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Abstract 

This paper aims to clarify some of the conceptual issues which are related to the 

geometrically nonlinear analysis of 3D framed structures, and which have been a source of 

previous confusion. In particular, the paper discusses the symmetry of the tangent stiffness 

matrix and the nature of the element end moments. It is shown that a symmetric tangent 

stiffness matrix can always be achieved for a conservative system if the nodal equilibrium 

equations, including the equations which describe moment equilibrium, are identical to those 

derived from a variational energy approach. With regard to the element end moments, it is 

suggested that any definition can be adopted in formulating the geometrically nonlinear 

element response. Furthermore, it is proposed that any definition for nodal rotations 

expressing a unique vector transformation may be adopted without compromising modelling 

accuracy. The argument of this paper is validated with reference to three variants of a large 

displacement analysis method for 3D frames, where several illustrative examples are utilised. 
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1 Introduction 

The geometrically nonlinear analysis of 3D framed structures has received considerable 

attention by numerous researchers [1-9], particularly focussing on the treatment of the 

difficulties associated with finite nodal rotations in 3D space. These difficulties arise mainly 

from the non-commutativity of finite rotations about fixed axes and the dual issue of non-

conservative moments about fixed axes. In order to model conservative structural frames, any 

applied moments must conform to a conservative definition (such as the quasi- or semi-

tangential definitions), and the rotational freedoms must be associated with a definition which 

expresses a unique vector transformation (such as the semi-tangential definition) [2]. 

Depending on the nature of applied moments and the adopted definition for rotational 

freedoms, the two may be work conjugate (or ‘corresponding’ [2]), but that need not be the 

case. 

The conventional approach to geometrically nonlinear analysis of 3D conservative frames has 

been to utilise an element tangent stiffness matrix which augments the constant stiffness 

matrix (used for linear analysis) with a geometric stiffness matrix proportional to the level of 

stresses within the element. In a pioneering contribution to the field, Argyris et al. [2] argued 

for expressing the nodal moment equilibrium equations using the semi-tangential definition of 

moments and for adopting the semi-tangential definition for the nodal rotational freedoms. 

They based their argument principally on the requirements that i) the element tangent stiffness 

matrix must be independent of the applied external loads, and that ii) the same transformation 

rules must be valid for both the constant and geometric stiffness matrices in order to account 

for arbitrary element orientations in 3D space. Furthermore, the adopted definitions for 

moments and rotations lead to a symmetric element tangent stiffness matrix, that is associated 
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with computational efficiency, and which is achieved by virtue of the fact that semi-tangential 

moments and rotations are work conjugate [2]. However, it should be noted that the first 

requirement is achieved only as long as the nodal moments applied to the structure are of the 

semi-tangential type (which of course includes zero moment loads), and that work conjugacy 

between the adopted definitions of moments and rotations is only valid up to a second order in 

rotations. 

Several researchers adopted the semi-tangential definition for the element end moments in 

deriving the geometrically nonlinear element response [2,4,7]. Yang and Kuo [7] considered 

the buckling analysis of frames, where they used the governing differential equations for an 

element, in conjunction with nodal moment equilibrium in the deflected configuration, to 

obtain a symmetric tangent stiffness matrix. These authors insisted that, by using the 

‘conventional’ definitions for bending moments and rotations, the internal bending moments 

should be interpreted as quasi-tangential moments. However, they indicated that the nodal 

moments behave as semi-tangential moments if the joint equilibrium conditions in the 

deformed state are enforced. Teh and Clarke [9], on the other hand, insisted that the internal 

moments are of the so-called ‘fourth kind’. The same authors also suggested that the element 

tangent stiffness matrix is invariably asymmetric, without providing any qualification in 

respect of the type of applied moments and its conjugacy with the adopted definition for 

rotations. 

This paper aims at clarifying the above issues, demonstrating that the symmetry of the tangent 

stiffness matrix is principally related to the work conjugacy of the adopted definition of 

moments used for the moment equilibrium equations and the adopted definition of rotational 

freedoms, and also illustrating that a symmetric tangent stiffness matrix is always possible to 
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achieve. It is also shown that a categorical classification of the element end moments is not 

required a priori, and that the geometrically nonlinear element response can be formulated, for 

any adopted definition of rotations which expresses a unique vector transformation, without 

making any assumptions in this respect. 

It is emphasised that this paper is not principally concerned with assessing the accuracy of the 

previous methods discussed above, but instead focuses on conceptual issues raised in the 

development and presentation of such methods. For instance, while this paper shows that it is 

always possible to achieve a symmetric tangent stiffness matrix under certain sufficient 

formulation conditions, discussed in detail later, there is no implication that methods which 

employ an asymmetric tangent stiffness matrix are necessarily inaccurate. However, through 

demonstrating that the aforementioned sufficient and relatively relaxed conditions lead to a 

symmetric tangent stiffness matrix, it is contended that any suggestion of an inherent 

asymmetric property for the tangent stiffness matrix [9] is in fact erroneous. With regard to 

another conceptual issue, the paper suggests that any definition for the element end moments 

and the nodal rotational freedoms can be employed, although a definition implying work 

conjugacy of such entities is shown to have considerable computational advantages. 

Accordingly, there is no implication that methods employing specific definitions for the 

element end moments and nodal rotational freedoms are necessarily inaccurate. However, it is 

contended that the insistence on a single categorical classification for the element end 

moments [9] is also flawed. 

Following a precise definition of the tangent stiffness matrix, the variational energy principle 

is utilised to demonstrate the aforementioned points. The relatively relaxed conditions under 

which the tangent stiffness matrix would be symmetric are highlighted, and the irrelevance of 



5 

an a priori assumption regarding the nature of element end moments is pointed out. These 

general conclusions are illustrated with reference to three variant approaches based on a 

method for large displacement analysis of 3D frames previously proposed by the author [8]. 

Several numerical examples are finally presented to demonstrate the relative accuracy of the 

three approaches, with the aim of validating the arguments made in this paper. 

2 Definition of tangent stiffness matrix 

By its very nature, nonlinear structural analysis is concerned with the satisfaction of a system 

of nonlinear equations, typically representing equilibrium conditions, through an iterative 

solution procedure. At any stage during such a procedure, there are errors in the equilibrium 

equations, representing out-of-balance forces/moments (G) between the applied load and the 

structural resistance, which can be expressed as: 

 )n1i(e
iii  PRG  (1) 

where, R represents the resistance forces/moments, e
P  denotes the equivalent applied 

forces/moments in the same system (or adopting the same definition) as used for R, and n is 

the total number of translational/rotational freedoms.  

An alternative approach could be to evaluate G using the same system/definition of the 

applied loading (P), in which case an equivalent resistance vector (
e

R ) would be required: 

 )n1i(i
e
ii  PRG  (2) 

It is noted that 
e

P  can be obtained from P, and similarly 
e

R  can be determined from R, 

through distinct transformation processes which may depend on the values of nodal 
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displacements/rotations (u). However, these become identity transformations if all 

components of P already employ the same system/definition as the corresponding 

components in R, in which case the equilibrium equations in (1) and (2) become identical. 

In the context of nonlinear structural analysis, the tangent stiffness matrix (K) is used to 

provide a first-order convergence guide towards zero G, and, therefore, a concise definition of 

K is: 

 )n1j,i(
j

i
j,i 






u

G
K  (3) 

where, u is the vector of nodal freedoms. 

3 Symmetry of tangent stiffness matrix 

For a conservative structural system, the principle of stationary total potential energy () can 

be used to establish the necessary equilibrium equations: 

 )n1i(0
i






u
 (4) 

where  is the sum of the system strain energy (U) and the load potential energy (–W): 

 WU  (5) 

Combining the previous expressions, the equilibrium equations can be restated as: 

 )n1i(0e
ii PR  (6) 

in which, 



7 

 
i

i

U

u
R




  (7) 

 
i

e
i

W

u
P




  (8) 

Whereas W is a function of the applied loading (P) and the nodal freedoms (u), U is only 

dependent on u. If P is work conjugate with u, that is: 

 



n

1i

iiW uP  (9) 

then e
P  would be identical to P, but otherwise e

P would be a transformation of P which may 

be dependent on u. 

It is noted that the above nonlinear equilibrium conditions (6-8) are normally obtained, in an 

identical form, using the virtual work method, where the virtual displacement modes are those 

associated with infinitesimal changes of individual freedoms ui. However, the principle of 

stationary total potential energy is utilised here simply to facilitate the exposition of 

conceptual issues which have been a source of previous confusion. 

Observing the equilibrium conditions (6-8), it is now clear that the first expression for G in 

(1) can be thought of as representing the out-of-balance between R and e
P  which are work 

conjugate with u. If  such a definition is adopted for G, the tangent stiffness matrix defined in 

(3) can be expressed as: 

 )n1j,i(
ji

2

j
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i

j

i
j,i 


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




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
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uuu

P
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R
K  (10) 
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From this expression, it is obvious that K becomes symmetric for a conservative system 

which possesses a continuous total potential energy () that is uniquely defined by the 

adopted freedoms (u), if the work conjugate equilibrium equations are employed. 

Furthermore, the expression of K in (10) simplifies to: 

 )n1j,i(
U

ji

2

j

i
j,i 











uuu

R
K  (11) 

if either P is work conjugate with u or e
P  is independent of u, in which case K becomes 

independent of P. Of course, the same simplification is achieved if the possible components 

of P which violate the work conjugacy with u are all associated with zero values. 

In view of the above, it is evident that K could be asymmetric only if the work conjugate 

equilibrium equations in (1) are not adopted to the preference of some other form, such as that 

given by (2). However, it is noted again that this particular form becomes identical to (1), thus 

leading to a symmetric K, if the applied load P is work conjugate with u. 

The above conclusions can be re-stated more specifically with reference to the geometrically 

nonlinear analysis of 3D elastic frames. Typically for structural models of such frames, each 

node would be associated with 3 translational and 3 rotational freedoms, and the 

corresponding applied nodal loads consist of 3 forces and 3 moments. Since it is always 

possible to define the applied nodal forces in a manner which achieves work conjugacy with 

the translational freedoms, the principle source of difficulty therefore arises from the variety 

of ways for generating conservative nodal moments and the possibility that the applied 

moments may not be work conjugate with the adopted definition of rotational freedoms. 

However, as shown above, it is possible even in such a case to achieve a symmetric K if the 
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work conjugate equilibrium equations are employed, although K could consequently become 

dependent on the applied moments. Nevertheless, given that most framed structures are not 

subject to directly applied moments, and that most conservative moments can in any case be 

represented by forces acting at the ends of additional rigid link elements, the need to 

transform applied moments and the dependency of the symmetric K on the applied loading 

can be circumvented, as effected in the method proposed previously by the author [8]. 

4 Nature of element end moments 

There has been a considerable measure of confusion in some previous research works 

surrounding the nature of element end moments, which this Section aims to address. This 

confusion stems mainly from attempts to classify the nature of internal bending and torsional 

moments of beam-column elements, as these moments were deemed, inappropriately, to have 

the same behavioural characteristics of the element nodal moments. Yang and McGuire [4] 

observed that internal bending and torsional moments appear to be of the quasi-tangential and 

semi-tangential types, respectively, although they noted the inconsistency of adopting 

different definitions for the ‘related’ element nodal moments, particularly in modelling a 

structure with non-collinear members. Accordingly, they opted for a uniform semi-tangential 

moment definition for the three components of nodal moment, but they noted that this issue 

required further research. More recently, Teh and Clarke [9] rejected the semi-tangential 

definition for nodal moments adopted by Argyris et al. [2] and by Yang and McGuire [4], and 

they insisted that element end moments are in fact of the so-called ‘fourth kind’. 

Evidently, the main cause behind the above confusion is the inappropriate and unnecessary 

linkage on the element level between the behavioural property of internal moments and that of 
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end nodal moments. This linkage is incorrect, since internal bending and torsional moments 

are generalised stress entities which perform work over generalised curvature and twist 

strains, thus providing a measure of the stored strain energy over an infinitesimal element 

length. Element end moments, on the other hand, are nodal entities which perform work over 

nodal rotations, thus providing a measure of the element contribution to the resistance against 

applied nodal moments (often evaluated in a ‘weak’ finite element sense). Therefore, 

classifications such as semi-tangential and quasi-tangential are only appropriate in the context 

of element end moments, since only in this context the influence of finite nodal rotations on 

the form of the rotational work expression becomes relevant. Emphasising this point further, 

it is entirely possible to derive the large displacement nodal response of beam-column 

elements without reference to the concept of internal bending and torsional moments, but 

instead utilising expressions for the strain energy which are based directly on the material 

stresses and strains. This is illustrated clearly by considering the two distinct elements of 

Fig. 1 which have an identical ‘nodal’ interface at the ends, where the first element employs a 

uniform solid circular cross-section, whereas the second element utilises six internal axial 

struts. It is evident that the concept of internal bending and torsional moments is only useful 

for formulating the nodal response of the first element and not that of the second element. On 

the other hand, the large displacement nodal response of both elements can be formulated, 

without any undue compromise of accuracy, by starting from expressions for the element 

strain energy which are based directly on material stresses and strains. 

Having established that classification should not be applied to internal bending and twisting 

moments but only to end nodal moments, it is further suggested that any definition for the 

element end moments can be adopted, again without compromising accuracy. It would be 
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convenient from a computational perspective, however, that the adopted definition enables the 

moment equilibrium at a particular node to be derived from an overall moment resistance 

which is a simple summation of the various element contributions. In view of this, it is 

proposed that the adopted definition for nodal moments should simply be one which implies 

work conjugacy with the adopted definition for nodal rotations. This of course would have the 

added benefit of leading to a symmetric tangent stiffness matrix, as discussed in Section 3. It 

should also be emphasised that any definition for nodal rotations which expresses a unique 

vector transformation can be employed. In addition to the semi-tangential definition adopted 

by Argyris et al. [2], it is entirely valid to use other definitions for nodal rotations, such as a 

definition based on modified Euler angles [10], although the corresponding work conjugate 

moments in this case would differ from the semi-tangential type. 

Finally, it is suggested that the terms ‘bending’ and ‘torsional’ moments should be reserved 

for internal generalised stresses which are work conjugate with generalised curvatures and 

twisting strains on the cross-sectional level, and that the application of these terms to nodal 

resistance moments at the element ends should be avoided. 

5 Variant methods for large displacement analysis of 3D frames 

The above discussion is illustrated here with reference to three variant approaches based on a 

large displacement analysis method for 3D frames, which was previously proposed by the 

author [8]. This method is identically derived from the variational energy principle, outlined 

earlier in this paper, or from the equivalent method of virtual work, and it accounts for the 

effects of large nodal displacements and rotations but for small strains within the component 

elements. The nodal displacements and rotations describe compatible deformation modes over 
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the structure, which present an approximation of the exact structural deflected shape. 

Accordingly, equilibrium is satisfied in a weak discrete sense over the available modes, 

although the level of approximation is guaranteed to improve with the inclusion of more 

deformation modes through additional nodes. 

In formulating the large displacement response of a beam-column element, the proposed 

method distinguishes between the global reference system, where deformation compatibility 

and nodal equilibrium of the overall structure are enforced, and a local reference system, 

which is an element-specific system used for quantifying the element strain energy. 

In the global reference system, twelve nodal freedoms are utilised for an element: 

 
T

222222111111g ,,,w,v,u,,,,w,v,u u  (12) 

as illustrated in Fig. 2. Consideration is given in the variant approaches to two alternative 

descriptions of global nodal freedoms, namely incremental (in relation to the previous 

equilibrium configuration) or total (in relation to the initial undeformed configuration), as 

elaborated in the following sub-sections. 

The global nodal displacements define the orientation of the element chord ( cx ) in the current 

iterative configuration, whereas the global nodal rotations (, , ) define a unique vector 

transformation matrix ( Tr ). Two alternative definitions of global rotations are considered in 

the variant approaches: the first is based on a resultant rotation vector [8], whereas the second 

employs modified Euler angles [10]; accordingly, Tr is dependent on the variant approach as 

detailed later. The rotational transformation matrices at the two element nodes determine the 

current cross-sectional orientation vectors (Fig. 2): 
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in which, 
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where 
o1

y c , o1
zc , 

o2
yc  and o2

zc  represent the cross-sectional orientation vectors either in the 

previous equilibrium configuration or in the initial undeformed configuration, depending on 

the variant approach. Note that c
21
y  in (13) is a fictitious vector used for the evaluation of the 

element twist rotation [8], as demonstrated later. 

The element strain energy is quantified with reference to a local system, which coincides with 

the element chord in the current iterative configuration, as depicted in Fig. 2, and which 

isolates the strain inducing modes from stress free rigid body modes. This local convected 

system has been termed an Eulerian system [8,11], based on a close analogy with reference 

systems used for problems of fluid mechanics, although a distinctive and more recent term is 

also a co-rotational system [12]. In the local system, six basic degrees of freedom are 

employed (Fig. 2): 

 
T

Tz2y2z1y1c ,,,,, u  (15) 
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which provide an intermediate step for determining the element strains corresponding to a set 

of global displacements and rotations ( ug ). 

For practical small strain problems, the local deformations ( uc ) can be assumed to be small, 

with this assumption becoming increasingly justified as more elements are used per member 

[13]. The global nodal displacements combined with c
1
y , c1

z , c
2
y , c2

z  and cx   in the current 

iterative configuration determine the local deformations uc , thus defining an implicit 

nonlinear relationship between the local and global freedoms: 

 )(gc uu   (16) 

the details of which depend on the particular variant approach, as discussed in the following 

sub-sections. 

In the local system, approximation shape functions are used to relate the element deformed 

shape to uc , thus enabling the quantification of the element strain energy ( eU ) in terms of 

uc . The variation of the eU  with uc  defines the work conjugate local resistance 

forces/moments of the element: 

 )61m(
U

mc

e

mc 





u
f  (17) 

where, 

 
T

Tz2y2z1y1c M,F,M,M,M,Mf  (18) 
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The determination of fc  from uc , in view of the assumption that the latter is small, can be 

established using a linear local formulation, as detailed in Appendix A.1, although a 

geometrically nonlinear formulation for the local response enables a certain level of accuracy 

to be achieved with fewer elements per member. One such nonlinear formulation for the local 

response is provided by a quartic element [14], which is intended to model the beam-column 

effect in the local system using only one element per member. The quartic beam-column 

element is derived and verified elsewhere [14], but is utilised in the subsequent examples of 

this paper to illustrate the relative accuracy of the three considered variant approaches for the 

geometrically nonlinear analysis of space frames. Given that the quartic element can be 

utilised with the three approaches without any modification to its local response 

characteristics, this paper will focus only on the transformation of the local element response 

to its global response, as influenced by the variant approaches. 

It is notable that five components of fc  are in fact moments, the classification of which in 

relation to the local rotations in uc  is not very important, since these rotations are assumed to 

be small. However, the classification of these five moments in relation to global rotations 

would show that they are moments of the follower type. Given that the considered variant 

approaches require the global element end moments to be work conjugate with the adopted 

definition of nodal rotations, a transformation would be necessary to obtain the global end 

moments from the local end moments. Such a transformation is indirectly effected in the 

following expression, which employs chain differentiation rules, for the work conjugate 

global resistance forces/moments in terms of fc : 
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where T is a 12×6 transformation matrix dependent on the specific variant approach, as 

detailed in Appendix A.2. 

Since most conservative moments can be simulated by means of conservative forces applied 

at the ends of additional rigid link elements, it is assumed that no moments are applied 

directly at the nodes, thus achieving a simplification in the equilibrium equations, as 

discussed in Section 3. This further simplifies the expression for the tangent stiffness matrix, 

which becomes independent of the applied loading: 
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In the above expressions, kc  is a 6×6 local tangent stiffness matrix, presented in Appendix 

A.1 for a linear local formulation and derived elsewhere for the quartic element [14], whilst g 

is a 12×12×6 array determining the geometric stiffness matrix and dependent on the specific 

variant approach, as detailed in Appendix A.3. It is of course worth noting that the global 

element tangent stiffness matrix in (20) is always symmetric, regardless of the specific details 
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of the variant approach, as would be expected, since the adopted equilibrium equations 

correspond to forces and moments which are work conjugate with the adopted definition for 

the global degrees of freedom. 

Hereafter, the three variant approaches are discussed in detail, the only variants being i) 

whether the global freedoms are total or incremental, and ii) whether the global rotations 

follow a resultant vector definition [8] or a modified Euler definition [10]. As mentioned 

previously, these variants have implications on the rotational transformation matrix ( Tr ), the 

implicit relationship between the local and global freedoms (), the force transformation 

matrix (T), and the geometric stiffness matrix as determined by g. 

5.1 Variant method (A): incremental with resultant vector rotations 

This is the original method proposed by the author [8], where an incremental description is 

adopted for the global element freedoms ( ug ), and the local deformations ( uc ) are evaluated 

incrementally, in both instances with reference to last known equilibrium configuration. The 

adopted definition for rotations is based on a resultant rotational vector, the effect of which is 

approximated by a second-order transformation matrix [8]: 
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Given the incremental nature of ug , such an approximation is reasonable for most practical 

applications, with any errors reducing as the number of increments is increased. It is noted 

that at least a second-order expression for Tr  is essential in the context of geometrically 

nonlinear analysis. Furthermore, it can be shown that the adopted definition for nodal 

rotations approximates the semi-tangential definition [2] to a second order. Consequently, the 

nature of global nodal moments which are work conjugate with the adopted definition for 

rotations is of the semi-tangential type [8], only that it should be considered in an incremental 

context due to the incremental nature of the considered rotations. However, given that any 

conservative moments are to be represented by forces applied to the ends of additional rigid 

link elements, a classification for the work conjugate moments is not necessary and is in fact 

purely of academic interest. 

In this variant method, the orientation vectors (
o2

z
o2

y
o1

z
o1

y ,,, cccc ) correspond to the previous 

equilibrium configuration and are always orthogonal to the previous chord vector ( o
x c ). The 

global nodal displacements and the current orientation vectors, established from (13), (14) and 

(23), determine the increment of the local deformations ( uc ) according to: 
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where EX , EY  and EZ  are the element projections on the three respective global axes, with 

the (o) right superscript for all entities indicating values in the previous equilibrium 

configuration. 

The local deformations are obtained incrementally: 

 uuu c
o

cc   (25) 

thus defining the implicit relationship, expressed by (16), between the local and global 

element freedoms. The accuracy of the incremental evaluation of uc  improves with the 

number of incremental steps, although any errors are negligible for most practical 

applications, where the rotational components of uc  would be small due to the assumption of 

small strains. 

With uc  corresponding to ug  established, the local element forces/moments ( fc ) and 

tangent stiffness matrix ( kc ) are determined according to the element formulation, such as 

given for the quartic beam-column element [14]. These are transformed to global element 
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forces/moments ( fg ) and tangent stiffness matrix  ( kg ) using (19) and (20), where T and g 

are determined, respectively, as the first and second partial derivatives of uc  with respect to 

ug , as detailed in Appendices A.2 and A.3. 

It should be noted that, after equilibrium is achieved for the current incremental step, the 

orientation vectors ( cccc
2
z

2
y

1
z

1
y ,,, ) are always re-normalised to an orthogonal position relative 

to cx  [8] so that the above expressions for uc  can be applied for the subsequent incremental 

step. 

5.2 Variant method (B): incremental with modified Euler angles 

In order to consider the validity of alternative definitions of rotation, this method adopts the 

modified Euler definition [10] for the global nodal rotations, with all other aspects identical to 

variant method (A). The adopted definition corresponds to successive rotations about follower 

axes, where the rotations are applied in the order (, , ), thus leading to the following vector 

transformation matrix: 
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in which, 

 )sin(s);cos(c aa aa   (26.b) 

It is again interesting to classify the moments which are work conjugate with the above 

definition of rotations, although such a classification is not necessary when applied moments 
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are represented by forces acting at the ends of additional rigid link elements. By determining 

the infinitesimal rotations about fixed axes which are equivalent to infinitesimal increments in 

the adopted rotations (, , ) [8], it is possible to transform the work conjugate moments to 

moments about fixed axes, as given by: 
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 (27) 

It can be shown from (27) that each of xM , yM  and zM  specifies a moment value about its 

respective ‘transformed’ axis with zero moment projections on the other two ‘transformed’ 

axes. The ‘transformed’ axes are defined as follows: X is rotated by  followed by , Y is 

rotated by  and Z is fixed. 

As with method (A), the global elements freedoms in this variant method are incremental; 

however, unlike method (A), the rotation matrix ( Tr ) here is exact, and hence there is no 

approximation in determining the element orientation vectors that can be influenced by the 

number of incremental steps. Nevertheless, the local element deformations ( uc ) are still 

evaluated incrementally, and hence the number of steps could have some influence on 

accuracy, although, with uc  being small for most practical applications, such an influence 

would be of minor significance. 

5.3 Variant method (C): total with modified Euler angles 

Following on from the above discussion, the question arises whether accuracy of the adopted 

nonlinear analysis method is compromised if a total, instead of an incremental, formulation is 
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employed, which might in turn compromise the general argument of this paper. Accordingly, 

this variant method considers a total formulation in which all prior entities, denoted in the 

above expressions by the (o) right superscript, refer to the initial undeformed configuration. In 

order to remove the approximation associated with the rotational transformation matrix, the 

modified Euler definition of (26) is adopted. This leaves only the approximation associated 

with the evaluation of the local element deformations ( uc ) from (24) and (25), o
cu  being 

zero as referred to the initial configuration, where an identity is assumed between an angle 

and its sine. However, it is again noted that this approximation is adequate for small uc , 

which is the case in most practical applications; furthermore, given that uc  can be reduced 

steadily through increasing the number of elements per member [13], any errors arising from 

this approximation should diminish considerably through mesh refinement. 

6 Examples 

The discussion presented in this paper is supported herein by means of several examples 

illustrating the relative accuracy of variant methods (A) to (C), each of these methods 

representing a particular instantiation of the general variational energy or virtual work 

principles. While method (A) was verified extensively in previous work [8,14-16], particular 

consideration is given here to i)  large displacement problems which involve finite rotations in 

3D space as well as applied moments, ii) the influence of an alternative definition of rotations 

as in method (B), and iii) the influence of a total formulation for the large displacement 

response as in method (C). All presented examples utilise the quartic beam-column element 

[14], which is implemented in the nonlinear structural analysis program ADAPTIC v2.9.6 

[15], and which can be employed, without modification, with any of the three considered 
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variant methods. It is worth noting that in all examples where moment loads are applied, the 

moments are represented by means of conservative forces applied at the end of additional 

rigid link elements instead of being directly applied as nodal moment loads, as required by the 

three variant methods. 

6.1 Cantilever subject to end moment 

A cantilever is considered under the action of two forms of quasi-tangential moment as well 

as a semi-tangential moment applied at its tip, as illustrated in Fig. 3. The buckling response 

of this cantilever was considered previously by Argyris et al. [2], where the following 

buckling moments were predicted with 10 elements: 

 cm.N88632.7M,cm.N93103.3MM ST
cr

2QT
cr

1QT
cr   (21) 

The nonlinear response of the cantilever is determined first using variant method (A) with 

three alternative meshes of 2, 4 and 8 quartic elements, where the moments are modelled by 

means of in-plane forces applied to the ends of rigid link elements. In addition, very small 

out-of-plane forces are applied in order to initiate lateral buckling. The results depicted in 

Fig. 4 show that very good accuracy is achieved in comparison with the previous buckling 

predictions [2]. It is worth noting that for the quasi-tangential moments, 2 quartic elements 

provide adequate accuracy, and that although the buckling moments are identical for the two 

quasi-tangential forms, the post-buckling behaviour is markedly different. This is attributed to 

the different buckling modes, as can be observed from the final deflected shapes in Fig. 5. For 

the semi-tangential moment, 4 quartic elements are required for comparable accuracy to the 

quasi-tangential cases (Fig. 4). This is again attributed to the different buckling mode which 
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places a greater demand on the approximation of the twist rotation along the cantilever length, 

as illustrated in the final deflected shape of Fig. 5. 

The relative performance of variant methods (A) to (C) is illustrated in Fig. 6, where all the 

results are based on a mesh of 8 quartic elements. It is notable that methods (A) and (B) 

provide identical results for the three types of applied moment, thus confirming that 

alternative definitions for rotations may be adopted without necessarily compromising 

solution accuracy. This also confirms the adequacy of the simplified second-order rotation 

matrix of the original method (A) within an incremental approach [8], the number of 

increments used for this problem being 40 (Fig. 6). The depicted results also demonstrate the 

accuracy of the total formulation approach of method (C), where almost identical results are 

achieved in comparison with the two other incremental variant methods. An interesting 

feature of method (C) is that its accuracy is independent of the number of incremental steps, 

but is in fact determined by the number of elements used which controls the magnitude of 

local deformations [13]. Therefore, any  inaccuracies, such as the slight discrepancy at large 

displacements for the case of the semi-tangential moment (Fig. 6), can be addressed through 

mesh refinement. This point is illustrated clearly in the last space dome example. 

6.2 L-frame subject to end force 

The L-frame, shown in Fig. 7, is subjected to an end force P, where load application in both 

the positive and negative x-directions is considered, referred to as P+ and P– , respectively. 

The buckling forces for this frame were also obtained by Argyris et al. [2], where the 

following values were reported using 10 elements: 
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 N918391.0P,N50148.1P crcr    (22)  

The nonlinear response of the frame is obtained first using method (A) with 1, 2 and 4 quartic 

elements per member, again assuming a very small out-of-plane end force in order to initiate 

lateral buckling, where the results in Fig. 8 show good agreement against the previous 

buckling predictions [2]. As with the previous example, the number of elements required for 

adequate approximation depends on the complexity of the buckling mode, where case P+ is 

associated with a relatively more complex mode than for case P–, thus requiring more 

elements for equivalent accuracy. The final deflected shapes for both cases P+ and P– are 

illustrated in Fig. 9, which reflect the different buckling modes under the two loading cases. 

The relative performance of variant methods (A) to (C) is depicted in Fig. 10, where the 

results are obtained using a mesh of 4 quartic elements per member. Evidently, the same 

conclusions reached in the previous example, relating to the accuracy of the three variant 

methods, apply here as well. 

6.3 L-frame subject to end moment 

The same L-frame of the previous example, but with the member cross-sectional properties of 

the first cantilever example, is considered here under the action of two forms of quasi-

tangential moment as well as a semi-tangential moment, as illustrated in Fig. 11. Again, the 

buckling characteristics of this system were investigated by Argyris et al. [2], where the 

following buckling moments were predicted with 10 elements: 

 cm.N986979.0M,cm.N43658.3M,cm.N493489.0M ST
cr

2QT
cr

1QT
cr   (23) 
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The nonlinear response of the frame is obtained first using method (A) with 1, 2 and 4 quartic 

elements per member, assuming very small out-of-plane forces, where the results are shown 

in Fig. 12. Comparison of the depicted results against the previously predicted buckling 

moments [2] shows good agreement, except that the results for the two cases of quasi-

tangential moment appear to be transposed. Given that the variant methods proposed here are 

not sensitive to the type of applied moment, as this is modelled by means of forces applied to 

rigid link elements, it is suggested that, in the absence of a more basic problem with the 

allowance of Argyris et al. [2] for quasi-tangential moments within their geometric stiffness 

matrix, these authors might have inadvertently transposed the results. As with the previous 

example, more elements are required for adequate approximation of the QT1 buckling 

response than for the other two moment types, with it being associated with a more 

demanding buckling mode. While 1 element per member provides excellent accuracy for the 

QT2 and ST cases, at least 2 elements per member are required to achieve a similar level of 

accuracy for the QT1 case. 

It is also worth noting that the ST buckling moment is very close to twice that of the lower 

QT buckling moment (i.e. QT2). This can be explained by the fact that the ST moment 

consists of half the aggregate of the two QT moments, and hence buckling in the much lower 

QT2 mode would be initiated when the ST moment is approximately twice the corresponding 

QT buckling moment. This is confirmed by observing the final deflected shapes in Fig. 13, 

where it is evident that the QT2 and ST modes are almost identical. 

The relative performance of variant methods (A) to (C) is depicted in Fig. 14, where a mesh 

of 4 quartic elements per member is employed. Again, the same conclusions reached in the 

first example, relating to the accuracy of the three variant methods, apply to this example. 
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6.4 Space dome subject to vertical apex load  

The space dome structure, shown in Fig. 15, has been widely considered in the verification of 

nonlinear analysis methods for 3D frames. In previous work of the author [8], the load 

deflection response of the dome was established using 1 quartic element per member. 

Recently, Teh and Clarke [9] considered the same problem, and they alluded to the point that 

the analysis methods proposed by several other researchers, including the author’s original 

method [8], did not seem to be able to predict the lowest buckling mode of the dome. They 

attributed the success of their method in detecting such a mode to the incorporation of an 

asymmetric geometric stiffness matrix, claiming that the tangent stiffness matrix for large 

displacement analysis of space frames is invariably asymmetric. 

The aim here is therefore to show that the author’s original method [8], that is method (A), is 

intrinsically capable of predicting the lowest buckling mode of the dome, but that due to the 

assumption of a perfect dome geometry such a mode was not initiated in the previous 

simulation, and only the fundamental equilibrium path was traced [8]. Accordingly, it is 

aimed to show that the adoption of a symmetric tangent stiffness matrix has no related 

shortcomings, thus adding further weight to the argument of this paper that it is always 

possible to formulate and utilise a symmetric tangent stiffness matrix for geometrically 

nonlinear structural analysis without compromising accuracy. 

In order to illustrate the accuracy of methods based on the variational energy principle, which 

as demonstrated in this paper enable the use of a symmetric tangent stiffness matrix, the 

nonlinear analysis is performed first with the original method (A) on perfect and imperfect 

dome configurations. For the imperfect dome, small random perturbations are introduced to 



28 

the nodal positions, which vary between 1mm and 3mm, thus enabling a close approximation 

of the secondary equilibrium path without the need for a bifurcation detection technique. Such 

a technique would simply enable the detection of a bifurcation point along the current 

equilibrium path, in most cases due to a perfect structural and loading configuration, and it 

could be used to guide the nonlinear analysis method along one of the bifurcating paths. 

However, it must be emphasised that such a technique would have no influence over the 

accuracy of the analysis method in approximating a specific equilibrium path, and it certainly 

would have no implications regarding the conceptual issues addressed in this paper. 

The nonlinear analysis is undertaken with method (A) using 1 and 2 quartic elements per 

member, where the predicted responses are shown in Fig. 16. These results illustrate the 

ability of this original method to predict the lowest buckling mode and to trace the associated 

post-buckling path when an imperfect dome is considered. It should be noted, that the 

obtained results compare favourably against the predictions of Teh and Clarke [9], both in the 

pre-buckling and post-buckling ranges. Significantly, the proposed method is also able to 

provide an excellent prediction with only 1 element per member, for both the perfect and 

imperfect domes. 

To emphasise the distinct modes involved in this simulation, the final deflected shapes of the 

perfect and imperfect domes are depicted in Fig. 17, both in plan and perspective views. It is 

evident that the introduction of small imperfections activates the lowest buckling mode, 

which involves a planar rotational mode. In the absence of such imperfections, the dome 

deflects in a mode which is fully symmetric about the dome apex in plan view. 

In view of the above, it is contended that the symmetry of the tangent stiffness matrix is not a 

shortcoming of the previously proposed method [8]. To the contrary, the ability of this 
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method to predict the geometrically nonlinear response using a computationally efficient 

tangent stiffness matrix, by virtue of its symmetry, is considered to be an important 

advantage. 

The results in Fig. 18 demonstrate that the above conclusion applies also to variant methods 

(B) and (C), both of which utilise a symmetric tangent stiffness matrix. As for the first 

cantilever example, methods (A) and (B) provide identical results, thus confirming that 

alternative definitions of rotation can be used without consequential loss in accuracy, and that 

the simplified rotation matrix of method (A) is accurate within an incremental approach. 

These results demonstrate further that the accuracy of method (C), whilst independent of the 

number of incremental steps, can be improved at large displacements through mesh 

refinement. As shown in Fig. 18, the use of 4 elements per member with method (C) provides 

an almost identical prediction to that obtained with methods (A) and (B) for the full range of 

response under consideration. 

7 Conclusions 

This paper clarifies a number of conceptual issues which are related to the geometrically 

nonlinear analysis of 3D frames, and which have been a source of previous confusion. The 

two main issues that are considered are the symmetry of the tangent stiffness matrix and the 

nature of element end moments. 

Following a concise definition of the tangent stiffness matrix, it is shown that symmetry of 

this matrix can always be achieved for a conservative structural system. This symmetry 

property is shown to be achieved if the governing equilibrium equations, including those 

which describe moment equilibrium, are identical to ones derived from a variational energy 
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approach. Such equations would accordingly be work conjugate with the adopted definition 

for nodal freedoms, including translations but more significantly rotations. It is also shown 

that the resulting symmetric tangent stiffness matrix becomes independent of the applied 

loading if all conservative moment loads, where present, are modelled by means of forces 

applied at the ends of additional rigid link elements. 

The issue concerning the nature of element end moments is then considered, where the 

inappropriateness of a behavioural linkage between internal (bending and torsional) moments 

and element nodal moments is highlighted. It is suggested that classification should only be 

applied to element end moments, and that in fact any related definition can be adopted for the 

purpose of formulating the response of geometrically nonlinear elements. However, it is 

proposed that a definition for the nodal moments which implies work conjugacy with the 

adopted definition for nodal rotations has the benefit of not requiring an a priori classification 

of these moments. Furthermore, such a definition presents significant computational 

advantages related to the symmetry of the tangent stiffness matrix and to the assembly of 

element moment contributions through simple summation. It is also proposed that any 

definition for nodal rotations which expresses a unique vector transformation can be adopted 

without compromising modelling accuracy, even though the nature of the work conjugate 

nodal moments may not be of a standard type. This latter outcome, however, has no practical 

significance, provided that conservative applied moments are simulated by means of forces 

acting at the ends of additional rigid link elements. 

The previous discussion is illustrated with reference to three variant forms of a large 

displacement analysis method proposed by the author for 3D frames, each variant method 

representing a specific instantiation of the variational energy approach. The first, method (A), 
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employs a definition for incremental nodal rotations which approximates the semi-tangential 

definition to a second-order, and it employs a local co-rotational system in which the strain-

inducing deformations are determined incrementally. The second, method (B), replaces the 

simplified rotation matrix of method (A) with an exact alternative based on modified Euler 

angles. Finally, method (C) modifies method (B) through the use of a total instead of an 

incremental formulation approach. 

In all three variant methods, considerable formulation and computational advantages arise 

from assuming that any applied conservative moments are represented by means of forces 

acting at the ends of additional rigid link elements. The variant methods lead to alternative, 

but symmetric, tangent stiffness matrices, and none of these methods requires an a priori 

classification of the element end moments, although the nature of the work conjugate 

moments is discussed. 

Examples are finally presented to illustrate the accuracy of the three variant methods with 

reference to several problems of 3D members and frames subject to forces and moments of 

various types. All examples confirm that alternative definitions of rotation may be used 

without necessarily compromising solution accuracy, and that the simplified rotation matrix 

of the original method (A) provides excellent accuracy in the context of an incremental 

approach. These examples also show that the incremental formulation presents no particular 

benefits with respect to the main argument of this paper, since very good accuracy is achieved 

in all cases using the total method (C). Significantly, the last example of a dome structure 

subject to an apex vertical load shows that the variant methods are all capable of predicting 

accurately the lowest buckling mode when small imperfections are introduced. Along with the 

other results, this shows that previously related assertions of an intrinsic asymmetric 
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characteristic for the tangent stiffness matrix and of a unique prescribed type for the element 

end moments are in fact misconceptions. 
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Appendix A 

A.1 Linear local beam-column formulation 

With reference to Fig. 2, the linear local response for a beam-column formulation can be 

derived using the variational energy principle or the virtual work method. This linear response 

is given by the familiar expression: 

 ukf ccc   (A.1) 

where ck is the constant stiffness matrix, identical in this case to the tangent stiffness matrix, 

as expressed by: 
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in which EIy and EIz are the flexural rigidities in the local x-y and x-z planes, EA is the axial 

rigidity and GJ is the torsional rigidity. 

A.2 Transformation matrix T 

The transformation matrix T required in (19) is defined as: 
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ig
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u

u
T  (A.3) 
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Since the relationship between uc  and ug  is an implicit one, chain differentiation rules are 

employed to determine T as follows: 
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with all remaining terms of T being zero. 

The first partial derivatives of the cross-sectional orientation vectors, required in (A.4), are 

given by: 
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where, I is a 3×3 identity matrix. 

For variant method (A), the first partial derivatives of rT, given in (23), are obtained as: 
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For variant methods (B) and (C), only (A.6) is modified, where the first partial derivatives of 

rT with respect to the global rotational freedoms are derived from (26).  

A.3 Array g 

The three dimensional array g required in (20) for determining the geometric stiffness matrix 

is defined as: 
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The individual terms of g are obtained using chain differentiation rules as follows: 
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with all remaining terms of g being zero. 

The first partial derivatives of the cross-sectional orientation vectors are given in Appendix 

A.2, whilst the second partial derivatives are obtained as: 
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where, I is a 3×3 identity matrix, and for variant method (A): 
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For variant methods (B) and (C), only (A.6) and (A.10) are modified to include the first and 

second partial derivatives of rT with respect to the global rotational freedoms, as can be 

readily determined from (26). 
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Figure 1. Two beam-column elements with identical nodal interface 
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Figure 2. Global and local element freedoms 
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Figure 3. Cantilever subject to quasi- and semi-tangential moments 
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Figure 4. Nonlinear response of cantilever subject to end moment: Method (A) 
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Figure 5. Final deflected shapes of cantilever subject to end moment 
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Figure 6. Response of cantilever using variant methods (A) to (C) 
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Figure 7. Configuration of L-frame subject to end force 
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Figure 8. Response of L-frame subject to end force: Method (A) 
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Figure 9. Final deflected shapes of L-frame subject to end force 
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Figure 10. Response of L-Frame subject to end force using variant methods (A) to (C) 
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Figure 11. Configuration of L-frame subject to end moments 
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Figure 12. Response of L-frame subject to end moment: Method (A) 
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Figure 13. Final deflected shapes of L-frame subject to end moment 
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Figure 14. Response of L-Frame subject to end moment using variant methods (A) to (C) 
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Figure 15. Configuration of space dome subject to a vertical apex load 
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Figure 16. Response of space dome structure: Method (A) 
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Figure 17. Final deflected shapes of space dome 
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Figure 18. Response of imperfect space dome using variant methods (A) to (C) 
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