
2015 Concurrency: introduction
1

©Magee/Kramer 2nd Edition

Concurrency
Concepts, Models and Programs

Jeff Kramer and Jeff Magee

2015 Concurrency: introduction
2

©Magee/Kramer 2nd Edition

What is a Concurrent Program?

A sequential program has a single thread
of control.

A concurrent program has multiple
threads of control allowing it perform
multiple computations in parallel and to
control multiple external activities which
occur at the same time.

2015 Concurrency: introduction
3

©Magee/Kramer 2nd Edition

Concurrent and Distributed Software?

Interacting, concurrent
software components
of a system:

single machine ->
shared memory
interactions

multiple machines ->
network interactions

2015 Concurrency: introduction
4

©Magee/Kramer 2nd Edition

Why Concurrent Programming?

u Performance gain from multiprocessing hardware

l  eg. fine grain parallelism on multicore hardware : low level memory models

l  eg. coarse grain parallelism for partitioned scientific calculations : processes

u Increased application throughput : avoid polling (busy waiting)!

l  eg. an I/O call need only block one thread

u Increased application responsiveness

l  eg. high priority thread for user requests.

u More appropriate structure
l  for programs which interact with the environment, control multiple activities

and handle multiple events – coarse grain parallelism.

2015 Concurrency: introduction
5

©Magee/Kramer 2nd Edition

Concurrency is widespread but error prone!

A very simple example:

We have a race condition!

♦  process 1: x := x + 1 (x shared variable)

♦  process 2: x := x - 1 (x shared variable)

Final result?
Single line instructions are generally not atomic.
Assuming read and write are atomic, the result depends on the
order of read and write operations on x!

2015 Concurrency: introduction
6

©Magee/Kramer 2nd Edition

Concurrency is widespread but error prone!

There are 4 atomic x-operations:
Process 1 reads x (R1), writes to x (W1).
Process 2 reads x (R2), writes to x (W2).

R1 must happen before W1 and R2 before W2, so these
operations can be sequenced in 6 ways (x initially 0):

R1 R1 R1 R2 R2 R2
W1 R2 R2 R1 R1 W2
R2 W1 W2 W1 W2 R1
W2 W2 W1 W2 W1 W1
0 -1 1 -1 1 0

We see that the final value of x is -1, 0, or 1. The program is thus
non-deterministic : the result can vary from execution to execution.

2015 Concurrency: introduction
7

©Magee/Kramer 2nd Edition

Concurrency is widespread but error prone!

♦  Therac - 25 computerised radiation therapy machine

Concurrent programming errors contributed to accidents
causing deaths and serious injuries.

♦  Mars Rover

Problems with interaction between concurrent tasks���
caused periodic software resets reducing availability for ���
exploration.

2015 Concurrency: introduction
8

©Magee/Kramer 2nd Edition

a Cruise Control System

♦  Is the system safe?
♦  Would testing be sufficient to discover all errors?

When the car ignition is
switched on and the on
button is pressed, the
current speed is recorded
and the system is enabled:
it maintains the speed of
the car at the recorded
setting.

Pressing the brake,
accelerator or off button
disables the system.
Pressing resume re-enables
the system.

buttons

2015 Concurrency: introduction
9

©Magee/Kramer 2nd Edition

Models for concurrent programming

Engineering is based on the use of
simpler, abstract models for
experimentation, reasoning and
exhaustive analysis.

2015 Concurrency: introduction
10

©Magee/Kramer 2nd Edition

Abstraction? definitions …

Ø  the act of withdrawing or removing something

Ø  the act or process of leaving out of consideration one or more properties
of a complex object so as to attend to others

Ø  a general concept formed by extracting common features from specific
examples

Ø  the process of formulating general concepts by abstracting common
properties of instances

Remove detail (simplify) and
focus (selection based on purpose)

Generalisation (core or essence)

2015 Concurrency: introduction
11

©Magee/Kramer 2nd Edition

1930 – London Underground map

Purpose:
relationship
between
stations and the
interchanges,
not actual
distances.

“Fit for
purpose?”

2015 Concurrency: introduction
12

©Magee/Kramer 2nd Edition

1932 – Harry Beck (1st schematic image map)

2015 Concurrency: introduction
13

©Magee/Kramer 2nd Edition

2001 – Fit for purpose (“mind the gap…”)

2015 Concurrency: introduction
14

©Magee/Kramer 2nd Edition

2001 – Fit for purpose?!

“Underskin” by
Samantha Loman

2015 Concurrency: introduction
15

©Magee/Kramer 2nd Edition 15

Why is abstraction important in Software Engineering?

“Once you realize that computing is all about
constructing, manipulating, and reasoning about
abstractions, it becomes clear that an important
prerequisite for writing (good) computer programs is
the ability to handle abstractions in a precise manner.”

 Keith Devlin CACM Sept.2003

Software is abstract!

Perhaps abstraction is the key to computing …. ?
CACM April 2007

2015 Concurrency: introduction
16

©Magee/Kramer 2nd Edition 16

Why is it important? requirements engineering

“The act/process of leaving out of consideration one or more properties of a complex
object so as to attend to others”

Requirements - elicit the critical aspects of the environment
and the required system while neglecting the irrelevant.

requirements

goals
scenarios
assumptions
constraints
properties

2015 Concurrency: introduction
17

©Magee/Kramer 2nd Edition 17

Why is it important? design

Design - articulate the software architecture and component
functionalities which satisfy functional and non-functional
requirements while avoiding unnecessary implementation
constraints.

eg. Compiler design (Ghezzi):

•  abstract syntax to focus on essential features of
language constructs;

•  design to generate intermediate code for an
abstract machine

“The act/process of leaving out of consideration one or more properties of a complex
object so as to attend to others”

2015 Concurrency: introduction
18

©Magee/Kramer 2nd Edition 18

Why is it important? programming

Programming - use
data abstraction and
classes so as to
generalize solutions.

“the process of formulating general concepts by abstracting common properties of instances”

Selectable

guard()

listSelect
add()
choose()

Channel
send()
receive()

Port
send()
receive()

Entry
call()
accept()
reply()

clientChan

Message passing

2015 Concurrency: introduction
19

©Magee/Kramer 2nd Edition

Why is it important? advanced topics

Abstract interpretation for program analysis - map
concrete domain to an abstract domain which captures
the semantics for the purpose at hand.

eg. Rule of signs for multiplication *

0*+ = 0*- = +*0 = -*0 = 0

+*+ = -*- = +

+*- = -*+ = -

“the process of formulating general concepts by abstracting common properties of instances”

Hankin

2015 Concurrency: introduction
20

©Magee/Kramer 2nd Edition

Models for concurrent programming

Engineering is based on the use of
simpler, abstract models for
experimentation, reasoning and
exhaustive analysis.

Abstraction is fundamental to

Engineering in general, and to

Software Engineering in particular !

2015 Concurrency: introduction
21

©Magee/Kramer 2nd Edition

Models and Model Checking

A model is an abstract, simplified representation of the real world.

Engineers use models to gain confidence in the adequacy and validity
of a proposed design:

♦  focus on an aspect of interest - concurrency
♦  model animation to visualise a behaviour
♦  automated model checking of properties (safety & progress)

Models are needed to

♦  experiment, test, and check a design before it is implemented
♦ airplane software before test flight
♦ net bank services before customer use
♦ medical sensor system before patient use

♦  may model an environment, hardware units, partly unknown
parts, third party software, …

2015 Concurrency: introduction
22

©Magee/Kramer 2nd Edition

Models are described using state machines, known as Labelled
Transition Systems LTS. These are described textually in a Process
Algebra as finite state processes (FSP) and displayed and analysed
by the LTSA model checking analysis tool.

Models and Model Checking

toss

toss

heads

tails

0 1 2

COIN = (toss->HEADS
 |toss->TAILS),

HEADS= (heads->COIN),
TAILS= (tails->COIN).

2015 Concurrency: introduction
23

©Magee/Kramer 2nd Edition

Finite State Machines and Model Checking

Turing awards related to Model Checking

u (2007) Edmund M. Clarke, E. Allen Emerson, Joseph Sifakis:
•  “for their role in developing Model-Checking into a highly effective

verification technology that is widely adopted in the hardware and
software industries.”

u (1996) Amir Pnueli:

•  “For seminal work introducing temporal logic into computing science
and for outstanding contributions to program and system verification.”

u (1986) John E Hopcroft, “Bob” Tarjan:
•  foundation of formal languages for state machines

u (1976) Michael O. Rabin, Dana S. Scott:
•  Finite Automata and Their Decision Problem, which introduced the idea

of nondeterministic machines, which has proved to be an enormously
valuable concept.

2015 Concurrency: introduction
24

©Magee/Kramer 2nd Edition

Process Algebra

Turing awards related to Process Algebra

u (1991) “Robin” Milner:
For three distinct and complete achievements:

•  LCF the mechanization of Scott’s Logic of Computable Functions, for
machine assisted proof construction;

•  ML the first language to include polymorphic type inference together
with a type-safe exception-handling mechanism;

•  Process Algebra: CCS (Calculus of Communicating Systems) a general
theory of concurrency.

u (1980) “Tony” Hoare.

For his fundamental contributions to the definition and design of
programming languages..”
•  Process Algebra: the language and theory around CSP

(Communicating Sequential Processes)

2015 Concurrency: introduction
25

©Magee/Kramer 2nd Edition

modelling the Cruise Control System

engineOn

speed

engineOff

0 1

Later chapters will explain how to
construct models such as this so as
to perform animation and
verification.

LTS of the process
that monitors
speed.

LTSA Animator to step
through system actions and
events.

2015 Concurrency: introduction
26

©Magee/Kramer 2nd Edition

programming practice in Java

Java is

♦  widely available, generally accepted and portable

♦  provides sound set of concurrency features

Hence Java is used for all the illustrative examples, the demonstrations
and the exercises. Later chapters will explain how to model, check
and construct Java programs such as the Cruise Control System and
others …

2015 Concurrency: introduction
27

©Magee/Kramer 2nd Edition

course objectives

This course is intended to provide a sound understanding of the
basic concepts, models and practice involved in designing
concurrent software.

The emphasis on principles and concepts provides a thorough
understanding of the issues and the solutions. Modelling
provides insight into concurrent behavior and aids reasoning about
particular designs. Concurrent programming in Java provides the
programming practice and experience.

2015 Concurrency: introduction
28

©Magee/Kramer 2nd Edition

Learning outcomes…

After completing this course, you will know
u how to model, analyze, and program concurrent object-

oriented systems.
u the most important concepts and techniques for

concurrent programming.
u what are the problems which arise in concurrent

programming.
u what techniques you can use to solve these problems.

2015 Concurrency: introduction
29

©Magee/Kramer 2nd Edition

Book

Concurrency:���
State Models &
Java Programs,
 2nd Edition

Jeff Magee &
Jeff Kramer

WILEY

1st
edition

2015 Concurrency: introduction
30

©Magee/Kramer 2nd Edition

Course Outline

2.  Processes and Threads

3.  Concurrent Execution

4.  Shared Objects & Interference

5.  Monitors & Condition Synchronization

6.  Deadlock

7.  Safety and Liveness Properties

8.  Model-based Design

9.  Dynamic systems

10.  Message Passing

11.  Concurrent Software Architectures

Concepts

Models

Practice

12.  Timed Systems

13.  Program Verification

14.  Logical Properties

The main basic

Advanced topics …

2015 Concurrency: introduction
31

©Magee/Kramer 2nd Edition

Web based course material

u  Java examples and demonstration programs
u  State models for the examples

u  Labelled Transition System Analyser (LTSA) for
modelling concurrency, model animation and model
property checking.

http://www-dse.doc.ic.ac.uk/concurrency/

2015 Concurrency: introduction
32

©Magee/Kramer 2nd Edition

Summary

u Concepts

l  we adopt a model-based approach for the design, analysis
and construction of concurrent programs

u Models

l  we use finite state models to represent concurrent
behaviour.

u Practice

l  we use Java for constructing concurrent programs.

Examples are used to illustrate the concepts, models and

demonstration programs.

