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Abstract. With computing systems transforming from 
single-processor devices to the ubiquitous and 
networked devices and the datacenter-scale computing 
in the cloud, the parallelism has become ubiquitous at 
many levels. At micro level, parallelisms are being 
explored from the underlying circuits, to pipelining and 
instruction level parallelism on multi-cores or many 
cores on a chip as well as in a machine. From macro 
level, parallelisms are being promoted from multiple 
machines on a rack, many racks in a data center, to the 
globally shared infrastructure of the Internet. With the 
push of big data, we are entering a new era of parallel 
computing driven by novel and ground breaking 
research innovation on elastic parallelism and 
scalability. In this article, we will give an overview of 
computing infrastructure for big data processing, focusing 
on architectural, storage and networking challenges of 
supporting big data analysis. We will briefly discuss 
emerging computing infrastructure and technologies that 
are promising for improving data parallelism, task 
parallelism and encouraging vertical and horizontal 
computation parallelism. 

Keywords. Big data, Cloud computing, Data analytics, 
Elastic scalability, Heterogeneous computing, GPU, PCM, 
Big data processing  
 
1  Introduction 
 
Digital data have become a torrent engulfing every area of 
business, science and engineering disciplines, gushing into 
every economy, every organization and every user of 
digital technology. In the age of big data, deriving values 

and insights from big data using rich analytics becomes an 
important differentiating capability for competitiveness, 
success and leadership in every field.  

The term "big data" refers to large, diverse, complex, 
longitudinal, or distributed data sets generated from 
instruments, sensors, Internet transactions, email, video, 
click streams, and all other digital sources available today 
and in the future. Many also use the term “big data” to 
refer to data that is too large, too dispersed, and too 
unstructured to be handled using conventional hardware 
and software facilities [1]. For example, the massive scale 
of graph data easily overwhelms memory and computation 
resources on commodity servers. There are two 
inescapable contests in the big data space to which big 
data technology has to respond.  

The first contest is the diversity of data. As we record 
more data, we end up having different formats of data to 
manage. About 20% is relational [1], but we also have text, 
video, image, emails, Twitter feeds, Facebook profiles, 
social graphs and time series data pumped out from 
sensors. A popular characterization of big data is by 
volume, velocity and variety [1]. Volume describes the 
relative size of data to the processing capability. Today a 
large number may be 10 terabytes. In 12 months 50 
terabytes may constitute big data if we follow Moore’s Law. 
Overcoming the volume issue requires both technologies 
that store vast amounts of data in a scalable fashion and 
technologies that use distributed approaches to querying 
and deriving actionable information and insights from the 
big data. Velocity describes the frequency at which data is 
generated, captured and shared. The velocity of large data 
streams from a vast range of devices and click streams not 



 
 

only create requirements for greater real-time use cases, but 
also power the ability to parse text, detect sentiment, and 
identify new patterns. Real-time analytics require fast 
matching and immediate feedback loops based on 
alignment with geo location data, social media, user history 
and current sentiment. Variety refers to the proliferation of 
data types from social, machine to machine, and mobile 
sources in addition to traditional transactional data. Data no 
longer fits into neat, easy to consume structures. The 
addition of unstructured data such as speech, text, and 
language increasingly complicate the ability to categorize 
data. Such diversity of data not only requires elastic storage, 
transport, access and processing methods but also calls for 
new approaches to deriving deeper insights and values 
from big data.  

The second contest is the richness of analytics. As more 
digital data and information technology penetrate into 
science and engineering fields, we are confronted with 
richer analytics to perform. In addition to SQL queries, we 
also have time series analysis, statistical analysis, 
geo-spatial analysis, graph analysis, sentiment analysis, 
entity extraction, and so forth. Not surprisingly, the 
platforms and tools for big data analytics today are too 
few to make rich analytics scale to big data and yet too 
complex to make them plug and play.  

 We envision that the rigorous demands that big data 
places on networks, storage and servers make it more 
attractive to outsource big data analytics (the hassle and 
expense) to the cloud. Furthermore, the explosive 
interest in big data will help the domain scientists and 
every enterprise and organization to realize that they 
can analyze all their data in the same way as large 
companies like Walmart, Amazon do from business 
optimization to real time analysis of domain specific 
data as well as customer data without huge up-front 
ownership cost for supporting big clusters, big 
administration, big programs, and so forth. We argue 
that developing the systematic approaches to mining 
big data for intelligence and optimization are the key to 
push the big data ecosystem to develop new systems 
and software that let domain scientists, business owners, 
organizations of all sizes plow through massive datasets 
faster and more efficiently. 

 In this article, we will give an overview of computing 

infrastructure for big data processing, focusing on 
architectural, storage and networking challenges of 
supporting big data analysis. Instead of casing through 
known or standard cloud computing infrastructure, 
delivery models for big data storage and processing, we 
accentuate on rethinking the computing stack for big data 
processing. We will emphasize on emerging computing 
infrastructure and technologies that are promising for 
improving data parallelism, task parallelism and 
encouraging vertical and horizontal computation 
parallelism. By data parallelism, we refer to the 
simultaneous execution of the same function across the 
element of a dataset. By task parallelism, we refer to 
simultaneous execution of many different functions across 
the same or different datasets. By vertical and horizontal 
computation parallelism we refer to the architectural 
innovation, software innovation and algorithm innovation 
for promoting data parallelism and task parallelism in big 
data processing.  

The rest of the paper is organized as follows: We first 
give an overview of three promising architectural 
technologies, emphasizing on their sweet spots for big 
data processing by exploiting parallelisms. Then we 
discuss key issues in dealing with big data that exceeds the 
capacity of existing hardware or the processing capability 
of existing data storage and computation software by 
reviewing a selection of alternative data partitioning 
models in terms of their effectiveness for big data 
processing.   
 

2  CPUs for Big Data Processing 
 

A GPU is a highly parallel computing device designed for 
the task of graphics rendering [2]. Despite its graphics root, 
GPU (Graphics Processing Unit) has evolved to become a 
more general processor with hundreds of cores and more 
powerful than CPU for the execution of data-parallel, 
arithmetic (versus memory) intensive applications in which 
the same operations are carried out on many elements of 
data in parallel. The reason for the large performance gap 
between many-core GPUs and general purpose multi-core 
CPUs lies in the fundamental architectural design of the 
two processors. A CPU is designed to optimize for 
sequential code performance. It uses sophisticated control 



 
 

logic to allow instructions from a single thread of execution 
to execute in parallel or even out of sequential order while 
maintaining the appearance of sequential execution. It 
provides large cache memories to reduce the instruction 
and data access latencies of applications. In contrast, the 
GPU is designed to optimize for the execution of massive 
number of threads. The hardware takes advantage of a large 
number of execution threads to find work to do when some 
of them are waiting for long-latency memory accesses, thus 
minimizing the control logic required for each execution 
thread. Small cache memories are provided to help control 
the bandwidth requirements of these applications so that 
multiple threads that access the same memory data do not 
need to all go to DRAM. As a result, much more chip area 
is dedicated to the floating-point calculations.  

GPUs are especially well-suited to address problems 
that can be expressed as data-parallel computations with a 
high ratio of arithmetic operations to memory operations. 
Many applications that process large data sets can use a 
data-parallel programming model to speed up simulations. 
For example, image and media processing applications 
such as video encoding and decoding, image scaling, and 
pattern recognition very naturally map image blocks and 
pixels to parallel processing threads, Example applications 
include video processing, machine learning, 3D medical 
imaging, computational finance, computational biology.   

GPU is designed as a numeric computing engine and 
it will not perform well on some tasks. Therefore, most 
applications will use both CPUs and GPUs, executing the 
sequential parts on the CPU and numeric intensive parts on 
the GPUs. A known challenge to joint CPU-GPU execution 
of an application is the significant overhead of memory 
transfers between the host CPU and the GPU. In general, 
for smaller sized datasets, the overhead of time spent in 
sending data to the GPU and bringing it back neutralizes 
any performance benefit obtained by computing on the 
GPU. Figure 1 shows CPU and GPU interconnection. 
Also GPUs offer best performance gains when all the 
computing resources, processing cores and memory, are 
maximally utilized. Thus, it is best to analyze data sizes to 
determine which jobs to offload to the GPU. Figure 2 
shows a performance comparison of block nested loop 
(BNL) and GPU-based Nested Loop (GNL) for skyline 
query  computation using two types of datasets: 
anti-correlated and independent datasets with varying 

dimensionality (d) and size of datasets (N).  

 

Fig. 1 GPU and CPU interconnetion 

 

(a) Effect of d  
          (b) Effect of N 

         (a) Effect of d (b) Effect of N 
Fig. 2. Elapsed time for anti-correlated and correlated datasets 
 
By design, GNL aims to drastically reduce the cost of skyline 
dominance tests by parallelizing the CPU-based dominance 
test itself using GPUs. GNL can determine dominance 
relationship by performing multiple dominance tests in 
parallel. It is noteworthy that GNL is orthogonal to existing 
pruning efforts, and can be used by all existing algorithms 
[17] after their own pruning steps to speed up the performance 
of their dominance tests. 

Recent research on tightly integrating a CPU and a 
GPU on a single chip [4] shows that it can significantly 
reduce power and performance overhead introduced by the 
communication of CPUs and GPUs over long electrical 
connections, without sacrificing process power [5].  

 



 
 

 
3  Heterogeneous Many Core Computing 
 
Many-core computing devices have large numbers of 
processors (cores) on a single chip. Such configurations are 
attractive because they can achieve a greater performance 
(calculations per second) for a given amount of electrical 
power than their single-core equivalents. With dual-core 
and quad-core CPUs now commonplace, processor 
development is heading forward along the route of 
hundreds to thousands of cores. In addition, multi-core 
chips mixed with simultaneous multithreading, 
memory-on-chip, and special-purpose "heterogeneous" 
cores promise further performance and efficiency gains, 
especially in processing multimedia, recognition and 
networking applications. 

A many-core system on a die can be an asymmetric 
system with a few large cores to deliver higher 
single-thread performance, and a large number of small 
cores.  A heterogeneous system consists of general 
purpose cores (GP) and special purpose cores (SP), each 
core having local cache memory, and all cores connected 
together with an on-die interconnection network. Example 
of special purpose cores are those for hardware 
acceleration, e.g. graphics engines. Although a many-core 
system will deliver higher compute throughput than a 
multi-core system for the same die size and in the same 
power envelope, it may be difficult to harvest the 
performance of thousand cores, according to Amdahl’s 
Law [6,7], which states that the parallel speedup is limited 
by the serial code in a program. If the serial percentage in 
a program is large, then parallel speedup saturates with 
small number of cores. Thus, only data parallelism of a 
single application is insufficient to harvest the 
performance of a many-core system [7]. We need to 
exploit and utilize task level and application level 
parallelism to maximize many core systems for big data 
processing.  
 Although the many-core architecture with hundreds 
to thousands of small cores can deliver unprecedented 
compute performance in an affordable power envelope, 
fine grain system power management, an optimized 
on-die-network, and efficient memory technology are 
vital. Furthermore, how to make storage and system 
software as well as application developments to fully 

benefit from the potential of hundreds to thousands of 
cores poses interesting research challenges for big data 
processing and big data technology innovation. 
  

4  Persistent Memory for Big data storage  
 
Persistent memory, also called Phase change memory 
(PCM), is an emerging non-volatile memory technology 
pioneered by Intel, Numonyx, Samsung, IBM and others, 
as a low cost, more reliable, faster and better alternative to 
flash memory [8,9].  
 In contrast to DRAM, non-volatile memory can retain 
information without power and has fast access times, 
providing both huge power savings and the potential for 
much faster data transfer. PCM combines the best attributes 
of NOR, NAND and RAM within a single chip, including 
bit-alterable, non-volatile, fast read speed, fast write/erase 
speed and good scalability [8]:  
• Bit alterable: unlike flash memory, stored information 

can be switched from one to zero or zero to one without a 
separate erase step.  

• Non-volatile: like NOR flash and NAND flash, PCM 
does not require a constant power supply to retain 
information. 

• Read performance: PCM features fast random access 
times, Similar to RAM and NOR flash memory, which 
enables the execution of code directly from the memory, 
without an intermediate copy to RAM. The read latency 
of PCM is comparable to single bit per cell NOR flash, 
and the read bandwidth can match DRAM.  

• Write/erase performance: PCM achieves write 
throughput speeds faster than NAND and with lower 
latency. This will deliver significant write performance 
improvement over NOR and NAND flash, When 
combined with bit-alterable (no separate erase step). 

Scalability: PCM is immune to the charge storage 
scaling issue, because it does not store charge (electrons). 
As the memory cell shrinks on flash, the number of 
electrons stored on the floating gate shrinks. In contrast, 
both NOR and NAND rely on floating gate memory 
structures, which are difficult to shrink.  

Up to now, all extant architectures assume that 
directly CPU-accessible memory is volatile. From the 
history of computing, a persistent storage system, including 
the file system and virtual memory system, has assumed to 



 
 

base on the characteristics of moving-head disks, devices 
with a very high access latency organized into fixed-sized 
blocks of thousands of bytes. These characteristics run deep 
at every level of the software stack. The PCM technologies 
are fundamentally different both in their low access time 
and their fine-grained (byte-level) access. With persistent 
memory, architectures and software design and 
optimizations will need to respond accordingly because 
widespread use of non-volatile memory will make the 
distinction between main memory and bulk memory 
disappearing. This may require redesign of the operating 
system and file system to take advantage of non-volatile 
memory technologies.  

Although for now, the base memory technology is still 
the biggest wild card for most of the big data processing 
technologies, it is important to start rethinking of big data 
computing in the context of emerging architecture and 
storage technologies.   
 

5  Exploiting Parallelism and Scalability 

Designing a scalable system for analyzing, processing 
and mining huge real world datasets has become one of 
the challenging problems facing both systems 
researchers and data management researchers. For 
example, many big graphs such as Web graphs, social 
network graphs, protein interaction graphs are 
particularly challenging to handle, because they cannot 
be readily decomposed into small parts that could be 
processed in parallel [13,14].  

One of the technologies that made big data analytics 
popular and accessible to enterprises of all sizes is 
MapReduce [22] (and its open-source Hadoop [9] 
implementation). The MapReduce programming model 
has become popular because a programmer can harness 
the processing power of a cluster of commodity hardware 
for very large parallel tasks in a simple way. The 
programmer only needs to write the logic of a Map 
function and Reduce function. The MapReduce 
framework divides the program execution across a cluster 
of computer nodes into a Map and Reduce stage, separated 
by the transfer of data between machines in the cluster, 
called the Shuffle stage. In the Map stage, each Mapper 
machine in the cluster executes a Map function on a 
distinct region of the input data. The Map execution 
produces the Map output of key-value records locally at 

each machine. The records for any given key, which are 
spread out on many machines, are aggregated at each 
Reducer for the Reduce stage by remotely reading from 
the Mappers. An important challenge for scaling 
MapReduce enabled data analytics in the cloud is to 
manage multiple virtual MapReduce clusters, 
corresponding to a diverse set of analytic jobs, executing 
concurrently on a shared physical infrastructure. Each 
MapReduce job generates different loads on the shared 
physical infrastructure: (a) computation load: number and 
size of each VM (CPU, memory), (b) storage load: amount 
of input, output and intermediate data, and (c) network 
load: traffic generated during the map, shuffle and reduce 
phases. The network load is of special concern with 
MapReduce as large amounts of traffic can be generated in 
the shuffle phase when the output of map tasks is 
transferred to reduce tasks. As each reduce task needs to 
read the output of all map tasks [22], a sudden explosion 
of network traffic can significantly deteriorate cloud 
performance. For example, one way to enhance the 
performance of data analytic jobs on MapReduce cloud is 
to devise smart partitioning and placement optimization 
that can minimize or reduce inter-VM (virtual machines) 
network traffic for MapReduce workloads. We argue that 
by improving data locality for both Map and Reduce 
phases of an analytic job, one can effectively reduce the 
network distance between storage and compute nodes for 
both map and reduce processing. For instance, the VMs 
executing the reduce tasks should be close to the map-task 
VMs which generate the intermediate data used as reduce 
input. This improved data locality can reduce both job 
execution times and cumulative network traffic of virtual 
MapReduce clusters, because network transfer time is 
often the bottleneck of total execution time for an analytic 
job. While map locality is well understood and 
implemented in MapReduce systems, reduce locality has 
surprisingly received little attention in spite of its 
significant potential impact on performance. Figure 3 
shows our preliminary study [19] on the impact of 
improved reduce locality for a Sort workload. It shows the 
Hadoop task execution timelines for a 10 GB dataset in a 
2-rack 20-node physical cluster1, where 20 Hadoop VMs 
were placed without and with reduce locality. We see 
reduce locality resulted in a significantly shorter shuffle 
phase, leading a reduction of total job runtime by 4x. 



 
 

 

Fig.3 Impact of Reduce locality                          

(Timeline plotted by Hadoop’s job_history_summary) 

Although MapReduce is a good fit for a wide array of 
large scale computing problems [12,13], there are a fair 
amount of datasets and the corresponding computing 
problems and analytic algorithms, which cannot be readily 
decomposed into small parts that could be processed in 
parallel efficiently. For example, many have argued that 
datasets with high degree of correlation such as graphs, 
often lack of data-parallelism, and thus render MapReduce 
inefficient for computing on such graphs and can lead to 
suboptimal performance and usability issues [13,14]. 
      We argue that unlike traditional MapReduce, 
where data is placed independently of their inherent 
correlation and independent of how the data will be 
processed by the analytic jobs, to enable elastic scalability 
of data analytic jobs over complex datasets with high 
degree of correlations, such as graph datasets, the 
correlation semantics should be taken into accounted when 
exploiting data parallelism by data partitioning and 
partition placement.  

To better illustrate our design ideas and partitioning 
algorithms, we will use real-world graphs as examples to 
introduce our data partitioning and computation 
partitioning techniques. We model a direct (sparse) graph 
G=(V,E). We associate a value with each vertex v∈V, and 
each edge e = (u,v)∈E. We refer to u as the source of edge 
e and v as the destination of edge e. Similarly, we refer to 
e as the outgoing edge or out-edge of vertex u and the 
incoming edge or in-edge of vertex v. We assume a 
computer with limited memory (DRAM) capacity such 
that the graph structure, edge values and vertex values do 
not fit into memory. In the context of big data, it implies 
that the amount of memory is only a small fraction of the 
memory required for storing the complete graph. We also 
assume that there is enough memory to contain the edges 

and their associated values of any single vertex in the 
graph. We first examine hash-based graph partitioning 
methods and analyze their pros and cons in terms of 
computation efficiency.  

To better understand how to design the most effective 
hash partitioning algorithm, we first analyze the following 
three basic hash partitioning methods:  
(i) Forward hash partition: We partition a graph into N 

partitions, each consists of a set of vertices and the 
outgoing edges of those vertices.  

(ii) Reverse hash partition: We partition a graph into N 
partitions, each consists of a set of vertices and the 
incoming edges of those vertices.  

(iii) Bi-direction hash partition: We partition a graph into 
N partitions, each consists of a set of vertices and all 
edges of those vertices (bi-direction, both in-edges 
and out-edges). Sometimes we refer to bi-direction 
hash partition simply as hash partition when no 
confusion occurs.  

In all these hash partitioning methods, edges are sorted by 
their source vertex [14] and assignment of a vertex to a 
partition depends solely on the vertex ID. The default 
partitioning function is hash(ID)mod N. The distribution 
of partitions to worker machines can be done by the 
master node where a partition to machine index is 
maintained. Let d be the number of worker machines. 
Typically, d << N. The clean separation of partitions from 
worker machines, it enables the system to improve both 
load balance and fault tolerance: Thus, when one worker 
machine is overloaded or fails to respond, we can easily 
reassign some partitions or the unfinished partition to 
another worker machine to achieve better load balance and 
higher fault tolerance. Pregel [13] has demonstrated that 
by forward hash partitioning of big graphs, it can scale the 
computation of PageRank, Shortest Paths, Bipartitie 
Matching and a Semi-Clustering algorithm using a clusters 
of machines. GraphChi [14] has shown that the reverse 
hash partitioning method is more I/O efficient for certain 
types of graph computations as in-edges are ordered by 
source, the search of out-edges of a given vertex can be 
done in a fixed number (d-1) of inter-machine 
communications. In comparison, vertex hash partition, 
also referred to as bi-direction hash partitioning in this 
article, incurs more memory consumption compared to 
forward and reverse hash partitioning method due to the 



 
 

amount of edges included in each partition. At the same 
time, bi-direction hash partitioning offers better 
computational efficiency for certain graph computations, 
such as computing vertex value based on the counts or 
weights of both its in-edges and its out-edges – finding the 
list of two-hop friends in a social network. 

Interestingly, for certain types of graph queries, all the 
above baseline hash partitioning methods are no longer 
effective due to the amount of inter-partition 
communications incurred for computing the results of 
queries. Fig.1 shows an example RDF graph extracted from 
the LUBM benchmark [15]. Each edge represents a 
subject-predicate-object triple with source vertex as subject 
and destination vertex as object and edge represents the 
predicate linking subject and object. 

 

Figure 1  An Example RDF Graph 

Fig.2 shows three example RDF queries expressed in 
SPARQL [16], a SQL-like standard query language for 
RDF, recommended by W3C.  

 

Figure 2  SPARQL Query Graphs 

Most SPARQL queries consist of triple patterns, which are 
similar to RDF triples except that in each triple pattern, the 
subject, predicate and object may be a variable. A triple 
pattern is said to match a subgraph of the RDF data when 
the terms in the subgraph may be substituted for the 

variables. Processing a SPARQL query Q involves graph 
pattern matching and the result of Q is a set of sub-graphs 
of the big RDF graph, which match the triples patterns of Q. 
SPARQL queries can be categorized into three types in 
terms of their join characteristics: star, chain and complex 
queries. 

Star queries are the most common, have only one join 
variable, which is the subject of all the triple patterns 
involved, and consist of subject-subject joins (e.g., the 
upper-left example in Fig.2).   

Chain queries consist of subject-object joins (i.e., the 
subject of a triple pattern is joined to the object of another 
triple pattern) and their triple patterns are connected one by 
one like a chain (e.g., the bottom-left example in Fig.2).  

Complex queries refer to the remaining queries that 
are combination of star and chain queries, which include 
combinations of star and chain queries (e.g., the right query 
graph in Fig.2).  

Clearly, star queries can be processed efficiently in 
parallel if we partition the RDF graph using the forward 
hash partition and bi-direction hash partition methods 
because no inter-partition communication cost will be 
incurred. However, all three basic hash partitioning 
techniques are inefficient for processing non-star queries. 
This is because inter-partition processing includes the 
transfer of intermediate results across multiple servers, the 
communication cost can be very high when the size of 
intermediate results is large. Also, because we use Hadoop 
MapReduce to join the intermediate results and it has to pay 
the initialization overhead for each Hadoop job, the query 
processing may be unnecessarily slow even though the size 
of intermediate results is small. In our experiments, 
Hadoop MapReduce requires about 10 seconds to initialize 
one Hadoop job. 
 There are other challenges in the context of 
exploiting data parallelism through data partitioning. For 
example, we need to ensure load balance in terms of 
partition to machine assignment. The more semantics are 
incorporated into the data partitioning algorithms, the 
harder to devise a good load balanced scheme for 
assigning partition to machine. To make the matter worse, 
the assignment of partitions to machines should also 
minimize the communication cost across different 
machines as network I/O is known to be expensive in 



 
 

cloud based data centers.  
 Big data analytics hold the promise of revealing 
insights hidden previously by big data that is too costly to 
process. Hadoop MapReduce is not a panacea or a magic 
bullet to solve or address all big data processing problems. 
We need a transformative and forward looking approach to 
developing alternative and complimentary big data 
computing and programming models that can achieve and 
maximize data parallelism, task parallelism and vertical 
and horizontal computation parallelism for all types of 
datasets. For example, in addition to extend Hadoop 
MapReduce, we should also devote research and 
engineering efforts to new programming models that are 
alternative and complimentary to Hadoop MapReduce 
programming model for processing and analyzing big 
datasets with varying degree of correlations, complexity in 
querying, manipulation and analysis, and for providing 
real-time analytics in a plug and play delivery model. In 
addition, we need new programming models that can 
generalize many domain specific analytic algorithms and 
problem-specific learning kernels into programmable 
programming models with easy to use interfaces for 
domain scientists and business owners and enterprises of 
all sizes. Ultimately, delivering big data analytics as a 
service (DAaaS) will transform the service computing 
infrastructure today into a more user-friendly and more 
value-drive big data computing eco-system of the future.  
 
6  Conclusion 
 
We are entering a big data technology era with exciting 
opportunities and research challenges: computer chips are 
evolving from multi-core to many cores (thousands of 
cores), memory technology is evolving from gigabytes (GB) 
to terabytes (TB), with the promise of persistent memory, 
storage technology is evolving from terabytes to petabytes, 
and server technology is evolving from cluster computing 
to rack based computing and networking technology is 
evolving to co-existence of TCP-IP with many other 
alternative channels of inter-device communication 
channels.  

In this article, we have given a brief overview of the 
emerging computing infrastructure for big data processing. 
We focus on architectural, storage and networking 
challenges for supporting big data analysis, especially 

those that are improving data parallelism, task parallelism 
vertical and horizontal computation parallelism. We 
encourage the data and systems research community to 
rethinking of how to support big data processing by 
leveraging all these emerging architectural, storage and 
networking advances with innovations, transformative 
scientific methodologies, and efficient engineering 
solutions.  

In the past 30 years, data was primarily used to record and 
report business and scientific events, and in the next 30 
years data will be used also to derive new insights, to 
influence business and scientific events, and to speed up 
and advance scientific discovery. We conjecture that 
deriving values and insights from big data using rich 
analytics will be an important differentiating capability for 
competitiveness, success and leadership in every field. 
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