

Concentrating Solar Power: Current Cost and Future Directions

Craig Turchi CSP Systems Analysis Task Leader Thermal Systems R&D Group

craig.turchi@nrel.gov

May 30, 2017

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

- NREL's System Advisor Model (SAM)
- CSP costs
- CSP research directions
 - Molten salts and other heat storage media
 - Advanced power cycles
 - Plant configuration and value optimization

SAM https://sam.nrel.gov/

The System Advisor Model (SAM) is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry.

* SAM 2017.1.17

Choose a performance model, and then choose from the available financial models.

Photovoltaic (detailed)

Photovoltaic (PVWatts)

High concentration PV

Wind

Biomass combustion

Geothermal

Solar water heating

Generic system

CSP parabolic trough (physical)

CSP parabolic trough (empirical)

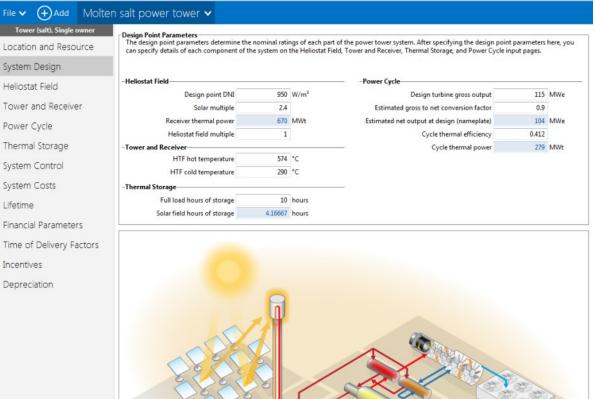
CSP power tower molten salt

CSP power tower direct steam

CSP linear Fresnel molten salt

CSP linear Fresnel direct steam

CSP dish Stirling


CSP generic model

CSP integrated solar combined cycle

Process heat parabolic trough

Process heat linear direct steam

SAM 2017.1.17

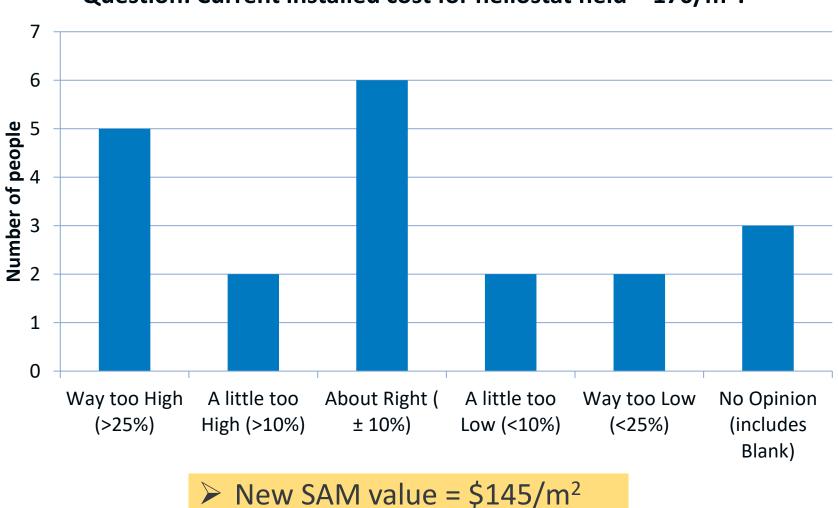
Le of Pla

EES

W

Simulate >

Parametrics Stochasti P50 / P90 Macros


- Questioned CSP developers and stakeholders regarding the current cost of CSP
- Values used to keep SAM's cost inputs up-to-date
- Separate sections for power tower, parabolic trough, and linear Fresnel systems

Survey	Number of respondents	Total questions	Questions with ≥ 3 responses
Power Tower	20*	32	32 (100%)
Parabolic Trough	20*	26	15 (58%)
Linear Fresnel	0	29	0

* The 20 respondents were not all the same for each technology

SAM Changes: Power Towers

Power Tower (Molten Salt and DSG)		SAM 2016	SAM 2017	Response	s Comments/Justification
Site Improvements	\$/m2	16	no change	11	s comments/sustilication
Heliostat Field	\$/m2	170	145	17	Wide variability in responses
Tower cost formula	+,=		no change	11	
					Reduce DSG by about 10%, MS by lesser
Receiver cost formula				10	amount
Receiver reference cost (MS)	\$	110,000,000	103,000,000		
Receiver cost scaling exponent		0.7	no change		
Receiver reference cost (DSG)	\$	55,402,800	48,800,000		
Receiver cost scaling exponent		0.7	no change		
Thermal energy storage	\$/kWh-t	26	24	11	
Power cycle	\$/kWe	1190	1100	12	
Balance of plant	\$/kWe	340	no change	11	
Contingency	%	7	no change	15	
EPC & Owners Cost	%	11	13	13	
Sales Tax	%	5	no change	13	5% applied to 80% of direct costs
O&M Fixed cost by capacity (MS)	\$/kW-yr	66	no change	7	
O&M Fixed cost by capacity (DSG)	\$/kW-yr	50	55	6	
Variable cost O&M (both)	\$/MWh	4	3.5	10	
					reviewers recommend 0-1.2%, but left at
Property Tax	%	0	no change	7	0% to match other SAM models
Insurance	%	0.5	no change	7	
Min. turbine operation	%	25	20	10	
Max. turbine over design	%	105	no change	12	

Question: Current installed cost for heliostat field = $170/m^2$?

NATIONAL RENEWABLE ENERGY LABORATORY

CSP Costs: SAM 2016 vs. SAM 2017

	Total Overnight Installed Cost (\$/kW)				
SAM Model with default values	SAM 2016.03.14	SAM 2017.01.17	% change		
Physical Trough (6 h thermal storage)	6,705	6,065	-9.5%		
Molten Salt Tower (10 h thermal storage)	7,365	6,800	-7.7%		
Direct-Steam Tower (no thermal storage)	4,710	4,170	-11.5%		

- Costs assume construction in the southwest region of the United States
- Applying SunShot financial assumptions (see On the Path to SunShot, NREL/TP-5500-65688, 2016), the lowest levelized cost of energy corresponds to the molten salt power tower with a value of approximately 110 USD/kWh.

SunShot CSP Gen3 Technology Roadmap

	Cost <\$75/m ² Concentra ratio >50	tion • Operable in 35-mph winds	Optical error - 30-year <3.0 mrad lifetime
	Molten Salt	Falling Particle	Gas Phase
Receiver Cost < \$150/kWth Thermal Efficiency > 90% Exit Temperature > 720°C 10,000 cycle lifetime	 Similarities to prior demonstrations Allowance for corrosive attack required 	 Most challenging to achieve high thermal efficiency 	 High-pressure fatigue challenges Absorptivity control and thermal loss management
Material & Support Cost < \$1/kg Operable range from 250°C to 800°C	 Potentially chloride or carbonate salt blends; ideal material not determined Corrosion concerns dominate 	Suitable materials readily exist	 Minimize pressure drop Corrosion risk retirement
Thermal Storage Cost < \$15/kW _{th} 99% energetic efficiency 95% exergetic efficiency	Direct or indirect storage may be superior	 Particles likely double as efficient sensible thermal storage 	 Indirect storage required Cost includes fluid to storage thermal exchange
HTF to sCO ₂ Heat Exchanger	Challenging to simultaneously handle corrosive attack and high-pressure working fluid	 Possibly greatest challenge Cost and efficiency concerns dominate 	Not applicable
	Net thermal-to-electric Pow	er-cycle system < \$900/kW _e Brayton Dry-cooled H at 40° C amb	heat sink • Turbine inlet temperature

Molten Salt Options for Higher Temperature Operation

Salt	Melting Point (C)	Maximum Temp (C)	Heat Capacity (J/g-K)	Density (kg/L)	Viscosity (cP)	Relative ρ*C _p (-)
Solar Salt (NaNO ₃ /KNO ₃)	220	~600	1.55	1.71	1.0	1.00
KNO ₃	334	~650?	1.39	1.78	-	0.93
KCI/MgCl ₂	426	>900	1.1	1.97	1.9	0.82
KCI/NaCI/MgCl ₂	385	>900	1.1	1.94	1.6	0.81
ZnCl ₂ /KCl/NaCl	199	>800	0.92	2.08	4.5	0.72
Na ₂ CO ₃ /K ₂ CO ₃ /Li ₂ CO ₃	398	~800	1.83	1.99	8.3	1.37

Physical properties estimated/measured near 600°C for comparison

Data sources:

- Solar salt: SQM solar thermal salts factsheet
- Mg chlorides: ORNL/TM-2006/69; Serrano-Lopez et al. (2013); Gowtham Mohan et al. (2017 submitted)
- Zn chlorides: University of Arizona (private correspondence)
- Carbonates: An et al. (2016)

New Molten Salt Benefits/Challenges

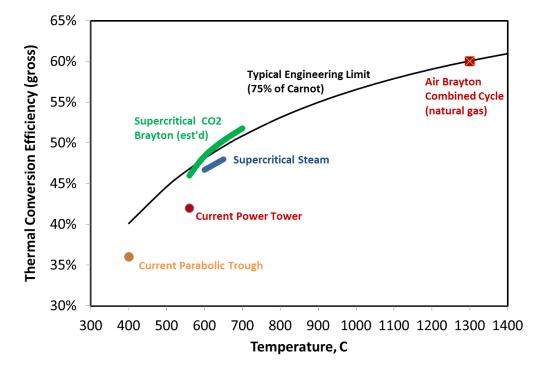
Salt	Primary Benefit vs Solar Salt	Primary Challenges
KNO ₃	 Slightly better thermal stability (600-650°C) 	 Slightly higher T_{mp} Slightly higher cost
KCI/MgCl ₂	Lower salt costBetter thermal stability	 Higher T_{mp} Lower ρ*C_p (i.e., larger tanks) Corrosion
KCI/NaCI/MgCl ₂	Lower salt costBetter thermal stability	 Higher T_{mp} Lower ρ*C_p Corrosion
ZnCl ₂ /KCl/NaCl	 Slightly lower T_{mp} Better thermal stability 	 Lower ρ*C_p Corrosion Measureable vapor pressure Slightly higher salt cost
Na ₂ CO ₃ /K ₂ CO ₃ /Li ₂ CO ₃	 Higher ρ*C_p (smaller tanks) Better thermal stability 	 Higher T_{mp} Corrosion High salt cost (Li₂CO₃)

> Laboratory testing indicates Cl corrosion can be controlled if high purity is maintained in the salt melt

Falling Particle Power Tower Systems

Electric Particle Grid Receiver Generator Power Turbine Cold Hot Heat Particle Lift Rejection Heliostats Solar Particle Power Field Heat Block Exchanger Cold Pump/ Compressor **Receiver and** Control Thermal Storage Room System

Advantages


- No freezing concerns
- No trace heating
- Thermally stable particles
- Direct heating of particles allows for high flux/concentration ratios
- Direct storage of inexpensive particles
- Particle handling, heat exchange, and storage techniques well established

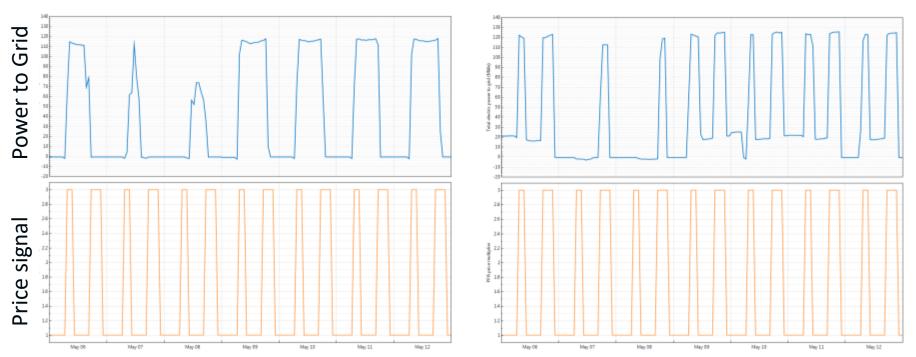
Challenges

- Less established within CSP industry
- Particle durability, attrition (dust emission) •
- Receiver efficiency via convective/radiative and particle losses ۲
- Increase particle/wall heat transfer
- Particle-to-sCO₂ heat exchanger at 700°C, 20 MPa

CSP Power Cycle Development

- The supercritical-CO₂ Brayton cycle promises higher efficiency and lower installed cost versus to existing superheated steam cycle
- \$100 million cost-shared project is to build and demonstrate a 10 MW_e system in Texas
- Cycle performance gains are more pronounced at higher temperatures;
 U.S. DOE program is targeting 700°C turbine inlet temperature

Home » DOE Announces \$80 Million Investment to Build Supercritical Carbon Dioxide Pilot Plant Test Facility


DOE Announces \$80 Million Investment to Build Supercritical Carbon Dioxide Pilot Plant Test Facility

October 17, 2016 - 11:39am

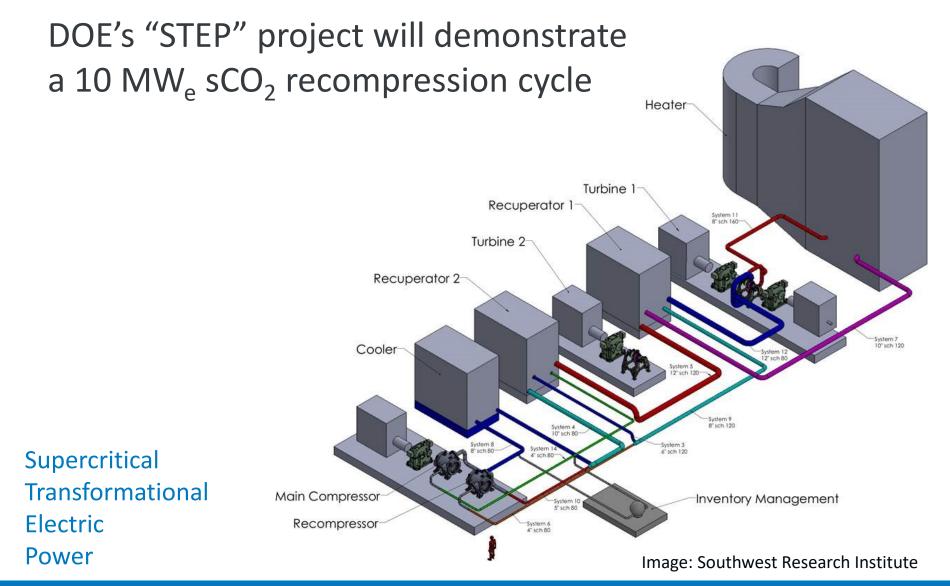
System Operation/Dispatch Optimization

Simple

Optimized

Metric	Simple	Optimized
Annual energy (year 1)	301,600 MWh	289,300 MWh
Levelized Cost of Energy (real)	11.9 ¢/kWh	12.4 ¢/kWh
Power Purchase Agreement price (year 1)	9.6 ¢/kWh	5.9 ¢/kWh

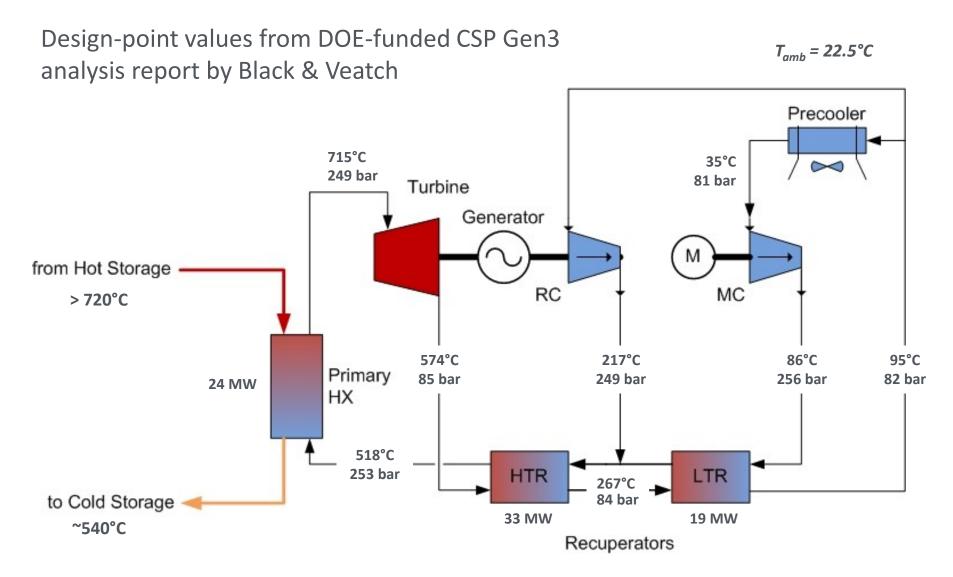
Despite lesser generation, optimized dispatch produces greater value as indicated by a lower acceptable PPA price


Matching CSP system design and dispatch to grid demand is essential

Thank you!

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.


sCO₂ Cycle Development under STEP

STEP Test Facility Attributes and Objectives

- 10 MW_e sCO₂ recompression Brayton cycle
- Turbine inlet temperature of 700°C
- Demonstrate pathway towards an overall power cycle efficiency of 50% or greater
- Reconfigurable and can monitor and characterize primary components or subsystems (turbomachinery, heat exchangers, recuperators, bearings, seals, etc.)
- Demonstrate steady state, transient load following, and limited endurance operation.
- Capable of test campaigns to assess critical component degradation mechanisms to assess component life and cost

sCO₂ Recompression Cycle

Note: SunShot CSP plants are assumed to be dry cooled, so a higher design-point ambient temperature is likely.