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OVERVIEW

This class will cover model-based techniques for extracting information
from data with an end-task in mind. Such tasks include:

» predicting an unknown “output” given its corresponding “input”
» uncovering information within the data to better understand it

» data-driven recommendation, grouping, classification, ranking, etc.

There are a few ways we can divide up the material as we go along, e.g.,

supervised learning | unsupervised learning
probabilistic models | non-probabilistic models
modeling approach | optimization techniques

We’ll adopt the first method and work in the second two along the way.



OVERVIEW: SUPERVISED LEARNING
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(a) Regression (b) Classification

Regression: Using set of inputs, predict real-valued output.

Classification: Using set of inputs, predict a discrete label (aka class).



EXAMPLE CLASSIFICATION PROBLEM

Given a set of inputs characterizing an item, assign it a label.

Is this spam?

hi everyone,

i saw that close to my hotel there is a pub with bowling
(it’s on market between 9th and 10th avenue). meet
there at 8:307

What about this?

Enter for a chance to win a trip to Universal Orlando to
celebrate the arrival of Dr. Seuss’s The Lorax on Movies
On Demand on August 21st! Click here now!



OVERVIEW: UNSUPERVISED LEARNING
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(c) topic modeling (d) recommendations!

With unsupervised learning our goal is often to uncover structure in the data.
This helps with predictions, recommendations, efficient data exploration.

1Fi;;ure from Koren, Y., Robert B., and Volinsky, C.. “Matrix factorization techniques for reccommender systems.” Computer 42.8 (2009): 30-37.



EXAMPLE UNSUPERVISED PROBLEM

Goal: Learn the dominant topics from a set of news articles.
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DATA MODELING

Block #1
Block #2 Block #3 l Block #4
Build model Infer hidden Predict & Explore
variables

» Supervised vs. unsupervised: Blocks #1 and #4
» Probabilistic vs. non-probabilistic: Primarily Block #2 (Some Block #3)

» Model development (Block #2) vs. Optimization techniques (Block #3)



GAUSSIAN DISTRIBUTION (MULTIVARIATE)

Gaussian density in d dimensions

» Block #1: Data xi, ..., x,. Each x; € R? L
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The central moments are:

Elx] = [ga xp(x|p, X)dx = pu,

Cov(x) = E[(x — E[x])(x — E[x])T] = E[xx!] — EX]E[x]T = X.



BLOCK #2: A PROBABILISTIC MODEL

Probabilistic Models

> A probabilistic model is a set of probability distributions, p(x|6).
» We pick the distribution family p(-), but don’t know the parameter 6.

Example: Model data with a Gaussian distribution p(x|6), 6 = {u, X}

The 1.1.d. assumption

Assume data is independent and identically distributed (iid). This is written
X; %p(xw), i=1,...,n

Writing the density as p(x|6), then the joint density decomposes as

pxt, . xl0) = [ pailo).
i=1



BLOCK #3: MAXIMUM LIKELIHOOD ESTIMATION

Maximum Likelihood approach

‘We now need to find 6. Maximum likelihood seeks the value of 6 that
maximizes the likelihood function:

GML = argm@ax p(xl g a-xn|0)7
This value best explains the data according to the chosen distribution family.

Maximum Likelihood equation

The analytic criterion for this maximum likelihood estimator is:

Vo [ [ p(xil6) = 0.

i=1

Simply put, the maximum is at a peak. There is no “upward” direction.



BLOCK #3: LOGARITHM TRICK

Logarithm trick

Calculating Vy [T, p(x;]6) can be complicated. We use the fact that the
logarithm is monotonically increasing on R, and the equality

ln<Hf,-> =3 ().
i i
Consequence: Taking the logarithm does not change the location of a
maximum or minimum:
max Ing(y) # max g(y) The value changes.
y y

argmax Ing(y) = arg max g(y) The location does not change.



BLOCK #3: ANALYTIC MAXIMUM LIKELIHOOD

Maximum likelihood and the logarithm trick

Oy = arg max Hp(xi|9) = argmax ln<];[p(x,-0)> = arg meaxZInp(x,-W)

i=1 i=1

To then solve for HAML, find

Vo ZIHP()QW) = Z Vo Inp(x;|0) = 0.
i=1 i=1
Depending on the choice of the model, we will be able to solve this
1. analytically (via a simple set of equations)
2. numerically (via an iterative algorithm using different equations)

3. approximately (typically when #2 converges to a local optimal solution)



EXAMPLE: MULTIVARIATE GAUSSIAN MLE

Block #2: Multivariate Gaussian data model

Model: Set of all Gaussians on R? with unknown mean p € R¢ and
covariance 3 € S‘i . (positive definite d X d matrix).

We assume that xy, . . ., x, are i.i.d. p(x|u, 3), written x; %p(x\m ).

Block #3: Maximum likelihood solution
‘We have to solve the equation

Z v(u,Z) lnp(xi‘:u’a E) =0

i=1

for p and . (Try doing this without the log to appreciate it’s usefulness.)



EXAMPLE: GAUSSIAN MEAN MLE
First take the gradient with respect to p.
0=V Zln xp(—l(xi — ) TS (x — u))
v (2m)d|5| 2
-V Z SIS — 36— S (5~ )
=—3 ZV“ (xiTEflx,» — 2Ty + pTEfl;L) =_x! Z(x —
i=1 i

Since X is positive definite, the only solution is

Z(xi—/l):() = ﬂML:i;xi

i=1

Since this solution is independent of 3, it doesn’t depend on S



EXAMPLE: GAUSSIAN COVARIANCE MLE

Now take the gradient with respect to X.

~ 1 d 1 Tx—1
0= Vg i:EI —Eln(Zﬂ') 2| — E(Xi — ) ST (=)
__n 1 Siv o T
= —EVE In|X| — EVgtrace(Z E (xi — ) (x; — ) )

i=1
I D TR
2 2 — ! !

Solving for 3 and plugging in p = fiy,,

. 1 <& . A
Y = ; ;(xi - /'I’ML)(-xi - IU’ML)T'



EXAMPLE: GAUSSIAN MLE (SUMMARY)

So if we have data xy, . . ., x, in R? that we hypothesize is i.i.d. Gaussian, the
maximum likelihood values of the mean and covariance matrix are
N 1 & o 1 ¢ N " NT
P = ; Z;xiy Y = ; 2()@' - N’ML)(xi - /~LML) .
= =
Are we done? There are many assumptions/issues with this approach that
makes finding the “best” parameter values not a complete victory.

» We made a model assumption (multivariate Gaussian).
» We made an i.i.d. assumption.

» We assumed that maximizing the likelihood is the best thing to do.

Comment: We often use Oy, to make predictions about x,., (Block #4).
How does 6y generalize to Xpey?
If x1., don’t “capture the space” well, Oy, can overfit the data.



