
Received Month dd, yyyy; accepted Month dd, yyyy

E-mail: lingliu@cc.gatech.edu

Computing Infrastructure for Big Data Processing
Ling LIU

Distributed Data Intensive Systems Lab,
School of Computer Science, Georgia Institute of Technology, USA

lingliu@cc.gatech.edu

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract. With computing systems transforming from
single-processor devices to the ubiquitous and
networked devices and the datacenter-scale computing
in the cloud, the parallelism has become ubiquitous at
many levels. At micro level, parallelisms are being
explored from the underlying circuits, to pipelining and
instruction level parallelism on multi-cores or many
cores on a chip as well as in a machine. From macro
level, parallelisms are being promoted from multiple
machines on a rack, many racks in a data center, to the
globally shared infrastructure of the Internet. With the
push of big data, we are entering a new era of parallel
computing driven by novel and ground breaking
research innovation on elastic parallelism and
scalability. In this article, we will give an overview of
computing infrastructure for big data processing, focusing
on architectural, storage and networking challenges of
supporting big data analysis. We will briefly discuss
emerging computing infrastructure and technologies that
are promising for improving data parallelism, task
parallelism and encouraging vertical and horizontal
computation parallelism.

Keywords. Big data, Cloud computing, Data analytics,
Elastic scalability, Heterogeneous computing, GPU, PCM,
Big data processing

1 Introduction

Digital data have become a torrent engulfing every area of
business, science and engineering disciplines, gushing into
every economy, every organization and every user of
digital technology. In the age of big data, deriving values

and insights from big data using rich analytics becomes an
important differentiating capability for competitiveness,
success and leadership in every field.

The term "big data" refers to large, diverse, complex,
longitudinal, or distributed data sets generated from
instruments, sensors, Internet transactions, email, video,
click streams, and all other digital sources available today
and in the future. Many also use the term “big data” to
refer to data that is too large, too dispersed, and too
unstructured to be handled using conventional hardware
and software facilities [1]. For example, the massive scale
of graph data easily overwhelms memory and computation
resources on commodity servers. There are two
inescapable contests in the big data space to which big
data technology has to respond.

The first contest is the diversity of data. As we record
more data, we end up having different formats of data to
manage. About 20% is relational [1], but we also have text,
video, image, emails, Twitter feeds, Facebook profiles,
social graphs and time series data pumped out from
sensors. A popular characterization of big data is by
volume, velocity and variety [1]. Volume describes the
relative size of data to the processing capability. Today a
large number may be 10 terabytes. In 12 months 50
terabytes may constitute big data if we follow Moore’s Law.
Overcoming the volume issue requires both technologies
that store vast amounts of data in a scalable fashion and
technologies that use distributed approaches to querying
and deriving actionable information and insights from the
big data. Velocity describes the frequency at which data is
generated, captured and shared. The velocity of large data
streams from a vast range of devices and click streams not

only create requirements for greater real-time use cases, but
also power the ability to parse text, detect sentiment, and
identify new patterns. Real-time analytics require fast
matching and immediate feedback loops based on
alignment with geo location data, social media, user history
and current sentiment. Variety refers to the proliferation of
data types from social, machine to machine, and mobile
sources in addition to traditional transactional data. Data no
longer fits into neat, easy to consume structures. The
addition of unstructured data such as speech, text, and
language increasingly complicate the ability to categorize
data. Such diversity of data not only requires elastic storage,
transport, access and processing methods but also calls for
new approaches to deriving deeper insights and values
from big data.

The second contest is the richness of analytics. As more
digital data and information technology penetrate into
science and engineering fields, we are confronted with
richer analytics to perform. In addition to SQL queries, we
also have time series analysis, statistical analysis,
geo-spatial analysis, graph analysis, sentiment analysis,
entity extraction, and so forth. Not surprisingly, the
platforms and tools for big data analytics today are too
few to make rich analytics scale to big data and yet too
complex to make them plug and play.

 We envision that the rigorous demands that big data
places on networks, storage and servers make it more
attractive to outsource big data analytics (the hassle and
expense) to the cloud. Furthermore, the explosive
interest in big data will help the domain scientists and
every enterprise and organization to realize that they
can analyze all their data in the same way as large
companies like Walmart, Amazon do from business
optimization to real time analysis of domain specific
data as well as customer data without huge up-front
ownership cost for supporting big clusters, big
administration, big programs, and so forth. We argue
that developing the systematic approaches to mining
big data for intelligence and optimization are the key to
push the big data ecosystem to develop new systems
and software that let domain scientists, business owners,
organizations of all sizes plow through massive datasets
faster and more efficiently.

 In this article, we will give an overview of computing

infrastructure for big data processing, focusing on
architectural, storage and networking challenges of
supporting big data analysis. Instead of casing through
known or standard cloud computing infrastructure,
delivery models for big data storage and processing, we
accentuate on rethinking the computing stack for big data
processing. We will emphasize on emerging computing
infrastructure and technologies that are promising for
improving data parallelism, task parallelism and
encouraging vertical and horizontal computation
parallelism. By data parallelism, we refer to the
simultaneous execution of the same function across the
element of a dataset. By task parallelism, we refer to
simultaneous execution of many different functions across
the same or different datasets. By vertical and horizontal
computation parallelism we refer to the architectural
innovation, software innovation and algorithm innovation
for promoting data parallelism and task parallelism in big
data processing.

The rest of the paper is organized as follows: We first
give an overview of three promising architectural
technologies, emphasizing on their sweet spots for big
data processing by exploiting parallelisms. Then we
discuss key issues in dealing with big data that exceeds the
capacity of existing hardware or the processing capability
of existing data storage and computation software by
reviewing a selection of alternative data partitioning
models in terms of their effectiveness for big data
processing.

2 CPUs for Big Data Processing

A GPU is a highly parallel computing device designed for
the task of graphics rendering [2]. Despite its graphics root,
GPU (Graphics Processing Unit) has evolved to become a
more general processor with hundreds of cores and more
powerful than CPU for the execution of data-parallel,
arithmetic (versus memory) intensive applications in which
the same operations are carried out on many elements of
data in parallel. The reason for the large performance gap
between many-core GPUs and general purpose multi-core
CPUs lies in the fundamental architectural design of the
two processors. A CPU is designed to optimize for
sequential code performance. It uses sophisticated control

logic to allow instructions from a single thread of execution
to execute in parallel or even out of sequential order while
maintaining the appearance of sequential execution. It
provides large cache memories to reduce the instruction
and data access latencies of applications. In contrast, the
GPU is designed to optimize for the execution of massive
number of threads. The hardware takes advantage of a large
number of execution threads to find work to do when some
of them are waiting for long-latency memory accesses, thus
minimizing the control logic required for each execution
thread. Small cache memories are provided to help control
the bandwidth requirements of these applications so that
multiple threads that access the same memory data do not
need to all go to DRAM. As a result, much more chip area
is dedicated to the floating-point calculations.

GPUs are especially well-suited to address problems
that can be expressed as data-parallel computations with a
high ratio of arithmetic operations to memory operations.
Many applications that process large data sets can use a
data-parallel programming model to speed up simulations.
For example, image and media processing applications
such as video encoding and decoding, image scaling, and
pattern recognition very naturally map image blocks and
pixels to parallel processing threads, Example applications
include video processing, machine learning, 3D medical
imaging, computational finance, computational biology.

GPU is designed as a numeric computing engine and
it will not perform well on some tasks. Therefore, most
applications will use both CPUs and GPUs, executing the
sequential parts on the CPU and numeric intensive parts on
the GPUs. A known challenge to joint CPU-GPU execution
of an application is the significant overhead of memory
transfers between the host CPU and the GPU. In general,
for smaller sized datasets, the overhead of time spent in
sending data to the GPU and bringing it back neutralizes
any performance benefit obtained by computing on the
GPU. Figure 1 shows CPU and GPU interconnection.
Also GPUs offer best performance gains when all the
computing resources, processing cores and memory, are
maximally utilized. Thus, it is best to analyze data sizes to
determine which jobs to offload to the GPU. Figure 2
shows a performance comparison of block nested loop
(BNL) and GPU-based Nested Loop (GNL) for skyline
query computation using two types of datasets:
anti-correlated and independent datasets with varying

dimensionality (d) and size of datasets (N).

Fig. 1 GPU and CPU interconnetion

(a) Effect of d
 (b) Effect of N

 (a) Effect of d (b) Effect of N
Fig. 2. Elapsed time for anti-correlated and correlated datasets

By design, GNL aims to drastically reduce the cost of skyline
dominance tests by parallelizing the CPU-based dominance
test itself using GPUs. GNL can determine dominance
relationship by performing multiple dominance tests in
parallel. It is noteworthy that GNL is orthogonal to existing
pruning efforts, and can be used by all existing algorithms
[17] after their own pruning steps to speed up the performance
of their dominance tests.

Recent research on tightly integrating a CPU and a
GPU on a single chip [4] shows that it can significantly
reduce power and performance overhead introduced by the
communication of CPUs and GPUs over long electrical
connections, without sacrificing process power [5].

3 Heterogeneous Many Core Computing

Many-core computing devices have large numbers of
processors (cores) on a single chip. Such configurations are
attractive because they can achieve a greater performance
(calculations per second) for a given amount of electrical
power than their single-core equivalents. With dual-core
and quad-core CPUs now commonplace, processor
development is heading forward along the route of
hundreds to thousands of cores. In addition, multi-core
chips mixed with simultaneous multithreading,
memory-on-chip, and special-purpose "heterogeneous"
cores promise further performance and efficiency gains,
especially in processing multimedia, recognition and
networking applications.

A many-core system on a die can be an asymmetric
system with a few large cores to deliver higher
single-thread performance, and a large number of small
cores. A heterogeneous system consists of general
purpose cores (GP) and special purpose cores (SP), each
core having local cache memory, and all cores connected
together with an on-die interconnection network. Example
of special purpose cores are those for hardware
acceleration, e.g. graphics engines. Although a many-core
system will deliver higher compute throughput than a
multi-core system for the same die size and in the same
power envelope, it may be difficult to harvest the
performance of thousand cores, according to Amdahl’s
Law [6,7], which states that the parallel speedup is limited
by the serial code in a program. If the serial percentage in
a program is large, then parallel speedup saturates with
small number of cores. Thus, only data parallelism of a
single application is insufficient to harvest the
performance of a many-core system [7]. We need to
exploit and utilize task level and application level
parallelism to maximize many core systems for big data
processing.
 Although the many-core architecture with hundreds
to thousands of small cores can deliver unprecedented
compute performance in an affordable power envelope,
fine grain system power management, an optimized
on-die-network, and efficient memory technology are
vital. Furthermore, how to make storage and system
software as well as application developments to fully

benefit from the potential of hundreds to thousands of
cores poses interesting research challenges for big data
processing and big data technology innovation.

4 Persistent Memory for Big data storage

Persistent memory, also called Phase change memory
(PCM), is an emerging non-volatile memory technology
pioneered by Intel, Numonyx, Samsung, IBM and others,
as a low cost, more reliable, faster and better alternative to
flash memory [8,9].
 In contrast to DRAM, non-volatile memory can retain
information without power and has fast access times,
providing both huge power savings and the potential for
much faster data transfer. PCM combines the best attributes
of NOR, NAND and RAM within a single chip, including
bit-alterable, non-volatile, fast read speed, fast write/erase
speed and good scalability [8]:
• Bit alterable: unlike flash memory, stored information

can be switched from one to zero or zero to one without a
separate erase step.

• Non-volatile: like NOR flash and NAND flash, PCM
does not require a constant power supply to retain
information.

• Read performance: PCM features fast random access
times, Similar to RAM and NOR flash memory, which
enables the execution of code directly from the memory,
without an intermediate copy to RAM. The read latency
of PCM is comparable to single bit per cell NOR flash,
and the read bandwidth can match DRAM.

• Write/erase performance: PCM achieves write
throughput speeds faster than NAND and with lower
latency. This will deliver significant write performance
improvement over NOR and NAND flash, When
combined with bit-alterable (no separate erase step).

Scalability: PCM is immune to the charge storage
scaling issue, because it does not store charge (electrons).
As the memory cell shrinks on flash, the number of
electrons stored on the floating gate shrinks. In contrast,
both NOR and NAND rely on floating gate memory
structures, which are difficult to shrink.

Up to now, all extant architectures assume that
directly CPU-accessible memory is volatile. From the
history of computing, a persistent storage system, including
the file system and virtual memory system, has assumed to

base on the characteristics of moving-head disks, devices
with a very high access latency organized into fixed-sized
blocks of thousands of bytes. These characteristics run deep
at every level of the software stack. The PCM technologies
are fundamentally different both in their low access time
and their fine-grained (byte-level) access. With persistent
memory, architectures and software design and
optimizations will need to respond accordingly because
widespread use of non-volatile memory will make the
distinction between main memory and bulk memory
disappearing. This may require redesign of the operating
system and file system to take advantage of non-volatile
memory technologies.

Although for now, the base memory technology is still
the biggest wild card for most of the big data processing
technologies, it is important to start rethinking of big data
computing in the context of emerging architecture and
storage technologies.

5 Exploiting Parallelism and Scalability

Designing a scalable system for analyzing, processing
and mining huge real world datasets has become one of
the challenging problems facing both systems
researchers and data management researchers. For
example, many big graphs such as Web graphs, social
network graphs, protein interaction graphs are
particularly challenging to handle, because they cannot
be readily decomposed into small parts that could be
processed in parallel [13,14].

One of the technologies that made big data analytics
popular and accessible to enterprises of all sizes is
MapReduce [22] (and its open-source Hadoop [9]
implementation). The MapReduce programming model
has become popular because a programmer can harness
the processing power of a cluster of commodity hardware
for very large parallel tasks in a simple way. The
programmer only needs to write the logic of a Map
function and Reduce function. The MapReduce
framework divides the program execution across a cluster
of computer nodes into a Map and Reduce stage, separated
by the transfer of data between machines in the cluster,
called the Shuffle stage. In the Map stage, each Mapper
machine in the cluster executes a Map function on a
distinct region of the input data. The Map execution
produces the Map output of key-value records locally at

each machine. The records for any given key, which are
spread out on many machines, are aggregated at each
Reducer for the Reduce stage by remotely reading from
the Mappers. An important challenge for scaling
MapReduce enabled data analytics in the cloud is to
manage multiple virtual MapReduce clusters,
corresponding to a diverse set of analytic jobs, executing
concurrently on a shared physical infrastructure. Each
MapReduce job generates different loads on the shared
physical infrastructure: (a) computation load: number and
size of each VM (CPU, memory), (b) storage load: amount
of input, output and intermediate data, and (c) network
load: traffic generated during the map, shuffle and reduce
phases. The network load is of special concern with
MapReduce as large amounts of traffic can be generated in
the shuffle phase when the output of map tasks is
transferred to reduce tasks. As each reduce task needs to
read the output of all map tasks [22], a sudden explosion
of network traffic can significantly deteriorate cloud
performance. For example, one way to enhance the
performance of data analytic jobs on MapReduce cloud is
to devise smart partitioning and placement optimization
that can minimize or reduce inter-VM (virtual machines)
network traffic for MapReduce workloads. We argue that
by improving data locality for both Map and Reduce
phases of an analytic job, one can effectively reduce the
network distance between storage and compute nodes for
both map and reduce processing. For instance, the VMs
executing the reduce tasks should be close to the map-task
VMs which generate the intermediate data used as reduce
input. This improved data locality can reduce both job
execution times and cumulative network traffic of virtual
MapReduce clusters, because network transfer time is
often the bottleneck of total execution time for an analytic
job. While map locality is well understood and
implemented in MapReduce systems, reduce locality has
surprisingly received little attention in spite of its
significant potential impact on performance. Figure 3
shows our preliminary study [19] on the impact of
improved reduce locality for a Sort workload. It shows the
Hadoop task execution timelines for a 10 GB dataset in a
2-rack 20-node physical cluster1, where 20 Hadoop VMs
were placed without and with reduce locality. We see
reduce locality resulted in a significantly shorter shuffle
phase, leading a reduction of total job runtime by 4x.

Fig.3 Impact of Reduce locality

(Timeline plotted by Hadoop’s job_history_summary)

Although MapReduce is a good fit for a wide array of
large scale computing problems [12,13], there are a fair
amount of datasets and the corresponding computing
problems and analytic algorithms, which cannot be readily
decomposed into small parts that could be processed in
parallel efficiently. For example, many have argued that
datasets with high degree of correlation such as graphs,
often lack of data-parallelism, and thus render MapReduce
inefficient for computing on such graphs and can lead to
suboptimal performance and usability issues [13,14].
 We argue that unlike traditional MapReduce,
where data is placed independently of their inherent
correlation and independent of how the data will be
processed by the analytic jobs, to enable elastic scalability
of data analytic jobs over complex datasets with high
degree of correlations, such as graph datasets, the
correlation semantics should be taken into accounted when
exploiting data parallelism by data partitioning and
partition placement.

To better illustrate our design ideas and partitioning
algorithms, we will use real-world graphs as examples to
introduce our data partitioning and computation
partitioning techniques. We model a direct (sparse) graph
G=(V,E). We associate a value with each vertex v∈V, and
each edge e = (u,v)∈E. We refer to u as the source of edge
e and v as the destination of edge e. Similarly, we refer to
e as the outgoing edge or out-edge of vertex u and the
incoming edge or in-edge of vertex v. We assume a
computer with limited memory (DRAM) capacity such
that the graph structure, edge values and vertex values do
not fit into memory. In the context of big data, it implies
that the amount of memory is only a small fraction of the
memory required for storing the complete graph. We also
assume that there is enough memory to contain the edges

and their associated values of any single vertex in the
graph. We first examine hash-based graph partitioning
methods and analyze their pros and cons in terms of
computation efficiency.

To better understand how to design the most effective
hash partitioning algorithm, we first analyze the following
three basic hash partitioning methods:
(i) Forward hash partition: We partition a graph into N

partitions, each consists of a set of vertices and the
outgoing edges of those vertices.

(ii) Reverse hash partition: We partition a graph into N
partitions, each consists of a set of vertices and the
incoming edges of those vertices.

(iii) Bi-direction hash partition: We partition a graph into
N partitions, each consists of a set of vertices and all
edges of those vertices (bi-direction, both in-edges
and out-edges). Sometimes we refer to bi-direction
hash partition simply as hash partition when no
confusion occurs.

In all these hash partitioning methods, edges are sorted by
their source vertex [14] and assignment of a vertex to a
partition depends solely on the vertex ID. The default
partitioning function is hash(ID)mod N. The distribution
of partitions to worker machines can be done by the
master node where a partition to machine index is
maintained. Let d be the number of worker machines.
Typically, d << N. The clean separation of partitions from
worker machines, it enables the system to improve both
load balance and fault tolerance: Thus, when one worker
machine is overloaded or fails to respond, we can easily
reassign some partitions or the unfinished partition to
another worker machine to achieve better load balance and
higher fault tolerance. Pregel [13] has demonstrated that
by forward hash partitioning of big graphs, it can scale the
computation of PageRank, Shortest Paths, Bipartitie
Matching and a Semi-Clustering algorithm using a clusters
of machines. GraphChi [14] has shown that the reverse
hash partitioning method is more I/O efficient for certain
types of graph computations as in-edges are ordered by
source, the search of out-edges of a given vertex can be
done in a fixed number (d-1) of inter-machine
communications. In comparison, vertex hash partition,
also referred to as bi-direction hash partitioning in this
article, incurs more memory consumption compared to
forward and reverse hash partitioning method due to the

amount of edges included in each partition. At the same
time, bi-direction hash partitioning offers better
computational efficiency for certain graph computations,
such as computing vertex value based on the counts or
weights of both its in-edges and its out-edges – finding the
list of two-hop friends in a social network.

Interestingly, for certain types of graph queries, all the
above baseline hash partitioning methods are no longer
effective due to the amount of inter-partition
communications incurred for computing the results of
queries. Fig.1 shows an example RDF graph extracted from
the LUBM benchmark [15]. Each edge represents a
subject-predicate-object triple with source vertex as subject
and destination vertex as object and edge represents the
predicate linking subject and object.

Figure 1 An Example RDF Graph

Fig.2 shows three example RDF queries expressed in
SPARQL [16], a SQL-like standard query language for
RDF, recommended by W3C.

Figure 2 SPARQL Query Graphs

Most SPARQL queries consist of triple patterns, which are
similar to RDF triples except that in each triple pattern, the
subject, predicate and object may be a variable. A triple
pattern is said to match a subgraph of the RDF data when
the terms in the subgraph may be substituted for the

variables. Processing a SPARQL query Q involves graph
pattern matching and the result of Q is a set of sub-graphs
of the big RDF graph, which match the triples patterns of Q.
SPARQL queries can be categorized into three types in
terms of their join characteristics: star, chain and complex
queries.

Star queries are the most common, have only one join
variable, which is the subject of all the triple patterns
involved, and consist of subject-subject joins (e.g., the
upper-left example in Fig.2).

Chain queries consist of subject-object joins (i.e., the
subject of a triple pattern is joined to the object of another
triple pattern) and their triple patterns are connected one by
one like a chain (e.g., the bottom-left example in Fig.2).

Complex queries refer to the remaining queries that
are combination of star and chain queries, which include
combinations of star and chain queries (e.g., the right query
graph in Fig.2).

Clearly, star queries can be processed efficiently in
parallel if we partition the RDF graph using the forward
hash partition and bi-direction hash partition methods
because no inter-partition communication cost will be
incurred. However, all three basic hash partitioning
techniques are inefficient for processing non-star queries.
This is because inter-partition processing includes the
transfer of intermediate results across multiple servers, the
communication cost can be very high when the size of
intermediate results is large. Also, because we use Hadoop
MapReduce to join the intermediate results and it has to pay
the initialization overhead for each Hadoop job, the query
processing may be unnecessarily slow even though the size
of intermediate results is small. In our experiments,
Hadoop MapReduce requires about 10 seconds to initialize
one Hadoop job.
 There are other challenges in the context of
exploiting data parallelism through data partitioning. For
example, we need to ensure load balance in terms of
partition to machine assignment. The more semantics are
incorporated into the data partitioning algorithms, the
harder to devise a good load balanced scheme for
assigning partition to machine. To make the matter worse,
the assignment of partitions to machines should also
minimize the communication cost across different
machines as network I/O is known to be expensive in

cloud based data centers.
 Big data analytics hold the promise of revealing
insights hidden previously by big data that is too costly to
process. Hadoop MapReduce is not a panacea or a magic
bullet to solve or address all big data processing problems.
We need a transformative and forward looking approach to
developing alternative and complimentary big data
computing and programming models that can achieve and
maximize data parallelism, task parallelism and vertical
and horizontal computation parallelism for all types of
datasets. For example, in addition to extend Hadoop
MapReduce, we should also devote research and
engineering efforts to new programming models that are
alternative and complimentary to Hadoop MapReduce
programming model for processing and analyzing big
datasets with varying degree of correlations, complexity in
querying, manipulation and analysis, and for providing
real-time analytics in a plug and play delivery model. In
addition, we need new programming models that can
generalize many domain specific analytic algorithms and
problem-specific learning kernels into programmable
programming models with easy to use interfaces for
domain scientists and business owners and enterprises of
all sizes. Ultimately, delivering big data analytics as a
service (DAaaS) will transform the service computing
infrastructure today into a more user-friendly and more
value-drive big data computing eco-system of the future.

6 Conclusion

We are entering a big data technology era with exciting
opportunities and research challenges: computer chips are
evolving from multi-core to many cores (thousands of
cores), memory technology is evolving from gigabytes (GB)
to terabytes (TB), with the promise of persistent memory,
storage technology is evolving from terabytes to petabytes,
and server technology is evolving from cluster computing
to rack based computing and networking technology is
evolving to co-existence of TCP-IP with many other
alternative channels of inter-device communication
channels.

In this article, we have given a brief overview of the
emerging computing infrastructure for big data processing.
We focus on architectural, storage and networking
challenges for supporting big data analysis, especially

those that are improving data parallelism, task parallelism
vertical and horizontal computation parallelism. We
encourage the data and systems research community to
rethinking of how to support big data processing by
leveraging all these emerging architectural, storage and
networking advances with innovations, transformative
scientific methodologies, and efficient engineering
solutions.

In the past 30 years, data was primarily used to record and
report business and scientific events, and in the next 30
years data will be used also to derive new insights, to
influence business and scientific events, and to speed up
and advance scientific discovery. We conjecture that
deriving values and insights from big data using rich
analytics will be an important differentiating capability for
competitiveness, success and leadership in every field.

Acknowledgements The author acknowledges discussions
and collaborations with many of her current collaborators
in big data research and cloud computing research from
DiSL, Georgia Institute of Technology, and other
institutions in US and Asia. This work is partially support
from grants by NSF CISE SaTC program, NetSE program,
an IBM faculty award, and Intel Science and Technology
Center on Cloud Computing.

References

1. Mckinsey Big data: The next frontier for innovation,

competition, and productivity, 2011.
http://www.mckinsey.com/insights/mgi/research/technol
ogy_and_innovation/big_data_the_next_frontier_for_in
novation.

2. Graphics Processing Unit (GPU). Wikipedia 2012.
http://en.wikipedia.org/wiki/Graphics_processing_unit

3. Chris Gregg and Kim Hazelwood. “Where is the Data?
Why You Cannot Debate CPU vs. GPU Performance
Without the Answer”, ISPASS 2011.
http://www.cs.virginia.edu/kim/docs/ispass11.pdf

4. Nam Sung Kim, Stark C. Draper, Shi-Ting Zhou,
Sumeet Katariya, Hamid Reza Ghasemi, Taejoon
Park: Analyzing the Impact of Joint Optimization of
Cell Size, Redundancy, and ECC on Low-Voltage
SRAM Array Total Area. IEEE Trans. VLSI Syst.

20(12): 2333-2337 (2012)
5. Syed Zohaib Gilani, Nam Sung Kim, Michael J.

Schulte: Power-efficient computing for
compute-intensive GPGPU applications. PACT 2012:
445-446

6. Tim Mattson. “The Future of Many Core Computing:A
tale of two processors”, Intel Labs, 2010.

7. Shekhar Borkar. “Thousand Core Chips – A
Technology Perspective”. ACM DAC 2007.

8. Wikipedia. “Phase-change memory (PCM)”, 2012.
9. CRA. 21st Century Computer Architecture.

http://cra.org/ccc/docs/init/21stcenturyarchitecturewh
itepaper.pdf.

10. NRC. “The Future of Computing Performance:
Game Over or Next Level?”, http://www.nap.edu/
catalog.php?record_id=12980.

11. NSF. “Advanced Computing Infrastructure: Vision
and Strategic Plan”, 2012. http://www.nsf.gov/
pubs/2012/nsf12051/nsf12051.pdf.

12. Yahoo WebScope. Yahoo! Altavista web page
hyperlink connectivity graph, circa 2002, 2012.
http://webgraph.sandbox.yahoo.com.

13. Grzegorz Malewicz, et.al. “Pregel: A System for
Large Scale Graph Processing”. SIGMOD 2010.

14. Aapo Kyrola et.al. “GraphChi: Large Scale graph
Computation on Just a PC”. OSDI 2012.

15. Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark
for OWL knowledge base systems,” Web Semant., vol.
3, no. 2-3, pp. 158–182, Oct. 2005.

16. “SPARQL Query Language for RDF,”
http://www.w3.org/TR/rdf-sparqlquery/.

17. Wonik Choi, Ling Liu and Boseon Yu . “Multi-Criteria
Decision Making with Skyline Computation”, In
Proceedings of the 13th IEEE International
Conference on Information Reuse and Integration,
Aug 8-10, 2012.

18. J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. pages 137–150,
December 2004.

19. Balaji Palanisamy, Aameek Singh, Ling Liu,
Bhushan Jain. ``Purlieus: Locality-aware Resource
Allocation for MapReduce in a Cloud", ACM/IEEE
International Conference on SuperComputing
(SC2011), Seattle WA, Nov. 12-18, 2011.

 Ling Liu is a full professor in

the School of CS at Georgia Institute of Technology. She
directs the research programs in Distributed Data
Intensive Systems Lab (DiSL) in the areas of cloud
computing, Big data and big data analytics, distributed
computing. She has published over 300 International
journal and conference papers, and supervised more
than 20 Ph.D. dissertations. She is a recipient of 2012
IEEE Computer Society Technical Achievement Award
and a co-editor-in-chief of the 5 volumes of
Encyclopedia of Database Systems (Springer 2010).
She is the Editor in Chief of IEEE Transactions on
Service Computing, on the editorial board of over a
dozen international journals, and has served as general
chair and PC chairs of many international conferences.
Her current research is supported by the U.S. National
Science Foundation (NSF) and industrial companies
such as IBM and Intel.

