
Concepts of Programming

Languages

Robert W. Sebesta

Chapter 1

Preliminaries

Reasons for
studying the
underlying
concepts of

programming
languages…

The Study of Programming Languages

 Increases our ability to express ideas through programs

 Thinking Through Language*

www.yale.edu/cogdevlab/aarticles/bloom%20and%20keil.pdf

 Enables us to choose the most appropriate language for a project based on its strengths

and weaknesses.

 http://www.wired.com/wiredenterprise/2012/06/beard-gallery/?pid=87

 Facilitates the learning of new languages.

 TIOBE Programming Community http://www.tiobe.com/tiobe_index/index.htm

 Helps us to be better code writers and debuggers by giving us a better understanding of

the implementation level of a program language.

 Helps us make better use of languages that are we are already using.

 Drives the advancement of computing

 Example: ALGOL 60 vs. Fortran

 http://softtalkblog.com/2012/04/23/istep-2012-why-fortran/

http://www.yale.edu/cogdevlab/aarticles/bloom and keil.pdf
http://www.yale.edu/cogdevlab/aarticles/bloom and keil.pdf
http://www.yale.edu/cogdevlab/aarticles/bloom and keil.pdf
http://www.tiobe.com/tiobe_index/index.htm

Classifying
Languages

by Use

Programming Domains

 The design and evaluation of a particular language is highly dependent
on the domain in which it is to be used.

 Scientific Applications - Large numbers of floating point computations; use of arrays

 Fortran, ALGOL 60, MatLab, Numerical Python, etc…

 Business Applications - Produce reports, use decimal numbers and characters

 COBOL, RPG, etc..

 Artificial Intelligence - Symbols rather than numbers are manipulated; use of linked lists

 LISP, Prolog, Scheme, etc…

 Systems Programming - Need efficiency because of continuous use

 IBM’s PL/S, Digital’s BLISS, UNIX’s C, etc…

 Browser Software - Eclectic collection of languages from markup (e.g., XHTML) to scripting
to general-purpose

 PHP, JavaScript, Java Applets, etc…

Considerations
when Choosing
or Designing a

Language

Language Evaluation Criteria

 Readability: the ease with which programs can be read and

understood.

 Writability: expressivity, simplicity, orthogonality, support for

abstraction...

 Reliability: conformance to specifications (i.e., performs to its
specifications) support for type checking, exception handling,
aliasing,
 readable, maintainable, writable

 “A language that does not support “natural” ways of expressing an
algorithm will require the use of “unnatural” approaches, and hence
reduced reliability.”

 Cost: - training, coding, compiler & execution, implementation

system, legal, maintenance…

 Other: portability, generality, well-definedness…

Overlapping of criteria…

Tradeoffs
Reliability vs. cost of execution

Example: Java demands all references to array elements be checked for proper indexing, which leads
to increased execution costs

Readability vs. Writability

Example: APL provides many powerful operators (and a large number of new symbols), allowing
complex computations to be written in a compact program but at the cost of poor readability

Writability (flexibility) vs. reliability

Example: C++ pointers are powerful and very flexible but are unreliable

Zoom in
on aspects

of
Readability

Evaluation Criteria: Readability

 the ease with which programs can be read and understood

 Overall simplicity - A manageable set of features and constructs

 Minimal feature multiplicity – Example: count++ etc.

 Minimal operator overloading – Example: + symbol

 Assembly languages vs. HLLs

 Orthogonality

 A relatively small set of primitive constructs can be combined in a relatively small number
of ways where every possible combination is legal.

 For Example: Add two 32 bit integers and replace one of the two with the sum.

 IBM mainframe two instructions required–

 A Reg1, memory_cell and AR Reg1, Reg2

 VAX one instruction –

 ADDL operand_1, operand_2, where either or both operands can be a
register or a memory cell.

 C – structs can be returned from functions but arrays cannot; the parameter passing
mechanism is different for arrays.

 Disadvantage – computational complexity

 Functional languages offer balance by using a single construct – the function call

Evaluation Criteria: Readability

 the ease with which programs can be read and understood

 Control statements

 The presence of well-known and reliable control structures

 Research of the 70s led to the desire for language constructs that made “goto-less”
programming possible.

 “A program that can be read from top to bottom is much easier to understand than a
program that requires the reader to jump from one statement to some nonadjacent
statement in order to follow the order of execution.” Sebesta .

 For example, what output is generated by this code segment?
inum1 = 1;

loop1:

 if(inum1 > 10) goto end;

 inum2 = 1;

loop2:

 if (inum2 > 10) goto next

 print (inum1 + “ * “ + inum2 + “ = “ + inum1 * inum2);

 inum2++;

 goto loop2;

next:

 inum1++;;

 goto loop1;

}

end:

Evaluation Criteria: Readability

 the ease with which programs can be read and understood

 Equivalent code in java for the Nested loop

inum1 = 1;

while (inum1 <= 10)

{

 inum2 = 1;

 while (inum2 <= 10)

 {

 print (inum1 + “ * “ + inum2 + “ = “ + inum1 * inum2);
 inum2++;

 }

 inum1++;

}

Evaluation Criteria: Readability

 the ease with which programs can be read and understood

 Data types and structures

 Adequate predefined data types, pointers

 Example: numeric types vs. Boolean type for indicator variables.

 Adequate structures, such as arrays, pointers

 The presence of adequate facilities for defining programmer-defined
data structures, such as records
 Example: Using a record structure or a class vs. parallel arrays

Record

Character (Len=30):: Name

Integer:: Age

Integer:: Employee_Number

Real:: Salary

End_Record

 In contrast to:
Character (Len=30):: Name(100)

Integer:: Age (100)

Integer:: Employee_Number (100)

Real:: Salary (100)

Evaluation Criteria: Readability

 the ease with which programs can be read and understood

 Syntax considerations
 Identifier forms: flexible composition

 Example: Fortran 77 limits identifiers to 6 characters

 Example: Original ANSI BASIC in 1978 limited identifiers to a single letter or a single
letter followed by a single digit

 Special words
 Should denote usage such as if, while, or class.

 Methods of forming compound statements: braces vs. end if and end loop.
 Fewer reserved words vs. more readable code.

 Reserved or not – Example: Fortran 95 allowed Do and End as legal variable names
in addition to their keyword meanings.

 Form and meaning
 Self-descriptive constructs – “Semantics should follow directly from syntax..” Sebesta

 Conflict when two language constructs are similar, but have different meanings
depending on context.
 Example: In C the reserved word static has different meaning depending on the

context

 If applied to variables in methods vs. if applied to variables outside of all
methods

 Example: Unix shell command grep –

 root is in the ed editor command g/regular_expression/p

The Influence

of Computer

Architecture

on Language

Design

The

Influence

of

Compute

r

Architect

ure on

Languag

e Design

Th

e

Infl

ue

nc

e

of

Co

mp

ute

r

Ar

chi

tec

tur

e

on

La

ng

ua

ge

De

sig

n

The von Neumann Architecture

 Fetch-execute-cycle (on a von Neumann

architecture computer)
initialize the program counter

repeat forever

 fetch the instruction pointed by the

counter

 increment the counter

 decode the instruction

 execute the instruction

 store the result

end repeat

The von Neumann Architecture

 Connection speed

between a computer’s

memory and its

processor determines

the speed of a

computer

 Program instructions

often can be executed

much faster than the

speed of the

connection resulting in

a bottleneck

 Known as the von

Neumann bottleneck; it

is the primary limiting

factor in the speed of

computer

programming.

Computer Architecture Influence

 Von Neumann computer architecture is the basis for

imperative languages.

 Data and programs are stored in memory

 Variables model memory cells

 Memory is separate from the CPU

 Instructions and data are piped from memory to CPU

 Assignment statements model piping

 Ineffective for functional (applicative) languages,

such as Scheme, where computation occurs by

applying functions. “Can Programming be Liberated from the

von Neumann Style? A Functional Style and Its Algebra of

Programs.” by John Backus. 1978 Comm. ACM, Vol. 21, No. 8, pp.

613-641.

The Influence
of

Programming
Methodologies
on Language

Design

Programming Methodologies Influence

 50s and early 60s:

 Simple applications

 Concerns were about machine efficiency

 Late 60s, early 70s:

 Programming problems more complex.

 Cost of hardware reduced.

 Cost of software development increased.

 People efficiency became important.

 Structured Programming Movement led to Top-Down-Stepwise Refinement.
Readability, Better control structures (“gotoless” programming)

 Late 70s: shift from procedure-oriented to data-oriented design

 Data abstraction to encapsulate processing with data

 SIMULA 67

 Middle 80s: OOP

 Data abstraction plus Inheritance and Dynamic method binding (polymorphism)

 Smalltalk, Ada 95, Java, C++.

 More recently procedure oriented programming applied to concurrency

 Ada, Java, C# have capabilities to control concurrent program units.

Other Effects on Language Design

 Difficulty of implementing the various

constructs and features.

 Politics

 Economics

 Advances in research

Types of
Languages

Language Types

 Imperative

 Central features are variables, assignment statements, and iteration

 Include languages that support object-oriented programming

 Include scripting and visual languages

 Examples: C, Java, Perl, JavaScript, Visual BASIC .NET, C++

 Functional

 Main means of making computations is by applying functions to given
parameters

 Examples: LISP, Scheme

 Logic

 Rule-based (rules are specified in no particular order)

 Example: Prolog

 Markup/programming hybrid

 Markup languages extended to support some programming

 Examples: JSTL, XSLT

Layered View of Computer

The operating system
and language
implementation are
layered over
machine interface of a
computer.

Methods of Implementation

 Compilation

 Pure Interpretation

 Hybrid Interpretation

Compilation Process Phases

Source code is translated into equivalent

machine code as a unit and stored into a file

that has to be executed in a separate step.

Yields faster execution times;

Examples: C/C++, Pascal, COBOL, Ada

•Lexical analysis:

•extracts a sequence of tokens (lexical

units) from source code

•The symbol table contains the

definitions of the identifiers

•Syntax analysis (i.e. parsing) :

•transforms tokens (lexical units) into

parse trees which represent the

syntactic structure of program.

•Semantics analysis:

•generate intermediate code

•Code generation:

•machine code is generated

Pure Interpretation Process

 Pure interpretation – source code

is translated to machine code and

executed immediately.

 Advantage – run-time errors

can refer to source level units

such as array index out of

bounds errors

 Disadvantage

 10 to 100 times slower

execution time

 Often requires more space

 Significant comeback with

some Web scripting languages

(e.g., JavaScript, PHP)

Hybrid Implementation Process

 Hybrid interpretation - A compromise between
compilers and pure interpreters

 A high-level language program is
translated to an intermediate
language that allows easy
interpretation

 Faster than pure interpretation since
source language statements decoded
only once.

 Examples
 Perl programs are partially compiled to

detect errors before interpretation

 Just-in-Time system compiles intermediate
language methods into machine code
when they are initially called. This machine
code is kept so that if they are called again
the code does not have to be re-
interpreted. - Java

Additional Compilation Terminologies

 Linking and loading:
 the process of collecting system program units and

linking them to a user program

 Load module (executable image):
 the user and system code together

 Preprocessor
 Preprocessor macros (instructions) are commonly

used to specify that code from another file is to be
included

 A preprocessor processes a program immediately
before the program is compiled to expand embedded
preprocessor macros

 A well-known example: C preprocessor expands
#include, #define, and similar macros

Programming Environments

 The collection of tools used in software development

 Simple – file system, text editor, compiler, interpreter
or linker.

 Extensive – rich set of tools

 Borland JBuilder

 An integrated development environment for Java

 Microsoft Visual Studio.NET

 A large, complex visual environment

 Used to program in C#, Visual BASIC.NET, Jscript,
J#, and C++

Summary

 The study of programming languages is valuable for a number of reasons:

 Increase our capacity to use different constructs

 Enable us to choose languages more intelligently

 Makes learning new languages easier

 Most important criteria for evaluating programming languages include:

 Readability, writability, reliability, cost

 Major influences on language design have been machine architecture and
software development methodologies

 The major methods of implementing programming languages are:
compilation, pure interpretation, and hybrid implementation

supplements

www.aw.com/sebesta - This site contains mini-manuals (approximately 100-page tutorials) on a

handful of languages. Currently the site includes manuals for C++, C, Java, and Smalltalk.

Language Processor Availability-Processors for and information about some of the

programming languages discussed in this book can be found at the following Web sites:

 C, C++, Fortran, and Ada gcc.gnu.org

 C# and F# microsoft.com

 Java java.sun.com

 Haskell haskell.org

 Lua www.lua.org

 Scheme www.plt-

 scheme.org/software/drscheme

 Perl www.perl.com

 Python www.python.org

 Ruby www.ruby-lang.org

 JavaScript is included in virtually all browsers; PHP is included in virtually all Web servers.

http://www.aw.com/sebesta

