

#### Introduction



- Breeding work for the Geneva® rootstocks was initiated by Drs. Cummins and Aldwinckle in 1967.
- The USDA/Cornell program is actively breeding and selecting new rootstocks (about 2,500 in the pipeline) – Dr. Aldwinckle and Dr. Robinson represent Cornell University in the program.
- The program, has always focused on developing yield efficient, disease resistant rootstocks (fire blight, etc).
- It is now focusing on characterization of other important traits such as replant disease resistance, drought tolerance, cold tolerance, etc.

#### Apple Harvest Doud family farm (1916, Miami Co. Indiana)



#### **Auvil Fruit Farm (Vantage, WA** 2005 – next to Columbia River)





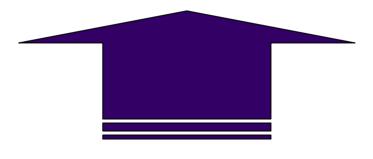


# Benefits from the implementation of dwarfing rootstocks

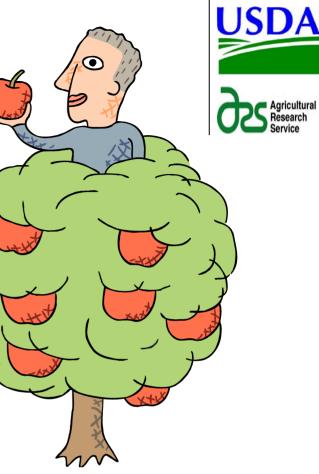


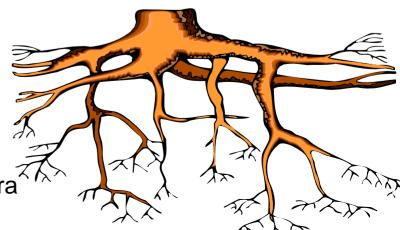
#### Less sprays

Less ladder accidents



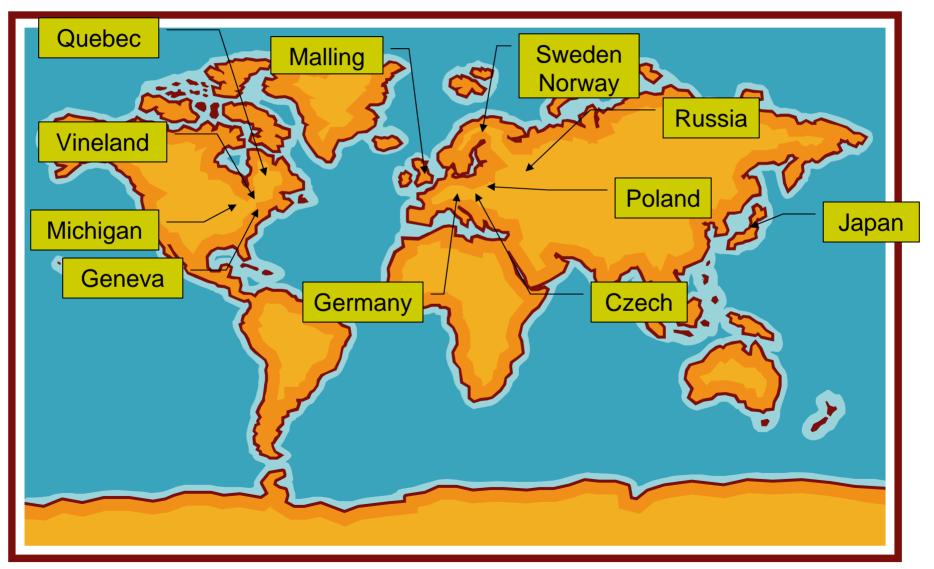

#### **Increased productivity**





#### Improving Rootstocks for Superior Tree Performance

- Fruit Color and Quality
- Fruit Size
- Disease Resistance

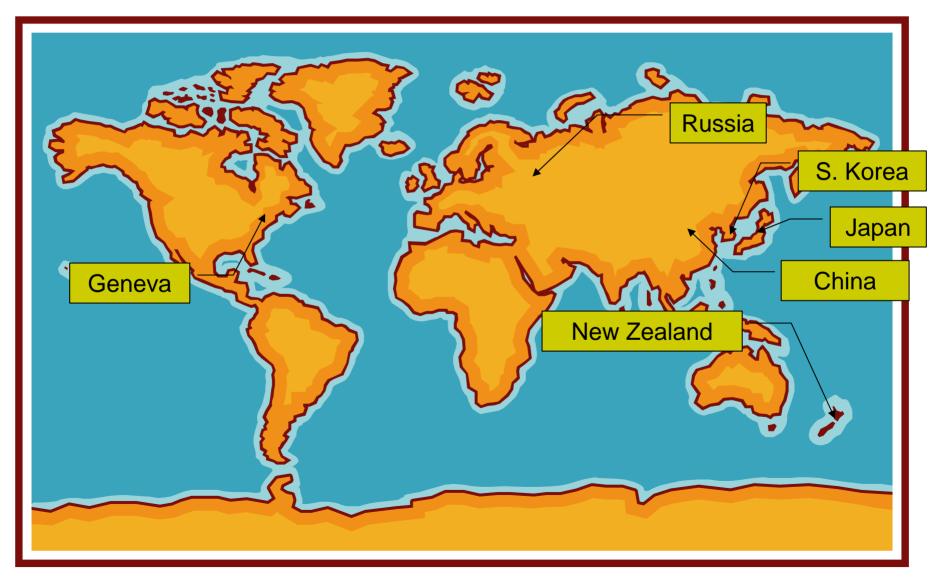



- Plant Architecture Dwarfing
  - Molecular mapping and selection tools
  - Genomics
- Yield and productivity (Nutrition)
- Precocity
- Abiotic Stress Resistance (Cold)
- Disease Resistance
  - Fire blight (\$40M 2000 epidemic, MI)
  - Replant disease complex
- TRANSGENIC ROOTSTOCKS for a plethora of traits





#### Active Apple Rootstock Breeding Programs 1970s and 80s






#### Active Apple Rootstock Breeding Programs 2005







#### New and Experimental Apple Rootstocks in the U.S.

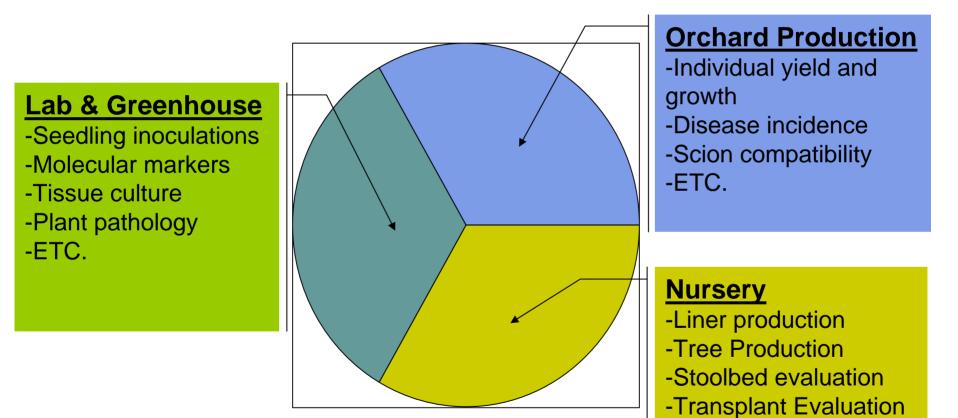


| Polish  | Czhec   | Malling    | Russia       | Vineland | Quebec     | Japan       | Germany    | Geneva  |
|---------|---------|------------|--------------|----------|------------|-------------|------------|---------|
| P.14    | JTE-B   | AR-86-1-20 | Bud 57-195   | V.1      | SJP84-5218 | JM1         | Supp. 1    | G.11    |
| P.22    | JTE-C   | AR-86-1-25 | Bud 60-160   | V.2      | SJP84-5217 | JM2         | Supp. 2    | G.16    |
|         | JTE-D   | AR-295-6   | Bud 61-31    | V.3      | SJP84-5198 | JM3         | Supp. 3    | G.41    |
|         |         | AR-931-15  | Bud 62-396   | V.4      | SJP84-5162 | JM7         | Supp. 4    | G.65    |
|         |         | AR-440-1   | Bud 64-194   | V.7      | SJP84-5231 | Marubakaido | PiAu 56-83 | G.935   |
|         |         | AR-680-2   | Bud 65-838   |          | SJP84-5174 |             |            | G.30    |
|         |         | AR-486-1   | Bud 67-5(32) |          | SJP84-5189 |             |            | CG.2001 |
|         |         | AR-628-2   | Bud 70-8-8   |          | SJP84-5180 |             |            | CG.2003 |
|         |         | AR-69-7    | Bud 70-20-21 |          |            |             |            | CG.2006 |
|         |         | AR-360-19  | Bud 71-3-150 |          |            |             |            | CG.2022 |
|         |         | M.20       | Bud 71-7-22  |          |            |             |            | CG.2034 |
|         |         |            |              |          |            |             |            | CG.2406 |
| CG.3142 | CG.3736 | CG.3902    | CG.4001      | CG.4002  | CG.4003    | CG.4004     | CG.4005    | CG.3001 |
| CG.4011 | CG.4013 | CG.4018    | CG.4019      | CG.4021  | CG.4038    | CG.4049     | CG.4088    | CG.3007 |
| CG.4094 | CG.4113 | CG.4172    | CG.4210      | CG.4213  | CG.4214    | CG.4247     | CG.4288    | CG.3029 |

#### **Geneva Rootstock Selection Traits**



| TRAIT                      | EVALUATION YEARS | LOCATION         |  |
|----------------------------|------------------|------------------|--|
| Fire Blight resistance     | 1 or 7           | Greenhouse/Field |  |
| Phytopthora resistance     | 1                | Greenhouse       |  |
| Replant Disease Complex    | 1 or 7           | Greenhouse/field |  |
| Wholly apple aphid res.    | 1                | Greenhouse       |  |
| Juvenility - Spines        | 3-4              | Field/Stoolbed   |  |
| Stoolbed rooting           | 3-4              | Field/Stoolbed   |  |
| Growth habit - Brittleness | 3-4              | Field/Stoolbed   |  |
| Dwarfing                   | 8-12             | Orchard          |  |
| Precocity                  | 8                | Orchard          |  |
| Suckering                  | 8                | Orchard          |  |
| Yield – Biennial bearing   | 12               | Orchard          |  |
| Cold hardiness             | 15               | Orchard          |  |
| Drought tolerance          | 4                | Orchard          |  |
| Graft union compatibility  | 5                | Orchard          |  |

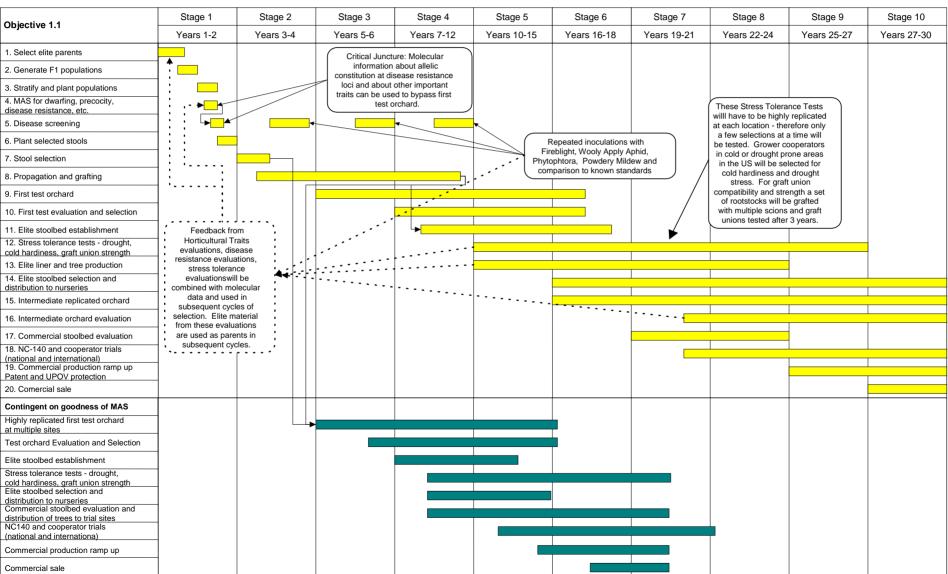

## Insects and diseases of apple rootstocks

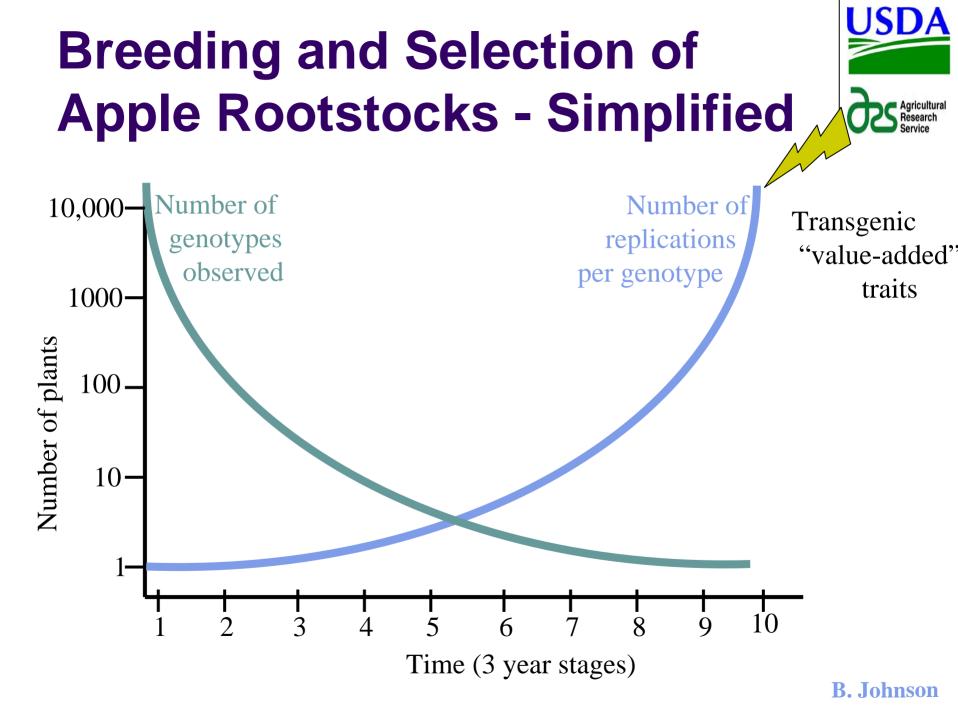


- Fire blight (Erwinia amylovora)
- Crown rot, root rot (*Phytophthora spp.*)
- Woolly Apple Aphid (*Eriosoma lanigerum*)
- Southern Blight (Sclerotium rolfsii)
- White root rot (Rosellinia necatrix)
- Texas root rot (Phymatotrichum omnivora)

#### Apple Rootstock Breeding: Resources and Activities



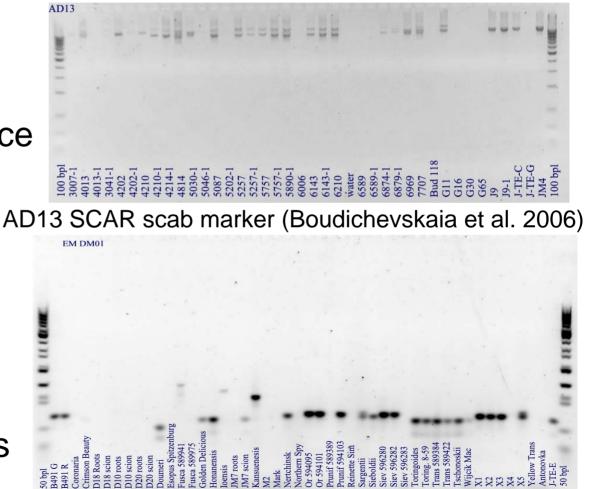




Apple Rootstock Breeding is a very resource intensive endeavor.

-ETC.

### Apple Rootstock Breeding and Selection Protocols








#### Criteria for Parent Selection – Phenotype and Molecular Markers

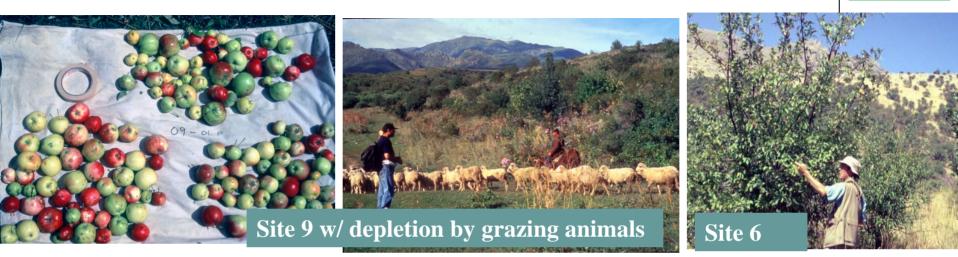


- Dwarfing
- Precocity
- Disease Resistance
  - Fire Blight
  - Phytopthora
  - Powdery Mildew
  - Apple Scab
- Yield and Field Performance
- "New" Gene Pools



EM M01 SCAR powdery mildew marker (Evans et al. 2003)

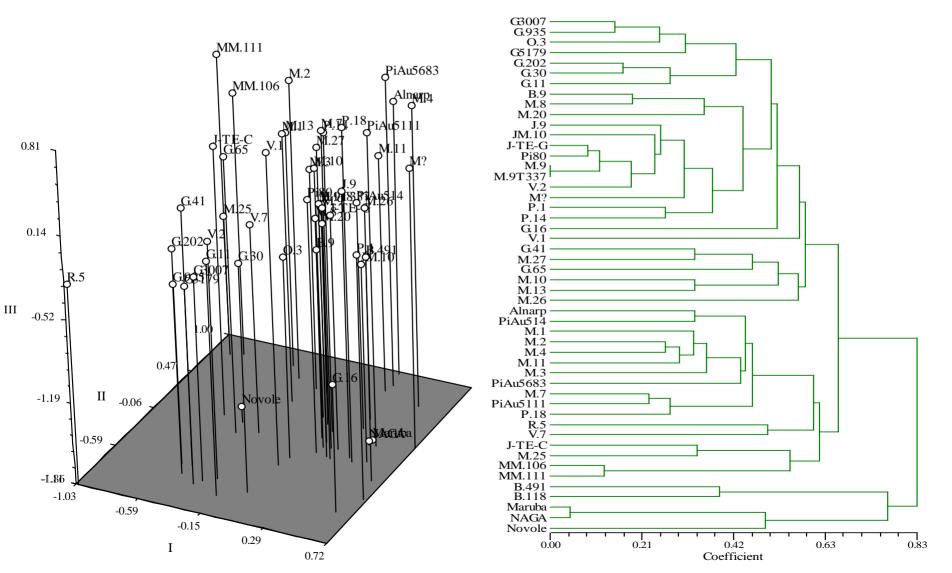
#### New Gene Pools at the Plant Genetic Resources Unit (PGRU) Geneva, New York




*Malus* - Apple - 3995 accessions 2430 clones (grafted) and 1565 seedlots from wild



2808 wild *Malus* seedlings from 310 populations from Kazakhstan, Russia, China & Turkey


### Malus sieversii from Kazakhstan 1989 - 1996







#### Gene Pool Identification – Combining SSR, SCAR Markers







#### **Crossing Parents – Stage 1**





#### **Crossing Parents – Stage 1**



### Seed Harvest – Stage 1 – 2,000-10,000 seeds per cross





#### Disease Screens – Stage 1 – 3,000 to 10,000 seedlings/year





#### Disease Screens – Stage 1 – 3,000 to 10,000 seedlings/year





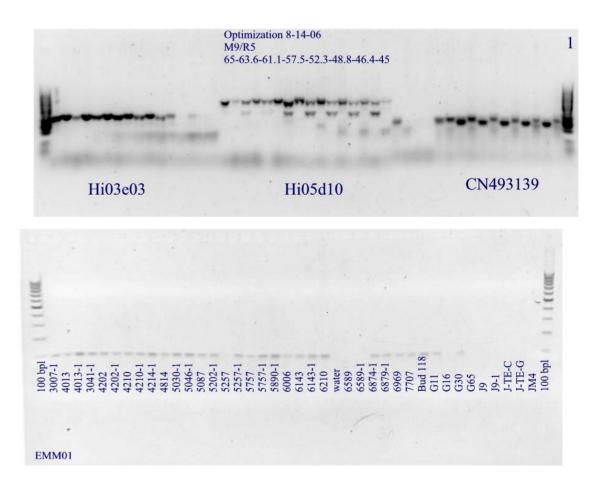


#### Fire blight - Erwinia amylovora

- Major disease for apple rootstocks in North America
- Bacterial disease with strain differentiation
- Resistance sources available
- Rootstock infection routes:
  - suckers
  - injuries
  - systemic movement of bacteria from scion

#### Fire Blight Screening – Stage 1 500 to 2,000 seedlings

**USDA** 


Agricultural Research



#### Integration of Marker Assisted Selection – Stage 2



- High throughput PCR markers – SCARs, SSRs
- Target traits:
  - Dwarfing
  - Powdery mildew resistance
  - Scab resistance
  - Wooly apple aphid resistance
- Use published and "in house" markers



## Propagation and Evaluation of Layering Stool-Bed Properties





#### Harvest of Rootstock Liners – Evaluation of Rooting





#### **Rootstock Liners in Tree Nursery for Budding/Grafting**







#### First Test Orchard – Stage 3

- 3-10 replicates per rootstock genotype
- 50-100 different genotype selections every year
- All grafted with same scion
- Evaluated for 8-12 years



### Early field selection of precocious genotypes – Stage 4









#### Expansion of Layering Beds to Increase Replications – Stage 4







#### Evaluation of Layering Stool Beds – Stage 5





#### **Rootstock Liner Evaluation – Stage 5**





#### Second Test for Resistance to Biotic Stresses – Stage 5

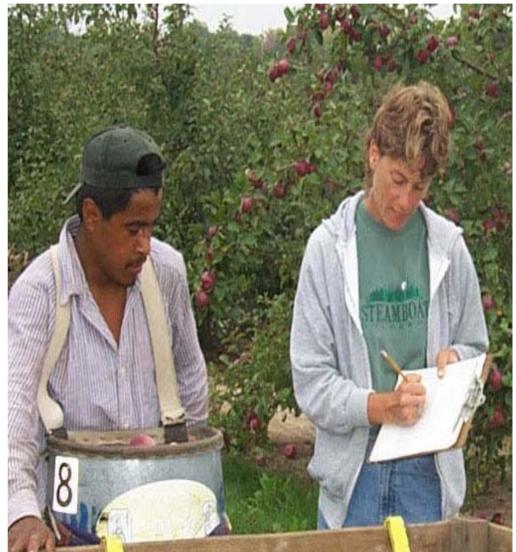




Fire Blight Inoculations with Multiple Strains

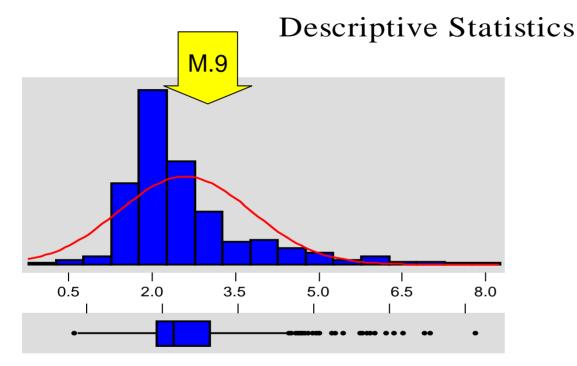
Inocu Wooly Aphic *Janige* 

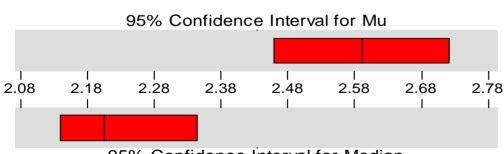



Inoculation with Wooly Apple Aphid (*Eriosoma lanigerum*)

Water Logging test with Phytophthora Inoculation

#### **Replicated Orchard Trials in Multiple Locations – Stage 6**





- Precocity
- Yield
- Fruit Size
- Dwarfing
- Tree Survival
- Disease Incidence
- Tree Architecture
- Burr Knots



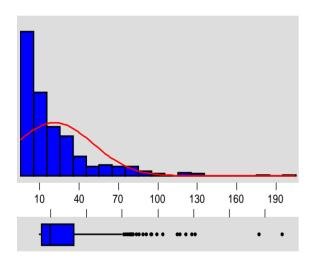
### **Cumulative Yield Efficiency Measurements**







#### 95% Confidence Interval for Median


#### Variable: CUM-YEFF

Anderson-Darling Normality Test

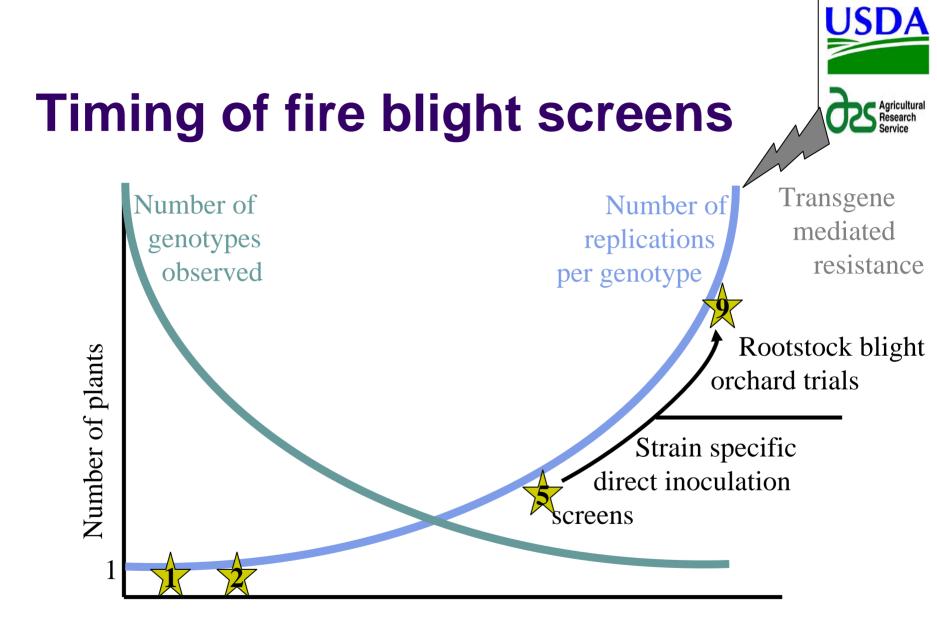
| 17.106<br>0.000                                            |  |
|------------------------------------------------------------|--|
| 2.59040<br>1.19212<br>1.42114<br>1.75248<br>3.70960<br>317 |  |
| 0.24800<br>1.87200<br>2.20500<br>2.91550<br>8.18500        |  |
| 95% Confidence Interval for Mu                             |  |
| 2.72214                                                    |  |
| erval for Sigma                                            |  |
| 1.29292                                                    |  |
| 95% Confidence Interval for Median                         |  |
| 2.34268                                                    |  |
|                                                            |  |

## **Replicated Orchard Trials in Multiple Locations – Stage 6**

#### **Descriptive Statistics**



95% Confidence Interval for Mu




#### Variable: Suckers

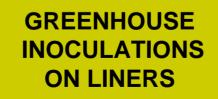
| Anderson-Darling Normality Test    |                |
|------------------------------------|----------------|
| A-Squared:                         | 27.087         |
| P-Value:                           | 0.000          |
| Mean                               | 21.1430        |
| StDev                              | 29.4424        |
| Variance                           | 866.858        |
| Skewness                           | 2.55072        |
| Kurtosis                           | 8.75868        |
| Ν                                  | 317            |
| Minimum                            | 0.000          |
| 1st Quartile                       | 2.000          |
| Median                             | 9.500          |
| 3rd Quartile                       | 29.166         |
| Maximum                            | 204.000        |
| 95% Confidence I                   | nterval for Mu |
| 17.889                             | 24.397         |
| 95% Confidence Interval for Sigma  |                |
| 27.315                             | 31.932         |
| 95% Confidence Interval for Median |                |
| 6.719                              | 13.403         |
|                                    |                |

USDA

Agricultural Research



Time


# Screening for Resistance to Fire Blight (*E. amylovora*)







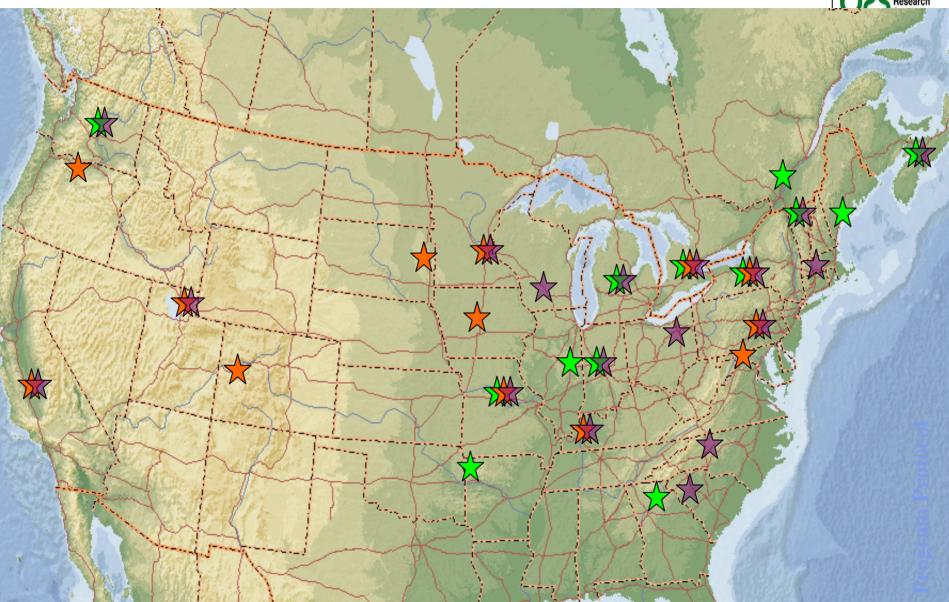
#### FIELD INOCULATIONS ON FINISHED TREES







## Commercial Stool Bed Trials – Stage 7




- On site trials of elite rootstocks at commercial nursery locations
- Evaluate liner productivity and quality under commercial conditions
- Generates nursery stock for major orchard trials (NC-140, large grower trials)



# Trials with NC-140 Cooperators – Stage 8





### **Drought Tolerance Tests**





#### Work of Dr. PARRA



WI



### **Graft Union Strength Tests**

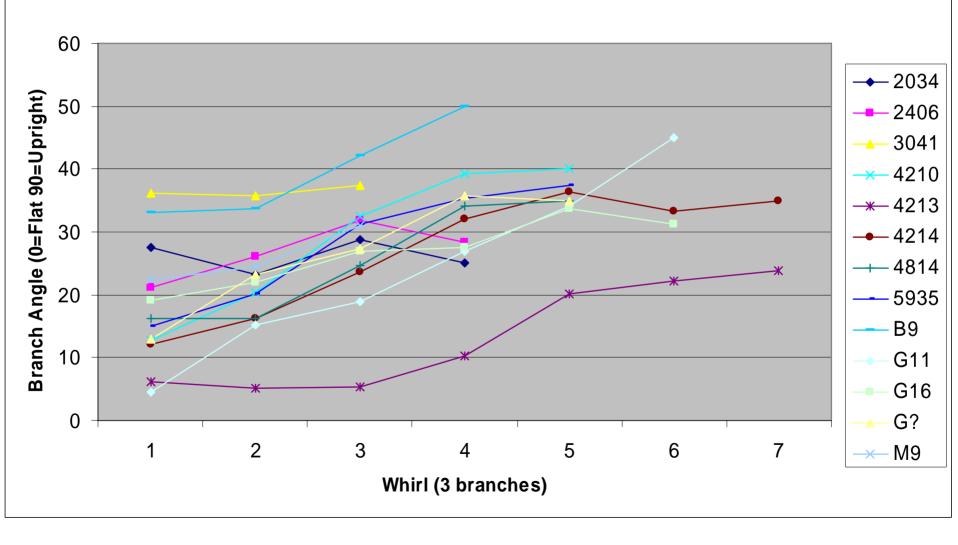




Pictures Courtesy of Mike Parker (NC State University)

#### On Farm and Nursery Trials in Several U.S. Locations – Stage 9




- Large scale trials planted in WA, PA, MI, NY
- Trials include 20-45 different genotypes



## USDA **Nursery Tree Measurements** on 10-15 Trees per Rootstocks **Branch Length Tree Height Branch Angle** 0=Flat **Total Number of** 90=Upright **Branches Branch Height**



#### Branch Angles of Brookfield Gala Trees on Several Dwarfing Rootstocks for 7 Whirls



### Stages of Micro-Propagation Prior to Release – Stage 10









# Commercial Release and Continued Testing – Stage 10



- Program has released 6 new rootstock genotypes to date.
- G.16 and G.30 G.202, G.41, G.935, G.11 are commercially available in U.S.
- Release decision for six more elite rootstock genotypes expected in 2008.

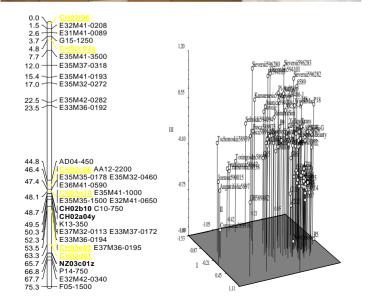
# Large Scale Production of Rootstock Liners





#### Production of High Quality Nursery Trees and Adoption By Growers






Nursery trees on Geneva 202 rootstocks and planted in high density orchard.

#### QTL Mapping of Apple Rootstock Yield & Disease Resistance Traits







- Dr. Wan Yizhen
- Construct a molecular map of Apple Rootstock using microsatellites, SNP, SCAR.
- Map and develop markers for plant architecture and disease resistance traits.
- Develop basic knowledge on Chinese apomictic species for seed propagated rootstocks.
- Transgenic approaches for improving rootstock performance.

#### Research Work on Apple Rootstocks Requires Many Collaborators and Institutions



- Cornell University:
  - T. Robinson (Orchard Systems)
  - I. Merwin (Horticulture Replant)
  - H. Aldwinckle (Plant Pathology)
  - L. Cheng (Physiology)
  - S. Brown (Scion Breeding)
- Michigan State University:
  - R. Perry (Rootstocks)
  - S. VanNocker (Genomics)
- Washington State University:
  - B. Barrit (Scion Breeding)
  - D. Main (BioInformatics)
- USDA ARS PGRU:
  - A. Baldo (BioInformatics)
  - P. Forsline (Apple Collection)

- USDA ARS AFRS Kearneysville:
  - J. Norelli (Transgenics)
  - C. Bassett (Stress Physiology)
- USDA ARS Wenatchee:
  - M. Mazzola (Plant Pathology)
  - Y. Zhu (Genomics)
- PENN State University:
  - T. McNellis (Genomics)
    - J. Schupp (Horticulture)
- Over 40 scientists as NC-140 collaborators
- Washington Tree Fruit Research Commission

BASIC SCIENCE Genomics, Proteomics Gene Discovery, Expression Physiology



APPLIED SCIENCE Plant Breeding Genetic Transformation

VERY APPLIED SCIENCE Horticultural Trait Evaluation Widespread Field Performance Field Recommendations NC-140

INDUSTRY, GROWERS, PROCESSORS, CONSUMERS



## **Genomic Revolution**

- We know that M.7 rootstock is less precocious than M.9. Do we know why?
- We know that M.9 dwarfs more than M.26? Do we know why?
- Through Genomics much is being discovered about how rootstocks do all that they do.
  - NSF funded project that aims to discover what genes are turned on and off in the apple scion by different rootstocks. (Dr. McNellis, Penn State)
- Tree architecture modified by apple rootstocks....
- Wealth of new genetic material

#### The Geneva® Apple Rootstock Breeding Program









Todd Holleran, Sarah Bauer, Yizhen Wan



Funding from IDFTA, WTFRC, USDA, Cornell

# The Road Ahead (2003 NC-140 Mtgs. Door County, Wisconsin)



