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OVERVIEW

This class will cover model-based techniques for extracting information
from data with an end-task in mind. Such tasks include:

I predicting an unknown “output” given its corresponding “input”
I uncovering information within the data to better understand it
I data-driven recommendation, grouping, classification, ranking, etc.

There are a few ways we can divide up the material as we go along, e.g.,

supervised learning | unsupervised learning

probabilistic models | non-probabilistic models

modeling approach | optimization techniques

We’ll adopt the first method and work in the second two along the way.



OVERVIEW: SUPERVISED LEARNING
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(a) Regression (b) Classification

Regression: Using set of inputs, predict real-valued output.

Classification: Using set of inputs, predict a discrete label (aka class).



EXAMPLE CLASSIFICATION PROBLEM

Given a set of inputs characterizing an item, assign it a label.

Is this spam?
hi everyone,

i saw that close to my hotel there is a pub with bowling

(it’s on market between 9th and 10th avenue). meet

there at 8:30?

What about this?
Enter for a chance to win a trip to Universal Orlando to
celebrate the arrival of Dr. Seuss’s The Lorax on Movies
On Demand on August 21st! Click here now!



OVERVIEW: UNSUPERVISED LEARNING

government
law            
politics
legislation
 . . .

0.04
0.02
0.01
0.01

team
basketball         
points
score
 . . .

0.03
0.02
0.01
0.01

business
money    
economic
company
. . .

0.04
0.02
0.02
0.01

health
medical       
disease
hospital
 . . .

0.03
0.03
0.02
0.01

computer
system  
software
program
 . . .

0.03
0.02
0.02
0.01

Topics

Documents

Topic 
assignments

Topic 
proportions

(c) topic modeling (d) recommendations1

With unsupervised learning our goal is often to uncover structure in the data.
This helps with predictions, recommendations, efficient data exploration.

1Figure from Koren, Y., Robert B., and Volinsky, C.. “Matrix factorization techniques for recommender systems.” Computer 42.8 (2009): 30-37.



EXAMPLE UNSUPERVISED PROBLEM

Goal: Learn the dominant topics from a set of news articles.



DATA MODELING

I Supervised vs. unsupervised: Blocks #1 and #4

I Probabilistic vs. non-probabilistic: Primarily Block #2 (Some Block #3)

I Model development (Block #2) vs. Optimization techniques (Block #3)



GAUSSIAN DISTRIBUTION (MULTIVARIATE)

Gaussian density in d dimensions

I Block #1: Data x1, . . . , xn. Each xi ∈ Rd

I Block #2: An i.i.d. Gaussian model
I Block #3: Maximum likelihood
I Block #4: Leave undefined

The density function is

p(x|µ,Σ) :=
1

(2π)
d
2
√

det(Σ)
exp
(
−1

2
(x−µ)TΣ−1(x−µ)

)
The central moments are:

E[x] =
∫
Rd x p(x|µ,Σ)dx = µ,

Cov(x) = E[(x− E[x])(x− E[x])T ] = E[xxT ]− E[x]E[x]T = Σ.



BLOCK #2: A PROBABILISTIC MODEL

Probabilistic Models
I A probabilistic model is a set of probability distributions, p(x|θ).
I We pick the distribution family p(·), but don’t know the parameter θ.

Example: Model data with a Gaussian distribution p(x|θ), θ = {µ,Σ}.

The i.i.d. assumption
Assume data is independent and identically distributed (iid). This is written

xi
iid∼ p(x|θ), i = 1, . . . , n.

Writing the density as p(x|θ), then the joint density decomposes as

p(x1, . . . , xn|θ) =

n∏
i=1

p(xi|θ).



BLOCK #3: MAXIMUM LIKELIHOOD ESTIMATION

Maximum Likelihood approach
We now need to find θ. Maximum likelihood seeks the value of θ that
maximizes the likelihood function:

θ̂ML := arg max
θ

p(x1, . . . , xn|θ),

This value best explains the data according to the chosen distribution family.

Maximum Likelihood equation
The analytic criterion for this maximum likelihood estimator is:

∇θ
n∏

i=1

p(xi|θ) = 0.

Simply put, the maximum is at a peak. There is no “upward” direction.



BLOCK #3: LOGARITHM TRICK

Logarithm trick
Calculating∇θ

∏n
i=1 p(xi|θ) can be complicated. We use the fact that the

logarithm is monotonically increasing on R+, and the equality

ln
(∏

i

fi
)

=
∑

i

ln(fi).

Consequence: Taking the logarithm does not change the location of a
maximum or minimum:

max
y

ln g(y) 6= max
y

g(y) The value changes.

arg max
y

ln g(y) = arg max
y

g(y) The location does not change.



BLOCK #3: ANALYTIC MAXIMUM LIKELIHOOD

Maximum likelihood and the logarithm trick

θ̂ML = arg max
θ

n∏
i=1

p(xi|θ) = arg max
θ

ln
( n∏

i=1

p(xi|θ)
)

= arg max
θ

n∑
i=1

ln p(xi|θ)

To then solve for θ̂ML, find

∇θ
n∑

i=1

ln p(xi|θ) =

n∑
i=1

∇θ ln p(xi|θ) = 0.

Depending on the choice of the model, we will be able to solve this
1. analytically (via a simple set of equations)
2. numerically (via an iterative algorithm using different equations)
3. approximately (typically when #2 converges to a local optimal solution)



EXAMPLE: MULTIVARIATE GAUSSIAN MLE

Block #2: Multivariate Gaussian data model
Model: Set of all Gaussians on Rd with unknown mean µ ∈ Rd and
covariance Σ ∈ Sd

++ (positive definite d × d matrix).

We assume that x1, . . . , xn are i.i.d. p(x|µ,Σ), written xi
iid∼ p(x|µ,Σ).

Block #3: Maximum likelihood solution
We have to solve the equation

n∑
i=1

∇(µ,Σ) ln p(xi|µ,Σ) = 0

for µ and Σ. (Try doing this without the log to appreciate it’s usefulness.)



EXAMPLE: GAUSSIAN MEAN MLE

First take the gradient with respect to µ.

0 = ∇µ
n∑

i=1

ln
1√

(2π)d|Σ|
exp
(
−1

2
(xi − µ)TΣ−1(xi − µ)

)
= ∇µ

n∑
i=1

−1
2

ln(2π)d|Σ| − 1
2

(xi − µ)TΣ−1(xi − µ)

= −1
2

n∑
i=1

∇µ
(

xT
i Σ−1xi − 2µTΣ−1xi + µTΣ−1µ

)
= −Σ−1

n∑
i=1

(xi − µ)

Since Σ is positive definite, the only solution is

n∑
i=1

(xi − µ) = 0 ⇒ µ̂ML =
1
n

n∑
i=1

xi

Since this solution is independent of Σ, it doesn’t depend on Σ̂ML.



EXAMPLE: GAUSSIAN COVARIANCE MLE

Now take the gradient with respect to Σ.

0 = ∇Σ

n∑
i=1

−1
2

ln(2π)d|Σ| − 1
2

(xi − µ)TΣ−1(xi − µ)

= −n
2
∇Σ ln |Σ| − 1

2
∇Σtrace

(
Σ−1

n∑
i=1

(xi − µ)(xi − µ)T
)

= −n
2

Σ−1 +
1
2

Σ−2
n∑

i=1

(xi − µ)(xi − µ)T

Solving for Σ and plugging in µ = µ̂ML,

Σ̂ML =
1
n

n∑
i=1

(xi − µ̂ML)(xi − µ̂ML)
T .



EXAMPLE: GAUSSIAN MLE (SUMMARY)

So if we have data x1, . . . , xn in Rd that we hypothesize is i.i.d. Gaussian, the
maximum likelihood values of the mean and covariance matrix are

µ̂ML =
1
n

n∑
i=1

xi, Σ̂ML =
1
n

n∑
i=1

(xi − µ̂ML)(xi − µ̂ML)
T .

Are we done? There are many assumptions/issues with this approach that
makes finding the “best” parameter values not a complete victory.

I We made a model assumption (multivariate Gaussian).
I We made an i.i.d. assumption.
I We assumed that maximizing the likelihood is the best thing to do.

Comment: We often use θML to make predictions about xnew (Block #4).
How does θML generalize to xnew?
If x1:n don’t “capture the space” well, θML can overfit the data.


