
Concurrent Programming (RIO) 8.12.2009

Lecture 12: Current Research,
Summary 1

Current Research
Course Review

[Pat 08] [A-TKS 07] [KCHK 06]

Moore’s Law
Multiprocessor Challenge in 1980’s

Multicore Challenge Now
Course Review

18.12.2009 Copyright Teemu Kerola 2009

Lesson 12 Moore’s Law
• “The number of transistors that can be

inexpensively placed on an integrated circuit is
increasing exponentially, doubling approximately
every two years” (orig. 18 months)
– Gordon E. Moore, 1965
– Memory size in chips will double every two years
– Increase in transistor count is also a rough measure of

computer processing performance, resulting to
processing speed doubling every two years

• “Heat barrier” limit for processing speed reached
2004
– Luke Collins, IEE Review, Jan 2003

28.12.2009 Copyright Teemu Kerola 2009

http://ieeexplore.ieee.org/iel5/2188/26844/01193720.pdf

Problem
• Moore’s Law will

not give us faster
processors (any
more)
– But it gives us now

more processors on
one chip

• Multicore CPU
• Chip-level

multiprocessor
(CMP)

38.12.2009 Copyright Teemu Kerola 2009

Herb Sutter, “A Fundamental Turn
Toward Concurrency in SW”,
Dr. Dobb’s Journal, 2005.

http://www.cs.helsinki.fi/u/kerola/rio/papers/sutter_2005.pdf
48.12.2009 Copyright Teemu Kerola 2009

Borkar, Dubey, Kahn, et al. “Platform 2015.” Intel White Paper, 2005.

(hyper-
threads)

http://www.cs.helsinki.fi/u/kerola/rio/papers/borkar_2015.pdf

Moore’s Law Reinterpreted

• Number of cores per chip doubles every two
years, while clock speed decreases
– Need to utilize systems with hundreds or thousands of

cores
– Need to handle systems with millions (billions?) of

concurrent threads
– Need to emphasize scalability – not best performance

for fixed number of cores.
– Need to be able to easily replace inter-chip parallelism

with intra-chip parallelism

58.12.2009 Copyright Teemu Kerola 2009

Marc Snir http://www.cs.helsinki.fi/u/kerola/rio/papers/snir_2008.pdf

Multi-core: An Inflection Point
also in SW Development

• Multi-core architectures: an inflection point in
mainstream SW development

• Writing parallel SW is hard
– Mainstream developers (currently) not used to thinking

in parallel
– Mainstream languages (currently) force the use of

low-level concurrency features
– Must have with new systems?

• Navigating through this inflection point requires
better concurrency abstractions

68.12.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 8.12.2009

Lecture 12: Current Research,
Summary 2

The Multicore Challenge
• Heat barrier dead-end for chip speed
• So, try now multicore chips …

– Shared memory multiprocessor
• Similar multiprocessor HW tried before (not at chip level)

– Convex, Floating Point Systems, INMOS, Thinking Machines,
nCUBE, Kendall Square Research, MasPar, Encore, Sequent, …

– All failed – Patterson’s “Dead Parallel Computer Society”
• John Hennessy:

– “…when we start talking about parallelism and ease of use of truly
parallel computers, we’re talking about a problem that’s as hard as any
that computer science has faced. … I would be panicked if I were in
industry.”

• Challenge: How to use multicore effectively
• Answer: Industry/government funded research?

– Scale: Manhattan Project

78.12.2009 Copyright Teemu Kerola 2009

http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=445&page=4

http://www.cccblog.org/2008/08/26/the-multicore-challenge/

MCC 1983 - (2000)
• re: Japanese 5th Generation Project

– Ministry of Internat. Trade and Industry (MITI)
– Japan, 1982, 10 years, $850M
– New type of computer to run Artificial Intelligence applications

• US national level response to Japanese MITI Project
– Massively Parallel Processing (MPP), how to build and use them

• Microelectronics and Computer Technology Corporation
(MCC), Austin, Texas
– Some 450 researchers in 1986
– 12 companies in 1983: Control Data, DEC, Harris, RCA,

Sperry-Univac, NCR, Honeywell, National Semiconductor,
Advanced Micro Devices, Motorola, …

– More companies later on: Microsoft, Boeing, GE, Lockheed,
Martin Marietta, Westinghouse, 3M, Rockwell, Kodak,
Nokia 1997, DoD, …

– Budget $50-100M per year, for 20 years?

88.12.2009 Copyright Teemu Kerola 2009
http://www.tshaonline.org/handbook/online/articles/MM/dnm1.html

MCC 1983 - (2000)

• CEO Admiral Bobby Ray Inman (ex NSA #1, ex CIA #2)
– Well connected, new law to avoid antitrust problems 1984

• Main Research Areas (Programs)
– Software technology, semiconductor packaging, VLSI computer-

aided design, parallel processing, database management, human
interfaces and artificial intelligence/knowledge-based systems

• Parallel Processing Program
– “What type of MPP computer to build and how to use it?”
– VP Peter Patton 1983-86, VP Stephen Lundstrom 1986-87
– Some 30 researchers for 3 years, lots of resources
– Lots of published (and proprietary) research papers
– Reviews every 3 months, for knowledge transformation

from MCC to shareholding companies
– Could not formulate goal properly, starts to disintegrate 1987

98.12.2009 Copyright Teemu Kerola 2009

http://en.wikipedia.org/wiki/Microelectronics_and_Computer_Technology_Corporation

B.R. Inman

Peter Patton

S. Lundstrom

MPP Challenge in early 1980’s
• Shared memory multiprocessors

– With cache coherence
– Memory bus can handle some 20 processors

• More processors have new problems
– Interconnect networks

• All-to-all, butterfly, cube connected cycles, hyper-cube, …
– Multi-level memory, varying memory access times

• Local, shared, node, network, …

• Operating systems
– Shared Memory OS, Distributed OS?
– Compiler technology – ouch!

• Applications tailored for just one system?

108.12.2009 Copyright Teemu Kerola 2009

118.12.2009 Copyright Teemu Kerola 2009

The Multicore Challenge Challenge
• The Multicore Challenge

– How to use multicore/shared-memory-multiprocessor effectively?
– Answer: Industry/government funded research for many years (?)

• The Challenge Challenge
– Is the Multicore Challenge the right challenge to take?

• It might fail (again)
– What other challenges would better suit

our need for ever faster computers?
• The Real Challenge (?):

– How to get computational speed to double every two years or
every 18 months for all computations ? (just like before…)

• Currently there is no answer
• What if there is no answer ever? Is that ok?

– Get computational speed to double every two years for some
computations? Is this enough?

• This is doable… but is it enough? Which “some”?

128.12.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 8.12.2009

Lecture 12: Current Research,
Summary 3

Needs for Multicore Challenge
• How to synchronize processes in multiprocessor systems?
• How to make it easy to obtain parallel performance
• Scalable solutions (to many and even more processors)
• Avoid deadlocks
• Data consistency with error situations (abort support)
• Current programming languages force low level solutions
• Amdahl’s Law: Proportion of serial code will give upper

limit on speedup
– With 5% serial code, max speedup is 20 (even for 100 processors)

138.12.2009 Copyright Teemu Kerola 2009

1
Speedup = --------------- where P = parallel code proportion

(1-P) + P/N N = nr of processors

Serial code proportion (1-P) should
be almost zero. How?

US Multicore Challenge Projects
• Target

– 1000-core (or more) processors
– Parallel algorithms, development environments, and

runtime systems that scale to 1000s of hardware threads
– Need new OS & HW architectures

• What exactly is needed? That is the problem!
– What type of MPP computer to build and how to use it?

• Tools
– FPGA-based simulators to test out work

• Field-Programmable Gate Array
• Reprogram HW to test new HW ideas

• Funding problem – another challenge?
– Defence Advanced Research Projects Agency

(DARPA) funding receding in 2000-2008
• Would have been needed big-time

148.12.2009 Copyright Teemu Kerola 2009

US Projects 2008

• Stanford University
– Pervasive Parallelism Lab

• University of California at Berkeley
– Parallel Computing Lab

• University of Illinois at Urbana-Champaign,
– The Universal Parallel Computing Research Center

• The Multicore Association
– Many companies share results

158.12.2009 Copyright Teemu Kerola 2009

Stanford

• John Hennessy (Jan 2007):
– “When we start talking about parallelism and ease of

use of truly parallel computers, we’re talking about a
problem that’s as hard as any that computer science
has faced.”

– “I would be panicked if I were in industry.”

168.12.2009 Copyright Teemu Kerola 2009

John Hennessy

http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=445&page=3

Stanford
• 2008, $6M for 3 years,
• 9 faculty + 30 grad students
• Nvidia, Sun Microsystems, Advanced

Micro Devices, Hewlett-Packard, IBM, Intel
• William Dally (chairman, Stanford CS dept)

– Stream computing, transactional memory

• Enable use of parallelism beyond
traditional scientific computing

• New ideas for high-level concurrency abstractions
• New ideas for hardware support for new paradigms

178.12.2009 Copyright Teemu Kerola 2009

William Dally

http://ppl.stanford.edu/wiki/index.php/Pervasive_Parallelism_Laboratory

http://ppl.stanford.edu/wiki/images/9/93/PPL.pdf

John Hennessy

Stanford
• Goal: the Parallel Computing

Platform for 2012
– Make parallel programming practical for the

masses
– Algorithms, programming models, runtime

systems
– architectures for scalable parallelism

• 10,000s of HW threads
• Parallel computing a core component

of CS education
– Build real, full system prototypes

188.12.2009 Copyright Teemu Kerola 2009

applications

architecture

programming and sw systems

John Hennessy

Concurrent Programming (RIO) 8.12.2009

Lecture 12: Current Research,
Summary 4

Universal Parallel Computer
Research Centers (UPCRC’s)

• Funding: Intel & Microsoft
– Dan Reed (Microsoft, Extreme Comp Grp)

• Univ of California at Berkeley
– Parallel Computing Lab
– David A. Patterson

• Univ of Illinois at Urbana-Champaign
– The Universal Parallel

Computing Research Center
– Marc Snir & Wen-mei Hwu

198.12.2009 Copyright Teemu Kerola 2009
Marc Snir

David Patterson

Wen-mei Hwu

Dan Reed

Berkeley
• David A. Patterson (Aug 2008):

– “Knowing what we know today, if we
could go back in time we would have
launched a Manhattan Project to bring together the best minds in
applications, software architecture, programming languages and
compilers, libraries, testing and correctness, operating systems,
hardware architecture, and chip design to tackle this parallel
challenge.”

– “We need the US Government to return to its historic role to bring
the many more minds on these important problem. To make real
progress, we would need a long-term, multi-hundred million dollar
per year program.“

208.12.2009 Copyright Teemu Kerola 2009

David Patterson

http://www.cccblog.org/2008/08/26/the-multicore-challenge/

http://view.eecs.berkeley.edu/wiki/Main_Page

Berkeley
Parallel Computing Lab David A. Patterson

• David A. Patterson, 10 faculty + 40 grad students
• $17M for 5 years
• Berkeley Emulation Engine v3 (BEE3)
• 7+ basic programming tasks at

the heart of most parallel programs?
– Health Care, Speech Recognition, New Music and

Audio Technologies, Content-based Image Retrieval,
Parallel Browser, Puppet-driven games, …

• Compositional verification and testing

218.12.2009 Copyright Teemu Kerola 2009

David Patterson

http://parlab.eecs.berkeley.edu/pubs/patterson-intro-20070604.ppt

http://view.eecs.berkeley.edu/wiki/Main_Page

Berkeley
• Applications

– Need new 21st century applications
• Medicine, image, music, speech, …

• Computational bottleneck benchmarks
– 7+ dwarfs, use them to analyse hw/sw designs

• Parallel SW development (55% faculty)
– Implement 13 dwarfs as libraries or frameworks
– Efficiency layer by experts (mutex, deadlock, etc)
– Productivity layer by “normal” programmers
– Create Composition and Coordination (C&C) language
– 21st century code generation

• OS and Architecture
– Very thin hypervisors

228.12.2009 Copyright Teemu Kerola 2009

David Patterson

Berkeley
• HW: build own academic Manycore

– Research Accelerator for Multiple Processors
– 4 FGPAs/board, 21 boards (84 FGPA’a)

• 1008 Core RAMP Blue
– 12 32-bit RISC cores / FPGA

• Other architectures by FPGA redesign
– RAMPants: 10 faculty

• Berkeley, CMU, MIT, Stanford, Texas,
Washington

• Create HW&SW for Manycore community

238.12.2009 Copyright Teemu Kerola 2009

Field
Programmable
Gate Array

David Patterson

Illinois
The Universal Parallel Computing Research

Center (UPCRC)

• Marc Snir (Nov 2008):
– “It is possible that parallel programming is inherently

hard, in which case, indeed the sky is falling.”
– “An alternative view is that, intrinsically, parallel

programming is not significantly harder than sequential
programming; rather, it is hampered by the lack of
adequate languages, tools and architectures.”

248.12.2009 Copyright Teemu Kerola 2009

http://www.cccblog.org/2008/11/17/multi-core-and-parallel-programming-is-the-sky-falling/

Marc Snir

Concurrent Programming (RIO) 8.12.2009

Lecture 12: Current Research,
Summary 5

Illinois
• Marc Snir & Wen-mei Hwu
• $17M for 5 years
• Parallel programming can be

(should be?) a child’s play
• Simplicity is hard

– Simpler languages + more complex architectures
– a feast for compiler developers

• What hooks can HW provide to facilitate
programming?
– Sync primitives, debug/performance support

258.12.2009 Copyright Teemu Kerola 2009

Marc Snir Wen-mei Hwu

http://www.upcrc.illinois.edu/

http://www.cs.helsinki.fi/u/kerola/rio/papers/snir_2008.pdf

Illinois
• Moore’s Law Reinterpreted

– Number of cores per chip doubles every two years,
while clock speed decreases

– Need to be able to easily
replace inter-chip
parallelism with
intra-chip parallelism

• Memory Wall
– Most area and energy in

chip budget is spent on
storing and moving bits

• Reliability and Variance
– MTTF (mean time to fail)

per chip does not decrease – hardware is used to mask errors
– Programmers do not have to handle faults

268.12.2009 Copyright Teemu Kerola 2009

Marc Snir

Illinois
• New emphasis on deterministic (repeatable) parallel

computation models – focus on producer-consumer or
barrier synchronization, not on nondeterministic mutual
exclusion
– Simpler languages + more complex architectures

= a feast for compiler developers

• Serial semantics, parallel performance model
– Parallel algorithms are designed by programmers,

not inferred by compilers

• Every computer scientist educated to “think parallel”
– Make parallel programming synonymous with programming

• What hooks can HW provide to facilitate programming?
– Sync primitives, debug/performance support

• There is no silver bullet – no one technology solution
278.12.2009 Copyright Teemu Kerola 2009

Wen-mei Hwu

The Multicore Association
• Intel, NSN, Texas Instruments, Plurality, Wind River,

PolyCore, Samsung, …
• Multicore Communications API (MCAPI) work. gr (wg)

– capture the basic elements of communication and synchronization
for closely distributed embedded systems.

• Multicore Programming Practices (MPP) wg
– develop a multicore software programming guide for the industry

that will aid in improving consistency and understanding of
multicore programming issues

• Multicore Resource Management API (MRAPI) wg
– specify essential application-level resource management

capabilities needed by multicore applications

• Hypervisor wg
– support hypervisor (multiple OS’s on same host) portability and

multicore capabilities.
288.12.2009 Copyright Teemu Kerola 2009

http://www.multicore-association.org/home.php

298.12.2009 Copyright Teemu Kerola 2009
http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=532&page=6

Tesla unified graphics and computing architecture

308.12.2009 Copyright Teemu Kerola 2009

The Cell processor
Fast Roadrunner system
• 12 960 Cells, 1 PFLOPS, 2.3 MW
• 6 948 dual-core Opteron I/O
• total 116 640 cores
• 90 km fiber-optic cable, 500m2

http://www.ibm.com/developerworks/power/library/pa-celltips1/

Intel Teraflops Research Chip wafer
Cool 80-core chip:
• block matrix operations
1 TFLOPS at 1.0V at 110 °C

http://www.legitreviews.com/article/460/1/

Concurrent Programming (RIO) 8.12.2009

Lecture 12: Current Research,
Summary 6

Likely Problems with Multicore
Challenge

• Symmetric Multiprocessor (SMP) scales up to only
somewhere (remember the 1980’s)

• Must have interconnect networks
– Between cores in chip, between chips, boards, and nodes

• How to distribute memory and access it
– Local core memory in cache?
– Memory hierarchy reworked? Disks disappear?

• How to implement I/O and database
– How to distribute disks or other permanent stores

• Avoid communication & I/O bottlenecks
– Remember Amdahl’s Law
– Minimize communication and serialization

318.12.2009 Copyright Teemu Kerola 2009

More Likely Problems with Multicore
Challenge

• Computation + communication + memory use
– Optimize on overall time/space?

• Test new processor architectures with FPGA’s
• Operating system for new architectures?
• New languages for new architetures?
• Good compilers for new architectures?
• May end up with lots of different architectures

– Masters & slaves, control hierarchies, ..
– Applications run well only on one system?

E.g., Systems based on STI cell vs. Intel 80-core chip?
328.12.2009 Copyright Teemu Kerola 2009

Even More Likely Problems with
Multicore Challenge

• Scalable processors architecture needs to be at least 3D?
– Is 3D enough?
– Stacked chips 2008

• Real stress to get results fast
– Single-core dead-end?
– New architectures designed

and built now
– Important applications built

on new architectures

338.12.2009 Copyright Teemu Kerola 2009

Current Research Summary
• Moore’s Law and what it means now
• What type of MPP computer to build and how to use it?

– We have jumped into the multi-core train – is that OK?
• Some projects in Universities & Industry

– Too small scale? $10M’s but not $100M’s or $1000M’s …
• No silver bullet?

– Get computational speed to double every two years for some
computations? Is this enough?

• Make parallel programming synonymous with
programming?
– Only experts program the “efficiency layer” in SW?

• What happens if all these projects fail?
– Get heterogeneous architectures that are

incompatible with each other’s code?

348.12.2009 Copyright Teemu Kerola 2009

Concurrent Programming with
New Architectures

• Minimize synchronization and communication
– Amdahl’s Law
– Barrier synchronization often good
– Avoid any complex synchronizations that do not scale up
– Mutual exclusion should not be used in computational work

• Use shared memory when possible
– Faster than sharing data with messages

• How to partition problem so that overall solution time is
minimized?
– Distribute computing and data
– Minimize communication and synchronization
– Trade computing time to communication time

• Prepare for faults
– Many components, some will fail, must be prepared

358.12.2009 Copyright Teemu Kerola 2009 368.12.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 8.12.2009

Lecture 12: Current Research,
Summary 7

Course Review
• Concurrency

– Problems, atomic statements
– Critical sections, synchronization, communication
– What are the problems in writing concurrent programs?

• Disabling interrupts, busy wait, or suspension?
– When to (not) use? HW vs. SW solution?
– Shared memory or not? One or distributed system?

• Proofs of correctness
– Functionality
– Mutex, no deadlock, no starvation
– How to do the proofs with temporal logic?
– How to determine what you really are trying to prove?

378.12.2009 Copyright Teemu Kerola 2009

Course Review (contd)
• Deadlock

– Detection, prevention, avoidance - DDA, Bankers
• Semaphores

– Private semaphores, split semaphores, baton passing,
implementation, busy-wait semaphores

• Monitors, protected objects
– Condition variables, signal semantics

• Messages, RPC, channels, rendezvous
– Concurrent algorithms

• Distributed mutex
– (token passing) Ricart-Agrawala, Neilsen-Mizuno

• Current research
388.12.2009 Copyright Teemu Kerola 2009

Course Review (contd)

• Basic problems and solutions for them
– Dining philosophers, sleeping barber, bakery
– Readers-writers, producer-consumer

• Distributed system
– Concurrency control mechanisms
– Solutions for critical section problem

398.12.2009 Copyright Teemu Kerola 2009

What Should You Know?

• When to use what method for critical section (mutex),
synchronization, or communication?

• How do you know you have a mutex problem?
• When would you use busy waits, semaphores, monitors,

protected objects, RPC, channels, rendezvous?
• How do you implement XYZ with busy waits,

semaphores, monitors, protected objects, RPC, channels,
rendezvous?

• When is some technology not appropriate?

408.12.2009 Copyright Teemu Kerola 2009

What Should You Know?

• When do you need concurrent/distributed algorithms?
– If serial solution is ok, use it!

• What type of OS/programming language library tools
you have for CS/synchronization/communication
problems?

• What do you need to study to solve your problem?
• What type of tools would you need to solve your

problem?
• How does current research apply to me?

– Do I need to study MPI (Message Passing Interface)?

418.12.2009 Copyright Teemu Kerola 2009

What Next at TKTL?
• How prove correctness of (concurrent) programs?

An Introduction to Specification and Verification

• Concurrency problems in distributed systems
Operating Systems
Distributed Systems

• Concurrency tools for Java programming
Software Design (Java)

428.12.2009 Copyright Teemu Kerola 2009

Spesifioinnin ja verifioinnin perusteet

Hajautetut järjestelmät

Ohjelmointitekniikka (Java)

Käyttöjärjestelmät

Concurrent Programming (RIO) 8.12.2009

Lecture 12: Current Research,
Summary 8

-- The End --

438.12.2009 Copyright Teemu Kerola 2009

http://sti.cc.gatech.edu/SC07-BOF/06-Borrett.pdf

