CONCLUSIONS

How did changing force affect acceleration?

More force on an object causes acceleration to speed up. For example, with one washer the cart was slower but with 5 washers the cart accelerated faster.

In your answer be sure to:
A) Use pictures
B) Give examples
C) Use as much detail as you can

How did changing the mass affect acceleration?

Increasing the mass of an object causes the acceleration to slow down. For example, with one book the speed was the fastest but with four books the speed was the slowest.

102

F= ma lab worksheet 4/14/11

Name
\qquad Per: \qquad
Assign No. \qquad Per:

Problem: How does changing the mass and force on an object affect its rate of acceleration?
Info: List examples of things whose acceleration is affected by having: 3 to 5 examples
More or less force: foot ball, soccer ball, pin wheel, wind mill, airplane
More or less mass: cars, humans, motorcycles, trains, elevators,
More or less mass: cav
Hypothesis: a. If the force on the cart is increased, and the mass is kept constant, what will happen to the rate of acceleration (compared to before the force was increased)? increase
b. If the mass of the cart is increased, and the force is kept constant, what will happen to the rate of
acceleration (compared to before the mass was increased)? decrease.
DATA:

1. Vary the force on the cart by adding

more washers.

Copy the graphs obtained

Label each curve with the number of washers used. | Washors | color | Max Speed |
| :--- | :--- | :--- |

Washers	color	Max Speed
1	red	$0.14 \mathrm{~m} / \mathrm{s}$
2	purple	$0.53 \mathrm{~m} / \mathrm{s}$
3	pink	$0.77 \mathrm{~m} / \mathrm{s}$
4	green	$0.84 \mathrm{~m} / \mathrm{s}$
5	orange	$0.94 \mathrm{~m} / \mathrm{s}$

2. Vary the mass on the cart by adding Sciencesaurus books.
Copy the graphs obtained.
Label each curve with the number of books used.

Books	Color	Max speed				
0	red	$0.94 m k$		0	red	0.94 mk
:---:	:---:	:---:				
1	purple	0.63 mls				

Net Forces Notes P 276-280

1. \quad Net Force:
- Definition (P 276)
- Picture

3. Definitions: (277) Equilibrium:

Net Force:

7. Question B on P 280

2. What happens when forces are NOT balanced? -(include picture)

Equilibrium (not torce $=0$)
6. Question A on P. 280

NORMALFORCE
1450 N
8. Plane Diagram: What is the net force? 1200N

\#4. Equilibrium means....

When finished, Work on HW:

Page 281- Questions 3-8
Draw pictures for \#s 3, 5, 6, and 8!!!

Answers only, but you must use a "meaningful phrase". For example,
\#3. Net force is \qquad N to the
\qquad .

Bodies at Rest/ Motion- Discussion

DISCUSSION Write a short paragraph describing your results in the activity. Include in your paragraph:
D. Bodies at Rest

Describe how increasing the mass (\# of pennies) affects a body at rest (the cup).

Which of Newton's Laws of Motion does this activity demonstrate and why? Hint: Look in your text (Newton's First Law- page 289; Second Law: 299; Third Law: 292)
G. Bodies in Motion

Describe how increasing the mass (\# of marbles) affects a bodies in motion (force hitting cup).

Which of Newton's Laws of Motion does this activity demonstrate and why? Hint: Look in your text (Newton's First Law- page 289; Second Law: 299; Third Law: 292)

E. Bodies in Motion

\# marbles	Trial 1	Trial 2	Trial 3	Average Distance (cm)
1				
2				
3				
4				
5				

Make a LINE GRAPH of your data- use graph paper if you have it, if not, use binder paper
Clearly label :

(a) Independent variable on the x-axis: \qquad | \# of marbles |
| :--- |
| Distance of cup |

(b) Dependent variable on the y-axis:

Science Notebook Layout

GET WORKSHEETS FROM MY ASSIGNMENTS PAGE
Mrs. Aguirre's Webpage: http://www.quia.com/profiles/caguirre

NB 108: Force Review

Friction
Draw the refrigerator and label the vectors: •Weight -Friction -Push of the man -Normal force.

1. Which direction will the refrigerator accelerate?
2. Why?
3. What is the net force?
a. Up and down?
b. Left and right?

Show math including vectors. Hint: First add up and down forces, then the left and right
4. Draw the correct graph for the relationship between MASS carried by a car and its ACCELERATION. Label as DIRECT or INVERSE.
5. Draw the correct graph for the relationship between FORCE on a car and its ACCELERATION. Label as DIRECT or INVERSE.

Life Zones
MODEL LIFEZONES: STAR TYPES \& TEMPERATURE
Follow directions at tables with radiometers and model
stars:
Inner edge is where radiometer turns 10 time in 10 seconds.
Outer edge is where radiometer turns 10 time in Star
seconds.

Measure the distance in cm from the "star" to the center of the radiometer (planet)

STAR COLOR	TOO COLD Outer Edge of Liferone (in cm)	TOO HOT Inner Edge of Lifezone (in cm)	Suberact to get size of LIFEZONE	Life span of each star (to be added later)
RED	15	10	5	$0010 y$
YELLOW	31	23	8	10 by
WHITE	34	26	8	200 m
BLUE	54	39	15	10 my

Which star has the largest liferone? Blue Show math: $54-39=15$
Which star has the smallest lifezone? red Show math: $15-10=5$
Which star color is hottest? blue How do you know?
Which star color is coolest? Ted How do you know?
Use the website for the following questions: http://aww.kidsastronomy.com/stars.htm
RED STARS 1. What size are red (dwarf) stars?
2. Why do they last so long?
3. Why are they hard to see?

YELLOW STARS 4. How loog do they las?? Explain:
5. What happens at the end of their life span?

BLUE STARS 6. How long do they last? Explain:
7. Why do we see many of these, even though they are rare?
8. What happens when they die out?

108

