
THEORY OF PROBABILITY

VLADIMIR KOBZAR

Lecture 20 - Conditional Expectation, Inequalities, Laws
of Large Numbers, Central Limit Theorem

This lecture is based on the materials from the Courant Institute’s
Theory of Probability taught by Professor Austin in Spring 2016. All
mistakes are mine.

Conditional Expectation (Ross, Secs 7.5 and 7.6. Suppose X
and Y are discrete RVs and that y is a possible value of Y . Then for
fixed y, the conditional PMF-values pX|Y px|yq “ P tX “ x|Y “ yu
obey all the same rules as the unconditioned PMFs pXpxq.

Definition 1. The conditional expectation of X given that Y “ y:

(1) (discrete)

ErX|Y “ ys “
ÿ

xs.t.pX|Y px|yqą0

x ¨ pX|Y px|yq

(2) if X, Y ar jointly continuous with joint PDF f , then

ErX|Y “ ys “

ż 8

´8

xfX|Y px|yqdx

This plays the analogous role to ErXs but in the situation where we
have now learned that Y “ y, so we condition on that information.

Example 1. (Ross, 7.5a) SupposeX and Y are two independent binom
(n,p) RVs. Calculate ErX|X ` Y “ ms

Example 2. (Ross, 7.5b, parts are duplicative of Example 6.5b) Sup-
pose that X, Y have joint PMF

fpx, yq “

#

e´x{ye´y

y
x, y ą 0

0 otherwise

Find ErX|Y “ ys.
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Conditional expectation is extremely useful as a calculational tool.

The value ErX|Y “ ys depends on the value of y, say gpyq. So we
get a new RV gpY q: when Y takes the value y, this new RV takes the
value ErX|Y “ ys.

To denote this new RV, we simply write ErX|Y s.

Theorem 1. (The Law of Total Expectation; Ross, Prop 7.5.1)

ErErX|Y ss “ ErXs

You can apply this if X and Y are both discrete, jointly continuous, or
in a mixed situation.

Example 3. (Ross 7.5l) Consider a random coin, whose bias U is a
Unifp0, 1q RV. Suppose we flip it n times. Let X be the number of
heads obtained. Find the PMF of X.

IDEA: Apply the Law of Total Expectation to the indicator variables
of the events tX “ ku.

IN FACT, by using indicator variables, the Law of Total Expectation
gives the general equation

P pEq “

ż 8

´8

P pE|Y “ yqfY pyqdy

whenever Y is a continuous RV and E is an event. This is a ’continu-
ous’ version of the Law of Total Probability. See Ross Subsec 7.5.3.

Sometimes is is more informative to measure covariance relative to
variance.

Definition 2. Let X and Y be positive, finite variances. Then their
correlation is

corrpX, Y q “
CovpX, Y q

a

V arpXqV arpY q

observe that corrpaX, bY q “ corrpX, Y q for any nonzero constants a, b.
For example, if X and Y are two random distance measurements than
their correlation doesn’t depend on whether we use inches or centime-
ters.
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Example 4. (Ross, 7.5f) The random vector pX, Y q is a bivariate
standard normal with correlation ´1 ă ρ ă 1 if it is jointly continuous
with joint PDF

fpx, yq “
1

2π
a

1´ ρ2
expp

1

2p1´ ρ2q
px2 ´ 2ρxy ` y2qq

for ´8 ă x, y ă 8. In Lecture 18, we showed that the marginal distri-
butions of X and Y are standard normals, and in Lecture 19 we showed
that the conditional distributions are Npρy, 1´ ρ2q.

By applying the law of total expectation to ErXY s and the above-
mentioned result from Lecture 19, we get

CovpX, Y q “ corrpX, Y q “ ρ

Inequalities (Ross Secs 7.1, 7.2, 8.2). So far we have spent a lot of
course learning how to compute exactly with random variables. (The
Poisson approximation is perhaps an exception.)

But there are also reasons to study estimates and inequalities con-
cerning probabilities and random variables.

‚ Sometimes we don’t have enough information to compute a
probability or expectation exactly, so we work out a range of
possible values which are permitted given the information we
do have.

‚ Certain basic inequalities are ”responsible” for the Limit Theo-
rems, which describe the asymptotic behaviour of large collec-
tions of RVs as the size of the collection tends to 8.

The most basic inequality:

Proposition 2. Let X be a RV such that X ě 0: this means that
the value taken by X is always non-negative, for every outcome of the
experiment. Then

ErXs ě 0

REASON: ErXss is a weighted average of the values taken by X.

Immediate consequences:

(1) If a ă b are reals such that a ď X ď b, then

a ď ErXs ď b
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(2) (monotonicity of expectation) if X and Y are two RVs such that
X ě Y , then

ErXs ě ErY s

Example 5. (Boole’s Inequality, Ross, 7.2d): If P pA1 Y ... Y Anq ď

P pA1q ` ...` P pAnq.

Example 6. (Ross, 7.2r): A grove of 52 trees is arranged in a circle.
If 15 chipmunks live in these trees, show that there is a group of 7
consecutive trees that together house at least 3 chipmunks.

Here is a slightly more subtle consequence of the monotonicity of
expectation.

Proposition 3. (Markov’s inequality; Ross Prop 8.2.1) If X is a non-
negative RV, then for any a ą 0 we have

P tX ě au ď
ErXs

a

IDEA: let I be the indicator variable of the event tX ě au and notice
that X ě a ¨ I.

So Markov’s inequality gives us an upper estimate on the probability
that X takes a value above some threshold. But more often we want
to estimate the probability that X takes a value far away from its
expectation.

Proposition 4. (Chebyshev’s inequality; Ross Prop 8.2.2). If X is
any random variable with ErXs “ µ and VarpXq “ σ2, then for any
k ą 0, we have then for any κ ą 0 we have

P t|X ´ µ| ě κu ď
σ2

k2

IDEA: Apply Markov to |X ´ µ|2.

Observe: Markov requires X ě 0, but Chebyshev does not. If we let
κ “ kσ for some positive integer k, then Chebyshev becomes

P t|X ´ µ| ě kσu ď
1

k2

SLOGAN: ’The probability that X takes a value at least k standard
deviations (“ σ) away from the mean (“ µ) is at most 1

k2
.’

This finally gives a precise mathematical statement to justify the
idea that ”the variance/standard deviation indicates how spread out a
RV is”.



THEORY OF PROBABILITY 5

Example 7. (Ross 8.2a) Suppose that the number of items produced
in a factory during a week is a RV X with mean 50.

(a) What can be said about the probability that this week’s pro-
duction will exceed 75?

(b) If VarpXq “ 25, what can be said about the probability that
this week’s production will be between 40 and 60?

Example 8. If X is Unifp0, 10q, then

P tX ´ 5u ą 4u “ 0.2

whereas Chebyshev gives

P tX ´ 5u ą 4u ď
25

3p16q
« .52

(V arpXq “ 102{12 “ 25{3)

So Chebyshev gives us a guaranteed upper bound, but no-one is
promising that it;s always a good estimate!

The Laws of Large Numbers (Ross Secs 8.2, 8.4). One of our
basic intuitions about probability is this: If we perform an experiment
independently many times, and E is an event that can happen for each
performance of the experiment, then in the long-run average

frequency of occurrence of E « P pEq.

For instance, if 37% (not a real statistic) of US citizens have visible
dandruff, and we randomly select a few thousand citizens (a large num-
ber, but much less than US population), then we expect about 37% of
those sampled to have visible dandruff.

This is a ’Law of Large Numbers’.

In fact, one possible route to the axioms of probability is to define
P pEq to be this long-run frequency. This is the ’frequency interpreta-
tion’ of probability values.

The right-hand side is a number. But the left-hand side is a random
variable: it depends on the exact sequence of outcomes from our inde-
pendent trials.

So this is saying that, under these long-run average conditions, this
’frequency random variable’ settles down, in some approximate sense,
to the fixed value P(E).
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In this form, the Law of Large Numbers is a mathematical theorem.

It is essential to the whole practice of statistics and sampling.

Key tool to proving it: Chebyshev’s inequality.

First, it’s valuable to make the situation a bit more general. Instead
of an event E, assume our basic experiment has a random variable X.
Independent repeats of the experiment give independent copies of this
random variable, say X1, X2, ....

In general, a sequence of RVs X1, X2, ... are independent and identi-
cally distributed (’i.i.d.’) if (i) they are independent, and (ii) they all
have the same distribution. For instance,

‚ if Xi indicates the ith repeat of the event E, and P pEq “ p,
then the Xi’s are Bernoulli trials with parameter p;

‚ OR, they could all be Unif(0, 1), or Poipλq, or Exppλq, etc.

To be formal about condition (ii), we should say that the Xi’s all
have the same CDF (or PMF if discrete, or PDF if continuous).

Let X1, X2, ... be i.i.d. RVs. For a positive integer n, define their
sample mean to be

Xn “
X1 ` ...`Xn

n
EXAMPLE: If the Xis are Bernoulli trials with success probability

p, then Xn is the fraction of successes among the first n trials. It is a
binompp, nq RV, re-scaled by dividing by n.

Observe: ’identically distributed’ implies that ErXis is the same for
every i, if it exists. Assume it does and call it µ.

Theorem 5. (Weak Law of Large Numbers, ’WLLN’, Ross Thm 8.2.1).
In the situation above, for any ε ą 0, we have

P t|Xn ´ µ| ě εu Ñ 0 as nÑ 8

We will prove this subject to the extra assumption that every Xi has a
well-defined and finite variance (some RVs don’t!). Again, this must be
the same for every i. Call it σ2. The theorem is actually true without
this assumption.

Proof. : Since the Xis are independent, we have
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ErXns “ µ (fixed) and V arpXnq “
σ2

n
(which Ñ 0).

Then by Chebyshev

P t|Xn ´ µ| ě εu ď
σ2

nε2

�

More expansive statement of the WLLN:
if we choose an ’error tolerance’ ε ą 0, and then wait for n to be large
enough, then the ’probability of error’

P t|Xn ´ µ| ě εu

will be very small.

BE CAREFUL:

‚ How long you have to wait (i.e., how large n has to be) depends
on how good an approximation you want (i.e., how small you
choose ε). The proof above gives an explicit estimate for how
long we have to wait, given ε.

‚ The WLLN does not say that Xn is guaranteed to be close to
p, only that this is very likely. Of course, if we?re very unlucky,
we might toss a fair coin but still get the outcome

HHHH...H, or maybe HHTHHTHHTHHT...HHT.

For these very unlikely outcomes, the sample mean takes the val-
ues 1 and 2/3 respectively, far away from the true mean, which
is 1/2.

Another way of visualizing the Bernoulli-trials case: once n is large,
the binompp, nq, PMF puts almost all of its mass into a narrow window
around the mean np.

The Strong Law (Ross Sec 8.4): The WLLN has a companion, the
Strong LLN (SLLN).

WLLN:

‚ setting: fix a sufficiently large, finite number n of trials;
‚ conclusion: for that n, Xn is very likely to be close to its expec-

tation µ.

SLLN:
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‚ setting: consider a truly infinite sequence of trials;
‚ conclusion: the running sequence of sample means

X1 “ X1, X2 “
X1 `X2

2
, Xn “

X1 ` ...`Xn

n
, ...

is essentially guaranteed to converge to µ as n Ñ 8:, i.e., it
eventually gets close to µ and then stays close forever.

Theorem 6. (Strong Law of Large Numbers, ’SLLN’, Ross Thm 8.4.1).
In the situation above, we have

P t lim
nÑ8

Xn “ µu “ 1

So ’essentially guaranteed’ means ’with probability equal to 1’. Al-
ternatively, the event that this convergence fails has probability 0; it is
’infinitely unlikely’.

One can prove SLLN Ñ WLLN (with some work).

But there’ s no direct implication WLLN Ñ SLLN: the SLLN is re-
ally a stronger statement.

STORY: if we consider our running sequence of sample means Xn,
then WLLN says that, for each individual large value of n, Xn is un-
likely be far away from µ. But that’s an infinite sequence of unlikely
events. Even though their individual probabilities are small, we can
still imagine that one of them occurs very occasionally. That is, it
could be that Xn mostly stays close to µ, but as n increases it very
occasionally makes a large deviation away from µ. SLLN says this
doesn’t happen. Proof is more difficult that WLLN. See Ross Sec 8.4
for a proof under restrictive assumptions.

The Central Limit Theorem, Ross, Secs 5.4.1 & 8.3. Simplest
example: X1, ..., Xn are Bernoulli RVs. Then Xn is the fraction of suc-
cesses from n independent trials, each with success probability p. In
this case µ “ p.

The WLLN says: when n is large, Xn takes a value close to p with
high probability.

If 37% of US citizens have visible dandruff, and we randomly select
a thousand citizens (a large number, but much less than the US pop-
ulation), then we expect about 37% of those sampled to have visible
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dandruff.

But how confident can we be of this approximation? Is a sample of
a thousand large enough for the effect to be reliable?

More precise version of the question: Pick two error tolerances, ε ą 0
and α ą 0. How large does n have to be so that

P t|Xn ´ p| ě εu ă α

(There were really two kinds of error tolerance involved all along: ε
is how close you want Xn to be to p, and α is the small probability of
error that you allow. We just didn?t give α a name before.)

Can also think of this question by looking again at pictures of bi-
nomial PMFs: Now our question is: effectively how wide are spikes
around the mean as nÑ 8

Theorem 7. (The Central Limit Theorem, Ross 8.3.1) Let X1, ..., Xn

be i.i.d with µ “ ErXis and σ2 “ V arpXiq both finite. Let Sn “

X1 ` ... ` Xn. Then the limiting distribution of pSn ´ nµq{σ
?
n is

Np0, 1q, in the following sense.

P ta ă
Sn ´ nµ

σ
?
n

ă bu Ñ Φpbq ´ ΦpaqasnÑ 8

This result holds for any i.i.d sequence of RVs with finite variance!!
For proof, we follow Ross, 7.7 and 8.3.
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