
Concurrent Programming: Algorithms, Principles, and Foundations

Algorithms, Principles, and Foundations

Bearbeitet von
Michel Raynal

1. Auflage 2012. Buch. xxxii, 516 S. Hardcover
ISBN 978 3 642 32026 2

Format (B x L): 15,5 x 23,5 cm
Gewicht: 979 g

Weitere Fachgebiete > EDV, Informatik > Programmiersprachen: Methoden >
Funktionale, logische, parallele und visuelle Programmierung

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Raynal-Concurrent-Programming-Algorithms-Principles-Foundations/productview.aspx?product=11037944&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_11037944&campaign=pdf/11037944
http://www.beck-shop.de/trefferliste.aspx?toc=8289
http://www.beck-shop.de/trefferliste.aspx?toc=8289
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783642320262_TOC_001.pdf

Chapter 2
Solving Mutual Exclusion

This chapter is on the implementation of mutual exclusion locks. As announced at
the end of the previous chapter, it presents three distinct families of algorithms that
solve the mutual exclusion problem. The first is the family of algorithms which are
based on atomic read/write registers only. The second is the family of algorithms
which are based on specialized hardware operations (which are atomic and stronger
than atomic read/write operations). The third is the family of algorithms which are
based on read/write registers which are weaker than atomic registers. Each algorithm
is first explained and then proved correct. Other properties such as time complexity
and space complexity of mutual exclusion algorithms are also discussed.

Keywords Atomic read/write register · Lock object · Mutual exclusion · Safe
read/write register · Specialized hardware primitive (test&set, fetch&add,
compare&swap)

2.1 Mutex Based on Atomic Read/Write Registers

2.1.1 Atomic Register

The read/write register object is one of the most basic objects encountered in com-
puter science. When such an object is accessed only by a single process it is said to
be local to that process; otherwise, it is a shared register. A local register allows a
process to store and retrieve data. A shared register allows concurrent processes to
also exchange data.

Definition A register R can be accessed by two base operations: R.read(), which
returns the value of R (also denoted x ← R where x is a local variable of the invoking
process), and R.write(v), which writes a new value into R (also denoted R ← v,
where v is the value to be written into R). An atomic shared register satisfies the
following properties:

M. Raynal, Concurrent Programming: Algorithms, Principles, and Foundations, 15
DOI: 10.1007/978-3-642-32027-9_2, © Springer-Verlag Berlin Heidelberg 2013

16 2 Solving Mutual Exclusion

• Each invocation op of a read or write operation:

– Appears as if it was executed at a single point τ (op) of the time line,

– τ (op) is such that τb(op) ≤ τ (op) ≤ τe(op), where τb(op) and τe(op) denote
the time at which the operation op started and finished, respectively,

– For any two operation invocations op1 and op2: (op1 �= op2) ⇒ (
τ (op1) �=

τ (op2)
)
.

• Each read invocation returns the value written by the closest preceding write invo-
cation in the sequence defined by the τ () instants associated with the operation
invocations (or the initial value of the register if there is no preceding write oper-
ation).

This means that an atomic register is such that all its operation invocations appear
as if they have been executed sequentially: any invocation op1 that has terminated
before an invocation op2 starts appears before op2 in that sequence, and this sequence
belongs to the specification of a sequential register.

An atomic register can be single-writer/single-reader (SWSR)—the reader and
the writer being distinct processes—or single-writer/multi-reader (SWMR), or multi-
writer/multi-reader (MWMR) . We assume that a register is able to contain any value.
(As each process is sequential, a local register can be seen as a trivial instance of
an atomic SWSR register where, additionally, both the writer and the reader are the
same process.)

An example An execution of a MWMR atomic register accessed by three
processes p1, p2, and p3 is depicted in Fig. 2.1 using a classical space-time diagram.
R.read() → v means that the corresponding read operation returns the value v.
Consequently, an external observer sees the following sequential execution of the
register R which satisfies the definition of an atomic register:

R.write(1), R.read()→ 1, R.write(3), R.write(2), R.read()→ 2, R.read()→ 2.

Let us observe that R.write(3) and R.write(2) are concurrent, which means that
they could appear to an external observer as if R.write(2) was executed before

Fig. 2.1 An atomic register execution

2.1 Mutex Based on Atomic Read/Write Registers 17

R.write(3). If this was the case, the execution would be correct if the last two read
invocations (issued by p1 and p3) return the value 3; i.e., the external observer should
then see the following sequential execution:

R.write(1), R.read()→ 1, R.write(2), R.write(3), R.read()→ 3, R.read()→ 3.

Let us also observe that the second read invocation by p1 is concurrent with both
R.write(2) and R.write(3). This means that it could appear as having been executed
before these two write operations or even between them. If it appears as having been
executed before these two write operations, it should return the value 1 in order for
the register behavior be atomic.

As shown by these possible scenarios (and as noticed before) concurrency is
intimately related to non-determinism. It is not possible to predict which execution
will be produced; it is only possible to enumerate the set of possible executions that
could be produced (we can only predict that the one that is actually produced is one
of them).

Examples of non-atomic read and write operations will be presented in Sect. 2.3.

Why atomicity is important Atomicity is a fundamental concept because it allows
the composition of shared objects for free (i.e., their composition is at no additional
cost). This means that, when considering two (or more) atomic registers R1 and
R2, the composite object [R1, R2] which is made up of R1 and R2 and provides the
processes with the four operations R1.read(), R1.write(), R2.read(), and R2.write()
is also atomic. Everything appears as if at most one operation at a time was executed,
and the sub-sequence including only the operations on R1 is a correct behavior of
R1, and similarly for R2.

This is very important when one has to reason about a multiprocess program
whose processes access atomic registers. More precisely, we can keep reasoning
sequentially whatever the number of atomic registers involved in a concurrent com-
putation. Atomicity allows us to reason on a set of atomic registers as if they were a
single “bigger” atomic object. Hence, we can reason in terms of sequences, not only
for each atomic register taken separately, but also on the whole set of registers as if
they were a single atomic object.

The composition of atomic objects is formally addressed in Sect. 4.4, where
it is shown that, as atomicity is a “local property”, atomic objects compose for
free.

2.1.2 Mutex for Two Processes: An Incremental Construction

The mutex algorithm for two processes that is presented below is due to G.L. Peterson
(1981). This construction, which is fairly simple, is built from an “addition” of two
base components. Despite the fact that these components are nearly trivial, they allow
us to introduce simple basic principles.

18 2 Solving Mutual Exclusion

operation

Fig. 2.2 Peterson’s algorithm for two processes: first component (code for pi)

The processes are denoted pi and p j . As the algorithm for p j is the same as the
one for pi after having replaced i by j , we give only the code for pi .

First component This component is described in Fig. 2.2 for process pi . It is
based on a single atomic register denoted AFTER_YOU, the initial value of which
is irrelevant (a process writes into this register before reading it). The principle that
underlies this algorithm is a “politeness” rule used in current life. When pi wants
to acquire the critical section, it sets AFTER_YOU to its identity i and waits until
AFTER_YOU �= i in order to enter the critical section. Releasing the critical section
entails no particular action.

It is easy to see that this algorithm satisfies the mutual exclusion property. When
both processes want to acquire the critical section, each assigns its identity to the
register AFTER_YOU and waits until this register contains the identity of the other
process. As the register is atomic, there is a “last” process, say p j , that updated it,
and consequently only the other process pi can proceed to the critical section.

Unfortunately, this simple algorithm is not deadlock-free. If one process alone
wants to enter the critical section, it remains blocked forever in the wait statement.
Actually, this algorithm ensures that, when both processes want to enter the critical
section, the first process that updates the register AFTER_YOU is the one that is
allowed to enter it.

Second component This component is described in Fig. 2.3. It is based on a simple
idea. Each process pi manages a flag (denoted FLAG[i]) the value of which is down
or up. Initially, both flags are down. When a process wants to acquire the critical
section, it first raises its flag to indicate that it is interested in the critical section. It
is then allowed to proceed only when the flag of the other process is equal to down.

To release the critical section, a process pi has only to reset FLAG[i] to its initial
value (namely, down), thereby indicating that it is no longer interested in the mutual
exclusion.

Fig. 2.3 Peterson’s algorithm for two processes: second component (code for pi)

2.1 Mutex Based on Atomic Read/Write Registers 19

It is easy to see that, if a single process pi wants to repeatedly acquire the critical
section while the other process is not interested in the critical section, it can do so
(hence this algorithm does not suffer the drawback of the previous one). Moreover,
it is also easy to see that this algorithm satisfies the mutual exclusion property. This
follows from the fact that each process follows the following pattern: first write its flag
and only then read the value of the other flag. Hence, assuming that pi has acquired
(and not released) the critical section, we had (FLAG[i] = up)∧(FLAG[j] = down)

when it was allowed to enter the critical section. It follows that, after p j has set
FLAG[j] to the value up, it reads up from FLAG[i] and is delayed until pi resets
FLAG[i] to down when it releases the critical section.

Unfortunately, this algorithm is not deadlock-free. If both processes concurrently
raise first their flags and then read the other flag, each process remains blocked until
the other flag is set down which will never be done.

Remark: the notion of a livelock In order to prevent the previous deadlock situa-
tion, one could think replacing wait (FLAG[j] = down) by the following statement:

while (FLAG[j] = up) do
FLAG[i] ← down;
pi delays itself for an arbitrary period of time;
FLAG[i] ← up

end while.

This modification can reduce deadlock situations but cannot eliminate all of them.
This occurs, for example when both processes execute “synchronously” (both delay
themselves for the same duration and execute the same step—writing their flag and
reading the other flag—at the very same time). When it occurs, this situation is
sometimes called a livelock.

This tentative solution was obtained by playing with asynchrony (modifying the
process speed by adding delays). As a correct algorithm has to work despite any
asynchrony pattern, playing with asynchrony can eliminate bad scenarios but cannot
suppress all of them.

2.1.3 A Two-Process Algorithm

Principles and description In a very interesting way, a simple “addition” of the
two previous “components” provides us with a correct mutex algorithm for two
processes (Peterson’s two-process algorithm). This component addition consists in
a process pi first raising its flag (to indicate that it is competing, as in Fig. 2.3), then
assigning its identity to the atomic register AFTER_YOU (as in Fig. 2.2), and finally
waiting until any of the progress predicates AFTER_YOU �= i or FLAG[j] = down
is satisfied.

It is easy to see that, when a single process wants to enter the critical section, the
flag of the other process allows it to enter. Moreover, when each process sees that

20 2 Solving Mutual Exclusion

Fig. 2.4 Peterson’s algorithm for two processes (code for pi)

the flag of the other one was raised, the current value of the register AFTER_YOU
allows exactly one of them to progress.

It is important to observe that, in the wait statement of Fig. 2.4, the reading of
the atomic registers FLAG[j] and AFTER_YOU are asynchronous (they are done at
different times and can be done in any order).

Theorem 1 The algorithm described in Fig.2.4 satisfies mutual exclusion and
bounded bypass (where the bound is f (n) = 1).

Preliminary remark for the proof The reasoning is based on the fact that the
three registers FLAG[i], FLAG[j], and AFTER_YOU are atomic. As we have seen
when presenting the atomicity concept (Sect. 2.1.1), this allows us to reason as if at
most one read or write operation on any of these registers occurs at a time.

Proof Proof of the mutual exclusion property.
Let us assume by contradiction that both pi and p j are inside the critical section.
Hence, both have executed acquire_mutex() and we have then FLAG[i] = up,
FLAG[j] = up and AFTER_YOU = j (if AFTER_YOU = i , the reasoning is the
same after having exchanged i and j). According to the predicate that allowed pi to
enter the critical section, there are two cases.

• Process pi has terminated acquire_mutex(i) because FLAG[j] = down.

As pi has set FLAG[i] to up before reading down from FLAG[j] (and entering the
critical section), it follows that p j cannot have read down from FLAG[i] before
entering the critical section (see Fig. 2.5). Hence, p j entered it due to the predicate
AFTER_YOU = i . But this contradicts the assumption that AFTER_YOU = j
when both processes are inside the critical section.

• Process pi has terminated acquire_mutex(i) because AFTER_YOU = j .

As (by assumption) p j is inside the critical section, AFTER_YOU = j , and only p j

can write j into AFTER_YOU, it follows that p j has terminated acquire_mutex(j)
because it has read down from FLAG[i]. On another side, FLAG[i] remains con-
tinuously equal to up from the time at which pi has executed the first statement
of acquire_mutex(i) and the execution of release_mutex(i) (Fig. 2.6).

2.1 Mutex Based on Atomic Read/Write Registers 21

Fig. 2.5 Mutex property of Peterson’s two-process algorithm (part 1)

time line

pi executes

at current time we have:

AFTER YOU = j

AFTER YOU ← i

pi executes

pj executes
FLAG [i] = FLAG [j] = up

pj executes its wait statement

AFTER YOU ← jFLAG [i] ← up

Fig. 2.6 Mutex property of Peterson’s two-process algorithm (part 2)

As p j executes the wait statement after writing j into AFTER_YOU and pi read
j from AFTER_YOU, it follows that p j cannot read down from FLAG[i] when it
executes the wait statement. This contradicts the assumption that p j is inside the
critical section.

Proof of the bounded bypass property.
Let pi be the process that invokes acquire_mutex(i). If FLAG[j] = down or
AFTER_YOU = j when pi executes the wait statement, it enters the critical section.

Let us consequently assume that (FLAG[j] = up)∧(AFTER_YOU = i) when pi

executes the wait statement (i.e., the competition is lost by pi). If, after p j has exe-
cuted release_mutex(j), it does not invoke acquire_mutex(j) again, we permanently
have FLAG[j] = down and pi eventually enters the critical section.

Hence let us assume that p j invokes again acquire_mutex(j) and sets FLAG[j]
to up before pi reads it. Thus, the next read of FLAG[j] by pi returns up. We have
then (FLAG[j] = up) ∧ (AFTER_YOU = i), and pi cannot progress (see Fig. 2.7).

It follows from the code of acquire_mutex(j) that p j eventually assigns j to
AFTER_YOU (and the predicate AFTER_YOU = j remains true until the next invo-
cation of acquire_mutex() by pi). Hence, pi eventually reads j from AFTER_YOU
and is allowed to enter the critical section.

It follows that a process looses at most one competition with respect to the other
process, from which we conclude that the bounded bypass property is satisfied and
we have f (n) = 1. �

22 2 Solving Mutual Exclusion

time line

FLAG [i] ← up

pi executes

AFTER YOU ← i

pi executes
AFTER YOU ← j
pj executes

pj executes
FLAG [j] ← up

pj executes
FLAG [j] ← down

pi does not read FLAG [j]

Fig. 2.7 Bounded bypass property of Peterson’s two-process algorithm

Space complexity The space complexity of a mutex algorithm is measured by the
number and the size of the atomic registers it uses.

It is easy to see that Peterson’s two-process algorithm has a bounded space com-
plexity: there are three atomic registers FLAG[i], FLAG[j], and AFTER_YOU,
and the domain of each of them has two values. Hence three atomic bits are
sufficient.

2.1.4 Mutex for n Processes:
Generalizing the Previous Two-Process Algorithm

Description Peterson’s mutex algorithm for n processes is described in Fig. 2.8.
This algorithm is a simple generalization of the two-process algorithm described in
Fig. 2.4. This generalization, which is based on the notion of level, is as follows.

In the two-process algorithm, a process pi uses a simple SWMR flag FLAG[i]
whose value is either down (to indicate it is not interested in the critical section) or
up (to indicate it is interested). Instead of this binary flag, a process pi uses now a
multi-valued flag that progresses from a flag level to the next one. This flag, denoted
FLAG_LEVEL[i], is initialized to 0 (indicating that pi is not interested in the critical
section). It then increases first to level 1, then to level 2, etc., until the level n − 1,

Fig. 2.8 Peterson’s algorithm for n processes (code for pi)

2.1 Mutex Based on Atomic Read/Write Registers 23

which allows it to enter the critical section. For 1 ≤ x < n−1, FLAG_LEVEL[i] = x
means that pi is trying to enter level x + 1.

Moreover, to eliminate possible deadlocks at any level �, 0 < � < n − 1 (such as
the deadlock that can occur in the algorithm of Fig. 2.3), the processes use a second
array of atomic registers AFTER_YOU[1..(n− 1)] such that AFTER_YOU[�] keeps
track of the last process that has entered level �.

More precisely, a process pi executes a for loop to progress from one level to
the next one, starting from level 1 and finishing at level n − 1. At each level the
two-process solution is used to block a process (if needed). The predicate that allows
a process to progress from level �, 0 < � < n − 1, to level � + 1 is similar to the
one of the two-process algorithm. More precisely, pi is allowed to progress to level
�+ 1 if, from its point of view,

• Either all the other processes are at a lower level (i.e., ∀ k �= i :FLAG_LEVEL
[k] < �).

• Or it is not the last one that entered level � (i.e., AFTER_YOU[�] �= i).

Let us notice that the predicate used in the wait statement of line 4 involves all but one
of the atomic registers FLAG_LEVEL[·] plus the atomic register AFTER_YOU[�].
As these registers cannot be read in a single atomic step, the predicate is repeatedly
evaluated asynchronously on each register.

When all processes compete for the critical section, at most (n−1) processes can
concurrently be winners at level 1, (n − 2) processes can concurrently be winners
at level 2, and more generally (n − �) processes can concurrently be winners at
level �. Hence, there is a single winner at level (n − 1).

The code of the operation release_mutex(i) is similar to the one of the two-process
algorithm: a process pi resets FLAG_LEVEL[i] to its initial value 0 to indicate that
it is no longer interested in the critical section.

Theorem 2 The algorithm described in Fig. 2.8 satisfies mutual exclusion and
starvation-freedom.

Proof Initially, a process pi is such that FLAG_LEVEL[i] = 0 and we say that it is
at level 0. Let � ∈ [1..(n − 1)]. We say that a process pi has “attained” level � (or,
from a global state point of view, “is” at level �) if it has exited the wait statement
of the �th loop iteration. Let us notice that, after it has set its loop index � to α > 0
and until it exits the wait statement of the corresponding iteration, that process is at
level α − 1. Moreover, a process that attains level � has also attained the levels �′
with 0 ≤ �′ ≤ � ≤ n − 1 and consequently it is also at these levels �′.

The proof of the mutual exclusion property amounts to showing that at most one
process is at level (n − 1). This is a consequence of the following claim when we
consider � = n − 1.

Claim. For �, 0 ≤ � ≤ n − 1, at most n − � processes are at level �.
The proof of this claim is by induction on the level �. The base case � = 0 is

trivial. Assuming that the claim is true up to level � − 1, i.e., at most n − (� − 1)

24 2 Solving Mutual Exclusion

py

px

time line

FLAG LEVEL [y] ← �

r ← FLAG LEVEL [y]AFTER YOU [�] ← x

AFTER YOU [�] ← y

Fig. 2.9 Total order on read/write operations

processes are simultaneously at level �−1, we have to show that at least one process
does not progress to level �. The proof is by contradiction: let us assume that n−�+1
processes are at level �.

Let px be the last process that wrote its identity into AFTER_YOU[�] (hence,
AFTER_YOU[�] = x). When considering the sequence of read and write operations
executed by every process, and the fact that these operations are on atomic registers,
this means that, for any of the n − � other processes py that are at level �, these
operations appear as if they have been executed in the following order where the
first two operations are issued by py while the least two operations are issued by px

(Fig. 2.9):

1. FLAG_LEVEL[y] ← � is executed before AFTER_YOU[�] ← y (sequentiality
of py)

2. AFTER_YOU[�] ← y is executed before AFTER_YOU[�] ← x (assumption:
definition of px)

3. AFTER_YOU[�] ← x is executed before r ← FLAG_LEVEL[y] (sequentiality
of px ; r is px ’s local variable storing the last value read from FLAG_LEVEL[y]
before px exits the wait statement at level �).

It follows from this sequence that r = �. Consequently, as AFTER_YOU[�] = x ,
px exited the wait statement of the �th iteration because ∀ k �= x : FLAG_LEVEL
[k] < �. But this is contradicted by the fact that we had then FLAG_LEVEL[y] = �,
which concludes the proof of the claim.

The proof of the starvation-freedom property is by induction on the levels starting
from level n− 1 and proceeding until level 1. The base case � = n− 1 follows from
the previous claim: if there is a process at level (n − 1), it is the only process at that
level and it can exit the for loop. This process eventually enters the critical section
(that, by assumption, it will leave later). The induction assumption is the following:
each process that attains a level �′ such that n − 1 ≥ �′ ≥ � eventually enters the
critical section.

The rest of the proof is by contradiction. Let us assume that � is such that there is
a process (say px) that remains blocked forever in the wait statement during its �th

2.1 Mutex Based on Atomic Read/Write Registers 25

iteration (hence, px cannot attain level �). It follows that, each time px evaluates the
predicate controlling the wait statement, we have

(∃ k �= i : FLAG_LEVEL[k] ≥ �) ∧ (AFTER_YOU[�] = x)
)

(let us remember that the atomic registers are read one at a time, asynchronously,
and in any order). There are two cases.

• Case 1: There is a process py that eventually executes AFTER_YOU[�] ← y.

As only px can execute AFTER_YOU[�] ← x , there is eventually a read of
AFTER_YOU[�] that returns a value different from x , and this read allows px

to progress to level �. This contradicts the assumption that px remains blocked
forever in the wait statement during its �th iteration.

• Case 2: No process py eventually executes AFTER_YOU[�] ← y.

The other processes can be partitioned in two sets: the set G that contains the
processes at a level greater or equal to �, and the set L that contains the processes
at a level smaller than �.

As the predicate AFTER_YOU[�] = x remains forever true, it follows that no
process py in L enters the �th loop iteration (otherwise py would necessarily
execute AFTER_YOU[�] ← y, contradicting the case assumption).

On the other side, due to the induction assumption, all processes in G eventu-
ally enter (and later leave) the critical section. When this has occurred, these
processes have moved from the set G to the set L and then the predicate
∀ k �= i : FLAG_LEVEL[k] < � becomes true.

When this has happened, the values returned by the asynchronous reading of
FLAG_LEVEL[1..n] by px allow it to attain level �, which contradicts the assump-
tion that px remains blocked forever in the wait statement during its �th iteration.

In both case the assumption that a process remains blocked forever at level � is
contradicted which completes the proof of the induction step and concludes the
proof of the starvation-freedom property. �

Starvation-freedom versus bounded bypass The two-process Peterson’s algo-
rithm satisfies the bounded bypass liveness property while the n-process algorithm
satisfies only starvation-freedom. Actually, starvation-freedom (i.e., finite bypass) is
the best liveness property that Peterson’s n-process algorithm (Fig. 2.8) guarantees.

This can be shown with a simple example. Let us consider the case n = 3. The three
processes p1, p2, and p3 invoke simultaneously acquire_mutex(), and the run is such
that p1 wins the competition and enters the critical section. Moreover, let us assume
that AFTER_YOU[1] = 3 (i.e., p3 is the last process that wrote AFTER_YOU[1])
and p3 blocked at level 1.

Then, after it has invoked release_mutex(), process p1 invokes acquire_mutex()
again and we have consequently AFTER_YOU[1] = 1. But, from that time, p3 starts

26 2 Solving Mutual Exclusion

an arbitrary long “sleeping” period (this is possible as the processes are asynchronous)
and consequently does not read AFTER_YOU[1] = 1 (which would allow it to
progress to the second level). Differently, p2 progresses to the second level and
enters the critical section. Later, p2 first invokes release_mutex() and immediately
after invokes acquire_mutex() and updates AFTER_YOU[1] = 2. While p3 keeps
on “sleeping”, p1 progresses to level 2 and finally enters the critical section. This
scenario can be reproduced an arbitrary number of times until p3 wakes up. When this
occurs, p3 reads from AFTER_YOU[1] a value different from 3, and consequently
progresses to level 2. Hence:

• Due to asynchrony, a “sleeping period” can be arbitrarily long, and a process can
consequently lose an arbitrary number of competitions with respect to the other
processes,

• But, as a process does not sleep forever, it eventually progresses to the next level.

It is important to notice that, as shown in the proof of the bounded pass property of
Theorem 1, this scenario cannot happen when n = 2.

Atomic register: size and number It is easy to see that the algorithm uses
2n − 1 atomic registers. The domain of each of the n registers FLAG_LEVEL[i] is
[0..(n−1)], while the domain of each of the n−1 AFTER_YOU[�] registers is [1..n].
Hence, in both cases, log2 n� bits are necessary and sufficient for each atomic reg-
ister.

Number of accesses to atomic registers Let us define the time complexity of a
mutex algorithm as the number of accesses to atomic registers for one use of the
critical section by a process.

It is easy to see that this cost is finite but not bounded when there is contention
(i.e., when several processes simultaneously compete to execute the critical section
code).

Differently in a contention-free scenario (i.e., when only one process pi wants to
use the critical section), the number of accesses to atomic registers is (n− 1)(n+ 2)

in acquire_mutex(i) and one in release_mutex(i).

The case of k-exclusion This is the k-mutual exclusion problem where the critical
section code can be concurrently accessed by up to k processes (mutual exclusion
corresponds to the case where k = 1).

Peterson’s n-process algorithm can easily be modified to solve k-mutual exclusion.
The upper bound of the for loop (namely (n−1)) has simply to be replaced by (n−k).
No other statement modification is required. Moreover, let us observe that the size
of the array AFTER_YOU can then be reduced to [1..(n − k)].

2.1.5 Mutex for n Processes: A Tournament-Based Algorithm

Reducing the number of shared memory accesses In the previous n-process
mutex algorithm, a process has to compete with the (n − 1) other processes before

2.1 Mutex Based on Atomic Read/Write Registers 27

Fig. 2.10 A tournament tree for n processes

being able to access the critical section. Said differently, it has to execute n− 1 loop
iterations (eliminating another process at each iteration), and consequently, the cost
(measured in number of accesses to atomic registers) in a contention-free scenario
is O(n) × the cost of one loop iteration, i.e., O(n2). Hence a natural question is the
following: Is it possible to reduce this cost and (if so) how?

Tournament tree A simple principle to reduce the number of shared memory
accesses is to use a tournament tree. Such a tree is a complete binary tree. To simplify
the presentation, we consider that the number of processes is a power of 2, i.e., n = 2k

(hence k = log2 n). If n is not a power of two, it has to be replaced by n′ = 2k where
k = log2 n� (i.e., n′ is the smallest power of 2 such that n′ > n).

Such a tree for n = 23 processes p1, . . . , p8, is represented in Fig. 2.10. Each
node of the tree is any two-process starvation-free mutex algorithm, e.g., Peterson’s
two-process algorithm. It is even possible to associate different two-process mutex
algorithms with different nodes. The important common feature of these algorithms
is that any of them assumes that it is used by two processes whose identities are 0
and 1.

As we have seen previously, any two-process mutex algorithm implements a lock
object. Hence, we consider in the following that the tournament tree is a tree of (n−1)

locks and we accordingly adopt the lock terminology. The locks are kept in an array
denoted LOCK[1..(n−1)], and for x �= y, LOCK[x] and LOCK[y] are independent
objects (the atomic registers used to implement LOCK[x] and the atomic registers
used to implement LOCK[y] are different).

The lock LOCK[1] is associated withe root of the tree, and if it is not a leaf, the
node associated with the lock LOCK[x] has two children associated with the locks
LOCK[2x] and LOCK[2x + 1].

According to its identity i , each process pi starts competing with a single other
process p j to obtain a lock that is a leaf of the tree. Then, when it wins, the process

28 2 Solving Mutual Exclusion

Fig. 2.11 Tournament-based mutex algorithm (code for pi)

pi proceeds to the next level of the tree to acquire the lock associated with the node
that is the father of the node currently associated with pi (initially the leaf node
associated with pi). Hence, a process competes to acquire all the locks on the path
from the leaf it is associated with until the root node.

As (a) the length of such a path is log2 n� and (b) the cost to obtain a lock
associated with a node is O(1) in contention-free scenarios, it is easy to see that
the number of accesses to atomic registers in these scenarios is O(log2 n) (it
is exactly 4 log2 n when each lock is implemented with Peterson’s two-process
algorithm).

The tournament-based mutex algorithm This algorithm is described in Fig. 2.11.
Each process pi manages a local variable node_id such that LOCK[node_id] is the
lock currently addressed by pi and a local array p_id[1..k] such that p_id[�] is the
identity (0 or 1) used by pi to access LOCK[node_id] as indicated by the labels on
the arrows in Fig. 2.10. (For a process pi , p_id[�] could be directly computed from
the values i and �; a local array is used to simplify the presentation.)

When a process pi invokes acquire_mutex(i) it first considers that it has suc-
cessfully locked a fictitious lock object LOCK[i + (n − 1)] that can be accessed
only by this process (line 1). Process pi then enters a loop to traverse the tree, level
by level, from its starting leaf until the root (lines 2–6). The starting leaf of pi is
associated with the lock LOCK[�(i + (n− 1))/2�] (lines 1 and 4). The identity used
by pi to access the lock LOCK[node_id] (line 5) is computed at line 3 and saved in
p_id[level].

When it invokes release_mutex(i), process pi releases the k locks it has locked
starting from the lock associated with the root (LOCK[1]) until the lock associated

2.1 Mutex Based on Atomic Read/Write Registers 29

with its starting leaf LOCK[�(i + (n − 1))/2�]. When it invokes LOCK[node_id].
release_lock(p_id[level]) (line 10), the value of the parameter p_id[level] is
the identity (0 or 1) used by pi when it locked that object. This identity is
also used by pi to compute the index of the next lock object it has to unlock
(line 11).

Theorem 3 Assuming that each two-process lock object satisfies mutual exclusion
and deadlock-freedom (or starvation-freedom), the algorithm described in Fig. 2.11
satisfies mutual exclusion and deadlock-freedom (or starvation-freedom).

Proof The proof of the mutex property is by contradiction. If pi and p j (i �= j) are
simultaneously in the critical section, there is a lock object LOCK[node_id] such
that pi and p j have invoked acquire_lock() on that object and both have been simul-
taneously granted the lock. (If there are several such locks, let LOCK[node_id] be
one at the lowest level in the tree.) Due to the specification of the lock object (that
grants the lock to a single process identity, namely 0 or 1), it follows that both pi

and p j have invoked LOCK[node_id].acquire_lock() with the same identity value
(0 or 1) kept in their local variable p_id[level]. But, due to the binary tree struc-
ture of the set of lock objects and the way the processes compute p_id[level],
this can only happen if i = j (on the lowest level on which pi and p j share
a lock), which contradicts our assumption and completes the proof of the mutex
property.

The proof of the starvation-freedom (or deadlock-freedom) property follows from
the same property of the base lock objects. We consider here only the starvation-
freedom property. Let us assume that a process pi is blocked forever at the object
LOCK[node_id]. This means that there is another process p j that competes infi-
nitely often with pi for the lock granted by LOCK[node_id] and wins each time.
The proof follows from the fact that, due to the starvation-freedom property of
LOCK[node_id], this cannot happen. �

Remark Let us consider the case where each algorithm implementing an under-
lying two-process lock object uses a bounded number of bounded atomic regis-
ters (which is the case for Peterson’s two-process algorithm). In that case, as the
tournament-based algorithm uses (n−1) lock objects, it follows that it uses a bounded
number of bounded atomic registers.

Let us observe that this tournament-based algorithm has better time complexity
than Peterson’s n-process algorithm.

2.1.6 A Concurrency-Abortable Algorithm

When looking at the number of accesses to atomic registers issued by
acquire_mutex() and release_mutex() for a single use of the critical section in a
contention-free scenario, the cost of Peterson’s n-process mutual exclusion

30 2 Solving Mutual Exclusion

algorithm is O(n2)while the cost of the tournament tree-based algorithm is O(log2 n).
Hence, a natural question is the following: Is it possible to design a fast n-process
mutex algorithm, where fast means that the cost of the algorithm is constant in a
contention-free scenario?

The next section of this chapter answers this question positively. To that end, an
incremental presentation is adopted. A simple one-shot operation is first presented.
Each of its invocations returns a value r to the invoking process, where r is the value
abort or the value commit . Then, the next section enriches the algorithm imple-
menting this operation to obtain a deadlock-free fast mutual exclusion algorithm due
to L. Lamport (1987).

Concurrency-abortable operation A concurrency-abortable (also named conten-
tion-abortable and usually abbreviated abortable) operation is an operation that is
allowed to return the value abort in the presence of concurrency. Otherwise, it has to
return the value commit . More precisely, let conc_abort_op() be such an operation.
Assuming that each process invokes it at most once (one-shot operation), the set of
invocations satisfies the following properties:

• Obligation. If the first process which invokes conc_abort_op() is such that its
invocation occurs in a concurrency-free pattern (i.e., no other process invokes
conc_abort_op() during its invocation), this process obtains the value commit .

• At most one. At most one process obtains the value commit .

An n-process concurrency-abortable algorithm Such an algorithm is described
in Fig. 2.12. As in the previous algorithms, it assumes that all the processes have
distinct identities, but differently from them, the number n of processes can be arbi-
trary and remains unknown to the processes.

This algorithm uses two MWMR atomic registers denoted X and Y . The register
X contains a process identity (its initial value being arbitrary). The register Y contains
a process identity or the default value⊥ (which is its initial value). It is consequently
assumed that these atomic registers are made up of log2(n + 1)� bits.

Fig. 2.12 An n-process concurrency-abortable operation (code for pi)

2.1 Mutex Based on Atomic Read/Write Registers 31

When it invokes conc_abort_op(), a process pi first deposits its identity in X
(line 1) and then checks if the current value of Y is its initial value ⊥ (line 2). If
Y �= ⊥, there is (at least) one process p j that has written into Y . In that case,
pi returns abort1 (both abort1 and abort2 are synonyms of abort ; they are used
only to distinguish the place where the invocation of conc_abort_op() is “aborted”).
Returning abort1 means that (from a concurrency point of view) pi was late: there
is another process that wrote into Y before pi reads it.

If Y = ⊥, process pi writes its identity into Y (line 4) and then checks if X is
still equal to its identity i (line 5). If this is the case, pi returns the value commit
at line 6 (its invocation of conc_abort_op(i) is then successful). If X �= i , another
process p j has written its identity j into X , overwriting the identity i before pi reads
X at line 5. Hence, there is contention and the value abort2 is returned to pi (line 7).
Returning abort2 means that, among the competing processes that found y = ⊥, pi

was not the last to have written its name into X .

Remark Let us observe that the only test on Y is Y �= ⊥ (line 2). It follows that Y
could be replaced by a flag with the associated domain {⊥,�}. Line 4 should then
be replaced by Y ←�.

Using such a flag is not considered here because we want to keep the notation
consistent with that of the fast mutex algorithm presented below. In the fast mutex
algorithm, the value of Y can be either ⊥ or any process identifier.

Theorem 4 The algorithm described in Fig.2.12 guarantees that (a) at most
one process obtains the value commit and (b) if the first process that invokes
conc_abort_op() executes it in a concurrency-free pattern, it obtains the value
commit.

Proof The proof of property (b) stated in the theorem is trivial. If the first process
(say pi) that invokes conc_abort_op() executes this operation in a concurrency-free
context, we have Y = ⊥when it reads Y at line 2 and X = i when it reads X at line 5.
It follows that it returns commit at line 6.

Let us now prove property (a), i.e., that no two processes can obtain the value
commit . Let us assume for the sake of contradiction that a process pi has invoked
conc_abort_op(i) and obtained the value commit . It follows from the text of the
algorithm that the pattern of accesses to the atomic registers X and Y issued by pi

is the one described in Fig. 2.13 (when not considering the accesses by p j in that
figure). There are two cases.

• Let us first consider the (possibly empty) set Q of processes p j that read Y at line
2 after this register was written by pi or another process (let us notice that, due to
the atomicity of the registers X and Y , the notion of after/before is well defined).
As Y is never reset to ⊥, it follows that each process p j ∈ Q obtains a non-⊥
value from Y and consequently executes return(abort1) at line 3.

32 2 Solving Mutual Exclusion

pi executes Y ← i

time line

no process has modified X

possibly some pj has executed Y ← j

possibly some pj

executes X ← j

pi executes X ← i pi reads i from X

Fig. 2.13 Access pattern to X and Y for a successful conc_abort_op() invocation by process pi

• Let us now consider the (possibly empty) set Q′ of processes p j distinct from
pi that read ⊥ from Y at line 2 concurrently with pi . Each p j ∈ Q′ writes
consequently its identity j into Y at line 4.

As pi has read i from X (line 5), it follows that no process p j ∈ Q′ has modified
X between the execution of line 1 and line 5 by pi (otherwise pi would not have
read i from X at line 5, see Fig. 2.13). Hence any process p j ∈ Q′ has written X
(a) either before pi writes i into X or (b) after pi has read i from X . But, observe
that case (b) cannot happen. This is due to the following observation. A process pk

that writes X (at line 1) after pi has read i from this register (at line 5) necessarily
finds Y �= ⊥ at line 4 (this is because pi has previously written i into Y at line 4
before reading i from X at line 5). Consequently, such a process pk belongs to the
set Q and not to the set Q′. Hence, the only possible case is that each p j ∈ Q′ has
written j into X before pi writes i into X . It follows that pi is the last process of
Q′ ∪ {pi } which has written its identity into X .

We conclude from the previous observation that, when a process p j ∈ Q′ reads X
at line 5, it obtains from this register a value different from j and, consequently,
its invocation conc_abort_op(j) returns the value abort2, which concludes the
proof of the theorem. �

The next corollary follows from the proof of the previous theorem.

Corollary 1 (Y �= ⊥) ⇒ a process has obtained the value commit or several
processes have invoked conc_abort_op().

Theorem 5 Whatever the number of processes that invoke conc_abort_op(), any of
these invocations costs at most four accesses to atomic registers.

Proof The proof follows from a simple examination of the algorithm. �

Remark: splitter object When we (a) replace the value commit , abort1, and
abort2 by stop, right, and left, respectively, and (b) rename the operation

2.1 Mutex Based on Atomic Read/Write Registers 33

conc_abort_op(i) as direction(i), we obtain a one-shot object called a splitter. A
one-shot object is an object that provides processes with a single operation and each
process invokes that operation at most once.

In a run in which a single process invokes direction(), it obtains the value stop.
In any run, if m > 1 processes invoke direction(), at most one process obtains the
value stop, at most (m − 1) processes obtain right, and at most (m − 1) processes
obtain left. Such an object is presented in detail in Sect. 5.2.1.

2.1.7 A Fast Mutex Algorithm

Principle and description This section presents L. Lamport’s fast mutex algo-
rithm, which is built from the previous one-shot concurrency-abortable operation.
More specifically, this algorithm behaves similarly to the algorithm of Fig. 2.12 in
contention-free scenarios and (instead of returning abort) guarantees the deadlock-
freedom liveness property when there is contention.

The algorithm is described in Fig. 2.14. The line numbering is the same as in
Fig. 2.12: the lines with the same number are the same in both algorithms, line N0 is
new, line N3 replaces line 3, lines N7.1–N7.5 replace line 7, and line N10 is new.

To attain its goal (both fast mutex and deadlock-freedom) the algorithm works as
follows. First, each process pi manages a SWMR flag FLAG[i] (initialized to down)

Fig. 2.14 Lamport’s fast mutex algorithm (code for pi)

34 2 Solving Mutual Exclusion

that pi sets to up to indicate that it is interested in the critical section (line N0). This
flag is reset to down when pi exits the critical section (line N10). As we are about
to see, it can be reset to down also in other parts of the algorithm.

According to the contention scenario in which a process pi returns abort in the
algorithm of Fig. 2.12, there are two cases to consider, which have been differentiated
by the values abort1 and abort2.

• Eliminating abort1 (line N3).

In this case, as we have seen in Fig. 2.12, process pi is “late”. As captured by
Corollary 1, this is because there are other processes that currently compete for
the critical section or there is a process inside the critical section. Line 3 of Fig. 2.12
is consequently replaced by the following statements (new line N3):

– Process pi first resets its flag to down in order not to prevent other processes
from entering the critical section (if no other process is currently inside it).

– According to Corollary 1, it is useless for pi to retry entering the critical section
while Y �= ⊥. Hence, process pi delays its request for the critical section until
Y = ⊥.

• Eliminating abort2 (lines N7.1–N7.5).

In this case, as we have seen in the base contention-abortable algorithm (Fig. 2.12),
several processes are competing for the critical section (or a process is already
inside the critical section). Differently from the base algorithm, one of the com-
peting processes has now to be granted the critical section (if no other process is
inside it). To that end, in order not to prevent another process from entering the
critical section, process pi first resets its flag to down (line N7.1). Then, pi tries
to enter the critical section. To that end, it first waits until all flags are down (line
N7.2). Then, pi checks the value of Y (line N7.3). There are two cases:

– If Y = i , process pi enters the critical section. This is due to the following
reason.

Let us observe that, if Y = i when pi reads it at line N7.3, then no process has
modified Y since pi set it to the value i at line 4 (the write of Y at line 4 and its
reading at line N7.3 follow the same access pattern as the write of X at line 1 and
its reading at line 5). Hence, process pi is the last process to have executed line
4. It then follows that, as it has (asynchronously) seen each flag equal to down
(line 7.2), process pi is allowed to enter the critical section (return() statement
at line N7.3).

– If Y �= i , process pi does the same as what is done at line N3. As it has already
set its flag to down, it has only to wait until the critical section is released before
retrying to enter it (line N7.4). (Let us remember that the only place where Y is
reset to ⊥ is when a process releases the critical section.)

Fast path and slow path The fast path to enter the critical section is when pi

executes only the lines N0, 1, 2, 4, 5, and 6. The fast path is open for a process pi

2.1 Mutex Based on Atomic Read/Write Registers 35

if it reads i from X at line 5. This is the path that is always taken by a process in
contention-free scenarios.

The cost of the fast path is five accesses to atomic registers. As release_mutex()
requires two accesses to atomic registers, it follows that the cost of a single use of the
critical section in a contention-free scenario is seven accesses to atomic registers.

The slow path is the path taken by a process which does not take the fast path.
Its cost in terms of accesses to atomic registers depends on the current concurrency
pattern.

A few remarks A register FLAG[i] is set to down when pi exits the critical section
(line N10) but also at line N3 or N7.1. It is consequently possible for a process pk to
be inside the critical section while all flags are down. But let us notice that, when this
occurs, the value of Y is different from ⊥, and as already indicated, the only place
where Y is reset to ⊥ is when a process releases the critical section.

When executed by a process pi , the aim of the wait statement at line N3 is to
allow any other process p j to see that pi has set its flag to down. Without such a
wait statement, a process pi could loop forever executing the lines N0, 1, 2 and N3
and could thereby favor a livelock by preventing the other processes from seeing
FLAG[i] = down.

Theorem 6 Lamport’s fast mutex algorithm satisfies mutual exclusion and
deadlock-freedom.

Proof Let us first consider the mutual exclusion property. Let pi be a process that
is inside the critical section. Trivially, we have then Y �= ⊥ and pi returned from
acquire_mutex() at line 6 or at line N7.3. Hence, there are two cases. Before consid-
ering these two cases, let us first observe that each process (if any) that reads Y after
it was written by pi (or another process) executes line N3: it resets its flag to down
and waits until Y = ⊥ (i.e., at least until pi exits the critical section, line N10). As
the processes that have read a non-⊥ value from Y at line 2 cannot enter the critical
section, it follows that we have to consider only the processes p j that have read ⊥
from Y at line 2.

• Process pi has executed return() at line 6.

In this case, it follows from a simple examination of the text of the algorithm that
FLAG[i] remains equal to up until pi exits the critical section and executes line
N10.

Let us consider a process pj that has read ⊥ from Y at line 2. As process pi has
executed line 6, it was the last process (among the competing processes which read
⊥ from Y) to have written its identity into X (see Fig. 2.13) and consequently pj

cannot read j from X . As X �= j when pj reads X at line 5, it follows that process
pj executes the lines N7.1–N7.5. When it executes line N7.2, pj remains blocked
until pi resets its flag to down, but as we have seen, pi does so only when it exits
the critical section. Hence, pj cannot be inside the critical section simultaneously
with pi . This concludes the proof of the first case.

36 2 Solving Mutual Exclusion

• Process pi has executed return() at line N7.3.

In this case, the predicate Y = i allowed pi to enter the critical section. Moreover,
the atomic register Y has not been modified during the period starting when it was
assigned the identity i at line 4 by pi and ending at the time at which pi read it at
line N7.3. It follows that, among the processes that read ⊥ from Y (at line 2), pi

is the last one to have updated Y .

Let us observe that X �= j , otherwise p j would have entered the critical section at
line 6, and in that case (as shown in the previous item) pi could not have entered
the critical section.

As Y = i , it follows from the test of line N7.3 that p j executes line N7.4
and consequently waits until Y = ⊥. As Y is set to ⊥ only when a process
exits the critical section (line N10), it follows that p j cannot be inside the crit-
ical section simultaneously with pi , which concludes the proof of the second
case.

To prove the deadlock-freedom property, let us assume that there is a non-empty
set of processes that compete to enter the critical section and, from then on, no process
ever executes return() at line 6 or line N 7.3. We show that this is impossible.

As processes have invoked acquire_mutex() and none of them executes line 6,
it follows that there is among them at least one process px that has executed first
line N0 and line 1 (where it assigned its identity x to X) and then line N3. This
assignment of x to X makes the predicate of line 5 false for the processes that have
obtained⊥ from Y . It follows that the flag of these processes px are eventually reset
to down and, consequently, these processes cannot entail a permanent blocking of
any other process pi which executes line N7.2.

When the last process that used the critical section released it, it reset Y to ⊥
(if there is no such process, we initially have Y = ⊥). Hence, among the processes
that have invoked acquire_mutex(), at least one of them has read ⊥ from Y . Let Q
be this (non-empty) set of processes. Each process of Q executes lines N7.1–N7.5
and, consequently, eventually resets its flag to down (line N7.1). Hence, the predicate
evaluated in the wait statement at line N7.2 eventually becomes satisfied and the
processes of Q which execute the lines N7.1–N7.5 eventually check at line N7.3 if
the predicate Y = i is satisfied. (Due to asynchrony, it is possible that the predicate
used at N7.2 is never true when evaluated by some processes. This occurs for the
processes of Q which are slow while another process of Q has entered the critical
section and invoked acquire_mutex() again, thereby resetting its flag to up. The
important point is that this can occur only if some process entered the critical section,
hence when there is no deadlock.)

As no process is inside the critical section and the number of processes is finite,
there is a process p j that was the last process to have modified Y at line 4. As (by
assumption) p j has not executed return() at line 6, it follows that it executes line
N7.3 and, finding Y = j , it executes return(), which contradicts our assumption and
consequently proves the deadlock-freedom property. �

2.1 Mutex Based on Atomic Read/Write Registers 37

2.1.8 Mutual Exclusion in a Synchronous System

Synchronous system Differently from an asynchronous system (in which there is
no time bound), a synchronous system is characterized by assumptions on the speed
of processes. More specifically, there is a bound � on the speed of processes and this
bound is known to them (meaning that � can be used in the code of the algorithms).
The meaning of � is the following: two consecutive accesses to atomic registers by
a process are separated by at most � time units.

Moreover, the system provides the processes with a primitive delay(d), where d
is a positive duration, which stops the invoking process for a finite duration greater
than d. The synchrony assumption applies only to consecutive accesses to atomic
registers that are not separated by a delay() statement.

Fischer’s algorithm A very simple mutual exclusion algorithm (due to M. Fischer)
is described in Fig. 2.15. This algorithm uses a single atomic register X (initialized
to ⊥) that, in addition to ⊥, can contain any process identity.

When a process pi invokes acquire_mutex(i), it waits until X = ⊥. Then it
writes its identity into X (as before, it is assumed that no two processes have the
same identity) and invokes delay(�). When it resumes its execution, it checks if X
contains its identity. If this is the case, its invocation acquire_mutex(i) terminates
and pi enters the critical section. If X �= i , it re-executes the loop body.

Theorem 7 Let us assume that the number of processes is finite and all have
distinct identities. Fischer’s mutex algorithm satisfies mutual exclusion and deadlock-
freedom.

Proof To simplify the statement of the proof we consider that each access to an
atomic register is instantaneous. (Considering that such accesses take bounded dura-
tion is straightforward.)

Proof of the mutual exclusion property. Assuming that, at some time, processes
invoke acquire_mutex(), let C be the subset of them whose last read of X returned⊥.
Let us observe that the ones that read a non-⊥ value from X remain looping in the

Fig. 2.15 Fischer’s synchronous mutex algorithm (code for pi)

38 2 Solving Mutual Exclusion

Fig. 2.16 Accesses to X by a process p j

wait statement at line 1. By assumption, C is finite. Due to the atomicity of the
register X and the fact that all processes in C write into X , there is a last process (say
pi) that writes its identity into X .

Given any process p j of C let us define the following time instants (Fig. 2.16):

• τ0
j = time at which p j reads the value ⊥ from X (line 1),

• τ1
j = time at which p j writes its identity j into X (line 2), and

• τ2
j = time at which p j reads X (line 4) after having executed the delay(�) state-

ment (line 3).

Due to the synchrony assumption and the delay() statement we have τ1
j ≤ τ0

j +�

(P1) and τ2
j > τ1

j +� (P2). We show that, after pi has written i into X , this register
remains equal to i until pi resets it to ⊥ (line 6) and any process p j of C reads
i from X at line 4 from which follows the mutual exclusion property. This is the
consequence of the following observations:

1. τ1
j +� < τ2

j (property P2),

2. τ0
i < τ1

j (otherwise pi would not have read ⊥ from X at line 1),

3. τ0
i +� < τ1

j +� (adding � to both sides of the previous line),

4. τ1
i ≤ τ0

i +� < τ1
j +� < τ2

j (from P1 and the previous items 1 and 3).

It then follows from the fact that pi is the last process which wrote into X and τ2
j > τ1

i
that p j reads i from X at line 4 and consequently does enter the repeat loop again
and waits until X = ⊥. The mutual exclusion property follows.

Proof of the deadlock-freedom property. This is an immediate consequence of
the fact that, among the processes that have concurrently invoked the operation
acquire_mutex(), the last process that writes X (pi in the previous reasoning) reads
its own identity from X at line 4. �

Short discussion The main property of this algorithm is its simplicity. Moreover,
its code is independent of the number of processes.

2.2 Mutex Based on Specialized Hardware Primitives

The previous section presented mutual exclusion algorithms based on atomic read/
write registers. These algorithms are important because understanding their design
and their properties provides us with precise knowledge of the difficulty and subtleties

2.2 Mutex Based on Specialized Hardware Primitives 39

that have to be addressed when one has to solve synchronization problems. These
algorithms capture the essence of synchronization in a read/write shared memory
model.

Nearly all shared memory multiprocessors propose built-in primitives (i.e., atomic
operations implemented in hardware) specially designed to address synchroniza-
tion issues. This section presents a few of them (the ones that are the most
popular).

2.2.1 Test&Set, Swap, and Compare&Swap

The test&set()/reset() primitives This pair of primitives, denoted test&set() and
reset(), is defined as follows. Let X be a shared register initialized to 1.

• X.test&set() sets X to 0 and returns its previous value.

• X.reset() writes 1 into X (i.e., resets X to its initial value).

Given a register X , the operations X.test&set() and X.reset() are atomic. As we have
seen, this means that they appear as if they have been executed sequentially, each
one being associated with a point of the time line (that lies between its beginning
and its end).

As shown in Fig. 2.17 (where r is local variable of the invoking process), solv-
ing the mutual exclusion problem (or equivalently implementing a lock object),
can be easily done with a test&set register. If several processes invoke simultane-
ously X.test&set(), the atomicity property ensures that one and only of them wins
(i.e., obtains the value 1 which is required to enter the critical section). Releasing the
critical section is done by resetting X to 1 (its initial value). It is easy to see that this
implementation satisfies mutual exclusion and deadlock-freedom.

The swap() primitive Let X be a shared register. The primitive denoted X.swap(v)

atomically assigns v to X and returns the previous value of X .
Mutual exclusion can be easily solved with a swap register X . Such an algorithm is

depicted in Fig. 2.18 where X is initialized to 1. It is assumed that the invoking process

Fig. 2.17 Test&set-based mutual exclusion

40 2 Solving Mutual Exclusion

Fig. 2.18 Swap-based mutual exclusion

does not modify its local variable r between acquire_mutex() and release_mutex()
(or, equivalently, that it sets r to 1 before invoking release_mutex()). The test&set-
based algorithm and the swap-based algorithm are actually the very same algorithm.

Let ri be the local variable used by each process pi . Due to the atomicity property
and the “exchange of values” semantics of the swap() primitive, it is easy to see the
swap-based algorithm is characterized by the invariant X +�1≤i≤nri = 1.

The compare&swap() primitive Let X be a shared register and old and new
be two values. The semantics of the primitive X.compare&swap(old, new), which
returns a Boolean value, is defined by the following code that is assumed to be
executed atomically.

X.compare&swap(old, new) is
if (X = old) then X ← new; return(true)

else return(false)
end if.

The primitive compare&swap() is an atomic conditional write; namely, the write
of new into X is executed if and only if X = old. Moreover, a Boolean value is
returned that indicates if the write was successful. This primitive (or variants of it)
appears in Motorola 680x0, IBM 370, and SPARC architectures. In some variants,
the primitive returns the previous value of X instead of a Boolean.

A compare&swap-based mutual exclusion algorithm is described in Fig. 2.19
in which X is an atomic compare&swap register initialized to 1. (no-op means
“no operation”.) The repeat statement is equivalent to wait (X.compare&swap
(1, 0)); it is used to stress the fact that it is an active waiting. This algorithm is
nearly the same as the two previous ones.

2.2.2 From Deadlock-Freedom to Starvation-Freedom

A problem due to asynchrony The previous primitives allow for the (simple)
design of algorithms that ensure mutual exclusion and deadlock-freedom. Said dif-
ferently, these algorithms do not ensure starvation-freedom.

2.2 Mutex Based on Specialized Hardware Primitives 41

Fig. 2.19 Compare&swap-based mutual exclusion

As an example, let us consider the test&set-based algorithm (Fig. 2.17). It is
possible that a process pi executes X.test&set() infinitely often and never obtains
the winning value 1. This is a simple consequence of asynchrony: if, infinitely often,
other processes invoke X.test&set() concurrently with pi (some of these processes
enter the critical section, release it, and re-enter it, etc.), it is easy to construct a
scenario in which the winning value is always obtained by only a subset of processes
not containing pi . If X infinitely often switches between 1 to 0, an infinite number
of accesses to X does not ensure that one of these accesses obtains the value 1.

From deadlock-freedom to starvation-freedom Considering that we have an
underlying lock object that satisfies mutual exclusion and deadlock-freedom, this
section presents an algorithm that builds on top of it a lock object that satisfies the
starvation-freedom property. Its principle is simple: it consists in implementing a
round-robin mechanism that guarantees that no request for the critical section is
delayed forever. To that end, the following underlying objects are used:

• The underlying deadlock-free lock is denoted LOCK . Its two operations are
LOCK .acquire_lock(i) and LOCK .release_lock(i), where i is the identity of the
invoking process.

• An array of SWMR atomic registers denoted FLAG[1..n] (n is the number of
processes, hence this number has to be known). For each i , FLAG[i] is initialized
to down and can be written only by pi . In a very natural way, process pi sets
FLAG[i] to up when it wants to enter the critical section and resets it to down
when it releases it.

• TURN is an MWMR atomic register that contains the process which is given
priority to enter the critical section. Its initial value is any process identity.

Let us notice that accessing FLAG[TURN] is not an atomic operation. A process
pi has first to obtain the value v of TURN and then address FLAG[v]. Moreover,
due to asynchrony, between the read by pi first of TURN and then of FLAG[v],
the value of TURN has possibly been changed by another process p j .

The behavior of a process pi is described in Fig. 2.20. It is as follows. The processes
are considered as defining a logical ring pi , pi+1, . . . , pn , p1, . . . , pi . At any time,

42 2 Solving Mutual Exclusion

Fig. 2.20 From deadlock-freedom to starvation-freedom (code for pi)

the process pTURN is the process that has priority and p(TURN mod n)+1 is the next
process that will have priority.

• When a process pi invokes acquire_mutex(i) it first raises its flag to inform the
other processes that it is interested in the critical section (line 1). Then, it waits
(repeated checks at line 2) until it has priority (predicate TURN = i) or the process
that is currently given the priority is not interested (predicate FLAG[TURN] =
down). Finally, as soon as it can proceed, it invokes LOCK .acquire_lock(i)
in order to obtain the underlying lock (line 3). (Let us remember that reading
FLAG[TURN] requires two shared memory accesses.)

• When a process pi invokes release_mutex(i), it first resets its flag to down
(line 5). Then, if (from pi ’s point view) the process that is currently given priority
is not interested in the critical section (i.e., the predicate FLAG[TURN] = down
is satisfied), then pi makes TURN progress to the next process (line 6) on the ring
before releasing the underlying lock (line 7).

Remark 1 Let us observe that the modification of TURN by a process pi is always
done in the critical section (line 6). This is due to the fact that pi modifies TURN
after it has acquired the underlying mutex lock and before it has released it.

Remark 2 Let us observe that a process pi can stop waiting at line 2 because it finds
TURN = i while another process p j increases TURN to ((i + 1) mod n) because it
does not see that FLAG[i] has been set to up. This situation is described in Fig. 2.21.

Theorem 8 Assuming that the underlying mutex lock LOCK is deadlock-free, the
algorithm described in Fig. 2.20 builds a starvation-free mutex lock.

Proof We first claim that, if at least one process invokes acquire_mutex(), then
at least one process invokes LOCK .acquire_lock() (line 3) and enters the critical
section.

2.2 Mutex Based on Specialized Hardware Primitives 43

pi’s side

pj’s side

pj reads TURN = i pj updates TURN to ((i + 1) mod n)
pj reads FLAG [i] = down

pi updates FLAG [i] to up pi reads TURN = i

pj executes line 6

pi executes lines 1 and 2

Fig. 2.21 A possible case when going from deadlock-freedom to starvation-freedom

Proof of the claim. Let us first observe that, if processes invoke LOCK .acquire_
lock(), one of them enters the critical section (this follows from the fact that the
lock is deadlock-free). Hence, X being the non-empty set of processes that invoke
acquire_mutex(), let us assume by contradiction that no process of X terminates
the wait statement at line 2. It follows from the waiting predicate that TURN /∈ X
and FLAG[TURN] = up. But, FLAG[TURN] = up implies TURN ∈ X , which
contradicts the previous waiting predicate and concludes the proof of the claim.

Let pi be a process that has invoked acquire_mutex(). We have to show that
it enters the critical section. Due to the claim, there is a process pk that holds the
underlying lock. If pk is pi , the theorem follows, hence let pk �= pi . When pk exits
the critical section it executes line 6. Let TURN = j when pk reads it. We consider
two cases:

1. FLAG[j] = up. Let us observe that p j is the only process that can write into
FLAG[j] and that it will do so at line 5 when it exits the critical section. More-
over, as TURN = j , p j is not blocked at line 2 and consequently invokes
LOCK .acquire_lock() (line 3).

We first show that eventually p j enters the critical section. Let us observe that
all the processes which invoke acquire_mutex() after FLAG[j] was set to up
and TURN was set to j remain blocked at line 2 (Observation OB). Let Y be
the set of processes that compete with p j for the lock with y = |Y |. We have
0 ≤ y ≤ n − 1. It follows from observation OB and the fact that the lock is
deadlock-free that the number of processes that compete with p j decreases from
y to y − 1, y − 2, etc., until p j obtains the lock and executes line 5 (in the worst
case, p j is the last of the y processes to obtain the lock).

If pi is p j or a process that has obtained the lock before p j , the theorem follows
from the previous reasoning. Hence, let us assume that pi has not obtained the
lock. After p j has obtained the lock, it eventually executes lines 5 and 6. As
TURN = j and p j sets FLAG[j] to down, it follows that p j updates the register
TURN to � = (j mod n)+1. The previous reasoning, where k and j are replaced
by j and �, is then applied again.

44 2 Solving Mutual Exclusion

2. FLAG[j] = down. In this case, pk updates TURN to � = (j mod n) + 1. If
� = i , the previous reasoning (where p j is replaced by pi) applies and it follows
that pi obtains the lock and enters the critical section.

If � �= i , let pk′ be the next process that enters the critical section (due to the
claim, such a process does exist). Then, the same reasoning as in case 1 applies,
where k is replaced by k′.

As no process is skipped when TURN is updated when processes invoke release_
mutex(), it follows from the combination of case 1 and case 2 that eventually case 1
where p j = pi applies and consequently pi obtains the deadlock-free lock. �

Fast starvation-free mutual exclusion Let us consider the case where a process pi

wants to enter the critical section, while no other process is interested in entering it.
We have the following:

• The invocation of acquire_mutex(i) requires at most three accesses to the shared
memory: one to set the register FLAG[i] to up, one to read TURN and save it in a
local variable turn, and one to read FLAG[turn].
• Similarly, the invocation by pi of release_mutex(i) requires at most four accesses

to the shared memory: one to reset FLAG[i] to down, one to read TURN and save
it in a local variable turn, one to read FLAG[turn], and a last one to update TURN .

It follows from this observation that the stacking of the algorithm of Fig. 2.20
on top of the algorithm described in Fig. 2.14 (Sect. 2.1.7), which implements a
deadlock-free fast mutex lock, provides a fast starvation-free mutex algorithm.

2.2.3 Fetch&Add

Let X be a shared register. The primitive X.fetch&add() atomically adds 1 to X and
returns the new value. (In some variants the value that is returned is the previous
value of X . In other variants, a value c is passed as a parameter and, instead of being
increased by 1, X becomes X + c.)

Such a primitive allows for the design of a simple starvation-free mutex algorithm.
Its principle is to use a fetch&add atomic register to generate tickets with consecutive
numbers and to allow a process to enter the critical section when its ticket number
is the next one to be served.

An algorithm based on this principle is described in Fig. 2.22. The variable
TICKET is used to generate consecutive ticket values, and the variable NEXT indi-
cates the next winner ticket number. TICKET is initialized to 0, while NEXT is
initialized to 1.

When it invokes acquire_mutex(), a process pi takes the next ticket, saves it in
its local variable my_turn, and waits until its turn occurs, i.e., until (my_turn =
NEXT). An invocation of release_mutex() is a simple increase of the atomic register
NEXT .

2.2 Mutex Based on Specialized Hardware Primitives 45

Fig. 2.22 Fetch&add-based mutual exclusion

Let us observe that, while NEXT is an atomic MWMR register, the operation
NEXT ← NEXT + 1 is not atomic. It is easy to see that no increase of NEXT can be
missed. This follows from the fact that the increase statement NEXT ← NEXT + 1
appears in the operation release_mutex(), which is executed by a single process at a
time.

The mutual exclusion property follows from the uniqueness of each ticket number,
and the starvation-freedom property follows from the fact that the ticket numbers are
defined from a sequence of consecutive known values (here the increasing sequence
of positive integers).

2.3 Mutex Without Atomicity

This section presents two mutex algorithms which rely on shared read/write registers
weaker than read/write atomic registers. In that sense, they implement atomicity
without relying on underlying atomic objects.

2.3.1 Safe, Regular, and Atomic Registers

The algorithms described in this section rely on safe registers. As shown here, safe
registers are the weakest type of shared registers that we can imagine while being
useful, in the presence of concurrency.

As an atomic register, a safe register (or a regular register) R provides the processes
with a write operation denoted R.write(v) (or R ← v), where v is the value that is
written and a read operation R.read() (or local ← R, where local is a local variable
of the invoking process). Safe, regular and atomic registers differ in the value returned
by a read operation invoked in the presence of concurrent write operations.

Let us remember that the domain of a register is the set of values that it can contain.
As an example, the domain of a binary register is the set {0, 1}.

46 2 Solving Mutual Exclusion

SWMR safe register An SWMR safe register is a register whose read operation
satisfies the following properties (the notion of an MWMR safe register will be
introduced in Sect. 2.3.3):

• A read that is not concurrent with a write operation (i.e., their executions do not
overlap) returns the current value of the register.

• A read that is concurrent with one (or several consecutive) write operation(s) (i.e.,
their executions do overlap) returns any value that the register can contain.

It is important to see that, in the presence of concurrent write operations, a read can
return a value that has never been written. The returned value has only to belong to
the register domain. As an example, let the domain of a safe register R be {0, 1, 2, 3}.
Assuming that R = 0, let R.write(2) be concurrent with a read operation. This read
can return 0, 1, 2, or 3. It cannot return 4, as this value is not in the domain of R, but
can return the value 3, which has never been written.

A binary safe register can be seen as modeling a flickering bit. Whatever its
previous value, the value of the register can flicker during a write operation and
stabilizes to its final value only when the write finishes. Hence, a read that overlaps
with a write can arbitrarily return either 0 or 1.

SWMR regular register An SWMR regular register is an SWMR safe register
that satisfies the following property. This property addresses read operations in thee
presence of concurrency. It replaces the second item of the definition of a safe register.

• A read that is concurrent with one or several write operations returns the value of
the register before these writes or the value written by any of them.

An example of a regular register R (whose domain is the set {0, 1, 2, 3, 4}) written
by a process p1 and read by a process p2 is described in Fig. 2.23. As there is no
concurrent write during the first read by p2, this read operation returns the current
value of the register R, namely 1. The second read operation is concurrent with three
write operations. It can consequently return any value in {1, 2, 3, 4}. If the register
was only safe, this second read could return any value in {0, 1, 2, 3, 4}.
Atomic register The notion of an atomic register was defined in Sect. 2.1.1. Due
to the total order on all its operations, an atomic register is more constrained (i.e.,
stronger) than a regular register.

R.read() → v

p1

p2

R.write(2)R.write(1) R.write(3) R.write(4)

R.read() → 1

Fig. 2.23 An execution of a regular register

2.3 Mutex Without Atomicity 47

R.write(1)

R.read() → 1

R.write(0) R.write(0)
p1

p2

R.read() → cR.read() → 0R.read() → bR.read() → a

Fig. 2.24 An execution of a register

Table 2.1 Values returned by safe, regular and atomic registers
Value returned a b c Number of correct executions

Safe 1/0 1/0 1/0 8
Regular 1/0 1/0 0 4
Atomic 1 1/0 0 3
Atomic 0 0 0

To illustrate the differences between safe, regular, and atomic, Fig. 2.24 presents
an execution of a binary register R and Table 2.1 describes the values returned by
the read operations when the register is safe, regular, and atomic. The first and third
read by p2 are issued in a concurrency-free context. Hence, whatever the type of the
register, the value returned is the current value of the register R.

• If R is safe, as the other read operations are concurrent with a write operation,
they can return any value (i.e., 0 or 1 as the register is binary). This is denoted 0/1
in Table 2.1.

It follows that there are eight possible correct executions when the register R is
safe for the concurrency pattern depicted in Fig. 2.24.

• If R is regular, each of the values a and b returned by the read operation which
is concurrent with R.write(0) can be 1 (the value of R before the read oper-
ation) or 0 (the value of R that is written concurrently with the read operation).

Differently, the value c returned by the last read operation can only be 0 (because
the value that is written concurrently does not change the value of R).

It follows that there are only four possible correct executions when the register R
is regular.

• If R is atomic, there are only three possible executions, each corresponding to a
correct sequence of read and write invocations (“correct” means that the sequence
respects the real-time order of the invocations and is such that each read invocation
returns the value written by the immediately preceding write invocation).

48 2 Solving Mutual Exclusion

2.3.2 The Bakery Mutex Algorithm

Principle of the algorithm The mutex algorithm presented in this section is due to
L. Lamport (1974) who called it the mutex bakery algorithm. It was the first algorithm
ever designed to solve mutual exclusion on top of non-atomic registers, namely on
top of SWMR safe registers. The principle that underlies its design (inspired from
bakeries where a customer receives a number upon entering the store, hence the
algorithm name) is simple. When a process pi wants to acquire the critical section,
it acquires a number x that defines its priority, and the processes enter the critical
section according to their current priorities.

As there are no atomic registers, it is possible that two processes obtain the same
number. A simple way to establish an order for requests that have the same number
consists in using the identities of the corresponding processes. Hence, let a pair 〈x, i〉
define the identity of the current request issued by pi . A total order is defined for
the requests competing for the critical section as follows, where 〈x, i〉 and 〈y, j〉
are the identities of two competing requests; 〈x, i〉 < 〈y, j〉 means that the request
identified by 〈x, i〉 has priority over the request identified by 〈y, j〉 where “<” is
defined as the lexicographical ordering on pairs of integers, namely

〈x, i〉 < 〈y, j〉 ≡ (x < y) ∨ ((x = y) ∧ (i < j)).

Description of the algorithm Two SWMR safe registers, denoted FLAG[i] and
MY_TURN[i], are associated with each process pi (hence these registers can be read
by any process but written only by pi).

• MY_TURN[i] (which is initialized to 0 and reset to that value when pi exits the
critical section) is used to contain the priority number of pi when it wants to use the
critical section. The domain of MY_TURN[i] is the set of non-negative integers.

• FLAG[i] is a binary control variable whose domain is {down, up}. Initialized to
down, it is set to up by pi while it computes the value of its priority number
MY_TURN[i].
The sequence of values taken by FLAG[i] is consequently the regular expression
down(up, down)∗. The reader can verify that a binary safe register whose write
operations of down and up alternate behaves as a regular register.

The algorithm of a process pi is described in Fig. 2.25. When it invokes acquire_
mutex(), process pi enters a “doorway” (lines 1–3) in which it computes its turn
number MY_TURN[i] (line 2). To that end it selects a number greater than all
MY_TURN[j], 1 ≤ j ≤ n. It is possible that pi reads some MY_TURN[j]while it is
written by p j . In that case the value obtained from MY_TURN[j] can be any value.
Moreover, a process informs the other processes that it is computing its turn value by
raising its flag before this computation starts (line 1) and resetting it to down when
it has finished (line 3). Let us observe that a process is never delayed while in the
doorway, which means no process can direct another process to wait in the doorway.

2.3 Mutex Without Atomicity 49

Fig. 2.25 Lamport’s bakery mutual exclusion algorithm

After it has computed its turn value, a process pi enters a “waiting room” (lines
4–7) which consists of a for loop with one loop iteration per process p j . There are
two cases:

• If p j does not want to enter the critical section, we have FLAG[j] = down ∧
MY_TURN[j] = 0. In this case, pi proceeds to the next iteration without being
delayed by p j .

• Otherwise, pi waits until FLAG[j] = down (i.e., until p j has finished to compute
its turn, line 5) and then waits until either p j has exited the critical section (predicate
MY_TURN[j] = 0) or pi ’s current request has priority over p j ’s one (predicate
(MY_TURN[i], i) < (MY_TURN[j], j)).

When pi has priority with respect to each other process (these priorities being
checked in an arbitrary order, one after the other) it enters the critical section
(line 8).

Finally, when it exits the critical section, the only thing a process pi has to do is
to reset MY_TURN[i] to 0 (line 9).

Remark: process crashes Let us consider the case where a process may crash (i.e.,
stop prematurely). It is easy to see that the algorithm works despite this type of failure
if, after a process pi has crashed, its two registers FLAG[i] and MY_TURN[i] are
eventually reset to their initial values. When this occurs, the process pi is considered
as being no longer interested in the critical section.

A first in first out (FIFO) order As already indicated, the priority of a process
pi over a process p j is defined from the identities of their requests, namely the pairs
〈MY_TURN[i], i〉 and 〈MY_TURN[j], j〉. Moreover, let us observe that it is not
possible to predict the values of these pairs when pi and p j compute concurrently
the values of MY_TURN[i] and MY_TURN[j].

50 2 Solving Mutual Exclusion

Let us consider two processes pi and p j that have invoked acquire_mutex() and
where pi has executed its doorway part (line 2) before p j has started executing its
doorway part. We will see that the algorithm guarantees a FIFO order property defined
as follows: pi terminates its invocation of acquire_mutex() (and consequently enters
the critical section) before p j . This FIFO order property is an instance of the bounded
bypass liveness property with f (n) = n − 1.

Definitions The following time instant definitions are used in the proof of
Theorem 9. Let px be a process. Let us remember that, as the read and write operations
on the registers are not atomic, they cannot be abstracted as having been executed
instantaneously. Hence, when considering the execution of such an operation, its
starting time and its end time are instead considered.

The number that appears in the following definitions corresponds to a line number
(i.e., to a register operation). Moreover, “b” stands for “beginning” while “e” stands
for “end”.

1. τ x
e (1) is the time instant at which px terminates the assignment FLAG[x] ← up

(line 1).

2. τ x
e (2) is the time instant at which px terminates the execution of line 2. Hence,

at time τ x
e (2) the non-atomic register MY_TURN[x] contains the value used by

px to enter the critical section.

3. τ x
b (3) is the time instant at which px starts the execution of line 3. This means that

a process that reads FLAG[x] during the time interval [τ x
e (1)..τ x

b (3)] necessarily
obtains the value up.

4. τ x
b (5, y) is the time instant at which px starts its last evaluation of the waiting

predicate (with respect to FLAG[y]) at line 5. This means that px has obtained
the value down from FLAG[y].

5. Let us notice that, as it is the only process which writes into MY_TURN[x],
px can save its value in a local variable. This means that the reading of
MY_TURN[x] entails no access to the shared memory. Moreover, as far as a
register MY_TURN[y] (y �= x) is concerned, we consider that px reads it once
each time it evaluates the predicate of line 6.

τ x
b (6, y) is the time instant at which px starts its last reading of MY_TURN[y].

Hence, the value turn it reads from MY_TURN[y] is such that (turn =
0) ∨ 〈MY_TURN[x], x〉 < 〈turn, y〉.

Terminology Let us remember that a process px is “in the doorway” when it
executes line 2. We also say that it “is in the bakery” when it executes lines 4–9.
Hence, when it is in the bakery, px is in the waiting room, inside the critical section,
or executing release_mutex(x).

Lemma 1 Let pi and p j be two processes that are in the bakery and such
that pi entered the bakery before p j enters the doorway. Then MY_TURN[i] <

MY_TURN[j].

2.3 Mutex Without Atomicity 51

Proof Let turni be the value used by pi at line 6. As pi is in the bakery (i.e., exe-
cuting lines 4–9) before p j enters the doorway (line 2), it follows that MY_TURN[i]
was assigned the value turni before p j reads it at line 2. Hence, when p j reads the
safe register MY_TURN[i], there is no concurrent write and p j consequently obtains
the value turni . It follows that the value turn j assigned by p j to MY_TURN[j] is
such that turn j ≥ turni + 1, from which the lemma follows. �

Lemma 2 Let pi and p j be two processes such that pi is inside the critical section
while p j is in the bakery. Then 〈MY_TURN[i], i〉 < 〈MY_TURN[j], j〉.
Proof Let us notice that, as p j is inside the bakery, it can be inside the critical
section.

As process pi is inside the critical section, it has read down from FLAG[j] at
line 5 (and exited the corresponding wait statement). It follows that, according to the
timing of this read of FLAG[j] that returned the value down to pi and the updates
of FLAG[j] by p j to up at line 1 or down at line 3 (the only lines where FLAG[j]
is modified), there are two cases to consider (Fig. 2.26).

As pi reads down from FLAG[j], we have either τ i
b(5, j) < τ

j
e (1) or τ i

e(5, j) >

τ
j

b (3) (see Fig. 2.26). This is because if we had τ i
b(5, j) > τ

j
e (1), pi would

necessarily have read up from FLAG[j] (left part of the figure), and, if we had
τ i

b(5, j) < τ
j

b (3), pi would necessarily have also read up from FLAG[j] (right part
of the figure). Let us consider each case:

• Case 1: τ i
b(5, j) < τ

j
e (1) (left part of Fig. 2.26). In this case process, pi has entered

the bakery before process p j enters the doorway. It then follows from Lemma 1
that MY_TURN[i] < MY_TURN[j], which proves the lemma for this case.

• Case 2: τ i
e(5, j) > τ

j
b (3) (right part of Fig. 2.26). As p j is sequential, we have

τ
j

e (2) < τ
j

b (3) (P1). Similarly, as pi is sequential, we also have τ i
b(5, j) < τ i

b(6, j)

(P2). Combing (P1), (P2), and the case assumption, namely τ
j

b (3) < τ i
b(5, j), we

obtain
τ

j
e (2) < τ

j
b (3) < τ i

e(5, j) < τ i
b(6, j);

pj

pi

τ j
e (1)

pi

pj

FLAG [j] ← down

τj
b (3)

FLAG [j] → down FLAG [j] → down

FLAG [j] ← up

τ i
b(5, j) τ i

e(5, j)

Fig. 2.26 The two cases where p j updates the safe register FLAG[j]

52 2 Solving Mutual Exclusion

i.e., τ
j

e (2) < τ i
b(6, j) from which we conclude that the last read of

MY_TURN[j] by pi occurred after the safe register MY_TURN[j] obtained its
value (say turn j).
As pi is inside the critical section (lemma assumption), it exited the second wait
statement because (MY_TURN[j] = 0)∨〈MY_TURN[i], i〉<〈MY_TURN[j], j〉.
Moreover, as p j was in the bakery before pi executed line 6 (τ j

e (2) < τ i
b(6, j)), we

have MY_TURN[j] = turn j �= 0. It follows that we have 〈MY_TURN[i], i〉 <

〈MY_TURN[j], j〉, which terminates the proof of the lemma. �

Theorem 9 Lamport’s bakery algorithm satisfies mutual exclusion and the bounded
bypass liveness property where f (n) = n − 1.

Proof Proof of the mutual exclusion property. The proof is by contradiction. Let
us assume that pi and p j (i �= j) are simultaneously inside the critical section. We
have the following:

• As pi is inside the critical section and p j is inside the bakery, we can apply Lemma
2. We then obtain: 〈MY_TURN[i], i〉 < 〈MY_TURN[j], j〉.
• Similarly, as p j is inside the critical section and pi is inside the bakery, applying

Lemma 2, we obtain: 〈MY_TURN[j], j〉 < 〈MY_TURN[i], i〉.
As i �= j , the pairs 〈MY_TURN[j], j〉 and 〈MY_TURN[i], i〉 are totally ordered.

It follows that each item contradicts the other, from which the mutex property follows.
Proof of the FIFO order liveness property. The proof shows first that the algo-

rithm is deadlock-free. It then shows that the algorithm satisfies the bounded
bypass property where f (n)= n − 1 (i.e., the FIFO order as defined on the pairs
〈MY_TURN[x], x〉).

The proof that the algorithm is deadlock-free is by contradiction. Let us assume
that processes have invoked acquire_mutex() and no process exits the waiting room
(lines 4–7). Let Q be this set of processes. (Let us notice that, for any other process
p j , we have FLAG[j] = down and MY_TURN[j] = 0.) As the number of processes
is bounded and no process has to wait in the doorway, there is a time after which
we have ∀ j ∈ {1, . . . , n} : FLAG[j] = down, from which we conclude that no
process of Q can be blocked forever in the wait statement of line 5.

By construction, the pairs 〈MY_TURN[x], x〉 of the processes px ∈ Q are totally
ordered. Let 〈MY_TURN[i], i〉 be the smallest one. It follows that, eventually, when
evaluated by pi , the predicate associated with the wait statement of line 6 is satisfied
for any j . Process pi then enters the critical section, which contradicts the deadlock
assumption and proves that the algorithm is deadlock-free.

To show the FIFO order liveness property, let us consider a pair of processes pi

and p j that are competing for the critical section and such that p j wins and after
exiting the critical section it invokes acquire_mutex(j) again, executes its doorway,
and enters the bakery. Moreover, let us assume that pi is still waiting to enter the
critical section. Let us observe that we are then in the context defined in Lemma 1: pi

and p j are in the bakery and pi entered the bakery before p j enters the doorway.

2.3 Mutex Without Atomicity 53

We then have MY_TURN[i] < MY_TURN[j], from which we conclude that p j

cannot bypass again pi . As there are n processes, in the worst case pi is competing
with all other processes. Due to the previous observation and the fact that there is
no deadlock, it can lose at most n − 1 competitions (one with respect to each other
process p j (which enters the critical section before pi), which proves the bounded
bypass liveness property with f (n) = n − 1. �

2.3.3 A Bounded Mutex Algorithm

This section presents a second mutex algorithm which does not require underlying
atomic registers. This algorithm is due to A. Aravind (2011). Its design principles
are different from the ones of the bakery algorithm.

Principle of the algorithm The idea that underlies the design of this algorithm is to
associate a date with each request issued by a process and favor the competing process
which has the oldest (smallest) request date. To that end, the algorithm ensures that
(a) the dates associated with requests are increasing and (b) no two process requests
have the same date.

More precisely, let us consider a process pi that exits the critical section. The
date of its next request (if any) is computed in advance when, just after pi has used
the critical section, it executes the corresponding release_mutex() operation. In that
way, the date of the next request of a process is computed while this process is still
“inside the critical section”. As a consequence, the sequence of dates associated with
the requests is an increasing sequence of consecutive integers and no two requests
(from the same process or different processes) are associated with the same date.

From a liveness point of view, the algorithm can be seen as ensuring a least
recently used (LRU) priority: the competing process whose previous access to the
critical section is the oldest (with respect to request dates) is given priority when it
wants to enter the critical section.

Safe registers associated with each process The following three SWMR safe
registers are associated with each process pi :

• FLAG[i], whose domain is {down, up}. It is initialized to up when pi wants to
enter the critical section and reset to down when pi exits the critical section.

• If pi is not competing for the critical section, the safe register DATE[i] contains the
(logical) date of its next request to enter the critical section. Otherwise, it contains
the logical date of its current request.

DATE[i] is initialized to i . Hence, no two processes start with the same date for
their first request. As already indicated, pi will compute its next date (the value
that will be associated with its next request for the critical section) when it exits
the critical section.

• STAGE[i] is a binary control variable whose domain is {0, 1}. Initialized to 0,
it is set to 1 by pi when pi sees DATE[i] as being the smallest date among the

54 2 Solving Mutual Exclusion

Fig. 2.27 Aravind’s mutual exclusion algorithm

dates currently associated with the processes that it perceives as competing for the
critical section. The sequence of successive values taken by STAGE[i] (including
its initial value) is defined by the regular expression 0((0, 1)+, 0)∗.

Description of the algorithm Aravind’s algorithm is described in Fig. 2.27. When
a process pi invokes acquire_mutex(i) it first sets its flag FLAG[i] to up (line 1),
thereby indicating that it is interested in the critical section. Then, it enters a loop
(lines 2–5), at the end of which it will enter the critical section. The loop body is made
up of two stages, denoted 0 and 1. Process pi first sets STAGE[i] to 0 (line 2) and
waits until the dates of the requests of all the processes that (from its point of view) are
competing for the critical section are greater than the date of its own request. This is
captured by the predicate

(∀ j �= i : (FLAG[j] = down)∨(DATE[i] < DATE[j])),
which is asynchronously evaluated by pi at line 3. When, this predicate becomes
true, pi proceeds to the second stage by setting STAGE[i] to 1 (line 1).

Unfortunately, having the smallest request date (as asynchronously checked at
line 3 by a process pi) is not sufficient to ensure the mutual exclusion property. More
precisely, several processes can simultaneously be at the second stage. As an example
let us consider an execution in which pi and p j are the only processes that invoke
acquire_mutex() and are such that DATE[i] = a < DATE[j] = b. Moreover,
p j executes acquire_mutex() before pi does. As all flags (except the one of p j)
are equal to down, p j proceeds to stage 1 and, being alone in stage 1, exits the
loop and enters the critical section. Then, pi executes acquire_mutex(). As a < b,
pi does not wait at line 3 and is allowed to proceed to the second stage (line 4). This
observation motivates the predicate that controls the end of the repeat loop (line 5).
More precisely, a process pi is granted the critical section only if it is the only process
which is at the second stage (as captured by the predicate ∀ j �= i : (STAGE[j] = 0)

evaluated by pi at line 5).

2.3 Mutex Without Atomicity 55

Finally, when a process pi invokes release_mutex(i), it resets its control registers
STAGE[i] and FLAG[i] to their initial values (0 and down, respectively). Before
these updates, pi benefits from the fact that it is still “inside the critical section” to
compute the date of its next request and save it in DATE[i] (line 7). It is important
to see that no process p j modifies DATE[j] while pi reads the array DATE[1..n].
Consequently, despite the fact that the registers are only SWMR safe registers (and not
atomic registers), the read of any DATE[j] at line 7 returns its exact value. Moreover,
it also follows from this observation that no two requests have the same date and the
sequence of dates used by the algorithm is the sequence of natural integers.

Theorem 10 Aravind’s algorithm (described in Fig. 2.27) satisfies mutual exclusion
and the bounded bypass liveness property where f (n) = n − 1.

Proof The proof of the mutual exclusion property is by contradiction. Let us assume
that both pi and p j (i �= j) are in the critical section.

Let τ i
b(4) (or τ i

e(4)) be the time instant at which pi starts (or terminates) writing
STAGE[i] at line 4 and τ i

b(5, j) (or τ i
e(5, j)) be the time instant at which pi starts (or

terminates) reading STAGE[j] for the last time at line 5 (before entering the critical
section). These time instants are depicted in Fig. 2.28. By exchanging i and j we
obtain similar notations for time instants associated with p j .

As pi is inside the critical section, it has read 0 from STAGE[j] at line 5 and
consequently we have τ i

b(5, j) < τ
j

e (4) (otherwise, pi would necessarily have read
1 from STAGE[j]). Moreover, as pi is sequential we have τ i

e(4) < τ i
b(5, j), and as

p j is sequential, we have τ
j

e (4) < τ
j

b (5, i). Piecing together the inequalities, we
obtain

τ i
e(4) < τ i

b(5, j) < τ
j

e (4) < τ
j

b (5, i),

from which we conclude τ i
e(4) < τ

j
b (5, i), i.e., the last read of STAGE[i] by p j at line

5 started after pi had written 1 into it. Hence, the last read of STAGE[i] by p j returned
1 which contradicts the fact that it is inside the critical section simultaneously with
pi . (A similar reasoning shows that, if p j is inside the critical section, pi cannot be.)

Before proving the liveness property, let us notice that at most one process at a
time can modify the array DATE[1..n]. This follows from the fact that the algorithm
satisfies the mutual exclusion property (proved above) and line 7 is executed by
a process pi before it resets STAGE[i] to 0 (at line 8), which is necessary to allow

STAGE [j] → 0

τ i
b(4) τ i

e(4) τ i
e(5, j)τ i

b(5, j)

pi

STAGE [i] ← 1

Fig. 2.28 Relevant time instants in Aravind’s algorithm

56 2 Solving Mutual Exclusion

another process p j to enter the critical section (as the predicate of line 5 has to be true
when evaluated by p j). It follows from the initialization of the array DATE[1..n] and
the previous reasoning that no two requests can have the same date and the sequence
of dates computed in mutual exclusion at line 7 by the processes is the sequence of
natural integers (Observation OB).

As in the proof of Lamport’s algorithm, let us first prove that there is no deadlock.
Let us assume (by contradiction) that there is a non-empty set of processes Q that have
invoked acquire_mutex() and no process succeeds in entering the critical section.
Let pi be the process of Q with the smallest date. Due to observation OB, there is a
single process pi . It then follows that, after some finite time, pi is the only process
whose predicate at line 3 is satisfied. Hence, after some time, pi is the only process
such that STAGE[i] = 1, which allows it to enter the critical section. This contradicts
the initial assumption and proves the deadlock-freedom property.

As a single process at a time can modify its entry of the array DATE, it follows
that a process p j that exits the critical section updates its register DATE[j] to a
value greater than all the values currently kept in DATE[1..n]. Consequently, after
p j has executed line 7, all the other processes pi which are currently competing
for the critical section are such that DATE[i] < DATE[j]. Hence, as we now have
(FLAG[i] = up) ∧ (DATE[i] < DATE[j]), the next request (if any) issued by p j

cannot bypass the current request of pi , from which the starvation-freedom property
follows.

Moreover, it also follows from the previous reasoning that, if pi and p j are
competing and p j wins, then as soon as p j has exited the critical section pi has
priority over p j and can no longer be bypassed by it. This is nothing else than the
bounded bypass property with f (n) = n− 1 (which defines a FIFO order property).

�
Bounded mutex algorithm Each safe register MY_TURN[i] of Lamport’s algo-
rithm and each safe register DATE[i] of Aravind’s algorithm can take arbitrary large
values. It is shown in the following how a simple modification of Aravind’s algorithm
allows for bounded dates. This modification relies on the notion of an MWMR safe
register.

MWMR safe register An MWMR safe register is a safe register that can be written
and read by several processes. When the write operations are sequential, an MWMR
safe register behaves as an SWMR safe register. When write operations are concur-
rent, the value written into the register is any value of its domain (not necessarily a
value of a concurrent write).

Said differently, to be meaningful, an algorithm based on MWMR safe registers
has to prevent write operations on an MWMR safe register from being concurrent in
order for the write operations to be always meaningful. The behavior of an MWMR
safe register is then similar to the behavior of an SWMR safe register in which the
“single writer” is implemented by several processes that never write at the same time.

From unbounded dates to bounded dates Let us now consider that each safe
register DATE[i], 1 ≤ i ≤ n, is an MWMR safe register: any process pi can write
any register DATE[j]. MWMR safe registers allow for the design of a (particularly

2.3 Mutex Without Atomicity 57

simple) bounded mutex algorithm. The domain of each register DATE[j] is now
[1..N] where N ≥ 2n. Hence, all registers are safe and have a bounded domain.
In the following we consider N = 2n. A single bit is needed for each safe register
FLAG[j] and each safe register STAGE[j], and only log2 N� bits are needed for
each safe register DATE[j].

In a very interesting way, no statement has to be modified to obtain a bounded
version of the algorithm. A single new statement has to be added, namely the insertion
of the following line 7′ between line 7 and line 8:

(7′) if (DATE[i] ≥ N) then for all j ∈ [1..n] do DATE[j] ← j end for end if .

This means that, when a process pi exiting the critical section updates its register
DATE[i] and this update is such that DATE[i] ≥ N , pi resets all date registers
to their initial values. As for line 7, this new line is executed before STAGE[i] is
reset to 0 (line 8), from which it follows that it is executed in mutual exclusion and
consequently no two processes can concurrently write the same MWMR safe register
DATE[j]. Hence, the MWMR safe registers are meaningful.

Moreover, it is easy to see that the date resetting mechanism is such that each
date d, 1 ≤ d ≤ n, is used only by process pd , while each date d, n + 1 ≤ d ≤ 2n
can be used by any process. Hence, ∀d ∈ {1, . . . , n} we have DATE[d] ∈ {d, n +
1, n + 2, . . . , 2n}.
Theorem 11 When considering Aravind’s mutual exclusion algorithm enriched with
line 7′ with N ≥ 2n, a process encounters at most one reset of the array DATE[1..n]
while it is executing acquire_mutex().

Proof Let pi be a process that executes acquire_mutex() while a reset of the array
DATE[1..n] occurs. If pi is the next process to enter the critical section, the theorem
follows. Otherwise, let p j be the next process which enters the critical section. When
p j exits the critical section, DATE[j] is updated to max(DATE[1], . . . , DATE[n])+
1 = n + 1. We then have FLAG[i] = up and DATE[i] < DATE[j]. It follows that,
if there is no new reset, p j cannot enter again the critical section before pi .

In the worst case, after the reset, all the other processes are competing with pi

and pi is pn (hence, DATE[i] = n, the greatest date value after a reset). Due to
line 3 and the previous observation, each other process p j enters the critical section
before pi and max(DATE[1], . . . , DATE[n]) becomes equal to n + (n − 1). As
2n − 1 < 2n ≤ N , none of these processes issues a reset. It follows that pi enters
the critical section before the next reset. (Let us notice that, after the reset, the
invocation issued by pi can be bypassed only by invocations (pending invocations
issued before the reset or new invocations issued after the reset) which have been
issued by processes p j such that j < i). �

The following corollary is an immediate consequence of the previous theorem.

Corollary 2 Let N ≥ 2n. Aravind’s mutual exclusion algorithm enriched with line
7′ satisfies the starvation-freedom property.

58 2 Solving Mutual Exclusion

(Different progress conditions that this algorithm can ensure are investigated in
Exercise 6.)

Bounding the domain of the safe registers has a price. More precisely, the addition
of line 7′ has an impact on the maximal number of bypasses which can now increase
up to f (n) = 2n−2. This is because, in the worst case where all the processes always
compete for the critical section, before it is allowed to access the critical section, a
process can be bypassed (n−1) times just before a reset of the array DATE and, due
to the new values of DATE[1..n], it can again be bypassed (n − 1) times just after
the reset.

2.4 Summary

This chapter has presented three families of algorithms that solve the mutual exclu-
sion problem. These algorithms differ in the properties of the base operations they
rely on to solve mutual exclusion.

Mutual exclusion is one way to implement atomic objects. Interestingly, it was
shown that implementing atomicity does not require the underlying read and write
operations to be atomic.

2.5 Bibliographic Notes

• The reader will find surveys on mutex algorithms in [24, 231, 262]. Mutex algo-
rithms are also described in [41, 146].

• Peterson’s algorithm for two processes and its generalization to n processes are
presented in [224].

The first tournament-based mutex algorithm is due to G.L. Peterson and M.J.
Fischer [227].

A variant of Peterson’s algorithm in which all atomic registers are SWMR registers
due to J.L.W. Kessels is presented in [175].

• The contention-abortable mutex algorithm is inspired from Lamport’s fast mutex
algorithm [191]. Fischer’s synchronous algorithm is described in [191].

Lamport’s fast mutex algorithm gave rise to the splitter object as defined in [209].

The notion of fast algorithms has given rise to the notion of adaptive algorithms
(algorithms whose cost is related to the number of participating processes) [34].

• The general construction from deadlock-freedom to starvation-freedom that was
presented in Sect. 2.2.2 is from [262]. It is due to Y. Bar-David.

2.5 Bibliographic Notes 59

• The notions of safe, regular, and atomic read/write registers are due to L. Lamport.
They are presented and investigated in [188, 189]. The first intuition on these types
of registers appears in [184].

It is important to insist on the fact that “non-atomic” does not mean “arbiter-free”.
As defined in [193], “An arbiter is a device that makes a discrete decision based on
a continuous range of values”. Binary arbiters are the most popular. Actually, the
implementation of a safe register requires an arbiter. The notion of arbitration-free
synchronization is discussed in [193].

• Lamport’s bakery algorithm is from [183], while Aravind’s algorithm and its
bounded version are from [28].

• A methodology based on model-checking for automatic discovery of mutual exclu-
sion algorithms has been proposed by Y. Bar-David and G. Taubenfeld [46]. Inter-
estingly enough, this methodology is both simple and computationally feasible.
New algorithms obtained in this way are presented in [46, 262].

• Techniques (and corresponding algorithms) suited to the design of locks for
NUMA and CC-NUMA architectures are described in [86, 200]. These techniques
take into account non-uniform memories and caching hierarchies.

• A combiner is a thread which, using a coarse-grain lock, serves (in addition to its
own synchronization request) active requests announced by other threads while
they are waiting by performing some form of spinning. Two implementations of
such a technique are described in [173]. The first addresses systems that support
coherent caches, whereas the second works better in cacheless NUMA architec-
tures.

2.6 Exercises and Problems

1. Peterson’s algorithm for two processes uses an atomic register denoted TURN
that is written and read by both processes. Design a two-process mutual exclusion
algorithm (similar to Peterson’s algorithm) in which the register TURN is replaced
by two SWMR atomic registers TURN[i](which can be written only by pi) and
TURN[j](which can be written only by p j). The algorithm will be described for
pi where i ∈ {0, 1} and j = (i + 1) mod 2.

Solution in [175].

2. Considering the tournament-based mutex algorithm, show that if the base two-
process mutex algorithm is deadlock-free then the n-process algorithm is
deadlock-free.

60 2 Solving Mutual Exclusion

3. Design a mutex starvation-free algorithm whose cost (measured by the number of
shared memory accesses) depends on the number of processes which are currently
competing for the critical section. (Such an algorithm is called adaptive.)

Solutions in [23, 204, 261].

4. Design a fast deadlock-free mutex synchronous algorithm. “Fast” means here
that, when no other process is interested in the critical section when a process p
requires it, then process p does not have to execute the delay() statement.

Solution in [262].

5. Assuming that all registers are atomic (instead of safe), modify Lamport’s bakery
algorithm in order to obtain a version in which all registers have a bounded
domain.

Solutions in [171, 261].

6. Considering Aravind’s algorithm described in Fig. 2.27 enriched with the reset
line (line 7′):

• Show that the safety property is independent of N ; i.e., whatever the value of
N (e.g., N = 1), the enriched algorithm allows at most one process at a time
to enter the critical section.

• Let x ∈ {1, . . . , n − 1}. Which type of liveness property is satisfied when
N = x + n (where n is the number of processes).

• Let I = {i1, . . . , iz} ⊆ {1, . . . , n} be a predefined subset of process indexes.
Modify Aravind’s algorithm in such a way that starvation-freedom is guar-
anteed only for the processes px such that x ∈ I . (Let us notice that this
modification realizes a type of priority for the processes whose index belong
to I in the sense that the algorithm provides now processes with two types of
progress condition: the invocations of acquire_mutex() issued by any process
px with x ∈ I are guaranteed to terminate, while they are not if x /∈ I .)
Modify Aravind’s algorithm so that the set I can be dynamically updated (the
main issue is the definition of the place where such a modification has to
introduced).

