
Concepts of Database Management
Seventh Edition

Chapter 6

Database Design 2: Design Method



Objectives

• Discuss the general process and goals of database 
design

• Define user views and explain their function

• Define Database Design Language (DBDL) and 
use it to document database designs

• Create an entity-relationship (E-R) diagram to 
visually represent a database design

• Present a method for database design at the 
information level and view examples illustrating this 
method

2



Objectives (continued)

• Explain the physical-level design process

• Discuss top-down and bottom-up approaches to 
database design and examine the advantages and 
disadvantages of both methods

• Use a survey form to obtain information from users 
prior to beginning the database design process

• Review existing documents to obtain information 
prior to beginning the database design

3



Objectives (continued)

• Discuss special issues related to implementing 
one-to-one relationships and many-to-many 
relationships involving more than two entities

• Discuss entity subtypes and their relationships to 
nulls

• Learn how to avoid potential problems when 
merging third normal form relations

• Examine the entity-relationship model for 
representing and designing databases

4



Introduction

• Two-step process for database design

• Information-level design: completed 
independently of any particular DBMS

• Physical-level design: information-level design 
adapted for the specific DBMS that will be used

– Must consider characteristics of the particular DBMS

5



User Views

• User view: set of requirements necessary to 
support operations of a particular database user

• Cumulative design: supports all user views 
encountered during design process

6



Information-Level Design Method

• For each user view:

1. Represent the user view as a collection of tables

2. Normalize these tables

3. Identify all keys in these tables

4. Merge the result of Steps 1 through 3 into the 

cumulative design

7



Represent the User View As a 

Collection of Tables

• Step 1: Determine the entities involved and create 
a separate table for each type of entity

• Step 2: Determine the primary key for each table

• Step 3: Determine the properties for each entity

• Step 4: Determine relationships between the 
entities

– One-to-many

– Many-to-many

– One-to-one

8



Represent the User View As a 

Collection of Tables (continued)

• One-to-many relationship: include primary key of 
the “one” table as a foreign key in the “many” table

• Many-to-many relationship: create a new table 
whose primary key is the combination of the 
primary keys of the original tables

• One-to-one relationship: simplest implementation 
is to treat it as a one-to-many relationship

9



Normalize the Tables

• Normalize each table

• Target is third normal form

– Careful planning in early phases of the process 

usually rules out need to consider fourth normal form

10



Identify All Keys

• For each table, identify:

– Primary key

– Alternate keys

– Secondary keys

– Foreign keys

• Alternate key: column(s) that could have been 
chosen as a primary key but was not

• Secondary keys: columns of interest strictly for 
retrieval purposes

11



Identify All Keys (continued)

• Foreign key: column(s) in one table that is required 
to match value of the primary key for some row in 
another table or is required to be null

– Used to create relationships between tables

– Used to enforce certain types of integrity constraints

12



Types of Primary Keys

• Natural key: consists of a column that uniquely 
identifies an entity

– Also called a logical key or an intelligent key

• Artificial key: column created for an entity to serve 
solely as the primary key and that is visible to users

• Surrogate key: system-generated; usually hidden 
from users

– Also called a synthetic key

13



Database Design Language (DBDL)

• Table name followed by columns in parentheses 

– Primary key column(s) underlined

• AK identifies alternate keys

• SK identifies secondary keys

• FK identifies foreign keys

– Foreign keys followed by an arrow pointing to the 

table identified by the foreign key

14



Database Design Language (DBDL) 

(continued)

FIGURE 6-1: DBDL for the Employee table

15



Entity-Relationship (E-R) Diagrams

• Visually represents database structure

• Rectangle represents each entity

– Entity’s name appears above the rectangle

• Primary key for each entity appears above the line 
in the entity’s rectangle

• Other columns of entity appear below the line in 
rectangle

16



Entity-Relationship (E-R) Diagrams 

(continued)

• Letters AK, SK, and FK appear in parentheses 
following the alternate key, secondary key, and 
foreign key, respectively

• For each foreign key, a line leads from the 
rectangle for the table being identified to the 
rectangle for the table containing the foreign key

• Text uses IDEF1X style of E-R diagram

17



Entity-Relationship (E-R) Diagrams 

(continued)

FIGURE 6-2: E-R diagram

18



Merge the Result into the Design

• Combine tables that have the same primary key to 
form a new table

• New table:

– Primary key is same as the primary key in the tables 

combined

– Contains all the columns from the tables combined

– If duplicate columns, remove all but one copy of the 

column

• Make sure new design is in third normal form

19



Merge the Result into the Design 

(continued)

FIGURE 6-3: Information-level design method

20



Database Design Examples

• Develop an information-level design

• Company stores information about sales reps, 
customers, parts, and orders

• User view requirements

• Constraints

FIGURE 6-4: Cumulative design after first user view

21



Database Design Examples 

(continued)

FIGURE 6-6: Cumulative design after third user view

22



Database Design Examples 

(continued)

FIGURE 6-8: Final information-level design
23



Database Design Examples 

(continued)

• Henry Books database: information about 
branches, publishers, authors, and books

• User view requirements

FIGURE 6-9: DBDL for Book database after first user view

24



Database Design Examples 

(continued)

FIGURE 6-10: DBDL for Book database after second user view

25



Database Design Examples 

(continued)

FIGURE 6-13: Cumulative design after fifth user view
26



Physical-Level Design

• Undertaken after information-level design 
completion

• Most DBMSs support primary, candidate, 
secondary, and foreign keys

• To enforce restrictions, DB programmers must 
include logic in their programs

27



Top-Down Versus Bottom-Up

• Bottom-up design method

– Design starts at low level 

– Specific user requirements drive design process

• Top-down design method

– Begins with general database that models overall 

enterprise

– Refines model until design supports all necessary 

applications

28



Survey Form

• Used to collect information from users

• Must contain particular elements

– Entity information

– Attribute (column) information

– Relationships

– Functional dependencies

– Processing information

29



Obtaining Information from Existing 

Documents

• Existing documents can furnish information about 
database design

• Identify and list all columns and give them 
appropriate names

• Identify functional dependencies

• Determine the tables and assign columns

30



Obtaining Information from Existing 

Documents (continued)

FIGURE 6-14: Invoice for Holt Distributors

31



Obtaining Information from Existing 

Documents (continued)

FIGURE 6-15: List of possible attributes for the Holt Distributors invoice

32



Obtaining Information from Existing 

Documents (continued)

FIGURE 6-17: Revised list of functional dependencies for the Holt 

Distributors invoice

33



Obtaining Information from Existing 

Documents (continued)

FIGURE 6-19: Expanded list of entities

34



One-to-One Relationship 

Considerations

• Simply include the primary key of each table as a 
foreign key in the other table

– No guarantee that the information will match

• One solution: create a single table

– Workable, but not the best solution

• Better solution

– Create separate tables for customers and sales reps

– Include the primary key of one of them as a foreign 

key in the other

35



One-to-One Relationship 

Considerations (continued)

FIGURE 6-23: One-to-one relationship implemented by including the primary 

key of one table as the foreign key (and alternate key) in the other 

table

36



Many-to-Many Relationship 

Considerations

• Complex issues arise when more than two entities 
are related in a many-to-many relationship

• Many-to-many-to-many relationship: involves 
multiple entities

• Deciding between a single many-to-many-to-many 
relationship and two (or three) many-to-many 
relationships

– Crucial issue: independence

37



Many-to-Many Relationship 

Considerations (continued)

FIGURE 6-25: Result obtained by splitting the Sales table into three tables

38



Many-to-Many Relationship 

Considerations (continued)

FIGURE 6-26: Result obtained by joining three tables—the second and third 

rows are in error!

39



Nulls and Entity Subtypes

• Null

– Special value

– Represents absence of a value in a field

– Used when a value is unknown or inapplicable

• Splitting tables to avoid use of null values

• Entity subtype: table that is a subtype of another 
table

40



Nulls and Entity Subtypes (continued)

FIGURE 6-27: Student table split to avoid use of null values

41



Nulls and Entity Subtypes (continued)

• Subtype called a category in IDEF1X terminology

• Incomplete category: records that do not fall into 
the subtype

• Complete categories: all records fall into the 
categories

42



Nulls and Entity Subtypes (continued)

FIGURE 6-29: Entity subtype in an E-R diagram

43



Nulls and Entity Subtypes (continued)

FIGURE 6-32: Two entity subtypes—incomplete categories

44



Nulls and Entity Subtypes (continued)

FIGURE 6-33: Two entity subtypes—complete categories

45



Avoiding Problems with Third Normal 

Form When Merging Tables 

• When combining third normal form tables, the 
result might not be in third normal form

• Be cautious when representing user views

• Always attempt to determine whether determinants 
exist and include them in tables

46



The Entity-Relationship Model

• An approach to representing data in a database

• Entities are drawn as rectangles

• Relationships are drawn as diamonds with lines 
connecting the entities involved in relationships

• Composite entity: exists to implement a many-to-
many relationship

• Existence dependency: existence of one entity 
depends on the existence of another related entity

• Weak entity: depends on another entity for its own 
existence

47



The Entity-Relationship Model 

(continued)

FIGURE 6-34: One-to-many relationship

48



The Entity-Relationship Model 

(continued)

FIGURE 6-35: Many-to-many relationship

49



The Entity-Relationship Model 

(continued)

FIGURE 6-36: Many-to-many-to-many relationship

50



The Entity-Relationship Model 

(continued)

FIGURE 6-37: One-to-many relationship with attributes added

51



The Entity-Relationship Model 

(continued)

FIGURE 6-38: Many-to-many relationship with attributes

52



The Entity-Relationship Model 

(continued)

FIGURE 6-39: Composite entity

53



The Entity-Relationship Model 

(continued)

FIGURE 6-40: Complete E-R diagram for the Premiere Products database

54



The Entity-Relationship Model 

(continued)

FIGURE 6-41: E-R diagram with an existence dependency and a weak entity

55



The Entity-Relationship Model 

(continued)

• Cardinality: number of items that must be included 
in a relationship

– An entity in a relationship with minimum cardinality 

of zero plays an optional role in the relationship

– An entity with a minimum cardinality of one plays a 

mandatory role in the relationship

56



The Entity-Relationship Model 

(continued)

FIGURE 6-43: E-R diagram that represents cardinality

57



Summary

• Database design is a two-part process: 
information-level design (not dependent on a 
particular DBMS) and physical-level design 
(appropriate for the particular DBMS being used)

• User view: set of necessary requirements to 
support a particular user’s operations

• Information-level design steps for each user view: 
represent the user view as a collection of tables, 
normalize these tables, represent all keys (primary, 
alternate, secondary, and foreign), and merge the 
results into the cumulative design

58



Summary (continued)

• Database design is represented in Database 
Design Language (DBDL)

• Designs can be represented visually using entity-
relationship (E-R) diagrams

• Physical-level design process consists of creating a 
table for each entity in the DBDL design

• Design method presented in this chapter is bottom-
up

• Survey form is useful for documenting the 
information gathered for database design process

59



Summary (continued)

• To obtain information from existing documents, list 
all attributes present in the documents, identify 
potential functional dependencies, make a tentative 
list of tables, and use the functional dependencies 
to refine the list

• To implement a one-to-one relationship, include 
primary key of one table in the other table as a 
foreign key and indicate the foreign key as an 
alternate key

60



Summary (continued)

• If a table’s primary key consists of three (or more) 
columns, determine whether there are independent 
relationships between pairs of these columns

• If a table contains columns that can be null and the 
nulls mean that the column is inapplicable for some 
rows, you can split the table, placing the null 
column(s) in separate tables 

• The result of merging third normal form tables may 
not be in third normal form

• Entity-relationship (E-R) model represents the 
structure of a database using an E-R diagram

61


