thedirect
sum@, G, of thegroupsin theinversesystem.We usethis in the next sectionwhenwe de-
fine Cechhomologyby relatinganinversesystemof topologicalspacesndthe corresponding
inversesystemof homologygroups.

3.2.4 Cechhomology

Cechhomologyis a generalhomologytheorythat cancapturethe infinitely detailedstructure
of afractal. It agreeswith simplicial homologyon finite simplicial compleces. For moreback-
groundmaterial,seeHockingandYoung[35] or MardesicandSegal [52].

The nerve of a cover

The éechapproach’s basedon a way to generatesimplicial compleesby taking the nerveof
a cover. Givena compactHausdorf space X, let ©(X) denotethe family of all finite open
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coveringsof X (a covering, Y € X%(X), is a collection of opensetswhoseunion contains
X). We constructan abstracsimplicial comple, calledthe nene of the cover, by associating
eachopenset,U € U with averte, alsolabelledU, in the comple. An edgeexists between
two verticesU andV if andonly if the correspondingpensetsintersect.Higherdimensional
simplices[Uy . . . U] areincludedif the intersectiorﬂf:0 U; is non-empty Notethatalthough
thespaceX couldbelow dimensionalthe nene of a givencovering could containmary high-
dimensionakimplices.In fact, givenary finite simplicial complex KX anda compactperfect,
Hausdorf spaceX, it is possibleto constructa coveringof X whosenene is isomorphicto K
[35]. This ambiguityis remavedby consideringaninverselimit system.

A partialorderrelation, -, thatmakesX(X) adirectedsetis given by the notion of refine-
ment The coverV is a refinementof U, denotedV > U, if for ary setV € V, thereis a set
U € U suchthatV C U. Thefamily of all coverswith this orderingis theindex setfor the
Cechinversesystemwe now definethe bondingmorphisms.

If V refined{, we definea projectionmappyy : V — U bytakingtheimageof asetV € V,
puy(V'), to beary fixedelementU € U suchthatV C U. Thedefinitionof the projectionmap
is not unique sincethere may be more than one choiceof U for a given V. However, ary
two choicesof projectionfrom V into U are homotopic. Therefore,we definethe bonding
morphismsto be homotoly equivalenceclasseof projectionsp,,y, andthese“H-maps” then
satisfythe conditions(3.5) and(3.6). Theinversesystem(U, pyy, £(X)) is referredto asthe
Cechsystem Next, we considerthe correspondingnversesystemof homologygroups.

The Cech homologygroups

The nene of afinite cover/ is a simplicial comple, sowe cancomputeits homologygroups
by the usualtechniquesThereis oneslight difference however, the coeficient groupG must
be moregenerathantheintegers;for example,we could usethe rationalor realnumbers.The
homologygroupsof the neneswith coeficientsin G aredenotedH (U, G). The projection
mapspyy areidentifiedwith simplicial mapsof the nenesof & andV. They thereforeinduce
homomorphismen thehomologygroups:pyys : Hx(V,G) — Hi(U,G). Theorem8 implies
thattwo elementsof the homotoyy classof pyy, inducethe samehomomorphisnon the ho-
mologygroups.Theinversesystem{ Hy (U, G), puyx, 2(X)) is calledthe kth Cechhomology
system Finally, the k&th Cechhomologygroupwith coeficientsin G is denotedH (X, G) and
is definedto be theinverselimit of the kth Cechhomologysystem.

Geometrically supposethereis a non-boundingk-cycle z in H,(U, G) for someld €
¥(X). Thenthisk-cycleexistsin thelimit only if givenary refinemen¥ of U, thereis ak-cycle
2, € Hy(V, G) whoseimageunderthe projectionhomomorphisms zy, i.€., pyy«(2;,) = 2.

The Cechsystemfor all finite coversof the spaceX is overwhelminglylarge for compu-
tational purposesthis is why cofinal subsetsareuseful. A subcollectionX'(X) C X(X), is
cofinalin ©(X) if givenary coverid € %(X), thereisacoverV € ¥/'(X) suchthatV is a
refinemenbf . As anexample,if we have acompactspaceX ¢ R?, letlf,, beafinite cover
of X by openballswith diameterl/n. The collectionof all suchcoveringsfor n € Z forms
a cofinal subsetof $(X). We cannow setup a Cechsystemfor this subfamily of coverings
andcomputethe correspondingnversesystemof homologygroups.By Theoremd, theinverse
limit of this systemis isomorphicto the inverselimit of the full Cechsystem. Thus,usinga
cofinalfamily of coveringsgreatlyreducegshe amountof work neededo “compute”the Cech
homologygroups.Theuseof cofinalfamiliesis alsoimportantin our computationawork.
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Figure3.6: Thelevel-1 cover of the Sierpinskitriangleandthe nene of this cover. The higher
level coversrepeatedhis patternon smallerscales.

Figure 3.7: Nerwves of the level-3, level-2, andlevel-1 covers of the Sierpinskitriangle. The
arravs shawv the actionof the projectionmapson the circledtriplesof points.

An example

We usea cofinalsequencef coversof theSierpinskitriangle, T, to computdts éechhomology
groups.This exampleis consideredurtherin Section3.5.

Fori = 0,1,2,3,..., let U; be a cofinal sequenceof covers of T with the following
properties. The setsin eachcover are identical opencorvex regions with different centers.
Thereare 3* suchopensetsin U; suchthat for eachlU; € U; thereare exactly three sets
Uit1, Vit1, Wit1 € U;+1 thatmapinto U;, andeachpoint of the Sierpinskitriangle belongs
to at mosttwo of the setsin I/;. SeeFigure3.6for anillustration of the level-1 cover, 4; and
its nere. Thelastconditionimpliesthatthe nene of I; hasonly 0-simplicesand1-simplices.
The nenesfor Uy, Us, andls aregivenin Figure3.7. This figure alsoshavs the actionof the
bondingmorphismsp; ;11 : Ui+1 — U;, which aredefinedby theinclusionof the threesets
Ui, Vit1, Wir1 € Ujyq into U; € U;.

The simple, one-dimensionahatureof the nernes meansthat we canwrite dowvn the ho-
mology groupsby inspection. The zerothand secondhomologygroupsare the samefor all
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Figure3.8: Theprojectionmapfrom Us into U;.

Figure3.9: The projectionmapfrom Us into Us.
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HyU;,G) ~G for i=0,1,2,...
Hy(U;,G) ~ {0} for i=0,1,2,...

Thefirst orderhomologygroupshave thefollowing pattern:

i1
. 1 .
Hi(U;,G) ~ G™ where n; = kE_O 3k = 58 = 1).

We considetthe actionof theinclusionmapson thefirst-orderhomologyonly, startingwith
p12«. Theactionof this mapis shavn in Figure3.8. The basisfor H; (U1, G) is theloop dy,
andabasisfor Hy(Us, G) is givenby thefour loops,{a, b, ¢, d2 }. Sincep;2 alwaysmapsthree
pointsinto one, the cornerloops, a, b, ¢, are eachcollapsedto a single point. The action of
p1o« : Hi(Us, G) — Hyi(Uy, G) is therefore

a—0
b— 0
c—0
do — dj.

A matrix representatioof p;2, relative to thebasesabove is
Pp=1[0 0 0 1].

The above actionis repeatedn a threefoldway for pas. : H1(Us,G) — Hi(Us, G), See
Figure3.9. We orderthe basisfor H; (U3, G) asfollows:
{aaa ba7 Ca, daa apy - - - db7 Qc, - - - 7dca dd}

Theactionof pos, is

dg — a
dp—b
d.—>c
ds — ds.

All otherloopsin Hy(Us, G) mapto {0}. Thematrix for this mapis:

00 01
0001

Pas = 000 1
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(0.1) (+.1) (L.1)

(0,0) (1,0)

Figure3.10: The Warsav circle hastrivial simplicial homologygroup, H; = 0, but its Cech
homologygroupis H; = G. It hasthesame‘shape”asthecircle becausehey arebothinverse
limits of asequencef annuli.

This patterncontinuesfor higherlevels, andfor p; ;1. : Hi(Ui+1,G) — H1(U;, G) we
have therecursve form for the matrix

Py

)

P P14
1,0+1 — B 1
4

1

This meansthat the first Cech homology group for the Sierpinskitriangle, H (T, Q) is
aninfinitely generatedabeliangroup. The elementsof H; (T, G) consistof sequences(z;),
of elements,z; € Hi(U;, G), suchthat p;;1.(zi41) = 2z forall ¢ = 1,2,3,.... For
example, the centralhole in the Sierpinskitriangle would be representedy the sequence
(di) = (dy,d2,ds,...), andthe a-loop of Uy by (a;) = (0,a,d,,...). Smallerholeshave
alongerinitial stringof zeros.

The next sectiongeneralizeechhomologyby consideringinverselimit systemsof ap-
proximatingspace®therthannenesof covers.

3.2.5 Shapetheory

Shapeheorygeneralizeshe conceptof homotoly equivalenceby consideringnversesystems
of “nice” approximatingspaces. As an example, the unit circle hasthe sameshapeas the

Warsav circle of Figure3.10,becausdoth areinverselimits of sequencesf annuli,although
they have differenthomotogy andsimplicialhomologygroups.

The essentiatesultwe usefrom shapeheoryis thatevery compactmetric spaceas home-
omorphicto the limit of aninversesystemin the catgory of finite polyhedraand homotoly
equialenceclassesf maps(H-maps). The Cechsystemfor a compactspaceis an example
of suchan inversesystem. Shapetheory generalizeshe Cechapproachby allowing the ap-
proximatingspaces$o be homotojy equivalentto afinite polyhedron.Thefollowing theoremis
a compilationof resultsfrom Mardesicand Segal [52, App.1]; it characterizespaceghatare
homotoly equialentto finite polyhedra.

Theorem 10. Atopolayical spacewith thehomotopytypeof a compactCW-comple or acom-
pactANRis homotopyequivalento a compacipolyhedon.
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CW-complexesaregenerakell-complees,andANR standgfor absoluteneighborhoode-
tract; see[35] for definitions. ANRs arean importantclassof space;they have mary useful
properties— oneof theseis thatthe identity mapextendsto a neighborhoodf the spacgthis
is the neighborhoodetractpartof ANR). Theunit cubein R™ andthe n-sphereareexamples
of ANRs.

The algebraicside of shapetheoryassociatesn inversesystemof homologygroupswith
theinversesystemof finite polyhedrajn muchthesamemannelaséechhomology Thatis, if
(Px, pau) is aninversesystemof polyhedrathen(Hy(Py), pau«) iS thecorrespondingnverse
systemof homologygroups.A third resultwe needfrom shapeheoryis:

Theorem11. If (Py,py,) and (@x,q»,) are inverse systemsf polyheda (or ANRsor CW
complees)and H-mapswhoseinverse limit spacesare homotopyequivalent,thenthe corre-
spondingnversesystem®f homolay groupshaveisomorphidimits.

For a compactspace,X, the Cechsystemis an inversesystemof polyhedra. The abore
theoremthereforeimpliesthatarny otherinversesystemof polyhedrayields aninversesystem
of homologygroupswhoselimit isomorphicto Cechhomology This is the sensein which
shapetheorygeneraIizeéechhomoIogy

In the following sectionwe consideran inversesystemof closede-neighborhoodsandin-
clusionmapsfor acompactspaceX.

3.3 Foundationsfor computing homology

In this sectionwe develop theoreticalfoundationsfor understandindhow homology groups
computedrom datarelateto the homologyof the spacethey approximate.The settingfor our
analysiss asfollows. We assumehatthe underlyingspace X, is acompactsubsebf a metric
space(M, d), andthatthefinite setof points,S C M, approximatesX in ametricsensei.e.,
eachpointof X is within distancep of somepointin S andvice versa.ln otherwords,p is the
Hausdorf distancebetweenX andS: duy(X,S) = p. In agivenapplication,this assumption
mustbejustified by physicalor numericalagumentswe give a numberof differentexamples
in Chapterd. A smallvalueof p implies .S is agoodapproximatiorto X . Typically, p depends
onthenumberof pointsin S, aswe demonstrate@ith examplesin Chapter2, andmorepoints
naturallyresultin a smallervalueof p. In someapplicationsp could representhe magnitude
of noisepresenin thedata,or a discretizatiorerror.

To give the compactspace, X, andits finite approximation,S, comparableiopological
structurewe form their closede-neighborhoods:

Xe={zxeM|dz,X)<e} and Se={zxec M |d(z,S) <¢€}.

Roughly speaking,since X and S are within p, their e-neighborhoodshould have similar
propertiedor € > p. We male this precisein Section3.3.4usinganinversesystemframeavork
from shapetheory Sincethe homologyof X, convergesto the homologyof X ase — 0 in
aninverselimit sensewe hopeto extrapolatethe homologyof X from the homologyof the
e-neighborhoodsf thedata,S, for e > p. Of course gxtrapolationis never guaranteedo give
the correctanswerandwe arealwaysrestrictedoy theinherentaccurag of thefinite data.

3.3.1 Theinversesystemof e-neighborhoods

We bagin by describingthe inversesystemof e-neighborhood$or the underlyingcompactset
X . Thespacedor theinversesystemaretheclosede-neighborhoodsX, = {z | d(z, X) < €},
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Figure3.11: A sgmentof Antoine’s necklace.This pictureis from Eric Weissteins World of
Mathematicg85]. http://mathverld.wolfram.com/AntoieNecklacehtml

indexedby 0 < € < ¢. Sincewe areinterestedn thelimit ase — 0, the orderrelationis an
invertedone: A = e when\ < e. SinceX, C X. when) < ¢, the bondingmorphismsare
simply inclusionmapsp,, : X, — X, which easilysatisfythe conditions(3.5)and(3.6). The
inverselimit spacdés homeomorphi¢o X andtheprojectiongp, : X — X, areagaininclusion
maps.

Each e-neighborhoodof X is an ANR and thereforehasthe homotopy type of a finite
polyhedron.Thismeanghekth simplicialhomologygroupsHy (X ) arewell-definedfor e > 0.
Theinclusionmapspey : X)» — X, inducehomomorphism®n the homologygroupsin the
standardvay describedn Section3.2.2.We write pex. : Hi(X)) — Hy(X,) for thesenduced
homomorphismsThehomologygroups togethemwith theinclusion-inducedomomorphisms,
yield inversesystemsf groups,denotedby Hy(X). Resultsfrom shapetheoryshav thatthe
inverselimit of Hy(X) is isomorphicto the kth éechhomologygroupflk(X); for detailssee
[52, p.121].

For computationapurposesye typically usea cofinal sequencef e-neighborhoodsX,,
wheree; > €9 > ... isadecreasingequencef e-valueswith ¢; — 0.

3.3.2 PersistentBetti numbers

We would like to quantify the structureof X by looking at the Betti numbersgg(X,) =
rank Hy(X.) ase — 0. In generathough,it is notthe casethat 8y (X.) — Bx(X) ase — 0,
i.e.,

As anexample considerAntoine’s necklaceFigure3.11. This Cantorset, A, is constructed
by taking the intersectionof a sequenc®f nestedandlinked solid tori. The zerothlevel, Ay,
is a single solid torus, which is homotoly equialentto a circle andthereforehasfirst Betti
numbey 31 (A4g) = 1. A chainof N linked solid tori is embeddedn Ay to give thefirst level
approximation A;. This processs repeatednsideeachoneof thesetori sothattheith termin
the sequence4;, consistsof N? links. Antoine’s necklaces thenA = () 4;. It is possibleto
choosea sequencef e-valuessothat A, ~ A;. Wethenhave 8:(4;) = Nt — co. However,
sincethelimit A is a Cantorset,3;(A) = 0. The problemstemsfrom ignoringtherole of the
bondingmorphismsWe now describehow to incorporatethis information.

The essentiapoint is thatwe only wantto countholesin ane-neighborhoodhataregen-
eratedby a holein the underlyingspacenot holesthat are causedafter fatteningthe setto its
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X o Xe

Figure3.12: An illustration of the differencebetweempersistenndnon-persistentoles. The
underlying space,X, is madeof an’O’ anda’'C’ thattouch at a point. In the larger e-
neighborhooantheright, theholefrom the’O’ hasa preimagen thesmallerA-neighborhood.
Theholefrom the’C’ is nottheimageof aholein X, or X,.

e-neighborhood This ideais illustratedin Figure3.12. The smallerA-neighborhoodaptures
the homologyof the underlyingspace which hasa singlehole (i.e., 5; = 1). For the larger
e-value,theneighborhoodhastwo holes;onecorrespond$o agenuineholein X, andtheother
doesnot. In termsof homology we wantto countonly thosecyclesin Hy(X,) thatarethe
imageof somecyclein Hi(X)), forall A < e.

More formally, for A < €, we saythatanequivalenceclassof cycles|z| € Hy(X.) persists
in H,(X,) if it is in theimageof the bondinghomomorphismz] € pe«(Hi(X)). The
numberof holesin X, thatpersistin X is thereforgustthe rankof theimagesubgroup:

Bir(Xe) = rank(pers (Hi(X)))- (3:8)
Sincewe wantto know thetopologyof X, we arealsointerestedn the quantity
ﬂl(c)(Xf) = rank(pe« (Hi(X)))- (3.9)

We referto 8 (X.) for A > 0, asthe persistentBetti numbes.

For Antoine’s Necklace we have thatﬂ{“(A,-) = 0 for all ¢, becausdhereis nocyclein
A;1 thatmapsontoalink in A;. Theprojectionfrom A into 4; givess?(4;) = 0 for all 4, so
lim; o0 37 (4i) = B1(A4) = 0.

The persistenBetti numberis anintegervaluedfunction of two realnumbers A < €. In
orderto understandhepropertiesof thisfunction,wegivesomeelementar;boundsonﬂ,;\(Xe).
From the definition, it follows that the persistentBetti numberis lessthanthe regular Betti
numberfor both X, and X.:

Br(Xe) < Bp(Xe)  and (3.10)
Br(Xe) < Be(X)). (3.11)

The next two inequalitiessay that for a fixed e—neighborhood,@,’c‘(Xe) is a monotonichon-
decreasindunction of X; while for afixed A, the persistenBetti numberis a hon-increasing
functionof e.

For v<A<e BL(Xe) < Br(Xe). (3.12)
For A<e<p, Bp(Xu) <Br(Xo). (3.13)
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Roughlyspeakingincreasinghedifferencebetweem ande decreasethenumberof persistent
holes.

The above inequalitiesare a first steptowardsunderstandinghe continuity propertiesof
B (X.), but morework remainsto be done. Most importantly we want conditionson X that
guarantee

BU(Xe) = Br(X) as e— 0. (3.14)

If B, (X) isfinite and(3.14)holds,thentheremustbeaney > 0 suchthatﬂ,‘c’(Xe) = Br(X) for
e € [0,€p). In additionto this, our computationatvork will be mosteffective for spacesvhere
thereis a Ao suchthat 8 (X.) = BY(X.) for A € [0, Ao]. We do not expecttheseconditions
to hold for anarbitrarycompactspace However, for specialcasesuchastheiteratedfunction
systemattractorsin Section3.5, it may be possibleto say somethingmore concreteaboutthe
continuity of persistenBetti numbersas\ ande tendto zero.

3.3.3 Growth ratesfor persistentBetti numbers

In Chapter2, we quantifiedthe rateof growth in the numberof connecteccomponentsC(e)
by the disconnectednesadex, v. We cando the samething for the k-dimensionaholes,as
countedby the persistenBetti numbers. If ﬁg(XE) — oo ase — 0, we quantify the rate of
divergenceby assumingan asymptoticpower law, 82(X.) ~ €. The exponenty, canbe
computedasthe following limit (whenit exists)

1 10.¢
+ = lim Ogﬂk( ¢)

e—0 log(1/e) ~ (3.15)

If thelimit doesnot exist, thenwe usethelimsupor liminf.

Recallthatfor £ = 0, the Betti numberis justthe numberof connectedomponentssothe
definition of v, agreeswith thatfor the disconnectednesadex, v. The 1-dimensionaholes
countedby 39 arereally loops, andthe 2-dimensionaholesare sphericalvoids like thosein
Swisscheesesowe mightcall v, theloopinessndex and~, theholiness.Resultsn Chapters
shaw thatfor subsetof R2, thereis a relationshipbetweeny; andthe fractal dimension;the
examplesin Section3.5 confirmthis.

Simple Examples

We candeterminethe growth rates,y;, analyticallyfor simple,self-similarfractal suchasthe
Sierpinskitriangle, Sierpinskicune (or carpet),Mengerspongeandso on. We alreadycon-
sideredthe homologygroupsfor the Sierpinskitriangle,T', in Section3.2.4. It is possibleto
choosea sequencef e-valuesso thatthe homologygroupsH; (T¢,) = Hi(Y;). Specifically
let » bethe radiusof the largestcircle inscribedby the triangularhole with verticesat (%, 0),

(0,3) and(%, 1), sothatr = 1 — ¥2 ~ 0.14645. Sincethenext largestholehasradiusr /2, we
chooser/2 < ¢; < r ande; 1 = €;/2. Every element|z;] € Hi(T,), hasapreimageunder
the projectionmap,p.,. : Hi(T) — Hi(T.,), sothe persistenBetti numberis the sameasthe

regular Betti number Fromour previous calculationsthen,3?(T.,) = n; = (3¢ — 1)/2. Thus,

log(BY(T, 1 i_1)/2) 1
e—0 log(l/ei) i—00 log 21/61 log 2

(3.16)

Not surprisingly this numberis the sameasthe similarity dimension.
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3.3.4 Finite approximations

We now analyzethefinite approximation S, andits relationshipto the compactset X. As de-
scribedin theintroductionto this section we assumehatthe Hausdorf distancedy (X, S) =
p,i.e., thatX C S, andS C X,. We keepthenotation,(X,, p)c), for theinversesystemsof
e-neighborhoodsf X andwrite (S, g)¢) for thesystemof neighborhoodsf S. Theinclusions
of S'into X, andX into S, give aformalrelationshipbetweertheseinversesystemsandallow
usto derive boundsonthepersistenBetti numberof X, in termsof p-persistenBetti numbers
of Se.
SinceX C S, andS C X,, we have thefollowing inclusionmapsfor ary € > 0,

eS¢ = Xeyp and je: Xe — Seqp-

With appropriatebondingmorphisms this givesus a commutingdiagramfor ary A > p and

VANV

S)\—p S)\+p - %—p SE+p
T (3.17)

Thisdiagramimpliesthatif anelemenbf Hy(X,) hasapreimagen Hy (X)), theremustbean
elemenof Hy(S.—,) with apreimagén Hy(Sx+,). Similarly, if S.,, hasaholethatpersistsn

Sx—p, theremustbea correspondindpolein X, thatpersistdn X,. In termsof Betti numbers,
we have thatfor A > p ande > X\ + 2p,

BY P(Sern) < Br(Xo) < ByP(Sep). (3.18)
We canswaptherolesof X andS in (3.17)to obtainanalogousoundson ﬂ,ﬁ(Sf):
B}?_p(XﬁLp) < /BI?(SC) < ﬂz‘ﬂ)(Xefp)- (3-19)

Since X mapsinto S,, we canonly hopeto getinformationaboutX from holesin S, that
persistin S,. Setting\ = p in (3.19),we have thatfor € > p,

Br(Xerp) < BR(Se). (3.20)

Thus, if ﬁ,‘g(XE) ~ €' ase — 0 andp is smallenough,we shouldseeat leastthat order of
growthin 82 (Se).

In onesensep is theoptimalresolutionfor coarse-graininghe datato estimatehetopolog-
ical structureof the underlyingspace.This couldimply that3(S,) is the bestapproximation
to By (X ), which would renderour multiresolutionapproachredundantFor very simplespaces
this may be the case. However, we areinterestedn more complicatedsettings. In general,
the inversesystemof e-neighborhoodsindthe persistenBetti numbersoffer two advantages.
First,thecutof resolutionp is typically notknowvn in advanceandmustbedeterminedrom the
data;examiningS, atmary e-valueshelpsusestimatep. Secondcomputingthe Betti numbers
Br(S,) atasingleresolutiondoesnot distinguishbetweerholesdueto the topologyof X and
holesin S, inducedby thegeometry Thesequencef persistenBettinumbers3, (S.) fore > p
give amoreaccuratéasisthanfy,(.S,) from whichto extrapolatetopologicalinformationabout
X (c.f., theexampleof Antoine’s necklace).Suchan extrapolationmustalwaysbe givenwith
respecto the cutof resolutionp, however, sinceit is possiblethatthetopologicalpropertieof
X changeatresolutionselow p.
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3.3.5 Computing persistentBetti numbers

Wewantto computethenumberof holesin S, thatpersisin S,, thatis, 8% (Se) = rank gep«(Hg(S,)).
This definitionis in termsof the rank of a linear operatoy g.,«, on the two quotientspaces,
Hy(S,) andH(Se). Below, we derive anequialentformulathatis givenin termsof thelinear
mapon the chaingroups g : Cx(S,) — Ci(Se). Recallthatthe k-simplicesform a basisfor
the kth chaingroup,soit is easyto write down a matrix representatiofor this map.

To simplify notationallittle, we write:

C, forthechaingroup Ci(S,),
Ce for Ci(Se),
gy forthechainmap g,
g. forthehomologyhomomorphism gep.,
Z,,Z. forthecyclegroups
B,, B, for theboundarygroups,and
H,=Z,/B, and
H,.=Z//B. forthehomologygroups.

Our startingpoint is the imagegroup, ¢.(H,) C H,. Oneof the fundamentatheoremsabout
homomorphismef groups[34] is thattheimageof a group,G, undera homomorphisme, is
isomorphicto thequotient,G/ ker ¢. Thus,

¢«(H,) ~ H,/ ker g,.
Thekernel ker g,, containsall elementf H, thatmapto thezeroelementof H,. Thatis,
kerq, = {[2] € H, | [g4(2)] = [0] € H.}.
But acycle is homologoudo 0 if andonly if it is in theboundarygroup,so
ker g, ~ Z, N g; ' (Be).

Now, recall from Section3.2.2that a homomorphisninducedby a simplicial map com-
muteswith the boundaryoperator It follows that cycles map to cycles and boundarieso
boundariesi.e.,

qy(Z,) C Z. and ¢4(B,) C B..

ThesecondexpressionimpliesthatB, C q[l(Be), soB, C Z,N qﬂfl(Be). It follows thatthe
guotient

a:(Hp) = Hp/ ker g = [Z,/B,]/[Z, N Qﬂ_l(BE)] ~ Zy/[Zp N qﬂ_l(Bﬁ)]'
Finally, this meanghatthe persistenBetti numberis
B4(€) = rank[Z,] — rank[Z, N q[l(Be)]. (3.21)

In termsof actualcomputation,then, we canfind the persistentBetti numberfrom the
dimensionsof null spacesandrangesof matrix representationfor the boundaryoperatorand
theinclusionmaps.Specifically rank Z(p) is thedimensiorof thenull spaceof thematrix for
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Ok (p) : Cr(p) = Ck—1(p). Forthesecondermin (3.21)we needto find theintersectiorof two

spacesigy[null(dx(p))], and B, which is the rangeof 0y 11(€) : Cr41(e) — Ci(e). Finding

the intersectionof two linear subspacesequiressomeinformation abouttheir basesandis

thereforea more difficult problemthan computingdimensions. The standardalgorithmsfor

determiningintersectiongypically runin O(n?) time, wheren is the largestdimensionof the

matricesinvolved [29]. As we discussn the following section,we have not yetimplemented
thesealgorithms. Instead,for the examplesof Section3.5 we use pre-«isting software for

computingtheregularBetti numberdrom subset®f atriangulationdescribedn Section3.4.1.
Theseexamplesillustratewhy theregular Betti numbersareinsuficient for extrapolation.

3.4 Implementation

Ourgoalis to take afinite cloud of pointsS asinput, andcomputepersistenBetti numbersas
afunctionof aresolutionparameterTherearefour partsto the overall process:

1. Forasequencef e-valuesgeneratsimplicial complexesthattriangulatehee-neighborhoods
of thedata.

2. Estimatethe cutof resolutionp.
3. ComputepersistenBetti numbers 3, (e), for € > p.
4. If appropriatecomputethe growth rate, .

This is essentiallythe sameapproachwe usedin Chapter2 in computingthe numberof con-
nectedcomponents.For that case,however, a simplicial comples is unnecessary— all the
informationaboute-connecteadomponentsf S is encodedn the Euclidearminimal spanning
treeof thedata.

In the presentontet, stepsl and3 arethe mostcomputationallyintensve. Thetwo steps
arealsocloselyrelated;efficient algorithmsfor computingBetti numberanale explicit useof
the datastructuresnvolvedin building the complexes. Thus,givenane-neighborhoods,, the
first problemis to generatea simplicial comple, C, whoseunderlyingspaceis at leasthomo-
topy equivalentto S.. Sincewe areinterestedn the inversesystemof e-neighborhoodswe
needsimplicial complexesfor a sequencef numbers; — 0. In orderto have inclusionmaps
thatarewell defined we needC, to beeitherasubcompleor asubdivisiorof C.; whene; < ;.
A subcomplg approacho this problemdueto Edelsbrunneetal. [18], is describedn detail
in Section3.4.1. This group hasalso developeda fastincrementalalgorithm for computing
Betti numbersof complecesin R? or R®. We usetheir implementationgor the examplesin
Section3.5.

We usethe samecriterion for Step2 that we derived in Chapter2 for approximationgo
perfectspaces.Sincea perfectspacehasno isolatedpoints, we estimatethe cutoff resolution
as the largestvalue of e for which S, hasat leastone isolatedpoint. This underestimates
thevaluefor which S, O X, but the examplesin Section3.5 shaw it to be a reasonablygood
approximationRecallthatisolatedpointsarestraightforvardto detecinumerically— apointis
e-isolatedf thedistancdrom it to every otherpointin thesetis greatethane. Thecomputation
of growth ratesin Step4 is straightforvard oncethe persistenBetti numbersarefound.
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(a) (b)
Figure3.13:(a) The Voronoidiagram.(b) The Delaunaytriangulation.

3.4.1 Alpha shapes

As we mentionedabove, alphashapesrea sequencef simplicial complexesderivedfrom the
Voronoi diagramandthe Delaunaytriangulation(DT) — fundamentakonstructionsn com-
putationalgeometry Alpha shapesverefirst definedby Edelsbrunneet al. for afinite setof
pointsin the plane[17] andlatergeneralizedo higherdimensiong18].

The Voronoi Diagram and the Delaunay Triangulation

TheVoronoidiagramof afinite setof pointsrepresenttheregion of influenceof eachpoint; an
exampleis givenin Figure3.13(a).Thegraphhasawide rangeof applicationsn computational
geometry(finding nearesheighborsfor example),in biology (assigningareasof influenceto
individualtrees) andmodellingcrystalgrowth, to nameafew. TheDelaunaycomple is closely
relatedio theVoronoidiagram andis equallyimportantin computationajeometry We give the
basicdefinitionsof thesegraphshere. For moredetailsabouttheir propertiesandalgorithms
for computingthem,see[67]

Givena finite setof points,S c R?, we definethe Voronoi cell, V(p), of p € S to bethe
setof all pointscloserto p thanary otherpointin S:

V(p)={z € Rr? | d(z,p) < d(z,q), for g€ S—p} (3.22)

The collection of Voronoi cellsis the Voronoi diagram The cells are closedcorvex regions,
andtheunionJ,.s V(p) = R If V(p) NV (q) # 0, thentheir intersectioris a subsebf the
hyperplanghatis perpendiculato, andbisectsthe edgepg; the interiors of the Voronoicells
aredisjoint.

The Delaunaycomple, 7, is definedto be the geometricdual of the Voronoidiagram;see
Figure3.13(b)for anexamplein the plane. The geometricdual is a similar constructiorto the
nene of acover: if thecellsV (py), ..., V(px) have non-emptyintersectionthenthe corvex
hull of py, ... ,px, is their dual. The nene of V(po), ...,V (pk), however, is the k-simplex
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Figure 3.14: The points,a, b, ¢, d arenotin generalpositionbecausehey simultaneouslyie
onacircle. Thefour Voronoicellsintersectatthe centerof this circle which meanghe Delau-
nay comple containsthe quadrilaterakbed. The nene of the Voronoi complex containsthe
tetrahedrorfabed).

[po, - - - ,pr] — thedifferencds illustratedin Figure3.14.In thisexample four cellsintersectt
apoint, sothegeometricdualis a quadrilateralwhereaghe nene containsatetrahedronThis
situationis adegeneratene;it only occurswhenfour pointssimultaneouslyie onacircle. To
excludethis degeneray, the pointsin S aretypically assumedo bein geneal position This
imposeghe conditionthatno (d + 2) pointsin S lie ontheboundaryof ad-sphergwe discuss
the practicality of this assumptiorlater). When S satisfiesthe generalposition condition, a
pointin R? canbelongto atmostd + 1 differentVoronoicellsandit follows thatthe Delaunay
compl« is a simplicial comple. This is why the Delaunaycomplex is usuallyreferredto as
the Delaunaytriangulation Note thatthe underlyingspaceof the Delaunaycomple, |7, is
theconvex hull of S.

A consequencef the above discussioris thatwhenthe pointsarein generalposition,the
Delaunaytriangulationis a geometricrealizationof the nerwe of the Voronoi diagram. This
correspondence usedto definethe alphacompleces.

Alpha complexes

We now describehow Edelsbrunneintroducegheresolutionparametet into theVoronoidia-
gramandDelaunaytriangulation.This operationgeneratea sequencef simplicial complees
thattriangulatethe a-neighborhood®f the datasetS. The parameter is exactly the sameas
our parametet; we switchto « in this sectionto be consistentvith the original papers.

Thecloseda-neighborhoodS,, is justthe unionof all closedballs of radiusa with centers
inS:

Sa = | Ba(p), where By(p) = {z|d(z,p) < a}.
pES

Thesea-balls thereforeform a cover of S,. We could take the nene of this cover, but the
correspondingsimplicial comple is likely to have simplicesof a higher dimensionthanthe
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Figure3.15: The union of alphaballsis partitionedby the Voronoicells (in blue). The alpha
compl« (in orange)is asubsebf the Delaunaytriangulationthatis homotoy equivalentto the
a-neighborhood.

ambientspaceof S. A betterapproachs to take theintersectiorof the a-ballswith the Voronoi
cells:

Va(p) = V(p) N Ba(p)-

This givesusa cover of S, by closedcorvex regions,calledthealphadiagram

Sa = | ValD)

pES

If the pointsof S arein generalposition,thenthe nene of the alphadiagramis a subsebf the
Delaunaytriangulation,calledthe alphacomple, C,. This subsetelationholdssincethereis
ak-simple [po, . .. ,pk] in thealphacomplec only if V,,(pg) N --- N Vu(pg) # 0. Thisimplies
V(po)N---NV(px) # 0, sothesimplex [py, . .. , pg] isin T. SeeFigure3.15for anillustration
of theabove constructions.

We now give somepropertiesof the alphacomplees. The mostimportantfor our pur
posesis that the underlyingspaceof the alphacomple, |C,|, is homotoy equialentto the
a-neighborhood,S,. This meansthe two spaceshave isomorphichomology groups(recall
Theorem?), andthereforethe sameBetti numbers.A directproof of this propertyis given by
Edelsbrunnein [16].

The constructionof the alphacompleesimplies a sequentiabrderingof simplicesthatis
very usefulin developingefficientalgorithms.First, by thesameamgumenthatC, C 7, wesee
thatif a < o, thenC,, C C, . Also, sincethe Delaunaytriangulationis finite, thereareonly a
finite numberof distinctalphacomplees:

0 =Cap,Cays---+Cap, =T

n
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Theseare orderedby increasinga, andby convention, oy = 0 andCy = (. This ordering
of the alphacompleces inducesan orderingof the simplicesin 7. If og,01,... ,0. is the
orderedist of simplicesin C,, , theno,/ 1, ... , 0.1 arethej simplicesin C, ., — Cq, , listed
in order of increasingdimension. This sequentiabrderingof simplicesis called a filter and
the correspondingequencef compleesis a filtration. The algorithm for determiningthis
orderingis basedon computingthe radiusof the circumspheref eachsimplex in 7; see[18]
for details.

DelfinadoandEdelsbrunnes algorithm[11] for computingthe Betti numbersof a simpli-
cial comple relieson this sequentiabrderingof simplices. The theoreticalunderpinningof
their algorithm comefrom centralresultsin homologytheory suchasthe MayerVietoris se-
guenceandPoincaé duality The Betti numbersare computedncrementallyaseachsimplex
is addedto the complex. This processlepend®n a testto determinewvhetherthe new simplex
belongsto a k-cycle of the new complex. Thereare efficient algorithmsfor testing1-cycles,
andhomology-cohomologyuality theoremdransformthe (d — 1)-cyclesinto 1-cog/clesthat
are equally easyto testfor. However, thereis no testfor other k-cycles, so Delfinadoand
Edelsbrunnes algorithmappliesonly to subcomplgesof R? or R3.

Remarks

TheNCSA ftp site providessoftwarethatimplementsall of theabove alphashapeconstructions
in R? andR3 [1]. We generatghe Betti numberdatafor the examplesin Section3.5 usingthis
software. The NCSA alphashapesoftwarerequiresthe inputdata,.S, to bein integer format.
This reducessomeof the standardoroblemswith datastructuresn computationalgeometry
The implementationusesa techniqueof simulatedperturbationgo copewith ary degenera-
cies,sotherestrictionthatthe pointsof S bein generalpositionis removed[18]. Compleity
boundsfor the algorithmsinvolved are at worst quadraticin the numberof points,n, for both
time andstorage. The Delaunaytriangulationof a setof pointsin the planecanbe foundin
O(nlogn) timeandO(n) storage For asubsebf R3, the NCSA softwareusesanincremental
flip algorithmwhich builds the complex in O(n?) time andstorage.The simplicesof the De-
launaytriangulationare thensortedby the radiusof their circumspherethis processequires
O(mlog m) time,wherem is thenumberof simplices.Theincrementablgorithmfor comput-
ing the Betti numbertakesO(ma(m)) to find all Betti numberdor all thealphacompleesof
asubsebdf R3, andis slightly fasterfor subset®f R2. Thefunctiona(m) is theinverseof Ack-
ermanns function (whichis definedby repeatedxponentiationjandit thereforehasextremely
slow growth. Thistime estimates commonin algorithmsinvolving setoperationssee[9].

The NCSA alphashapemplementatiorgoesa long way towardscarryingout our desired
program.lt is not clearhow to easilyincorporatehe computationof persistenBetti numbers.
It is possiblethatanincrementaklgorithmfor finding the persistenBetti numbersexists, asis
the casefor the regular Betti numbers.However, finding the persistenBetti numbersrequires
someexplicit informationaboutthe cyclesandboundariesandthe alphashapealgorithmdoes
not generater recordthis information. This problemclearly requiresfurtherwork.

Anotherdrawvbackof thealphashapealgorithmis alarge degreeof redundang in thetrian-
gulationsfor thetype of datawe areinterestedn. The Delaunaytriangulationbuilds simplices
that involve every single datapoint, and this generates much finer comple thanis neces-
saryfor resolutionse > p. This redundang is likely to occurwhene&er we constructC,; as
asubcomple of C; for e; < ¢;. In Section3.4.3,we discussa possiblealternatve approach
to building complexes on multiple scalesbasedon subdvisions. In the following section,we
outlinesomeotherfastalgorithmsfor computingBetti numbersf a singlecomple.
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3.4.2 Other algorithms for computational homology

The developmentof fastalgorithmsfor computationahomologyis an active areaof research.
Mary differentapproachesxist for variousspecificapplicationsmostly for complecesin R3.
To the bestof our knowvledge,the alphashapealgorithmis the only onethatgivesinformation
at multiple resolutions. In this section,we give a very brief overvienv of someof the recent
literature.

Dey andGuha[14] describeanefficientalgorithmfor computingBettinumbersandgeomet-
ric representationsf the non-boundingcyclesfrom 3-manifoldsin R®. They thengeneralize
this to includeary simplicial complex in R? througha processof thickening. They areinter
estedn applicationgo solid modelling,molecularbiology andcomputeraidedmanugcturing.
This algorithmfinds the Betti numberswith time andstoragecompl«ity thatarelinearin the
sizeof thecomple, andthegeneratorgor the first andseconchomologygroupswith a costof
orderO(n?g) in time, whereg is the maximumgenusof the boundarysurfaces.

In [37] Kaliesetal. developanalgorithmfor computingthe Betti numberdrom cubicalcell
complees. Their approachs basedon alocal reductionof the complex to simplerform. In R?
this reductionis a homotojy equivalenceandtheresultof the reductionds a minimal comple
consistingof loops. Thenumberof loopsgivesthefirst Betti number In higherdimensionsthe
reduceccomplex may notbe minimal andthereductionstepsareno longersimplehomotopies.
Kaliesetal. conjecturethatthe Betti numberscanbe computedwith O(n log® n) operations,
wheren is the numberof cubesin the complex. This codewasdevelopedfor applicationsn
dynamicalsystems— specifically for computingthe Conley index of isolatingneighborhoods
of invariant setsfor flows generatecby ODESs; see[58] for an example. The generationof
cubical covers of suchsetsis part of the GAIO (global analysisof invariant objects)project
[12] andis an efficient way to represensuccessie approximationdo attractorsor unstable
manifolds,for example.

Finally, we describean approachdueto Friedman[26] which computeghe Betti numbers
of arbitrarysimplicial complexesin R%. This methodis basedn afundamentatesultof Hodge
theorywhich saysthatthe homologygroups(with realor rationalcoeficients)areisomorphic
tothenull spaceof aLaplacianoperatoonthechaincompleces. TheLaplacian Ay, : C, — Cy
is formedfrom the boundaryoperatorandtheir transposes:

Ay = 8k+182+1 + Bzak

Hodgetheoryimpliesthatthe kth Betti numberis the dimensionof the null spaceof Ay. For
simplicial complees, Friedmanconstructsa matrix representatiomf the Laplaciandirectly,
without using the boundaryoperatorsexplicitly. The matrix for Ay is positve semidefinite
and symmetric,andtypically quite sparsesoit is amenabldo fastalgorithmsfor computing
ranksandnull spaces.To computethe dimensionof the null spaceFriedmanmakesa careful
applicationof the powver methodfor finding eigewvaluesandeigemwvectors. The pover method
can be inaccuratefor large matriceswith repeateceigemvalues; Friedmans methodattempts
to rigorouslyverify the correctnes®f the computedBetti numbers. This algorithmholdsfor
simplicial compleesof ary finite dimensionandtherunningtime is approximatelyquadratic
in thenumberof simplices.See[26] for detailedcompleity bounds.

3.4.3 A better way?

The two main dravbacksto the alphashapeimplementationare (1) that the simplicial com-
plexesarefiner thanthey needto be, and(2) the fastalgorithmfor computingBetti numbers
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only holdsin R? andR?. The excessie numberof simplicesin the alphacomplees means
that computingthe persistenBetti numbersfrom the formulain Section3.3.5is unrealistic.
Any subcomplg approacho generatinga sequencef complexesat differentresolutionswill
encountetthe sameproblemof having an unnecessarilyarge numberof simplicesat coarser
resolutions.Theremainderof this sectionsketchesan alternatve approacho generatingcom-
plexesat multiple resolutionshasedon subdvisions.

Theadwantageof subdvisionsis thatcompleesat coarseresolutionshave fewer simplices
thanthoseat fine resolutions.Subdvision of simplicial complexesis a commonprocesshoth
in homologytheoryandin computationajeometry For applicationdo generakcatteregoint
data,however, cubicalcomplexesarea more naturalconstruction.The cubicalcomplexeswe
have in mind areessentiallyregularmeshesn R". Thelevel-0 comple is asinglecube|Cy| D
S, with sidec. This cubeis thensubdvided into 2" equalcubesof sidec/2, andthelevel-1
comple, €1, consistsof thosecubesthat containa point from S. This processs repeatedn
the cubesof C; to getCs, andsoon. The sequencef complexescanbe organizedinto a tree
structure;sucha multiresolutioncubicalcomple is usuallyreferredto asa quadtreén R?, and
anoctreeR3.

Thissequencef cubicalcomplexesdoesnothave ascloseacorrespondenogith e-neighborhoods
asthealphacompleesdo, sowe needto slightly modify theinversesystemsf Section3.3.1.
GivenacompactspaceX C R", it is possibleto constructa sequencef cubicalcomplexesas
we describedn theprevioussection.Theunderlyingspace|C;|, of sucha cubicalcomple still
hasthehomotoyy typeof afinite polyhedron;|C;| — X in theHausdorf metric;andfor i > j,

C; is arefinemeniof C;. Thesepropertiesshouldbe enoughto shav thatthe resultinginverse
systemof homologygroupsis isomorphicto Cechhomology

Another substantiadifferencebetweenthe subdvision and subcomplg approachess in
the chain mapsinducedby inclusion on the underlying spaces. For the sequencef alpha
complees,thesechainmapsare one-to-oneénclusionmapson the compleces. For the cubical
complees,if C; is asubdvision of C;, we still have that|C;| C |C;|. Thechainmapsgy areno
longerone-to-onehowever, sinceeachcubein C; is subdvidedinto 2" cubesandall of these
are possiblyin C;. The inclusion-inducedchain map thereforemapsall of thesecubesonto
thelargerone. This hasimplicationsfor the numericalimplementatiorof computingpersistent
Betti numbers.

Of all the fast Betti numbercomputationgdescribedearlier it seemshat Friedmans ap-
proachusingthe Laplacianhasthe mostpotentialfor adaptatiorto our proposedsubcomplg
approachTheisomorphismbetweerhomologygroupsandthenull spaceof a Laplacianmatrix
suggestghatin orderto computepersistenBetti numberswe needonly find intersectionof
null spaceof the appropriateLaplacianmatrices. This is an easiernumericallinear algebra
problemthanthe oneimplied by the formulain Section3.3.5. Therearestill problemsto be
worked throughhere.In particular how to build the Laplacianmatrix from cubicalcomplees
(ratherthansimplicial ones),andhow to incorporategheinclusion-induceathainmapsbetween
the Laplaciannull spaces.

The above ideasare just one possibledirection for the developmentof more efficient al-

gorithmsto computepersistenBetti numbersfrom data. This an openproblemthat needsa
substantiahmountof furtherwork.
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Table 3.1: Computedvaluesof v, and~;. The resultsare slopesof linear least-squarefits
to the data;error boundsare estimatedoy varying the scalingrange. The exact valuesfor the
non-zeroexponentsarethe sameasthe similarity dimensionlog 3/ log 2 =~ 1.585.

DataSet Figure Yo 24l
Sierpinskitriangle 3.16 0 1.59 + 0.02
Cantorset 3.18 1.40 +0.05 0
Simply connectedset 3.20 0 0
Disconnectedet 3.22 1.42 +0.05 0

3.5 Examples

In this sectionwe examinethe e-neighborhoodsf somesimplefractal examplesgeneratedby
iteratedfunction systems We usethe samerelatvesof the Sierpinskitriangleasin Chapter2.
Theseexamplesare chosenbecausehey have well understoodopological structure,and it
is easyto generatdinite point-setapproximationgo them. We usethe alphashapesoftware
describedn Section3.4.1to computethe regular Betti numbersas a function of resolution.
The resultsdemonstratehat growth in the regular Betti numberscan be misleadingandthat
for truly topologicalinformation,thepersistenBetti numbersaarenecessarySincewe have not
implementedan algorithmfor computingthe persistenBetti numbey we do not have the data
to make a comparison.For thesesimple examples,however, we do know whatthe persistent
Betti numbersshouldbe. This is a very preliminary setof numericalexperiments. Further
investigationgequirea moreefficientimplementatiorto computepersistenBetti numbers.

3.5.1 Siempinski triangle relativesrevisited

Recallfrom Section2.4thatthe Sierpinskitrianglerelatvesareattractingfixed setsof a family
of iteratedfunctionsystems:

S = f[S] = f1lSTU f2[ST U f3[S].

The functions f; are similarity transformationf the unit squarewith a contractionratio of
one half, and they caninvolve rotationsor reflections. The topology of thesefractalsfalls
into four classessimply connectedFigure3.20),connectedFigure3.16),totally disconnected
(Figure3.18),anddisconnectedFigure2.13). Thetechnique®f Chapter2 distinguishbetween
connectedand disconnectedxamples. With the mathematicamachinerydevelopedin this
chapterwe arenow equippedo distinguishbetweersimply connectedetsandconnectedets
with holes.

The pointson the fractalsare generatedn the samemannerasin Chapter2, by applying
the transformationsfi, fo, f3 in randomorderto ary initial point. For eachof the following
fractals,we computethe numberof componentsgy(e), the numberof holes, 8;(¢), andthe
numberof isolatedpoints, I(e), for an approximationwith 10* points. Where appropriate,
we calculatethe growth rates,y, and~;; the resultsare compiledin table 3.1. Since 3y(e)
countsthe numberof connecteccomponentsn the e-neighborhoodratherthat the numberof
e-connecteccomponentswe have that 8y (e) = C(e/2). With this changethe datahereagree
with theresultsin Chapter2.

67



The Sierpinski triangle

Thegeneratingunctionsfor the Sierpinskitriangleare:

fl(way) = %(flj,y)
f2(xay) = %(:E + 1;y)
fa(z,y) = 5(z,y +1). (3.23)

A finite point-setapproximatiorto thetriangle,ane-neighborhoodndthecorrespondingubset
of the Delaunaytriangulationare shavn in Figure 3.16. The underlyingsetis perfectand
connectedvith infinitely mary holes,sowe shouldseefy(e) = 1 andj;(e) — oo ase — 0.

As wederivedin Section3.2.4,for r ~ 0.146,

/2" < e, <T/2"H
k 1
23 =3(" 1)

Thegrowth rate,y; = log 3/ log 2 ~ 1.585, is the sameasthe similarity dimension.

Theseexpectedresultsarereflectedby the computationof 5y (¢), B1(e) andI(e) (graphed
in Figure 3.17) for the 10 point approximationto the triangle. We seethat for ¢ above a
thresholdvalue,thecomputedraluesof By(e) andfi(e) arein closeagreemenith thetheory
The point at which 5y (e) andB1(e) “blur” is approximatelye = 0.003, closeto the value at
which the numberof isolatedpoints, I(e), becomegositve. This e valueis, of course,the
cutoff resolutionp. Aswe saw in Chapter2, atfinerresolutions—i.e.,e < p —thereis asharp
transitionin the graphof 8y from oneto the numberof pointsin the set,aseachpointbecomes
isolated.Thegraphof 8; shawvs thatthe holesaredestryed ase decreasesThisis becaus¢he
edgeghatform theloopsare eventuallydeletedfrom the triangulation. We estimatethe slope
of the staircaseyy a linear, least-squarest andfind y; ~ 1.59. Thisis very closeto the value
derivedabove.

A Cantor setrelative

Figure3.18shaws theattractorfor theiteratedfunctionsystemgeneratedby

filz,y) = 5(-y +1,2)
fa(z,y) = 5(y + 1,2)
f3($7y) = %(ya _:E+2)' (324)

This fractalis a Cantorset,andthereforeperfectandtotally disconnectedsowe expectto see
Bo(e) — oo ase — 0andpd(e) = 0. In Chapter2 we derivedthe following form for By(€):
60/2n+1 <€n < 60/2"
Bolen) 3" +2-3(=1/2 if nisodd
€ =
oLen 3" 4 3n/2 if n is even.

Here, ¢y is the smallestvalue of e for which S is connected.Recallthat the value of ~, is
log 3/ log 2, whichis the similarity dimensionagain.

We saw in Chapter2 that the numericalcomputationsf Gy(e) agreevery well with the
theoreticalvaluesabore when € is greaterthan the cutoff resolutionp. Here, the value of
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(@) (b)

Figure3.16:(a) 10* pointson the Sierpinskitriangle. (b) An e-neighborhoodblueoutline)and
correspondingubsebf the Delaunaytriangulation(orange).

Bo(e), I(e) Bi(e)

107 107 10° 10" 10° 107 10" 10°

€ €

Figure 3.17: Numberof componentsf,(e), and numberof holes, 51 (¢), for 10* points uni-
formly distributedoverthe Sierpinskitriangle. Thedashedine in thegraphof 5y (¢) is thenum-
berof isolatedpoints,I(¢). All axesarelogarithmic. Thehorizontalaxisrangeis 1074 < € < 1.
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@) (b)

Figure3.18:(a) 10* pointsonthe Cantorsetrelative. (b) An e-neighborhoodndcorresponding
subsebf the Delaunaytriangulation.

Bi(e)

Figure 3.19: Numberof componentsf,(e), and numberof holes, 51 (¢), for 10* points uni-
formly distributedoverthe Cantorsetrelatve. Thedashedine in thegraphof 5y(e) is thenum-
berof isolatedpoints,I(¢). All axesarelogarithmic. Thehorizontalaxisrangeis 1074 < e < 1.
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p =~ 0.005. Thegraphof ;(e) hasregularly spacedspikes— the reasonfor this is seenin
Figure3.18(b). The e-neighborhoodiravn therehastwo connecteccomponentsDatapoints
in the two componentsare separatedy a distanceof at least2¢;. We setthe value of € in
Figure3.18(b)to beslightly largerthaney /2 — the valueat which the e-neighborhoodreaks
into five componentsHolesappeain thetriangulationatthevalueof e displayedecausef the
few remainingedgeshatbridgethe “gap”. Theseedgesaredeletedat slightly smallervalues
of e andthe holesdisappearA graphof the persistenBetti numbey 8¢ (¢), would not contain
thesespikes.

A Simply connectedrelative

A simply connectedelative of the Sierpinskitriangle,shavn in Figure3.20,is generatedby:

(z,y+1). (3.25)

We expectto seea single connectedcomponentand no persistentholes. However, holesdo
appeaiin thee-neighborhoodsasrecordedn Figure3.21. Theseholesaredueto thegeometry
of thefractal, notits topology Again, thesespikesin the graphof 3;(e) would notappeatin a
graphof the persistenBetti number

A relative with infinitely many connectedcomponents

A fourth trianglerelative, shavn in Figure3.22,is generatedby thefollowing similarities:

fl(xay) = %(-'L',y)
falzy) =3y +1,—z+1)
fa(z,y) = §(z,y +1). (3.26)

The attractorfor this systemhasinfinitely mary connectedcomponentsyet is not totally dis-
connectedecauséhe componenthave positive diameters.Thus,we expectSy(e) — oo and
B?(e) = 0. Again, self-similaritymeanshatfor:

60/2n+1 <€y < 60/2”,
Bolen) = 5(3"H +1),

giving agrowth rateof oy = log 3/ log 2. We estimatethe slopeof thegraphof Sy (e) asbefore
andfind o =~ 1.42. Thisis lower thanthe limiting value becausef the small rangeof e for
which the computedvaluesof 5y (¢) reflectthoseof theunderlyingfractal.

This exampleis anothergoodillustration of why the computatiorof persistenBetti num-
bersis important. Topologically the setis composedf disconnectedine segments,sothere
canbe no non-boundingcyclesin the first éechhomologygroup. However, the geometryof
the setcreatesholesin the e-neighborhoodsas seenin Figure 3.22(b). In the previous two
examplesit is clearthatthe holesdo not persistase decreasebecause; (¢) = 0 betweerthe
spikes. In Figure3.23we seeanapparengrownth in ;(e). Thedifferencels thatsmallerholes
appeambeforethelargeronesdisappearresultingin anaccumulation.

Noticethatthis sethasthe samevaluesof v, andy; asthe Cantorsetrelative. Thisimplies
thatthe Betti numbersarenotenoughto distinguishtheir differenttopologicalstructure Recall
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(@) (b)

Figure3.20:(a) 10* pointsonasimply connectedet. (b) An e-neighborhoocndcorresponding
subsebf the Delaunaytriangulation.

Bi(e)

Figure 3.21: Numberof componentsgy(¢), andnumberof holes, 51 (¢), for 10* points uni-
formly distributed over a simply connectedractal. The dashedine in the graphof Gy (e) is
the numberof isolatedpoints, I(e¢). All axesarelogarithmic. The horizontalaxis rangeis

104 <e< 1.
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(@) (b)

Figure3.22: (a) 10* pointson a disconnectedet. (b) An e-neighborhoodand corresponding
subsebf the Delaunaytriangulation.

Bi(e)

€ €

Figure3.23: Numberof componentsf(e), numberof holes, 5 (€), for 10* pointsuniformly
distributed over the disconnectedelative. Thedashedine in the graphof 3y (e) is the number
of isolatedpoints,I(e). All axesarelogarithmic. The horizontalaxisrangeis 107* < e < 1.
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thatthiswasaddresseth Chapter2 by examiningthe diametersf the connectedcomponents.
For a Cantorset, the diametersgo to zero, while for the examplein Figure 3.22, the largest
diametercorvergesto one.

3.6 Concluding remarks

We have demonstratethatit is possibleto extractinformationaboutthe topologicalstructure
of a compactspacefrom a finite approximationto it. The examplesgiven hereare subsets
of the planewhereit is easyto seethe structureof the data. In higherdimensionalspacesit
is extremelydifficult visualizethe underlyingtopologyof a cloud of points,so computational
techniquedbecomesvenmoreimportanttools.

In Section3.5,we computednly theregularBetti numbers g (e), of thee-neighborhoods.
Theexamplesgivenhighlighttheneedfor computatiorof the p-persistenBettinumbers 3% (¢).
Thelattergive abettercharacterizationf thetopologyof theunderlyingspaceln applications,
both setsof numbersmay prove useful, sincethe Betti numbersof the e-neighborhoodgjive
geometridnformationabouthow the underlyingspaceas embedded.

Many openproblemsremain. For the theoryof persistenBetti numberswe needfurther
resultsrelatingthe limit of 3 (X,) asA ande tendto zeroto the Betti numbersof X . In terms
of computationmorework canbe doneon developingandimplementingefficient algorithms
for building complexesandcomputingpersistenBetti numbers Fasteralgorithmsareessential
for easdn studyingthelarge datasetstypically encountereih the studyof dynamicalsystems.
We anticipatethatsuchcomputationatoolswill assistn the numericalinvestigationof chaotic
systemdy giving a deepeunderstandingf the structureof attractorsandotherinvariantsets.
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