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1. C o n c u r r e n t  P r o g r a m s  

A concurrent program consists of a concction of processes and shared objects. Each pro- 

cess is defined by a sequential program; the shared objects allow these programs to cooperate in 

accomplishing some task. The processes can be implemented by multiprogrammln&, where all 

share a single processor and arc executed one at a time in an interleaved manner, by mu/t/pro- 

cessing, where each is executed on its own processor in parallel with the others, ~r by some 

combination of these approaches. The shared objects can be implemented in shared memory or 

might simply be a computer-ctm~munications network. 

Operating systems axe among the best known examples of concurrent programs. All 

operating system manages execution of user tasks and controls processors and inpuffoutput dev- 

ices that operate in parallel. Consequently, it has a natural specification as a concurrent 



671 

program, with a separate process contro ~Uing each user task and hardware resource, And, like 

any large system, an operating system must be organized so that it can be understood and 

modified. Structuring a system as a coUcction of processes and shared objects has proved to be 

an effective way to achieve this. 

Concurrent programs are not the sole province of those who design operating systems, 

however. They are useful whenever an application involves real or apparent parallelism, as the 

following examples show. 

• In order for a database system to service many terminals in a timely manner, transactions 

are processed concurrently. Implementing transactions so that they function correctly 

despite other transactions manipulating the database is a concurrent programming prob- 

lem. 

• The availability of inexpensive microprocessors has made possible construction of comput- 

ing systems that previously were not economically feasible. For example, such systems are 

being employed to control nuclear reactors, chemical plants, and aircraft. The programs 

for these applications frequently are concurrent program.~. 

• Computer networks are becoming widespread. Such networks consist of a collection of 

processors interconnected by communications lines. The protocols that enable processors 

to exchange data are concurrent programs. 

1.1.  C o m m u n i c a t i o n  a n d  S y n c h r o n i z a t i o n  

In order to cooperate, processes must communicate and synchronize. Communication 

allows one process to influence execution of another and can be accomplished using shared vari- 

ables or message passing. When shared variables are used, a process writes to a variable that is 

read by another process; when message passing is used, a process sends a message to another 

process. Both modes of communication involve a delay between the sending of a piece of infor- 

mation and its receipt. This delay has profound consequences because information obtained by 

a process can reflect a past state of the sender. Orchestrating cooperation among processes 

when the exact state of the system is unavailable can make designing a concurrent program 

rather difficult. 

To communicate, one process sets the state of a shared object and the other reads it. This 

works only if the shared object is read after it has been written--reading the object before it is 

written can return a meaningful, but erroneous, value. Thus, communication between asyn- 

chronous processes cannot occur without synchronization. Two forms of synchronization are 

useful in concurrent programs. The first, mutua/exclusion, involves grouping actions into crit/- 

cal sections that are never interleaved during execution, thereby ensuring that inconsistent 

states of a given process are not visible to other processes. The second form, condition syn- 

chronization, delays a process until the system state satisfies some specified condition. Both 

forms of synchronization restrict interleavings of processes. Mutual exclusion restricts inter- 

leavings by eliminating control points in a process; condition synchronization restricts interleav- 

ings by causing a process to be delayed at a given control point. 
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A simple e=~np!e illustrates these types of synchronizationo Communication between a 

sender process and receiver process is often implemented using a shared buffer. The sender 

writes into the buffer; the receiver reads from the buffer. Mutual exclusion is used to ensure 

that a partially written message is not read--access to the buffer by the sender and receiver is 

made mutually exclusive. Condition synchronization is used to ensure that a message is not 

overwritten or read twice---the sender is prevented from writing into the buffer until the last 

message written has been read, and the receiver is prevented from rereading the buffer until a 

new message has been written. 

1.2.  U n d e r s t a n d i n g  C o n c u r r e n t  P r o g r a m s  

A program state associates a value with each variable. Variables include those explicitly 

defined by the programmer and those, like the program counter for each process, that are hid- 

den. Execution of a sequential program results in a sequence of atom/c actions, each of which 

transforms the state indivisibly. Execution of a concurrent program results in an interleaving 

of the sequences of atomic actions for each component process and can be viewed as a h/awry 

ell Q 2  ~ J  ~ti÷1 

S 0  " -~  5 1  " ~  " " " " #  $ i  ~ " " " 

where the s{s denote states, the a{s  denote atomic actions, and the sequence a l  a2 . . .  is an 

interleaving of the sequences of atomic actions resulting from execution of the processes. Note 

that even multiprocessing can be modeled in this way; the effects of executing a set of atomic 

actions in parallel is equivalent to executing them in some arbitrary, serial order, because the 

state transformation caused by an atomic action is indivisible and therefore cannot be affected 

by atomic actions executed in parallel with it .  

In order to describe a history, it suffices to use either the sequence of states or the initial 

state $0 and the sequence of atomic actions. Given a sequence of states, we can construct the 

sequence of atomic actions by looking at the program counters in pairs of adjacent states to see 

which atomic action was scheduled between them; given a sequence of atomic actions, we simu- 

late execution to obtain the sequence of states. 

There is good reason to prefer sequences of states to sequences of actions. Given a state, 

it is possible to determine the set of possible future states. We can determine which atomic 

actions are eligible for execution by looking at the values of the program counters in the state, 

and we can determine what each atomic action will do by looking at the values of variables. 

Thus, in a formalism based on sequences of states, only the last element in a sequence is 

needed to determine possible next states in the sequence. The future is defined by the present. 

In a formal~m based on sequences of atomic actions, a state is defined by a sequence of atomic 

actions that leave the system in that state. Therefore, a sequence of atomic actions is required 

to determine possible next atomic actions in the sequence. This can be notationaUy burden- 

some, to say the least. 

The effect of executing a concurrent program is defined by a set of histories, each history 

corresponding to one possible interleaving of the sequences of atomic actions that result from 
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execution of its processes. For all but trivial concurrent programs, this set is apt to be quite 

large--so large that it might be impossible to enumerate, much less inspect, each of its ele- 

ments in order to ascertain asFects of the behavior of the program. Therefore, the approach 

we will take for developing and analyzing concurrent programs is based on the use of abstrac- 

tion; it is sometimes caUed assertional reasoning. Instead of enumerating sets of sequences of 

states, we characterize the elements (histories) in the set by describing their properties of 

interest. Instead of enumerating program states, we use assert/ons---formul~s of predicate 

logic--to characterize sets of states. Finally, use of a programming logic allows programs to be 

understood as implementing a relation between assertions, rather than as an object that is exe- 

cuted. 

When reasoning about concurrent programs, only properties that concern a/l executions of 

the program are of interest. This rules out properties that are described using "sometimes", 

such as "the program sometimes terminates". In practice, one is rarely interested it, a program 

that exhibits desired behavior only sometimes, so this is not a real limitation. It also rules out 

properties of the program's structure, such as the number of modules or lines of code, but then 

these can be checked in other ways (e.g. by a compiler). 

Any property of all executions of a concurrent program can be formulated in terms of 

safety and liveness. 

(1.1) Safety. A safety property asserts that nothing "bad" happens throughout execution. 

(1.2) Liveness. A liveness property asserts that something "good" eventually does happen. 

For example, the property that a program always produces the correct answer can be formu- 

lated using one safety property and one liveness property. The safety property is that the pro- 

gram never terminates with the wrong answerwterminating with the wrong answer is the "bad 

thing". The liveness property is that the program eventually does terminate--termination is 

the "good thing". We might also desire that a program generate answers in a timely manner. 

This is also a safety property, where the "bad thing" is that the clock (an hidden variable) has 

a certain value and the program counter (also an hidden variable) has not reached the state- 

ment that generates the answer. 

The key attribute of safety properties is that once the proscribed "bad thing" happens, no 

subsequent execution can cause the safety property to hold. On the other hand, the key attri- 

bute of liveness properties is that no partial execution is irremediable: it always remains possi- 

ble for the "good thing" to occur during subsequent execution. 

2. Notation for Sequential  P r o g r a m s  

A program consists of dec/arat/ons followed by statements. Declarations define variables 

and associate a data type, and perhaps an initial value, with each; statements change the values 

of variables. 
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2.1 .  D e c l a r a t i o n s  a n d  V a r i a b l e s  

The syntax of a declaration in our programming notation is: 

Each/di is a list of identifiers separated by commas and each typei denotes a data type. 

Simple data types, like integers and booleans are denoted simply by giving their names. 

An array data type is specified using 

a r r a y [ u , 1 . . ~ l ,  • • • I b . . . . b . ]  o r t y p e  

where type can be any data type and each subscript specifier/b~., ub I gives the range of permissi- 

ble subscript values for the i th dimension of the array. If/b~>ub I then no subscript values are 

permissible for that dimension and the array is empty. Examples of array declarations are 

var a, b : array [1. . n] of integer; 
matrix : array [1. . row s , 1 . . cols ] of  boolean 

which define a and b to be one-dimensional arrays of integers and matrix to be a two- 

dimensional array of booleaus. To shorten array declarations, we place the range specifiers 

immediately after the variable name and omit the keywords array and of. Thus, the above 

array declarations would be shortened to 

vat" a[1..  n], b[1..n] : integer; 
matrix[1., rows, 1. .  cols] : booleans. 

To refer to an individual element of an array, the variable name is given, followed by an 

expression enclosed in brackets. For example, a[1], b[i+j],  and nuurix[rows, j + k ]  refer to ele- 

ments of the arrays declared above. 

Variables can be initialized by using the optional initial clause. An initial clause follows 

the data type in a declaration and specifies the value of each identifier that precedes it. For 

example, 

va t  i, j : integer initial 1, 1; 

specifies that i and j are initialized to 1. 

2 .2 .  S t a t e m e n t s  

Execution of the skip statement has no effect on any program variable, but terminates 

promptly. Its syntax is: 

skip 

Execution of the ass i~ment  statement 
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Xl, x2, . . . ,  x n := e l ,  e2, oo., e n 

where the targets o f  the  assignment x l ,  ..o, x n agree in number and data type with expressions 

e l ,  . . . ,  en, is per formed  as follows. The values of any expressions in the targets are computed. 

(An expression can appezz in a target that denotes an element of a composite variable. For  

example, the target x[e] denotes an element of array x ,  and the value of • must be computed to 

determine which one.) Then, the values of • 1 . . . . .  e ,  are computed. Finally, x 1 is set to the 

value computed for e l ,  then x 2 is set to the value computed for e2, and so on. If any of the x,. 

is undefined (e.g. xj. is an array reference x[e] and the value of • is outside the range of permis- 

sible subscripts) or any of the e~ is undefined (e.g. evaluating a/b with b = 0), then the assign- 

ment statement does not terminate. 

This form of assignment statement is called the nudtip/e assignment because it allows the 

value of more than one variable to be changed at a time. It is more elegant than the single- 

assignment statement found in most programming notations. For example, 

x, y := y,  x 

interchanges the values of x and y. When single-assignment statements are used, three assign- 

ments and an additional variable are required. 

The statement composition operator ";"  allows two statements to be combined to form a 

new one. The new statement is executed by executing the first and, when (and if) it ter- 

minates, executing the second. For example, sequential execution of 51 followed by $2 is speci- 

fied by 

$1; 52. 

The syntax of the if statement is 

if G I ~ S  I ~ G 2 ~ S  2 ~ ... ~ G n ~  n 

where each guard G~ is a boolean-valued expression and each S~ is a statement. Execution of 

the if p ro t~As  as follows. If no guard is true, then the if does not terminate. Otherwise, one 

o f  the  guarded statements 3 G~ -, S~ where G~ is true is selected, and $~ is executed. 

Unlike the other statements discussed thus far, the if is non-determ/nLn/c---its execution 

may not be completely determined by the state in which it is started. This is because it is 

unspecified which guarded statement among those with true guards is actually selected for exe- 

cution, and more than one guard might be true. An advantage of using non-determinlstic con- 

trol structures is that they do not force the programmer to overspecify a computation. For  

example, in 

f f x < y  -, m a x m / : =  y [] x > y  . maxva/ :=  x 1I 

which sets maxva/ to  the maximum of x and y,  either of the guarded statements can be selected 

3In the literature, these are sometimes called guarded commands. 
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when x = y .  

The do statement ~ w~ed to specify iteration° Whereas in an if one guarded statement 

with a true guard is selected and executed, in a do, this process is repeated un~ all the guards 

are false. Execu~on of 

do G~--S~ [i G2-S2  fl ... D G . - . S .  od 

proceeds by pcrformlng the following, until no longer possible: Select a guarded statement 

G~ -* St where G~ is true, and execute St. Different guards might be ~ on different iterations, 

and therefore a different statement might be selected for execution in each iteration. Note that 

do is non-determlnlstic ff two or more guarded statements have true guards at the be~nning of 

some iteration. 

An example program written in our notation is given in Figure 2.1. The program stores in 

t the sum of the values in array b[0.. n -  1], assuming n>0. 

3. P r o o f  Out l ine  Logic  

Recall from §1.2 that the behavior of a program is described by a set of histories. Each 

history contain.~ a sequence of states corresponding to a particular execution of the program. 

Computing the set of histories for a program is often an intractable task. Fortunately, we are 

us,  any interested only in establishing that the histories all satisfy some given property, rather 

than in the details of each history. Such ~ g  can be accomplished using a programming 

logic to derive properties of program histories directly from the program text. 

3 . 1 .  F o r m u l a s  a n d  I n t e r p r e t a t i o n  

Proof Outline Logic is a programming logic for reasoning about safety properties. It is an 

extension of Predicate Logic, and thus contain~ all the formulas, axioms, and inference rules of 

Predicate Logic. In addition, it contains formulas called proof outlines of the form 

e o :  {v} ~ {Q} 

where PO is an optional label, S is an annotated program---a program S in which each statement 

is preceded and followed by zero or more assertions---and P and Q arc ~sertions. Assertions 

are Predicate Logic formulas and describe the program state at various points during execution. 

ear  t, i, b [ 0 . . n - 1 ]  : integer; 

t, i :-- 0, 0; 
d o  i ~n  -. t, i : =  t+b [ i ] ,  i + 1  od 

Figure 2.1. Snmming Elements of an Array 
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Thus, a formula of Proof Outline Logic des~bes  the initial, f inal and possibly some intetm¢~o. 

ate states of a program. 

In proof outlh~ PO above, P is called the precondition, denoted by pre(PO), and Q is 

called the postcondition, denoted by post(PO). In addition, the assertion immediately preceding 

a statement S' in PO is considered the precondition of S' ,  denoted by preeo(S'), and the asser- 

tion immediately following S' is considered the postcondition of 5 '  and denoted by postpo(S' ). 

When the subscript PO is clear from the context, it is omitted. This terminology is illustrated 

in the following example proof outlines, not all of which are theorems of Proof Outline Logic: 

POI: {x=0 ^ y=3} skip {x=21 ^ y=3} 

P02: (x= X) 
tr x~O -. {x~O} skip {x=~s(x)} 
I! x ~ O  -- x := - x  {x~O} {x=ab s (X)}  
fl  
{x=~,~(x)} 

In them, we have: 

pre(POl) -- x=O ^ y=3 
post(PO1) " x=21 ^ y=3  
p r e e o l ( s k l p )  m x = O  ^ y=3 
posteoj(sklp ) m X=21 ^ y=3  

pre(P02) -- x = X  
post(PO2) - -  x=abs(X) 
preeo2(skip ) -, x>O 
postPo2(Skip) " x=ab$(X) 
prepm(x : = - x )  -- undefined 
pOSteo2(X := - x )  - x~O 

To give a formal interpretation to proof outlines, we distinguish between two types of free 

variables. 4 Logical var/ables axe designated, free variables in assertions and do not appear in 

program statements. In these notes, logical variables are typeset using uppercase roman letters. 

All other free variables axe called program variables. In PO1 and P02 above, X is a logical 

variable; x and y are program variables. Program variables obtain their values from the state. 

Logical variables do not; instead they are implicitly universally quantified over the entire proof 

outline. This permits the following 

(3.1)  Interpretation for Proof Outlines. Let ~" be a list of values, one for each of the logical 

variables. For a state s, let A(~', s) denote the value of assertion A with every logical 

variable replaced by its value from ~ and every program variable replaced by its value 

from state s. 

4In addition to free variables, assertions can contain bound variables in quantified expres- 
sions. 
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The interpretation of a proof outline 

po: (e} ~ (Q} 

is that for all ~, if execution of annotated program ~ is started in some state s at the 

statement following any assertion A (including P or Q) in PO and A(F, s)=true, then 

if the state is s'  when the next assertion A ' in PO is enoountered, A '(F, s ')=true, t3 

This interpretation of proof outlines is based on ~ correctness, which is a safety property 

requiring that a program never reaches a "wrong" state when started in a "fight" state. In this 

case, a "right" state is one that satisfies an assertion---usually, but not always---the precondi- 

tion of the proof outline; a "wrong" state is one that does not satisfy an assertion encountered 

during execution---usually, but not always---the postcondition of the proof outline. Notice that 

partial correctness does not stipulate that the program terminates or that any given assertion is 

actually reached. 

3.2.  Axioms and Inference Rules 

In addition to the axioms and inference rules of Predicate Logic, Proof Outline Logic has 

one axiom or inference rule for each type of statement, as well as some statement-independent 

inference rules. Each rule is defined so that it is sound with respect to interpretation of proof 

outlines (3.1) and the operational semantics of our programming notation. 

The skip Axiom is simple, since skip has no effect on any program or logical variable. 

(3.2) skip Axiom: {P} skip {P} 

The axiom states that anything about the program and logical variables that holds before exe- 

curing skip also holds after it has terminated. 

To understand the Assionment Axiom, consider a multiple-assio~ment £ := ~- where £ is a 

list x l ,  x2 . . . . .  Xn of identifiers (i.e. not elements of arrays) and ~" is a list el, e2 . . . .  , en of 

expressions. If execution of this multiple assignment does not terminate, then the axiom is 

valid for any choice of postcondition P. If execution terminates, then its only effect is to 

change the value denoted by each target xi to that of the value denoted by the corresponding 

expression e i before execution was begun. Thus, to be able to conclude that P is true when the 

multiple assicnment terminates, execution must begin in a state in which the assertion obtained 

by replacing each occurrence of x I in P by ei holds. This means that if p r  is true before the 

multiple assignment is executed and execution terminates, then P will be true of the resulting 

state. Thus, we have the 

(3.3) AssisnmentAx~m: {e~  £ := ~- {e}. 

A proof outline for the composition of two statements can be derived from proof outlines 

for each of its components. 
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(3.4) Statement Composition Rule: {P} S1 {Q}, {Q} $2 {R} 

When exexuting S~; $2, anything that is true when $1 terminates will hold when $2 starts. From 

the first hypothesis of the Statement Composition Rule, we conclude that if execution is started 

at the be~nning of S 1 in a state satisfying P then every assertion in $1 encountered during exe- 

cution will be true. Thus, if 51 terminates, Q will be true. From the second hypothesis, we 

conclude that if execution of $2 is begun in a state satisfying Q, then every assertion in $2 

encountered during execution will be true, and if S 2 terminates, R will hold. Therefore, if 

51; $2 is started in a state satisfying P, then every assertion in $1; {Q}S2 encountered will be 

true, and the Statement Composition Rule is sound. 

Execution of ff ensures that a statement St is executed only when its guard G# is true. 

Thus, if the ff is executed in a state satisfying P, then P^ G# will hold just before Si is executed. 

Knowing that under these circumstances every assertion in Si encountered will be true---due to 

the i ts hypothesis of the rule--is sufficient to establish that Q will hold should the if terminate. 

Thus, we have 

(3.5) ff Rule: 

{P ̂  G1} Sl {Q} . . . .  , {P ̂  GJ ~, {Q} 
{P}  i f  G I " { P A G 1 } , S I { Q }  [] " " " fl Gn'{PAGn}Sn{Q}n {Q}  

The inference rule for do is based on a/oop/hint/ant---an assertion that holds both before 

and after every iteration of a loop. 

(3.6) do Ru/e: 
{!} 
do G1 - Y ^ G1} Sl {I} 

[I G. - Y ^ 6 J  ~. y} 
od 
i t  ^ -~G1 ^ ... ^ -~G,,) 

The hypotheses of the rule require that if execution of S~ is begun in a state in which I and G~ 

are true, every assertion in S~ encountered will hold, and if execution terminates, ! will again be 

true. Hence, if a do statement is executed starting in a state satisfying I, then every assertion 

encountered in S~ will hold, and I will be true at the be~nning and end of each iteration. Thus, 

I will hold if the do terminates. The do terminates when no guard is true, so -~G1 ̂ . . .^  -~Gn 

will also hold at that time. Therefore, the inference rule is sound with respect to the interpre- 

tation of proof outlines (3.1) and the execution of do. 

The Rule of Consequence allows the precondition of a proof outline to be strengthened 

and the postcondition to be weakened, based on deductions possible in Predicate L~gic. 
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(3.7) Rule of Consequence: P'=~P, {P} S {Q}, Q==~Q' 

Hypothesis {P} S {Q} requires that every assertion in .~ encountered during execution holds and 

that Q is true if S terminates. If P holds whenever P '  does, which is the case if P'=~P, then 
every assertion encountered during execution will hold if S is begun in a state satisfying P ' .  

Thus, Q will be true should S terminate, so {P'}{P}S{Q} is valid. ~milarly, from Q ~ Q ' ,  
whenever Q is true, so is Q'. Therefore, if S terminates and Q is true, Q' will also hold, and 

the conclusion of the rule follows. 

The Rule of Consequence is the only way to introduce adjacent assertions in a theorem of 

Proof Outline Logic, and therefore a pair of adjacent assertions {,4} {,4'} in a proof outline 

always means A =~ A'. Since hypotheses of the Rule of Consequence involve theorems of Predi- 

cate Logic, which is incomplete, Proof Outline Logic is incomplete. Proof Outline Logic, how- 

ever, is relatively complete with respect to Predicate Logic. Failure to prove a valid formula in 

Proof Outline Logic must be attributed to the inabilities of the prover or to valid but unprov- 

able formulas in Predicate Logic, rather than to a weakness in the axioms or inference rules of 

Proof Outline Logic. 

The Logical Variable Rule allows a logical variable to be renamed or replaced by a specific 

value. 5 

(3.8) Log~at ¢ a r ~  R ~ :  {e} S {Q}, 
X a logical variable, 
Y a constant or a logical variable 

{ex} ~x {QX} 

The soundness of this rule is based on the interpretation of proof outlines, where a logical vari- 

able X becomes a bound variable whose scope is the entire proof outline. 

The Deletion Rule allows assertions in the annotated program of a proof outline to be 

deleted. 

(3.9) Deletion Rule: 
program ~. 

Let $' be the result of deleting one or more assertions from annotated 

{P} ~ {Q} 
{P} S' {Q} 

To see that the rule is sound, notice that every assertion in $'  also appears in $ and if an asser- 

tion encountered in ~ is true, then that assertion, if present in ~', must also be true when 

encountered. 

SEven though logical variables cannot appear in program statements, they can appear in the 
assertions in an annotated program. This explains the reason for substituting Y for X in S of 
the conclusion of the Logical Variable Rule. 
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We will frcq~cntly be concerned with a special class of proof outlines, called triples, that 
contain only two assertions: a single precondition and a single postcondition. The Deletion 

Rule provides a way to infer a triple {P} S {Q} from a proof outline {P} ~ {Q}. 

The Conjunction and Disjunction Rules (3.10) and (3.11) allow proof outlines for the same 

program with assertions in corresponding positions to be combined into a single proof outline. 

Given two proof outlines for a program S, POI($) and P02(S), in which a precondition 
(postcondition) for each statement S' aIvears in POI(S) if and only if a precondition (postcon- 
dition) for S' appears in P02(S), define POI(S)~P02(S) to be the proof outline obtained by 

taking the point-wise conjunction of corresponding assertions in PO]($) and P02(S). 6 For 

example, given 

eOl: {x=5} x := x + l ;  {x=6} y := y + l  {x=6} 

P02: {y=2} x := x + l ;  {y=2} y := y + l  {y=3} 

then PO1 ~ P 0 2  is: 

{x=5  ^ y = 2 }  x := x + l ;  {x=6 ^ y=2} y := y + l  {x=6 ^ y=3} 

The following Conjunction Rule states that POl (S) ~ P02(S) can be inferred from PO I (S) and 

PO2(S). 

(3.10) Conjunction Rule: V01(S), V02($) 
vow(s) ®eoz(s) 

If execution is started at a statement S' in S with preeol@eoz(S')=true then by construction 
both prepol(S' ) and preeo2(S' ) will hold. By the hypotheses, every subsequent assertion in 

both PO1 and P02 will hold when encountered. Thus, by construction, every subsequent asser- 

tion in PO1 ~ P 0 2  will hold when encountered, and the rule is sound. 

Define POI(S)~P02(S) to be the proof outline that results from the point-wise disjunc- 

tion of corresponding assertions in POI(S) and P02(S). The Disjunction Rule allows 

POl(S) ~ P02(S) to be inferred from POI(S) and P02(S). 

(3.11) Di~j~,~o~R~: POt(S), POZ(S) 
vol(s) @vo2(s) 

To see that this rule is sound, suppose execution is started at a statement S' in S with the state 

satisfying prepol~l,o2(S' ). By construction, this means that either preeol(S') or preeo2($') 
must hold. If preeol(S' ) holds, then by the first hypothesis we conclude that the disjunct from 

PO1 will hold in next assertion in POI ~ P 0 2  that is encountered. The second case follows in 

the same way from the other hypothesis. Thus, the inference rule is sound. 

61"bus, for each statement S' in S: preeol(s)~eo2(s)(S' ) = preeol(S' ) A prepo2(S' ) and 
Vosteolcs)~eo2(s)(S') -- posteo~(S') ^ posteoz(S'). 
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Tables 3.1 and 3.2 summarize the axioms and ~ereace rules of Proof Outline Logic. 

3.3.  P roo f s  in P r o o f  Out l ine  Logic  

Since a proof in Proof OutlL-~e Logic is merely a sequence of proof outlines and Predicate 

Logic formulas, where each is an axiom or can be derived from previous lines by using infer- 

ence rules, the logic provides a mechanical way to check partial correctness properties of pro- 

grams. In the following, we illustrate the use of Proof Outline Logic by proving partial correct- 

hess of the program of Figure 2.1. We prove that ff the program is started in a state where 

O<n holds and execution terminates, then t will contain the sum of the values in b[O] through 

skip ~x'/~m: {P} skip {P} 

Assignment Axiom: {P~ ~ := e" {P} 

Statement Composition Rule: 
(P} s~ {Q}, {Q} s2 {e} 

{e} s~; {Q} S2 {R} 

If Ru/e: 

{ P ^ O ~ } ~ { o } ,  - - -  {P^O.}~ . {Q}  
{P} 

[l o ,  - {P ̂  o . }  ~. {Q} 
fi 
(Q} 

do Rule: 

{I ̂  G1} ~ {0, {r ̂  6 . }  $, {t} 
{/} 
do G 1 -. {1 ̂  G1} $1 {1} 

D c ,  - I /^6 , }  ~. (/} 
od 
(l ^ ~01 ^ ... ^ -,6,} 

Table 3.1. Proof Outline Logic: 
Axioms and Inference Rules for Statements 
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Rule of Consequence: P'=~P, W},.~{Q}, Q Q 
W'}{P} " ' S {Q}{Q } 

Logical Variable Rule: 

{p} ~ {Q}, 
X a logical variable, 
Y a constant or a lo~ical variable 

Deletion Rule: Let ~' be the result of deleting one or 
more assertions from annotated pro- 
gram ~. Then, 

{P} S {Q} 
{P} ~, {Q} 

Conjunction Rule: POI(S), P02(S) 
POI(S)~P02(S) 

OUn,,,cno. R ~ :  POI(S), PO2(S) 
PO] (S) 0 P02 (S) 

Table 3.2. Proof Outline Logic: 
General Axioms and Inference Rules 

b[ , , -H. 7 

By the AssiEnment Axiom (3.3): 
1. {O~i+l~n ^ t+b[i]=(Xj: O~j~i: b[j])} 

t, i := t+b[i], i + I  
{O~i~n ^ t=(Xj: O < j ~ i - l :  b[j])} 

By Predicate Lo~c: 
2. (O~i~n A t=(Xj: O~j~i--l: b[j]) ^ i~n) 

=~ O ~ i + l ~ n  A t+b[i]=(Xj: O<j<i: b[j]) 

7Throughout, we use the notation (~j:  l~j~n: b[j]) in place of Y b[j]. 
J=l,n 
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By the Rule of Conscqucncc 0.7) with lines 1 and 2: 
3. {O~i<n A t=(Xj: O~j~i-- l :  b[j]) A i~n} 

{0~i+l~;n ^ t+b[i]=C~j: O~;j~i: b[~)} 
t, i := t+b[i], i+1 
{O<i~n ^ t=C£ j: 0=;j~;i-l: b[jD} 

By the Deletion Rule (3.9) with line 3: 
4. {O<i<n ^ t=(F.j: 0 ~ j ~ i - l :  b[j D ^ i#n} 

t, i := t+b[i], i+1 
{Oxi~n ^ t=(Xj: 0 ~ j < : t - l :  b~])} 

By the do Rule 0.6) with line 4: 
5. {O~i~n ^ t=C~j: 0 < j < i - l :  b[jD} 

do i #n  -. {O~i~n ^ t=C~j: 0<j~;l- l :  b[j]) A t~n} 
t, i := t+b[i], /+1 
(O~;i~n ^ t=(F.j: 0 < j < i - l :  b[j])} 

od 
{O~i~n ^ t=C~j: 0 < j ~ i - l :  b[j]) ^ i=n) 

By the Assimlmcnt Axiom 0.3): 
6. {O~O~n A O=(Yj: O~j~--l: b[j])} 

t, i := O, 0 
{O~i~n ^ t=(F~j: 0 ~ j ~ ; i - l :  b[j])} 

By Predicate Logic: 
7. O~;n =~ (O~O~n ^ O=('~j: 0<j<:- l :  b[j])) 

By the Rule of Consequence (3.7) with lines 6 and 7: 
S. {O~n} 

{O~O~n ^ O=(Y.j: O ~ j ~ - l :  b[j])} 
t, i := O, 0 
{O~i~n ^ t=(Xj: 0:~j~;i-l: b[j])} 

By the Deletion Rule (3.9) with line 8: 
9. {O~n) 

t, i := 0, 0 
{O~i~n ^ t=(F~j: 0 < j < i - l :  b[j])} 

By the Statement Composition Rule (3.4) with lines 5 and 9: 
10. {O~n} 

t, i := O, 0 
{O~i~n ^ t=(F~j: 0 < j ~ i - l :  b[j])} 
do i~n -. (O~i<n ^ t=(Yj: 0 < j ~ i - l :  b[j]) ^ i~n} 

od 
{O<i<n 

By Predicate 
11. 

t, i := t+b[i], i+1 
{O~i~n ^ t=(F.j: 0~;j~;l-l: b[j])} 

^ t--~j: o<j<i-z: b[j]) ^ i--n) 

Logic: 
(0<i<a ^ t=C2j: o~ j<S- l :  b[j]) ^ t= . )  

t=(Y.j: 0-Xj<n-l: b[j]) 
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By the Rule of Consequence (3.7) with lines 10 and 11: 
12. {O~n} 

t, i := 0, 0 
{O~i~n ^ t=(Y-j: O~j----i-l:  b[j])} 
do i~n -. {O~i<n ^ t=C£j: o ~ j ~ t - l :  b[j]) ^ l~n} 

t, i := t+b[i], i + 1  
{o~i<n ^ t=(Y4: o<j~i- l :  b~])} 

od 
{O~i~n ^ t=CZj: O ~ j ~ i - l :  b[j]) ^ i=n} 
{t=C~ j: O~;j~n-1: b[j])) 

3.4. A Simple Validity Test 

Proving theorems of Proof Outline Logic can be a tedious task, as illustrated above. For- 

tunately, it is not necessary to show that a proof outline is a theorem in order to establish that 

it is valid. The following test can be used instead. The test is based on the interpretation of 

proof outlines and involves showing that for any statement S ' ,  if preeo(S') is present and exe- 

cution of S'  is begun in a state where prepo(S') holds, then when the next assertion is encoun- 

tered, it too will hold. Validity then follows by induction on the number of assertions that are 

encountered during execution. 

(3.12) Simple Proof Outline Validity Test. 

(1) For each assertion Q in the proof outline, identify the preceding assertion on 

every execution path to Q. Let this set of assertions be pred(Q). 

(2) For each assertion P in pred(Q), identify the code that is executed between the 

time control is at P and control is next at Q. Let this be exec(P,Q). 

(a) If exec(P, Q) does not change any variable or involve evaluating any guard 

then check that P ~ Q is valid. 

(b) If exec(P, Q) involves executing some statement S then check that {P} S {Q} 

is a theorem of Proof Outline Logic. For example, if exec(P, Q) is an assit, nment 

:= ~- then check that P =~ ~ is valid. 

(c) If exec(P, Q) is evaluation of guard G that is true then check that e ^ G =~ Q 

is valid. 

(d) If exec(P, Q) is evaluation of guards G1, G 2  . . . .  , G n that are all false then 

check that 

(P^ -~G1^ -.G2^ ... A -~On)=~ Q 

is valid. [] 

Checking the validity of a proof outline is quite simple and can be done by inspection pro- 

vided the program is annotated with a loop invariant for each loop. We now illustrate validity 

test (3.12) on the proof outline of Figure 3.1, which is based on line 12 of the proof above. All 

the (gory) details are worked out only so you can be sure you understand how to perform the 



686 

{pl: O~n} 
t, i := 0, 0; 
{P2: O ~ i ~ n  ^ t=('2/: O ~ j < i - l :  b[/])} 
do i # n  -. {P3: O<l<n ^ t=(Y.j: O~;j~gi-l: b[j]) ^ t#n}  

t, i := t+b[i], t+1  
{el: O~i~n ^ t=(~ j: 0 ~ j ~ t - l :  b[j])} 

od 
{PS: O~i~n  ^ t=(Y.j: O ~ j ~ i - l :  b[j]) ^ i=n} 
{1'6: t = (~j:  O ~ j ~ n - 1 :  b[j])} 

Figure 3.1. Example Proof Outline 

test. 

PI: Assertion PI has no predecessors. Therefore, no code is executed to reach it and 

no obligations need be satisfied. 

P2: Assertion P2 has one predecessor, PI.  To go from P1 to P2, t, i := 0, 0 is exe- 

cuted. According to 2(b) of (3.12), e l  :~P2~i o must be valid. It is, because 

(0~n) =~ 0~0~n  ^ 0--C£j: 0 < j ~ - l :  hi/]) 

is valid. 

1'3: Assertion P3 has two predecessors, P2 and 1'4. 

To go from P2 to P3, the guard in the do must be true. According to 2(c), 

(P2 ̂  i ¢  n) => P3 must be valid. It is. 

To go f romP4  to P3, i # n  must hold. Again by 2(c), ( P 4 A i ¢ n ) : ~ P 3  must be 

valid. It is. 

1"4: Assertion 1'4 has one predecessor, P3. To go from 1'3 to 1'4, t, i := t+b[i], i+ 1 

is executed. According to 2(b), P3=~P4~b[i],t+ 1 must be valid. It is, because 

(O<i<n ^ t=(~,j: O~gj~;i-l:  b[j]) ^ i~n) 

=:~ O~gi+l~n ^ t+b[i]=(Toj: O~j<i: b[j]) 

is valid. 

1'5: Assertion P5 has two predecessors, P2 and 1'4. To go from P2 or P4 to 1'5, 

guard i ¢ n  must be false. According to 2(d), (P2^i=n)=~P5 and 

(P4 ̂  i= n) =~ 1'5 must be valid. Both are. 

1"6: Assertion P6 has one predecessor, 1'5, and no code between them. Acxx~ding to 

2(a), 1"5 =~ P6 must be valid. This follows by substituting n for i in 1"5. 
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4.  Spec i fy ing  C o n c u r r e n c y  

Execution of the cobegh~ statement 

(4.1) cobegtn 51 l/ 52 // " . "  / /  5. coend 

where $I, ---, 5n are sequential program~ is equivalent to some interleaving of the atomic 

actions in processes 51 through $,  and terminates after each process has terminated. Thus, to 

understand the behavior of (4.1), we must identify the atomic actions of its processes. 

One way to identify the atomic actions in a program is by specifying the control points of  

that program---points in the program text that delimit its atomic actions. Unless otherwise 

stated, we assume 

(4.2) Control Point Assumption. There is a control point before and after every statementD 

For example, we assume that execution of an assit, nment statement is a single atomic action, 

independent of the number of target variables. In §6, we relax this assumption and introduce a 

notation to permit assiEnments to appear inside larger atomic actions. 

5. I n t e r f e r e n c e  

Experience has shown that decomposition often provides an effective way to reason about 

a complex object. The object is fLrSt partitioned into its components, then the properties of 

each component are derived in isolation, and finally these properties are combined to obtain the 

properties of the whole. In this section, we show how to derive certain properties of a con- 

current program from partial correctness properties of the sequential programs it comprises. In 

particular, we give an inference rule for Proof Outline Logic that permits derivation of a valid 

proof outline for a concurrent program from proof outlines for its processes. 

Define a complete proof outline to be a proof outline that has an assertion at every control 

point. Given complete proof outlines PO D PO 2 . . . .  , POn for sequential programs 51 through 

5n, we desire conditions to ensure that 

{e} 
(5.1) eobegin P01 //  P02 // " ' "  / /  PO,  coend 

{Q} 

is a valid and complete proof outline. Establishing that (5.1) is a complete proof outline is 

straightforward because P01 . . . .  , PO,  are complete proof outlines. Establishing that (5.1) is 

valid is more complex. 

During execution, a control point in a process is considered eligible if  it defines the next 

atomic action to be executed by that process. According to interpretation for proof outlines 

(3.1), establishing the validity of (5.1) is equivalent to showing 

(5.2) Whenever a control point is eligible, the state satisfies the assertion associated with 
that control point. 

Thus, to ensure validity of (5.1), it suffices to develop conditions on P,  Q, and the assertions in 
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P01, ..., POrt that ensure (5.2) holds initially and that prevent any prccess from invalidating it. 

The first condition e~,,~res that (5.2) is maintained when each process is started. If execu- 

tion of (5.1) is started at the be~nning, then due to the operational semantics of cobegin the 

control point at the start ef each process 5/ is  eligible. Since POl is a complete proof outline, 

there is an assertion pre(POi) associated with the control point at the start of $~.. Thus, if P 

holds when (5.1) is started--and therefore (5.2) holds--then pre(PO~) must also hold in order 

for (5.2) to be maintained. Therefore, we must have 

(5.3) P =~ (pre(PO1) ^ pre(P02) ^ " ' "  A pre(POn) ). 

The next condition ensures that (5.2) is maintained when each process terminates. The 

control point following the cobegtn in (5.1) is eligible only after the last atomic action in every 

process has executed. POi is a complete proof outline, so there is an assertion post(POi) associ- 

ated with the control point following the last atomic action in $1. According to (5.2), post(PO~) 

will hold after the last atomic action in process 5i has executed. Thus, for (5.2) to remain 

valid, we must have 

( 5 . 4 )  f r o s t ( e o l )  ^ p o s t ( c o 9  ^ . - .  ^ post(eo.)) ~ Q, 

so that Q will hold when the control point at the end of the cobegtn becomes eligible. 

Finally, we give conditions to ensure that (5.2) holds while 51 . . . .  , Sn execute. Suppose 

(5.2) holds and there is an eligible control point within one or more processes. We must 

ensure that if one atomic action of Si is executed, the assertion associated with the next eligible 

control point will then hold. By requiring that PO~ be a complete proof outline, the existence of 

an assertion at the next control point is assured; by requiring that PO~ is a valid proof outline, 

the invariance of (5.2) follows due to interpretation of proof outlines (3.1). Thus, one condi- 

tion for preserving (5.2) is 

(5.5) For all i, l ~ i~n :  PO~ is complete and F-PO~ 

where t- POi means that POi is a theorem of Proof Outline l . ~ c .  

We must also ensure that executing the next atomic action in Si does not invalidate an 

assertion associated with an eligible control point in another process. This is called interference 

freedom and is established by proving that if an assertion A in one process holds, then execution 

of any other process leaves A true. Establishing interference freedom is simplified if we assume 

(5.6) Assertion Restriction. 

(a) Assertions depend only on the values of program and logical variables. 

(b) Executing an assi~ment  statement is the only way a process can change the value 

of a program variable, o 

Part (a) implies that when checking interference freedom we need only consider execution of 

statements that change the values of program variables--for example, it is unnecessary to con- 

sider statements, like skip, that change only the ~ogram counter. Part (b) implies that only 
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assiEnment statements can invalidate an assertion in another process. 

To show that an assignment statement a cannot invalidate A, it suffices to prove that 

m ( , , ,  A): ~re~o , (~ )  ^ A} ~ {A} 

is a theorem of Proof Outline Logic. Thus, we have 

(5.7) Interference freedom. Proof outlines P01, P02, ... ,  POn are interference free if 

For all i, l ~ i ~ n :  

For all j ,  i # j  ^ l ~ j ~ n :  

For every assignment statement a in POt: 

For every assertion A in POj: ~-Nl(a, A).  n 

We have derived four conditions, (5 .3)-(5.5)  and (5.7), that together allow proof outlines 

for sequential program.~ to be combined to form a valid proof outline for a ¢obegin. Treating 

these conditions as hypotheses, we get our first inference rule in Proof Outline Logic for ¢obe- 

(5.8) cobegin Ru/e: 

(a) For all i, l ~ i ~ n :  PO i is complete and P-POi, 

(13) P =~ (pre(PO1) ^ pre(e02) ^ " ' "  ^ pre(POn)), 

(c) ~ o ~ ( e o l )  ^ p o ~ ( e o 2 )  ^ - - -  ^ p o ~ ( e o , ) )  ~ Q, 
(d) For every assignment statement a in POt 

For every assertion A in POI, j ~ i :  t -Nl(a,  A)  

{P} cobegin P01 / /  P02 //  " ' "  / /  POrt ¢¢.nd {Q} 

A n  E x a m p l e  

To illustrate the use of cobegin Rule (5.8), consider a concurrent program to increment x 

by 3: s 

(5.9) cobegin x := x + l  // x := x + 2  coend 

Obviously, if initially x=0,  then when the ¢obegin terminates, x=3.  

To prove this, we first construct a proof outline for each of the processes in isolation. 

{x=0} x := x + l  { x = l }  

{x=0}  x := x + 2  {x=2}  

Each of these is a complete proof outline and a theorem, since each is an instance of Assign- 

ment Axiom (3.3). Hypothesis (a) of ¢obegin Rule (5.8) is now satisfied. 

SRecall, according to (4.2) assiEnment statements are executed atomically. 
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Combining these, we obtain a (not necessarily interference-free) complete proof outline for 

(5.9). 

{1": x=O} 
eobegla 

{PI: x=O} ¢xl: x := x + l  (QI: x=l} 
// 

{e2: x=0} a2: x := x+2 {Q2: x=2} 
¢oend 
{Q: x=3} 

We must now cheek hypotheses (b), (e), and (d) of eobegin Rule (5.8). Hypothesis (b) is 

satisfied, since P=>(PI^P2). Hypothesis (d) requires that NI(al, P2), NI(a2, P1), 
Nl(al, Q2), and Nl(a2, QI) are theorems. 

Expanding Nl(cq, 1'2) we get 

{pre(ctl) ^ P2} ct 1 {P2} 

=(x=0) x := x + l  ix=0}, 

which is not a theorem--exeenting al interferes with 1'2. Somehow, this interference must be 
eliminated. 

There are two general approaches to eliminating interference in a proof outline. 

(5.10) Eliminating Interference by Strengthening Assertions. To eliminate interference of 
assignment statement at with assertion A, strengthen pre(a) making Nl(a, A) a 
theorem because pre(Nl(ct, A ) ) = false. [] 

(5.11) Eliminating Interference by Weakening Assertions. To eliminate interference of 

assiL, nment statement a with assertion A, weaken A making NI(ct, A) a theorem. [] 

We reject (5.10) for Nl(al, P2) because there is no way to strengthen pre(al) and still have it 

be implied by P, as required by hypothesis (b) of (5.8). So, we use (5.11), and weaken 1"2 by 
adding x = l  as a disjunct, then weaken (22 in accordance with hypothesis (a), and obtain the 
fonowing proof outline. 

{P: x=O} 
cobegin 

{PI: x=0} eel: x := x + l  {QI: x=l}  
// 

{P2: x = 0 v x = l }  a 2 : x : = x + 2  {Q2: x = 2 v x = 3 }  
coend 
{Q: x=3} 

Expanding Nl(al, P2), we now get 
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{x=0 ^ (x=0 v x=l)} x := x + l  {x=0 v x = l }  

={x=0} x := x + l  {x=0 v x=l} 

which is a theorem. Moreover, despite weakening P2, we still have P ==~ (P1 a P2), as required 

by hypothesis (b) of o~be~  Rule (5.8). And, by ~onstmedon, hypothesis (a) ~so remains 
satisfied. 

The next part of the interference-freedom proof is to check whether Nl(a2, P1) is a 

theorem. NI(a2, el)  is 

{pre(-2) ^ e~} a2 ie2} 

={(x=0  v x = l )  ^ x=0} x := x+2 {x=0} 

=ix=0} x := x+2 {x=0} 

which is not a theorem. As above, we employ (5.11) and weaken P1 and then recompute Q1 

o~0egin 
{PI: x=O vx=2}  al: x : = x + l  {QI: x = l  vx=3}  

(5.12) / /  
{P2: x = 0 v x = l }  a 2 : x : = x + 2  {Q2: x = 2 v x = 3 }  

coend 
{Q: ~=3} 

Now, Nl(et2, P1) 

{(x=O v x= l )  ^ (x=O v x=2)} x := x+2 {x=O v x=2} 

={x=0} x := x+2 {x=0 v x=2} 

which is a theorem. Furthermore, weakening PI leaves hypothesis (b) satisfied and leaves 

Nl(al, P2) a theorem. 

Expanding the last two interference-freedom formulas, we get: 

Nl(al, Q2): {x=2} x := x + l  {x=2 v x=3} 

Nl(a 2, Q1): {x=l} x := x+2 {x=l v x=3} 

Both are theorems. 

Finally, we check hypothesis (c) of the eobegin Rule (5.8). 

(Ql ^ Q2) =~ Q 

= ((x=l  v x=3) ^ (x=2 v x=3)) =~ x=3 

It is valid, so we have proved that (5.12) is a theorem of Proof Outline Logic and can conclude 

that (5.9) does increment x by 3. 

so that hypothesis (a) is again satisfied. 
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While it might seem like an extraordinary amount of formal manipulation was required to 

deduce a simple fact about a trivial program, we shall see that the method is quite powerful 

and will enable us to deduce properties of concmTcnt program~ too complex to understand sim- 

ply by enumerating execution interleavings. And, the pattern followed in this simple example 

is typical. First, to satisfy hypothesis (a) of cobegln Rule (5.8), a proof outline for each pro- 

cess in isolation is constructed. Then, to satisfy hypothesis (13), we check that the precondition 

of each of these proof outlines is implied by the precondition of the cobegln. Next, to satisfy 

hypothesis (d), interference-freedom formulas are enumerated and checked. If interference is 

detected then proof outlines for processes are changed. When such a change is made, we check 

that the new proof outline for the process (in isolation) is a theorem, check that its precondition 

is still implied by the precondition of the cobegin, and recheck the other interference-freedom 

formulas. Finally, to satisfy hypothesis (b), the postcondition for the eobeght is formed from 

the conjunction of the postconditions of each proof outline. 

6. Synchron iza t ion  

Interference cannot always be eliminated simply by strengthening or weakening assertions 

in a proof outline, as described in (5.10) and (5.11). Some interference is an inevitable conse- 

quence of certain execution interleavings and can be prevented only by restricting the interleav- 

ing of processes. Synchronization mechanisms permit such control. 

6.1.  Specifying Synchron iza t ion  

Synchronization mechanisms for both mutual exclusion and condition synchronization can 

be specified using angle brackets "{" and ")".  A program within angle brackets is treated as a 

single atomic act ion-i t  has no internal control points and is executed to completion before a 

process switch is permitted. 

By removing the internal control points of a program, angle brackets specify mutual exclu- 

sion. For example, 

(x := x + l ;  x := x - l )  

defines a single atomic action that increments x by 1 and then decrements x by 1. It is not pos- 

sible for a process that reads x concurrently with execution of this atomic action to obtain the 

value of x after it has been incremented but before it has been decremented. 

Since, by definition, an atomic action Cannot be interrupted before completion, it must not 

be started unless it will terminate. Thus, (S) must delay until the state is one that will lead to 

its ter~ination. An atomic action that can cause delay is called a conditional atomic action and 

one that cannot an unconditional atomic action. 

Conditional atomic actions permit mechanisms that implement condition synchronization to 

be specified. For example, 

(6.1) (ff sem>O -. sem := se re -1  f l )  
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delays until decrementing sere would leave it non-negative and then does the decrement. The 

delay is a com~equence of the if, which would not terminate when started in e state satisfying 

none of its guards. A somewhat more pathological statement having the same effect as (6.1) is 

(sere := sere-l;  do sem<O- skip od). 

Allowing anything to appear inside angle brackets could pose difficult implementation 

problems. Provided angle brackets are used only to describe synchronization mechanisms 

already available, such implementation problems need never be confronted. The question of 

what synchronization mechanisms are available depends on hardware and underlying support 

software. 

6 .2 .  S c h e d u l i n g  Pol ic ies  

An atomic action a is eligible for execution if the control point at the beginning of a is eli- 

gible. More than one atomic action might be eligible at any point during the execution of a 

cobegin. A scheduling policy def'mes which among them is executed next. 

The scheduling policy implemented by a cobegin is important when analyzing termination 

and other liveness properties. For example, if there is no scheduling policy then 

ok := true; 
cobegln 

Loop: do ok -. skip od 
(6.2) / /  

Stop: ok := false 
ca)end 

might never terminate, because the scheduler is not obliged to execute an atomic action from 

Stop, even though one is always eligible. A cobegin is unconditionally fair if every unconditional 
atomic action that becomes eligible is eventually executed. Clearly, (6.2) would terminate 

eventually with an unconditionally fair cobegln. 

Even stronger assumptions about scheduling are necessary with conditional atomic actions. 

This is because two things are required for a conditional atomic action to be executed. 

• It must be eligible. 

• The state must be one that will lead to termination. 

A eobegin is considered wea/dy fulr if it is unconditionally fair and no eligible conditional 

atomic action awaiting a condition G is forever delayed even though G becomes true and 

thereafter remains true. In contrast, a cobegin is considered strongly fair provided it is uncondi- 

tionally fair and no eligible conditional atomic action awaiting a condition G is forever delayed 

even though G is is infinitely-often true. The difference between weakly-fair and strongiy-falr 

scheduling policies is illustrated by the following program. 
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con~nue := true; proceed := false ~, 
cobeOn 

Loop: do continue -. proceed := true; 
proceed := false 

ed 
// 

Stop: 
¢oend 

(if proceed ~ continue := false fl) 

If the cobegin is strongly-fair, then Loop will terminate; if it is only weakly-fair, then Loop 

need not terminate because the condition on which Stop is waiting is not continuously enabled. 

Revising Proof Outline Logic 
When angle brackets are permitted in programg, an assiLmment statement that is part of an 

angle-bracketed statement can be ignored in proving interference freedom because it is only 

part of an atomic action; it suffices to establish that the entire segment of code enclosed in 

angle brackets does not cause interference. For example, if a is an assitmment statement in 

(S), then instead of checking that M(a,  A) is a theorem, it suffices to check that NI((S), A) is 

one. 9 Enclosing groups of statements in angle brackets reduces the number of interference free- 

dom formulas that must be checked, but eliminates concurrency. 

Of course, checking NI((5), A) requires proving theorems of Proof Outline Logic about 

programs enclosed in angle brackets. The following inference rule permits this. 

(6.3) Synchronization Rule: {P} S {0} 

Enclosing a program in angle brackets also simplifies establishing interference freedom by 

eliminating some control points. IS) contain~ no internal control points, no matter how many 

control points S contains. Because (S) containg no internai control points, assertions appearing 

inside (S) cannot be invalidated by execution of other processes. This means that when show- 

ing interference freedom, it is never necessary to show Nl(a, A) for an assertion A appearing 

within angle-brackets. Also note that since assertions appearing inside ($) are not associated 

with control points, they are, by definition, not part of a complete proof outline. Thus, we 

omit them in constructing a proof outline for a concurrent program. 

We can now reformulate hypothesis (d) of ¢obegln Rule (5.8) to take advantage of these 

simplifications to the interference freedom obligations. Define an assignment action to be any 

assitmment statement not in angle brackets or any angle-bracketed program containing an 

assi~ment statement. Then, we have 

9Since only syntactically valid program~ can be enclosed in angle brackets, M((S), A) will 
be a formula of Proof Outline Logic. 
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(6.4) eobegin Rule: 

(a) For all i, l ~ i ~ n :  POi is complete and t-POv 

(b) e =~ (pre(eO1) ^ pre(e02)  ^ " ' "  ^ pre(eOn)),  

(c) ~ost(eo~) ,, m n ( e o 2 )  ^ . . .  ^ p o n ( e o . ) )  ~ Q,  

(d) For every assiLmment action a in PO~ 
For every asserfion A in POi, j ~ l :  F NI(a ,  A)  

{P} cebegin PO1 // P02 //  " ' "  / /  POn ceend {Q} 

6.3. Control l ing  In te r fe rence  

In order to understand how synchronization mechanisms can be used to prevent interfer- 

ence, suppose that interference freedom cannot be established in the following program because 

Nl(a ,  A)  is not a theorem. 

eobegin 
Processl: ... {pre(a)} a ... 

//  

Process2: ... S1 {A} 52 ... 

coend 

Moreover, suppose pre(a)  cannot be strengthened nor A weakened so that interference is elim- 

inated as prescribed by (5.10) and (5.11). Thus, a interferes with A and the only way to avoid 

that interference is to ensure that a is not executed when the control point between 51 and 3"2 is 

eligible. 

Either mutual exclusion or condition synchronization can be used to prevent such undesir- 

able interleavings. Mutual exclusion can be used to eliminate the control point between $1 and 

3"2 by constructing a single atomic action, 

(Sl; S2). 

Alternatively, condition synchronization can be used to delay a until the state is such that exe- 

cuting a could not interfere with A, 

(If "~A v wp(a, A) -- afi) 

where wp(a, A) is the set of states in which executing a leads to termination in a state satisfy- 

ing A. These two techniques are summarized by: 

(6.5) Eliminating Interference by Mutual Exclusion. To eliminate interference of assign- 

ment action ot with an assertion A, include the program text surrounding A in angle 

brackets, o 

(6.6) Eliminating Interference by Condition Synchronization. To eliminate interference of 

assiLmment action ct with an assertion A, construct a conditional atomic action that 

includes a and delays ct when its execution would invalidate A. o 
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B a n k  E x m n ~ l e  

To illustrate ",h~e t ~ q u e s ,  consider a ccmcurfent prograta to model a banL The bank 

manages a collection of ac£ounts 

vet  acra[1..n] :integer, 

supports transactions to transfer money from one account to another, and has an auditor to 

check for embezzlement. 

A transaction to transfer $20 from account gra to account fl~s does not change the total 

deposits at the bank. Assuming l~gra~n, l<Jbs~n, and that acnt[gra]>20, a proof outline 

for a program to implement such a transfer of funds is given by 

Transfer: {T=(~i :  l~i<n: acnt[i]) A acnt[gra]=G ^ acnt[[bs]=F} 
ct: acnt[gra], acnt[/bs] := acnt[gra]-20, acnt[tbs]+20 

{T=(Xi: l<i<n: acnt[i]) ^ acnt[gra]=G-20 ^ acnt[]bs]=F+20} 

An auditor checks each account, at~tmulating the bank's total deposits. If this total is not 

equal to totdeps, which we assume is initialized to the sum of the accounts, then funds have 

been embezzled and boolean program variable embzl is set accordingly. This is implemented 

by: 

Auditor: {totdeps= T=(Y.i: l <i~n: acnt[i])} 
j ,  cash := O, 0; 
{AI: j=O ^ cash=(~,i: l~i<j:  acnt[i]) ^ totdeps=T} 
do j a n  -. {.42: O<j<n ^ cash=(Y.i: l~ i~ j :  acn:[i]) ^ totdeps=T} 

cash, j := cash+acnt[j+ l], j + l  
{A3: O<j<n ^ cash=(~,i: l~ i~ j :  acnt[i]) ^ totdeps=T} 

od; 
{,44: cash=(~i: l<t<n: acnt[i]) ^ totdeps=T} 
embzl := (cash ~ totdeps) 
{A5: embzl ~ cash~ T} 

The proof outlines for Transfer and Auditor are not interference free: NI(a, A2) and 

Nl(a, A3) are not theorems. The problem is that whenever gra~j~fos or fos~j~gra, execut- 
hag a can change the value of (2 i :  l ~ i ~ j :  acnt[i]) without "changing the value of cash, thereby 
invalidating A2 and/or ,43. 

This interference can be avoided by using mutual exclusion as described by (6.5) to elim- 

inate the control points at A2 and A3. We do this by enclosing the do in Auditor within angle 
brackets. 
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Auditor: {totdeps=T=(~:  l~ t~n:  acnt[i])} 
J, cash := 0, 0; 
{AI: j = 0  ^ cash=(Zi: l ~ i~ j :  acnt[i]) ^ totdeps=T} 
(do j # n  - cash, j := cash+acnt[j+l] ,  j + l  od); 
{A4: cash=(T,i: l<i~n: acnt[i]) ^ totdeps=T} 
embzl := (cash # totdeps) 
{AS: embzl ¢~ cash ~ 1"} 

The result is a proof ou 'tlJne that is interference free and satisfies all the other requirements of 

cobeOn Rule (6.4). Unforttmately, this change causes almost all of Auditor to be executed 

without interruption. This can delay execution of Transfer, which is undesirable. 

Another way to prevent interference of a with ,42 and A3 is by using condition synchroni- 

zation, as described by (6.6). We prevent a from executing unless 

(gra<j^jbs<j) v (gra>j^fos>j) holds by defining a conditional atomic action: 

a': (if (gra<j ^ ~ < j )  v (m,a>j^ fl,~ > j) - ,, n ) 

Now, a is no longer an assimament action, although a '  is. Showing interference freedom 

requires that Nl(a', A1) and Nl(a', A2) be theorems; they are. Transfer and Auditor are 
interference free and the resulting theorem of Proof Outline Logic, including initialization and 

declarations, is given in Figure 6.1. 

7. Auxi l ia ry  Var iab les  

The logic we have presented for reasoning about program~ containing cobegln statements 

is not complete. There exist proof outlines that are valid but not provable using Proof Outline 

Logic. To illustrate the problem, consider a program to increment x by 2. 

(7.1) cobegin al :  x := x + l  // a2: x := x + l  coend 

We start by constructing complete valid proof outlines for each process in isolation. 

{x=X} al:  x := x + l  {x=X+l} 

{x=X} a2: x := x + l  {x=X+l} 

Combining these yields a complete proof outline for the cobegin: 

{1': x=X) 
eobeOn 

{PI: x=X} al :  x := x + l  {QI: x=X+l}  
// 

(P2: x=X} a2: x := x + l  {Q2: x = X + l )  
coend 
{Q: x=X+l} 

Hypothesis (d) of cobegtn Rule (6.4) requires that four interference-frcedom formulas be 

proved: Nt(a~, e2), Nt(a~, QZ), Nt(a2, e l ) ,  and re(a2, QO. 
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var acnt[1 .. n] : integer; 
j ,  cask : integer initial O; 
totdeps : integer initial (F~t: l~ t~n:  acnt[i]); 
embzl : boolean 

{]=0 ^ totdeps=T=(F~i: l~ i~n:  acnt[i])} 

eobegin 
Transfer: {T=(~i :  l~ i~n:  acnt[i]) A acntIzral=G ^ acn t~s l=v}  

(if (gra<j ^ j~$<j) v (gra>j ^ los > h " 

{T=(2i: l~ i<n:  acm[i D ^ acatLgra]=G-20 ^ acat[/bs]=F+20} 
// 

Auditor: {]=0 ^ cash=(~i: l~ i~ j :  acnt[l]) ^ totdeps=T} 
do j~n -. {O~j<n A cash=(F~i: l~ i~ j :  acnt[i]) 

^ totdeps=T} 
cash, j := cash+acnt[ j+l] ,  j + l  
{O<j<n ^ cash = (Y. i: l<i<j: acnt[i]) 
^ totdeps=T} 

ed; 
{cash=(2i: l~i<n: acnt[i]) A totdeps=T} 
embzl := (cash 4= totdeps) 
{embzl ¢~ (cash# T)} 

ceend 
{acnt[gra]=G-20 A acnt[/bs]=F+20 A embzlc~(cash~T)} 

Figure 6.1. Bank Proof Outline 

The first, Nl(al, P2), is not a theorem. Since there is no way to strengthen pre(al) and 
still have it implied by P, we use (5.11) and weaken P2 to x = X  v x = X + l .  This particular 

weakening was selected to aeeount for possible execution of al  when x--X. We then recompute 

(22 accordingly. A similar argument suggests that P1 and (21 be weakened, resulting in a 

revised proof outline: 

(e: x=X} 
cobegh 

{PI: x = X  v x = X + l }  
al:  x := x + l  
{QI: x = X + l  v x=X+2}  

(7.2) // 
{P2: x = X  v x = X + l }  
et2: x := x + l  
{0.2: x=X+l  v x = X + 2 }  

coend 
{Q: x = X + l  v x = x + 2 }  

Q is still not as expected. Moreover, there is still interference[ Weakening P1, QI, P2, and 
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Q2 again results in another proof outline: 

{e: x=X} 
c o b , ~  

{1'1: x = X  v x = X + l  v x=X+2}  
a l :  x := x + l  
{QI: x = X + l  v x = X + 2  v x=X+3}  

// 
{P2: x = X  v x = X + l  v x=X+2}  
a2: x := x + l  
{0.2: x = X + l  v x = X + 2  v x=X+3}  

ceend 
{Q: x = X + l  v x = X + 2  v x=X+3}  

Q is still not x =  X+ 2 and there is still interference. 

By now, it should be clear that additional weakening will not result in an interference-free 

proof outline. In fact, the strongest theorem of Proof Outline Logic that can be proved about 

(7.a) is: 

{e: x=x}  
cold.in 

{PI: xmX} x := x + l  (QI: x>X} 
(7.3) / /  

{P2: x>X} x := x + l  {Q2: x>X} 
cocnd 
{Q: x>X} 

Clearly, this is not satisfactory. 

To understand the problem, return to (7.2) where we were required, but unable, to prove 

Nl(ctl, P2). One might reason as follows that a l  cannot interfere with P2. 

If a l  is eligible then it cannot have executed. Execution of a l  interferes with P2 only 
if the control point at P2 is eligible, from which we conclude that a l  can interfere with 

P2 only if a 2 has not yet executed. Thus, aÂ can interfere with P2 only if x=X.  Exe- 

curing a 1 in a state satisfying x = X  terminates in a state satisfying x = X + l .  So, a l  

cannot invalidate 1'2 of (7.2). 

The crux of this operational argument is that in (7.2), x = X  whenever a l  is eligible and the con- 

trol point with which 1'2 is associated is also eligible. By contrast, the precondition of 

M(al ,  P2), which should characterize states in which a l  can be executed while the control 

point with which 1'2 is associated is eligible, is x = X  v x = X +  1, and this is too weak due to the 

second disjunct. We must strengthen pre(Nl(al, 1'2)). 

7.1 .  R e a s o n i n g  A b o u t  t h e  H i d d e n  S t a t e  

Reasoning about (7.1) requires information about the values of program counters. In 

retrospect, it should not be surprising that program counters are required for reasoning about 

some programs, since the program counter is an integral part  of the program state---it deter- 

mines what can be executed next. We use the term hidden state for that portion of the program 
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state not stored in program variables. The hidden state of a ¢xmcurrent program includes t.he 

program counters of its processes. It can include other infornmtion, as well. For example, 

when message passing is used for communication, the hidden state includes information about 

messages that have been sent but not yet received, since that information is not stored in the 

program variable of any process, yet effects execution of the receiver. 

The question, then, is how information about the hidden state can be included in asser- 

tions. One obvious approach is to define some predicates for this purpose. There are difficul- 

ties with this approach. First, inference rules must be devised for r ~ g  about assertions 

containing such predicates. Second, Assertion Restriction (5.6a) would no longer hold. 

Interference Freedom (5.7) would then require that Nl(ct, A) be proved for every text a 

between assertions in a proof outline, instead of just for assignment actions. Since Nl(a, A) 

might not even be a formula of Proof Outline Logic--for e~unple, ff a were a fragment of a 

statement, such as a guard in a do---we would then have to extend Proof Outline Logic. 

Another approach for including hidden-state information in assertions is based on auxiliary 

variables. An auxiliary variable is one that is added to a program solely for use in the asser- 

tions of a proof outline. The value of an auxiliary variable is altered by statements that are 

added to the program so that the auxiliary variable reflects the hidden state. This approach 

does not suffer the disadvantages of the previous one. Proof Outline Logic can be used to rea- 

son about the values of auxiliary variables, hence additional inference rules are not required to 

reason about the hidden state. And, since the value of an auxiliary variable can be changed 

only by executing an assi~ment  statement, Assertion Restriction (5.6) remains satisfied. 

Therefore, the interference freedom obligations are unaltered. 

It is important to be able to distinguish the auxiliary variables in a proof outline from the 

program variables. In these notes, names of auxiliary variables start with an upper-case letter 

and are typeset in italics; this distinguishes them from program variables, which always start 

with a lower-case letter, and from logical variables, which are typeset in roman. 

Unrestricted use of auxiliary variables in proof outlines would destroy the soundness of 

Proof Outline Logic. Although we might use auxiliary variables when constructing a proof, a 

program is executed without the auxiliary variables present and therefore auxiliary variables 

must not influence the behavior of the program in which they are embedded. To ensure this, 

we require 

(7.4) Auxfllm'y Variable Restriction. Auxiliary variables appear only in assignment state- 

m e n t s •  := ~" where if the i th expression in ~- references an a,xiliary variable, then the 

i ~ target in • is an anxiliary variable. [] 

This prevents program variables from obtaining their values from auxiliary variables and there- 

fore prevents auxiliary variables from influencing execution. Note that (7.4) is not really a res- 

triction, since we use auxiliary variables only to make hidden-state information visible in asser- 

tions. 
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Since auxiliary variables are added to a program solely for ~ of constructing a proof 

outline, we must be able to delete them when extracting the program that was the subject of the 

proof. The following inference rule of Proof Outline Logic permits this. 

(7.5) Auxiliary Variable Deletion Rule: Let  AV be a set of auxiliary variables in annotated 
program ~ and let S[~v be the annotated program that results when all assignments to 
variables in AV are deleted from S. If P,  Q, and the assertions in ~ do not mention 
any variable in AV, then 

{e} ,q {Q} 

The inference rule does not permit deletion of an auxiliary variable mentioned in an assertion 

because it would then be possible to infer the invalid proof outline 

{Aux=0} skip {Aax=l} 

from the theorem 

{Aux=0} Aux := 1 {Aux=l). 

7.2. Example Revisited 

Using auxiliary variables, it is a simple matter to prove that (7.1) increments x by 2. We 

define auxiliary variables Donel and Done2 and modify (7.1) so that Donel (Done2) is true only 

after the first (second) process has incremented x. 

ix=X} 
Donel, Done2 := false, false; 
{P: x=X ^ -~Donel ^ -~Done2} 
eobeOn 

{PI: (-~Done2 o x=X)  A (Done2 ~ x = X +  l)  ^ ,Dottel} 
al: x, Donel := x + l ,  true 

(7.6) {QI: (-~Done2 ~ x= X + l)  ^ (Done2 ~ x= X + 2) ^ Dottel} 
// 

{P2: ( ,Donel  ~ x=X)  ^ (Donel=~ x = X +  l)  ^ -~Done2} 
a2: x, Done2 := x+ 1, true 

{Q2: (-,Donel ~ x = X +  l )  A (Donel =c.x=X+ 2) A Done?.} 
coend 

x=x+2} 

We now establish that this proof outline is a theorem. The proof ou ;tline 

{x=X} Donel, Done2 := false, false {P} 

is a theorem due to Assignment Axiom (3.3). Both P =:. (P1 ̂  1'2) and (QI ^ Q2) =:. (2. are valid 

as required by hypotheses (b) and (c) of eobegin Rule (6.4). Hypothesis (a) requires that the 

proof outline for each process in isolation be a theorem. This is easily established using 

Assignment Axiom (3.3) and then Rule of Consequence (3.7) and Deletion Rule (3.9). 
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Finally, to satisfy hypothesis (d), we must show interference freedom. Expanding and simpli- 

fying NI(~'I, e2) yields, 

{x = X ^ -~Donel ^ -~Done2} 
x ,  Donel := x + I ,  true 
{(-~Donel :~ x = X )  ^ (Donel => x=X+ 1) ^ -~Done2} 

which is a theorem. Nl(a l ,  Q2), Nl(et2, PI) ,  and Nl(a  2, Q1) are also theorems. Thus, the 

proof is completed. 

8. P r o o f  Outl ine Invar l an t s  

Checking interference freedom involves proving that a collection of proof outlines are 

theorems. This can be a tedious task. For example, establishing interference freedom for 

{P} eobegtn P01 // P02 // " ' "  // eOn coend {Q} 

requires that 

z z ~ i g ( e o ~ )  × ~ , ~ ( e o ~ )  
i=l,nJ=l,n 

theorems be proved, where assig(PO) is the number of assi~ment actions in PO and 

assert(PO) is the number of assertions in PO. The value of this expression grows rapidly with 

the number and size of processes. 

Fortunately, there is an easier way to prove interference freedom. The technique is based 

on using a proof outline invm'iant---an assertion that is true initially and remain q true throughout 

execution of a program. 

(8.1) Proof Outline Invarlant. An assertion I is an invariant of a proof outline PO pro- 

vided 

(a) pre(PO) =~ !,  and 

(b) for every assiLmment action a in PO: {prepo(a ) ^ I} a {I}. 13 

Observe that a proof outline invariant can be conjoined to every assertion in a proof outline 

without creating interference. 

S u ~  every assertion A in the proof outline for a concurrent program is of the form 

1 ̂  LA, where all variables mentioned in L A a r c  altered only by the process col~taining A. More- 

over, suplxne we have established that the proof outline for each process (in isolation) is a 

theorem of Proof Outline Logic and that 1 is an invariant of each. Let a be an assiEnment 

action in one process. Thus, we have 

(8.2) tt ^ Lp~(~)} a It ^ L~,(~)}. 

Let A be an assertion in a different process from the one coDtaining a. By assumption, A can 

be partitioned into the conjunction of invariant ! and an assertion L A involving only variables 

altered by the process containing A. Moreover, no variable in LA affected by executing et. 
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Therefore, 

(8.3) {LA) - {LA} 

is valid and, due to the teia~ve completeness of  Proof Outline Logic, is a theorem. 

Proving Nl(ct, A)  is equivalent to proving Nl (a ,  I ^LA) , 

(8.4) {t ^ Lp~(~) ^ t ^ LA) " (t ^ LA}. 

However, (8.4) can be inferred directly from (8.2) and (8.3) using Con jun~on  Rule (3.10) and 

then Rule of Consequenoe (3.7) (and Deletion Rule (3.9)) to weaken the postoondition. Thus, 

there is no need to prove Proof Outline Logic theorems when establishing interf~ence freedom 

ff shared variables axe related by an invariant. This allows cobegin Rule (6.4) to be simplified 

by changing hypothesis (d). 

(8.5) cobegin Rule: 

(a) For all i, l < i ~ n :  POi is complete and ~- POi, 

(b) P ~ (pre(P01) ^ pre(P02) ^ * ' "  ^ pre(POn)), 

(e) (post(PO1) ^ post(P02) ^ " ' "  ^ post(POn) ) => Q, 

(d) For all i, l ~ i ~ n ,  every assertion A in PO i is of the form 
I ^ LA,  where 

i. LA mentions variables changed only in process i 
ii. I is an invariant of PO~ 

{e} cobegin PO~ // P02 / /  " ' "  / /  PO~ coend {Q} 

When (8.5) is used, establishing interference freedom is trivial. However, structuring an asser- 

tion A in terms of an invariant I and a local part L A c a n  lead to somewhat longer and more 

complex assertions than might otherwise be req~fired. This, in turn, results in more complex 

sequential proofs for hypothesis (a) of the new cobegin Rule. 

E x a m p l e :  I n c r e m e n t i n g  x 

To illustrate cobegtn Rule (8.5), we return to program (7.1) to increment x by 2. During 

execution of (7.1), x contains the sum of three quantities: its initial value, the amount it has 

been incremented by the first process, and the amount it has been incremented by the second 
process. This can be formalized as an assertion, 

I :  x = X + Z / + Z 2  

where logical variable X is the initial value of x, auxiliary variable ZI is the amount x has been 

incremented by the first process, and auxiliary variable Z2 is the amount x has been incre- 

mented by the second process. We now endeavor to construct a proof outline with I as an 
invariant. 

Initially, neither process has incremented x, so we should have Z1 = Z2 =0.  This is easily 

established by the assignment statement Zl ,  7_2 := 0, 0 which we can add to the program 

because ZI and Z2 are auxiliary variables. Next, we ensure that Z1 is incremented whenever 
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the first process increments x and that Z2 is incremented whenever the second process incre* 

merits x. This is achieved by changing a 1 (a2) into an assignment that increments Z1 (Z2) as x 

is incremented. A proof outline for the resulting program follows. Notice that assertions in 

the first process are structured as a conjunction of a proof outline invariant ! and an assertion 

about ZI and that Z1 is changed only in the first process. Assertions in the second process are 

structured similarly. 

{P: x=X} 
ZI,  Z2 := O, O; 
{P': I ^ Z l  =7_.2=0} 
cobegln 

{! ^ Z l = 0 }  al: x, Z l : = x + l ,  Z l + l  { I ^ Z I = I }  
// 

{! ^ Z2=0} a2: x, Z 2 : =  x + l ,  Z 2 + l  {I ^ 7-.2=1} 
coend 
{Q': I ^ z l  = z2 = I} 
{Q: x=x+2} 

Using cobegin Rule (8.5), it is easy to establish that this proof outline is a theorem. 

This example also illustrates how alz~liary variables can encode hidden-state information 

in a way that simplifies rather than complicates construction of a proof outline. Auxiliary 

integer variables ZI and Z2 encode the values of program counters for the processes in (7.1). 

In §7.2, auxiliary boolean variables Donel and Done2 served the same purlx)se: 

D o n e l ~ Z l = l  ^ - D o n e l ~ Z l = O  

Done2 ~ Z2=l  ^ ~Done2 ~ Z2=0. 

However, encoding the information in ZI and Z2 permitted formulation of a simple invariant 

that related the value of x and the hidden state. It encoded just the right amount of information 

in just the right way. 

9.  V e r i f y i n g  Safe ty  P r o p e r t i e s  

A safety property stipulates that some "bad thing" does not happen during execution. In 

addition to partial correctness, important safety properties of concurrent programs include 

mutual exclusion and deadlock freedom. In mutua/exclusion the "bad thing" is more than one 

process executing designated program segments, called cr/t/ca/sections, at the same time. In 

deadlock freedom it is deadlock, a state where some subset of the processes are delayed awaiting 

conditions that will never occur. 

Without loss of generality, we need only consider safety properties of the form 

SP: /'Bad never holds during execution. 

where/'Bad is a predicate on the program state. This is because any action a program performs 

must be based on its state. (Even actions performed in response to reading input can be 

viewed as being based on the state, since the sequence of input values available during a 
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particular execution can be thought of as part of the initial state of the program.) So, showing 

that a state satisfying some P~a~ never arises during execution is equivalent to showing that a 

"bad thing" cannot happen. 

In order to prove that SP holds for a program $, we must show that for each possible exe- 

cution, PBad is not W,~e initially, nor after the first atomic action, nor after the second, and so 

on. In short, we show that/'Bad is true of no intermediate state of $. Since the assertions in a 

complete valid proof outline for a program characterize possible intermediate states of that pro- 

gram, SP can be proved by constructing a complete and valid proof outline for 5 and then 

checking that each assertion in that proof outline implies -~PBad- Theorems of Proof Outline 

Logic are valid proof outlines, so we have the following method for proving that a program 

satisfies a given safety property. 

(9.1) Proving a Safety Property. To prove that SP holds for a program S, construct a 

theorem PO of Proof Outline Logic and show that for every assertion A in PO, 

A =~ -~PBad. 0 

Since, by definition, an invariant holds on every state of a program, we also have the following 

method, which is sometimes simpler to apply. 

(9.2) Proving a Safety Property using an Invarlant. To prove that SP holds for a program 

S, construct a theorem PO of Proof Outline Logic with invariant I such that 

! =~ "~PBad- [] 

Cr i t i ca l  Sec t ion  P r o b l e m  

We illustrate the techniques for proving safety properties by investigating a protocol that 

solves a classic concurrent programming exercise--the critical section problem. Consider a con- 

current program with two processes, each of which repeatedly executes in a critical section and 

then a non-critical section. Desired is a protocol satisfying three properties. 

(9.3) Mutual Exclusion. At most one process is executing in its critical section at a time. 

(9.4) Non Blocking. A process executing in its non-critical section does not prevent another 

from entering its critical section. 

(9.5) Deadlock Freedom. If multiple processes attempt entry to their critical sections at the 

same time, then one will gain entry. 

If angle brackets can be used to make arbitrary statements atomic, devising a protocol that 

satisfies (9.3)-(9.5)  is trivial. In the solution of Figure 9.1, angle brackets are used in a dis- 

ciplined manner that makes the program amenable to translation into actual machine instruc- 

tious. 

To establish that this proof outline is a theorem of Proof Outime Logic, we use cobegin 

Rule (6.4). Hypothesis (a) is easily demonstrated. Hypothesis (b) is satisfied, since 

P ~ ( P I ^ O 1 ) .  Hypothesis (c) is satisfied, since ( P 9 ^ Q 9 ) ~ Q .  F'mally, hypothesis (d) is 

proved as follows. All assertions in the proof outline of the first process except 1'5 and P6 
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~'~r enteH, enter2 : boolean Initial false, false; 
Ate3 ,  AtQ3 : boolean; 
~.~urn : integer lultlal 1 

{f'" -~enterl ^ -~enter2} 
~t~gln 

{P1: ~enter l } 
do true. ~ {P2: -~enterl} 

Sl:  AtP3, enterl := true, true; 
{PZ: enterl} 

$2: AtP3, turn := false, 2; 
{P4: enterl ^ -u4tP3} 

$3: (i f  ~enter2 v t u r n = l  ~ sk ip  fi) 
{PS: enterl A -~AtP3 ^ (-~enter2 v turn= 1 v AtQ3)} 
... Critical Section ..o 
{P6: enterl ^ -~AtP3 A (-~enter2 v t u r n = l  v AtQ3)} 

$4: enterl := false; 
{e7: -~enterl} 
... Non-critical Section °.. 
{PS: -~enterl} 

od {P9: false} 
//  

{Q I : -~enter2} 
do true -. {Q2: -~enter2} 

T]: AtQ3, enter2 := true, true; 
{Q3: enter2} 

T2: AtQ3, turn := false, 1; 
{Q4:en te r2  ^ -~AtQ3} 

T3: (ff-~enterl v tu rn=2  ~ sk ip  fi) 
{{25:enter2 ^ ~AtQ3 ^ (-~enterl v turn=2 v AtP3)} 
... Critical Section ... 
{Q6: enter2 ^ -~AtQ3 ^ (-~enterl v turn=2 v AtP3)} 

7"4:enter2 := false; 
{QT: -~enter2} 
... Non-critical Section ... 
{Q8: -~enter2} 

od {Qg: fa~e} 
c o e n d  
{Q: false} 

Figure  9.1. Mutual  Exclusion Protoool 
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mention variables that are changed only by the fas t  process° Thus, no assignment statement in 

the second process can interfere with those assertions. The only assignments in the second pro- 

cess that can interfere with 1'5 or P6 are T1, T2, and 7"4. Thus, since 1'5 and P6 are identical, 

{-~enter2 ^ enterl ^ --~4tP3 

^ (-,enter2 v turn=l v AIQ3)} 
AtQ3, enter2 := true, true 
{enterl ^ --~4tP3 ̂  (-~enter2 v turn= 1 v AtQ3)} 

IVI(T2, 1'5): {enter2 ̂  enter1 ̂  -aAtP3 
^ (-,enter2 v turn= 1 v AtQ3)} 

AIQ3, turn := false, 1 
{enter] ^ -,AtP3 ^ (-~enter2 v tu rn=  1 v AtQ3)} 

NI(T4, PS): {enter2 ^ -,AtQ3 ^ (-,enterl v turn=2 v A ~ 3 )  
A enterl ^ --~4tP3 ^ (-,enter2 v tu rn= l  v AtQ3)} 

enter2 := false 
{enterl ^ -~4tJ'3 ^ (-,enter2 v tu rn= l  v AtQ3} 

Each of these proof outlines is a theorem, so we can infer that the second process does not 

interfere with the first. Similar arguments establish that the first process does not interfere 

with the second, hence the proof outline of Figure 9.1 is a theorem of Proof Outline Logic. 

Mutual Exclusion (9.3) involves the hidden state. Thus, auxiliary variables are required 

in order to put (9.3) in the same form as SP. 

In_1 ee the first process is executing in its critical section. 

In_2 ---- the second process is executing in its critical section. 

By using ln_l ^ In_2 as PBad, (9.3) can be put in the same form as SP. Figure 9.2 is a proof 

outline for the program of Figure 9.1 with assitmments to auxiliary variables In_1 and In_2 

included. It is a theorem of Proof Outiinc Logic; the proof is similar to the one used for the 

proof outline of Figure 9.1. 

To establish that (9.3) holds, first note that 

I1: -,In_] v (enterl ^ -~AtP3 ^ (=enter2 v tu rn= l  v AtQ3)) 

12:-4n_2 v (enter2 ^ --AIQ3 ^ (-~enterl v turn=2 v AtP3)) 

are invariants of the proof outline of Figure 9.2. S ince / /  ^ 12 =:. -~(ln-1 ^ In_2), we can con- 

struct a proof outline invariant H ^ 12 and use Proving a Safety Property using an lnvariant 

(9.2) to conclude that Mutual Exclusion (9.3) holds. 

We now turn to Non Blocking (9.4). Here,  the proscribed "bad thing" is a state where 

one process is executing in its non-critical section and the other is blocked attempting to enter 

its critical section. Whenever the first process is in its non-critical section, -,enterl ^ -,ln_1 

holds; whenever the second process is bkr.ked attempting to enter its critical section, the guard 

we must prove: 

IVtCT~, eS): 
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vat  er,~erl, enter2 : boolean initial false, false; 
AtP3, AtQ3 : boolean; 
turn : integer initial 1; 
In_l ,  In_2 : boolean initial false, false 

{P: ~enterl A ~enter2 A -~InJ ^ -~In_2} 

eobefm 
{ P I : -~enter l ^ ~I  n__l } 
do wue-- {P2: ~enterl  ^ -~tnJ}  

SI: AtP3, enterl := true, true; 
{P3: enterl ^ -~ln_l} 

S2: AtP3, turn := false, 2; 
{P4: enterl ^ -~AtP3 ^ -~ln_l} 

$3: (i f  ~enter2 v turn=l  - In_l  := true fi) 
{1'5: enterl ^ -~AtP3 ^ (-~enter2 v turn=l  v AtQ3) A In_l} 
...  Critical Section ... 
{P6: enterl ^ -~AtP3 ^ (-,enter2 v turn=l  v AtQ3) ^ In..l} 

$4: enterl,  l n J  := false, false; 
{PT: ~enterl ^ -4n_l}  
... Non-critical Section ... 
{PS: -~enterl ^ -~ln..l} 

{P9: false} od 
// 

od {Qg: 
coend 
{(2: false} 

{Q I : -~enter2 A -~ln._2 } 
do true -- {Q2: -~enter2 ^ =ln..2} 

T]: AIQ3, enter2 := true, true; 
{Q3: enter2 ^ -~In_2} 

T2: AtQ3, turn := false, 1; 
{Q4:enter2 a -~AtQ3 ^ -~In..2} 

T3: (i f  -~enterl v turn=2 ~ In..2 := true fl) 
{QS: enter2 ^ -~AtQ3 ^ (-~enterl v turn=2 v Atl'3) ^ in_2} 
... Critical Section ... 
{Q6:enter2 A -~AtQ3 ^ (-~enterl v turn=2 v AtP3) ^ In_2} 

T4: enter2, In_.2 := false, false; 
{QT: -~enter2 ^ -~In_2} 
... Non-critical Section ... 
{(28:-,enter2 A -~In_2} 

f~L,,) 

Figure 9.2. After Adding Auxiliary Variables 
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of 7"3 is false, so -~(-enterI v turn = 2) holds. Thus, whenever the first process is in its non- 

critical section and the second process is blocked attempting to enter its critical section, 

~enterl ^ ~fn__l ^ -~(-~enterl v turn=2) 

holds. Similarly, I/' the second process is in its non-critical section and the first is blocked 

attempting to enter its critical section 

~enter2 ^ -~ln_2 ^ ~(-~enter2 v turn=l)  

will hold. To put (9.4) in the same form as SP, we choose for PBad: 

(-~enterl ^ ~In_.l n ~(-~enterl v turn=2)) 
v (-~enter2^-~ln..2^ ~(~enter2 v turn=l))  

=false 

According to Proving a Safety Property (9.1), we can prove (9.4) by showing that -~P~ad is 

implied by every assertion in the proof outline of Figure 9.2. Every assertion implies -~false, so 

we are finished. 

Finally, Deadlock Freedom (9.5) requires showing that it is not possible for both processes 

to be waiting to enter their critical sections. If both processes are waiting, it is because the 

guards of SJ and TJ are false. T I ~  state is characterized by 

(9.6) pre(S3) ^ -~(~enter2 v turn=l)  A pre(T3) ^ ~(~enterl v turn=2) 

and is PDad for (9.5). Simplifying, we have (9.6)=false because turn cannot be both 1 and 2 at 

the same time. Clearly, -~false is implied by every assertion in the proof outline of Figure 9.2, 

so according to Proving a Safety Property (9.1) the proof for Deadlock Freedom (9.5) is com- 

pleted. 

P r o v i n g  Sa fe ty  P r o p e r t i e s  by  Exc lu s ion  o f  C o n f i g u r a t i o n s  

Most safety properties that arise in practice can be formulated in terms of restrictions on 

states processes should not occupy simultaneously. If assertion P describes the state of one 

process at some instant and Q describes the state of another process at that instant, then P A Q 

describes the state at that instant of the concurrent program con ta in ing  both processes. The 

constant false is satisfied by no state, so if P ^ Q=false, then it is not possible for one process to 

be in a state satisfying P while the other is in a state satisfying by Q. 

(9.7) Exdnsion of  Configurations. To establish that one process cannot be in a state satis- 

fying an assertion P while another process is in a state satisfying an assertion Q, show 

that (P ^ Q)=false. [] 

The technique can be justified formally, as follows. Proving exclusion of configurations is 

equivalent to proving SP, where PB~ is P ^ Q. According to (9.1), to show that a program S 

satisfies SP we establish that -~PDad is implied by every assertion in a valid proof outline PO for 
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S. Any assertion impfies true, so when -~(PA Q)=-~PDa~=true---as required by (9o7)~(9o1) fol- 

lows trivially. 

Exclusion of Configurations (9.7) can be used to prove Mutual Exclusion (9.3), Non 

Blocking (9.4), and Deadkr.k Freedom (9.5) for the protocol of Figure 9.1. Mutual Exclusion 

(9.3) is proved by observing that whenever the first process is executing in its critical section, 

1'5 holds; and whenever the second process is in its critical section (25 holds. Thus, we can use 

Exclusion of Configurations (9.7) to prove (9.3) by showing 1'5A QS=false .  Substituting and 
simplifying from Figure 9.1 (since we have no need for the auxiliary variables of Figure 9.2), 

1'5 A (25 = enterl  ^ -xAtP3 A (-~enter2 v turn= 1 v AtQ3) 
A enter2 A -~AtQ3 ^ (- ,enterl  v turn=2 v AtP3) 

= O u r n = l  ^ t~rn=2)  

= false. 

To establish Non Blocking (9.4) by using Exclusion of Configurations (9.7), we first show 

that ~enter l ,  which holds whenever the first process is in its non-eritical section, and 

Q4 A -~(-~enterl v turn= 2), which holds whenever the second process is delayed from entering 
its critical section, together implyfa/se. Expanding, we get 

-~enterl A enter2 A -~AtQ3 A -~(-~enterl v turn=2) 

=-~enterl  A enter2 A -,AtQ3 ^ enterl  A turn=2 

=false .  

A similar argument shows that whenever the second process is in its non-critical section, the 
first process cannot be delayed from entering its critical section, and (9.4) follows. 

Finally, to show Deadlock Freedom (9.5) by using Exclusion of Configurations (9.7), it 

suffices to show that both processes cannot simultaneously be waiting to enter their critical sec- 

tions. When the first process is waiting, P4A -~(~enter2 v turn=l) is true; when the second is 
waiting, Q4A -~(~enterl v turn=2) is true. Since 

P4 A -~(-~enter2 v turn=l) A Q4 A - , (~enter l  v turn=2) 

= enterl  ^ -~AtP3 ^ enter2 h turn= 1 
^ enter2 ^ -,AtQ3 h enterl  ^ turn=2  

= f a l s e  

(9.5) holds. 

10. His tor ical  Survey  

Hoare was the first to propose a logic for reasoning about partial correctness [Hoare 69]. 

His logic is based on a program verification technique described in [Floyd 67]. Floyd associates 
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a predicate with e~ch arc in a flowchart such that if e ~ - m i ~  is started on an arc v ~  the 

corresponding predicate true then as each subsequent arc is traversed the associated predicate 

will be true. Floyd credits Perlis and Cwrn for the idea, mentioning an unpublished paper by 

Gorn as its earli~t appearance. A similar approach was independently developed by Naur 

[Naur 66]. There, predic~ates called general snapshots are interspersed in the program text in a 

way that satisfies Interpretation for Proof Outlines (3.1). Other early investigations into formal 

systems for proving things about programs are reported in [Yanov 58], [Igarashi 64], and 

[de Bakker 68] for proving the equivalence of programs, and in [McCarthy 62] and [Bur- 

stall 68] for programs specified as recursive functions. Program verification is almost as old as 

programming itself, however. Early techniques are given in [Goldstine & yon Neumann 47] 

and [Turing 49]; the Turing paper is reprinted and discussed in [Morris & Jones 84] 

Formulas of the logical system in [Hoare 69] are of the form P {S} Q. It is a logic for rea- 
soning about triples rather than proof outlines. For this reason, the logic does not require an 

inference rule like our Deletion Rule (3.9). In addition, the logic differs from Proof Outline 

Logic by not having rules analogous m our Logical Variable Rule (3.8), Conjunction Rule 

(3.10), or Disjunction Rule (3.11). F'mally, the programming language axiomatized in 

[Hoare 69] contains a singie-assignment statement; Assignment Axiom (3.3) for multiple- 

assignment statements is defined in [GHes 78]. 

Although many who have written about programming logics USe proof outliUes, few have 
formalized them and even fewer have done so correctly. One of the earlier (correct) formaliza- 

tions appears in [Ashcroft 76]; a natural deduction programming logic of proof outlines is 

presented in [Constable & O'Donnell 78]. Proof Outline Logic is a straightforward generaliza- 

tion of the logic in [Home 69], resulting in a I-filbert-style logic in which formulas are (valid) 

proof outlines. In the logic of [Hoare 69], the conclusion of each inference rule is constructed 

by combining fragments of its hypothesis. Hoare's logic deletes the pre- and postconditions of 

the hypothesis, Proof Outline Logic makes them assertions in an annotated program. Our Sim- 

ple Proof Outline Validity Test (3.12) has long been a folk-theorem among those who practice 

program verification. 

The first assertional method for proving properties of concurrent program~ was described 

in [Ashcroft & Manna 71]. It is based on converting the flowchart representation of a con- 

current program into a non-deterministic, sequential one to which known techniques could then 
be applied. The method is not practical because the non-deterministic program could be large 
and awkward. A second assertional verification method based on transforming the flowchart 

representation of a concurrent program is described in [Levitt 72]. There, flowcharts for 

processes that synchronize using semaphores are combined by adding the flow of control 

implied by process switches at semaphore operations. An extension of Floyd's method allows 

verification conditions to be obtained from such a flowchart. 

Subsequently, Ashcroft developed an approach for extracting verification conditions 

directly from the flowchart of a concurrent program [Ashcroft 75]. Ashcroft associated an 

assertion with each control point in the program by defining an assertion for each edge in the 

flowchart, just as Floyd had proposed for sequential programs. By including the program 
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counter in the state, it is possible to define an invariant equivalent to our (5.2). (In Proof Out- 

line Logic, the assertions in a valid complete proof outline define such an invariant.) To show 

that (5.2) is preserved by execution, Ashcroft required that each atomic action, if started in a 

state with (5.2) true, leave it true. Thus, a concurrent program was decomlx)sed into its atomic 

actions, and each atomic action was shown not to interfere with (5.2). 

Not surprisingly, Hoare was the first to address the design of a programming logic for con- 

current programs. In [Hoare 72], proof rules for parallel composition of processes that syn- 

chronize using conditional critical regions are given. The proof rules extend Hoare's partial 

correctness logic to concurrent programs, but are inadequate for proving programs in which 

processes communicate because assertions appearing in the proof of one process are not allowed 

to mention variables local to another and an invariant can mention only specially designated 

shared variables. Some of these restrictions are relaxed in [Hoare 75], but the proof system is 

still not complete and process interaction is limited to sequences, similar to unbounded message 

queues. 

Interference freedom and the first complete programming logic for partial correctness was 

developed by Owicki in a Ph.D. thesis [Owicki 75] supervised by Gries [Owicki & Gries 76]. 

The work extends Hoare's logic of triples to handle concurrent programs that synchronize and 

communicate using shared variables. Our Proof Outline L~glc rules for reasoning about eobe- 

gin are based on rules in [Owicki & Gries 76], although the explanation of eobegin Rule (5.8) 

parallels that in [Dijkstra 76]. One significant difference between Proof Outline Logic and the 

Owicki-Gries logic concerns the role of proof outlines. The Owicki-Gries logic appears to be 

based on triples rather than proof outlines, but this is deceptive=had the logic been formalized, 

the need for treating proof outlines as formulas would probably have become apparent. 

Auxiliary variables were first introduced in [Clint 73] to facilitate partial correctness proofs 

of programs using corontines and were later used in [Hoare 75]. Owicki was the first to for- 

malize inference rules to delete them from a proof. 

The Owicki-Gries work addressed only three types of properties: partial correctness, 

mutual exclusion, and deadlock freedom. Lamport, working independently, developed an idea 

similar to interference freedom (monotone assertions) as part of a more general method for 

proving both safety and liveness properties of concurrent programs [Lamport 77]. (In fact, the 

terms safety and liveness originated in [Lamport 77], but were only recently formalized [l.~m- 

port 85] [Alpern & Schneider 86].) Both (9.1) and (9.2) for proving a safety property are 
based on Lamport's method. 

Lamport then went on to develop Generalized Hoare Logic (GHL) to permit arbitrary 

safety properties to be verified using a Hoare-style programming logic [Lamport 80]. GIIL 

Formulas resemble Hoare's triples, but have a very different interpretation. A GHL formula 

describes a program in terms of an invariant, rather than as a relation between a precondition 

and postcondition. (Hoare's triples are a special case of GHL formulas.) GHL permits rea- 

soning about concurrent programs with arbitrary atomic actions as well as programs for which 

the atomic actions are not known but the invariants they maintain are. Also, GIIL does not 
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use a . ~ l i ~  variables; instead, it uses predicates at(S), after(S) and in(S) on the hidden state. 
The relationship b~twce,_ GHL, Floyd's method, and the Owicki-Gries method is explained in 
[Lamport & Schneider 84]. 

The an~e bracket notation for specifying synchronization was invented by Lamport and 
formalized in [I.zmport 80], but popularized by Dijkstra. (The earliest published use is [Dijks- 
tra77].) The various scheduling policies were first defined and formalized in 
[Lehman et al. 81], though with somewhat different termlnology---/mpart/a/for what we call 
unconditionally fair, just for what we call weakly fair, and fa/r for what we call strongly fair. 
Our terminology is taken from [Francez 86]. Condition synchronization and mutual exclusion 
and their defmitious in terms of removing interference were first described in 
[Andrews & Schneider 83]. 

The Bank Example of §6 first appeared in [Lamport 76]. The solution to the critical sec- 
tion problem in §9 was p r ~  by Peterson [Peterson 81], although our assertional correct- 
hess proof is based on [Dijkstra 81]. 

Concurrent programming has only recently emerged as a discipline. Recent surveys 
include [Brinch Hansen 73], which illustrates the use of various synchronization primitives by 
giving solutions to some standard concurrent programming problems, and 
[Andrews & Schneider 83], which describes a variety of language notations. A number of text- 
books have been written about various facets of concurrent programming. Brinch Hansen 
wrote the first [Brinch Hansen 77]; it describes the design of three operating systems and con- 
tains Concurrent Pascal programs for them. [Holt et al. 78] and its successor [Holt 83] covers 
those aspects of concurrent programming most closely related to operating systems. Another 
undergraduate text [Ben-Ari 82] covers important synchronization mechanisms and shows how 
to construct informal correctness proofs for concurrent programs. In [Fillman & Friedman 84], 
models, languages, and heuristics for concurrent programming are treated. Advanced texts 
that discuss logics and programming methodology for concurrent programs include [Bar- 
ringer 85], [Halpern 82], [Hoare 85], and [Paul & Siegert 85]. 
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