Conditional probability 2E

1 a When the first token removed is red, there are 8 tokens remaining in the bag, 4 red and 4 blue. When the first token removed is blue, there are 8 tokens remaining in the bag, 5 red and 3 blue.

b The answer can be read off from the tree diagram, following the lower branch (first blue) and then the red branch.
So $\mathrm{P}($ second red|first blue $)=\frac{5}{8}$
c $\mathrm{P}($ first red \mid second blue $)=\frac{\mathrm{P}(\text { first red and second blue })}{\mathrm{P}(\text { second blue })}=\frac{\frac{5}{9} \times \frac{1}{2}}{\left(\frac{5}{9} \times \frac{1}{2}\right)+\left(\frac{4}{9} \times \frac{3}{8}\right)}=\frac{\frac{5}{18}}{\frac{32}{72}}=\frac{20}{32}=\frac{5}{8}$
d P (first blue|tokens different colours $)=\frac{\mathrm{P}(\text { first blue and second red })}{\mathrm{P}(\text { first blue and second red })+\mathrm{P}(\text { first red and second blue })}$

$$
=\frac{\frac{4}{9} \times \frac{5}{8}}{\left(\frac{4}{9} \times \frac{5}{8}\right)+\left(\frac{5}{9} \times \frac{1}{2}\right)}=\frac{\frac{20}{72}}{\frac{40}{72}}=\frac{20}{40}=\frac{1}{2}
$$

e $\mathrm{P}($ tokens same colour \mid second token red $)=\frac{\mathrm{P}(\text { first red and second red })}{\mathrm{P}(\text { first red and second red })+\mathrm{P}(\text { first blue and second red })}$

$$
=\frac{\frac{5}{9} \times \frac{1}{2}}{\left(\frac{5}{9} \times \frac{1}{2}\right)+\left(\frac{4}{9} \times \frac{5}{8}\right)}=\frac{\frac{5}{18}}{\frac{40}{72}}=\frac{\frac{20}{72}}{\frac{40}{72}}=\frac{20}{40}=\frac{1}{2}
$$

2 a $\mathrm{P}(A)=0.7 \Rightarrow \mathrm{P}\left(A^{\prime}\right)=1-0.7=0.3$
$\mathrm{P}(B \mid A)=0.45 \Rightarrow \mathrm{P}\left(B^{\prime} \mid A\right)=1-0.45=0.55$
$\mathrm{P}\left(B \mid A^{\prime}\right)=0.35 \Rightarrow \mathrm{P}\left(B^{\prime} \mid A^{\prime}\right)=1-0.35=0.65$
Therefore the completed tree diagram should be:

b i $\quad \mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B \mid A)=0.7 \times 0.45=0.315$
ii $\quad \mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)=\mathrm{P}\left(A^{\prime}\right) \times \mathrm{P}\left(B^{\prime} \mid A^{\prime}\right)=0.3 \times 0.65=0.195$
iii $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}=\frac{0.315}{\mathrm{P}(A \cap B)+\mathrm{P}\left(A^{\prime} \cap B\right)}=\frac{0.315}{0.315+0.3 \times 0.35}=\frac{0.315}{0.42}=0.75$

3 a There are 10 dark chocolates in a box of 24, meaning the probability of choosing a dark chocolate is $\frac{10}{24}=\frac{5}{12}$. Similarly there are 14 milk chocolates out of the 24 , and so the probability of choosing a dark chocolate is $\frac{14}{24}=\frac{7}{12}$.

Once Linda has eaten one chocolate, there are 23 chocolates left in the box. If the first chocolate she ate was a dark one, the probability of choosing another dark chocolate is $\frac{9}{23}$, and the probability of choosing a milk chocolate is $\frac{14}{23}$. If the first chocolate she ate was a milk one, the probability of a dark chocolate is $\frac{10}{23}$, and the probability of choosing another milk chocolate is $\frac{13}{23}$.

b $\mathrm{P}($ dark and dark $)=\frac{5}{12} \times \frac{9}{23}=\frac{15}{92}=0.163$ (3 s.f.)

3 c $\mathrm{P}($ one dark and one milk $)=\mathrm{P}\left(D_{1} \cap M_{2}\right)+\mathrm{P}\left(M_{1} \cap D_{2}\right)$

$$
\begin{aligned}
& =\frac{5}{12} \times \frac{14}{23}+\frac{7}{12} \times \frac{10}{23} \\
& =\frac{70}{276}+\frac{70}{276}=\frac{140}{276}=\frac{35}{69}=0.507 \text { (3 s.f.) }
\end{aligned}
$$

d $\mathrm{P}($ dark and dark \mid at least one dark $)=\frac{\mathrm{P}(\text { dark and dark })}{\mathrm{P}(\text { at least one dark })}$

$$
\begin{aligned}
& =\frac{\mathrm{P}\left(D_{1} \cap D_{2}\right)}{\mathrm{P}\left(D_{1} \cap D_{2}\right)+\mathrm{P}\left(D_{1} \cap M_{2}\right)+\mathrm{P}\left(M_{1} \cap D_{2}\right)} \\
& =\frac{\frac{5}{12} \times \frac{9}{23}}{\frac{5}{12} \times \frac{9}{23}+\frac{5}{12} \times \frac{14}{23}+\frac{7}{12} \times \frac{10}{23}}=\frac{\frac{45}{276}}{\frac{185}{276}}=\frac{45}{185}=\frac{9}{37}=0.243 \text { (3 s.f.) }
\end{aligned}
$$

4 Use the information in the question to produce a tree diagram covering Jean's possible travel arrangements on Tuesday and Wednesday as follows:

Now sum the probabilities of Jean taking a taxi to work on Wednesday

$$
\begin{aligned}
\mathrm{P}(\text { taxi on Wednesday }) & =0.4 \times 0.3+0.6 \times 0.4 \\
& =0.12+0.24 \\
& =0.36
\end{aligned}
$$

5 Represent the information as a tree diagram. The coins are chosen at random, so there is a probability of $\frac{1}{2}$ of choosing each coin.

a $\quad \mathrm{P}($ head $)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}=0.25$

5 b $\mathrm{P}($ Fair \mid tail $)=\frac{\mathrm{P}(\text { Fair and Tail })}{\mathrm{P}(\text { Tail })}$

$$
=\frac{\frac{1}{2} \times \frac{1}{2}}{\frac{1}{2} \times \frac{1}{2}+\frac{1}{2} \times 1}=\frac{1}{3}=0.333 \text { (3 s.f.) }
$$

6 a Since the first ball selected is not replaced, there are 10 balls in the bag when the second ball is selected.

b $\mathrm{P}($ second ball is green $)=\mathrm{P}\left(B_{1} \cap G_{2}\right)+\mathrm{P}\left(G_{1} \cap G_{2}\right)$

$$
=\left(\frac{4}{11} \times \frac{7}{10}\right)+\left(\frac{7}{11} \times \frac{6}{10}\right)=\frac{28+42}{110}=\frac{7}{11}=0.636 \text { (3 s.f.) }
$$

c $\mathrm{P}($ both balls are green \mid second ball is green $)=\frac{\mathrm{P}(\text { both balls are green })}{\mathrm{P}(\text { second ball is green })}$

$$
=\frac{\frac{7}{11} \times \frac{6}{10}}{\frac{70}{110}}=\frac{\frac{42}{110}}{\frac{70}{110}}=\frac{42}{70}=\frac{3}{5}=0.6
$$

7 a The probability of the sheet coming from A, B or C is given in the question. In each case, the probability that a sheet is flawed immediately provides the probability that it is not flawed since the two probabilities must sum to 1 . Therefore the completed tree diagram is:

b i $\quad \mathrm{P}($ produced by $B \cap$ flawed $)=0.45 \times 0.07=0.0315$

7 b ii P(flawed) can be found by summing P (produced by $A \cap$ flawed), P (produced by $B \cap$ flawed) and P (produced by $C \cap$ flawed). Therefore
$\mathrm{P}($ flawed $)=0.25 \times 0.02+0.0315+0.3 \times 0.04=0.0485$
c $\quad \mathrm{P}($ produced by $A \mid$ flawed $)=\frac{\mathrm{P}(\text { produced by } A \cap \text { flawed })}{\mathrm{P}(\text { flawed })}=\frac{0.25 \times 0.02}{0.0485}=0.103(3$ s.f. $)$

8 a The reliability of the test depends on whether the person has the condition (C) or not $\left(C^{\prime}\right)$.

b $\quad \mathrm{P}($ tests negative $)=\mathrm{P}(C \cap$ tests negative $)+\mathrm{P}\left(C^{\prime} \cap\right.$ tests negative $)$

$$
=0.04 \times 0.1+0.96 \times 0.98=0.9448=0.945 \text { (3 s.f.) }
$$

c $\quad \mathrm{P}($ has condition \mid tests negative $)=\frac{\mathrm{P}(C \cap \text { tests negative })}{\mathrm{P}(\text { tests negative })}$

$$
=\frac{0.04 \times 0.1}{0.9448}=0.00423(3 \text { s.f. })
$$

d From the data in the question, the test fails to find 10% of the people with the condition (since it has a 0.1 chance of producing a negative result when a person has the condition).

Consider also false positives, the case of a person who does not have the condition returning a positive result.
$\mathrm{P}($ does not have the condition \mid tests positive $)=\frac{\mathrm{P}\left(C^{\prime} \cap \text { tests positive }\right)}{\mathrm{P}(\text { tests positive })}=\frac{0.96 \times 0.02}{1-0.9448}=0.348(3 \mathrm{~s} . \mathrm{f}$.
So over one third of the positive tests are false positives.
This means that if the test was used on the entire population, 10% of the people with the condition would not be identified and over one third of the people with a positive result would actually not have the condition.

9 a Since the probabilities of being late are given, the probabilities for being on time (i.e. not late) for each type of transport are known, sine the probabilities must sum to 1 . Therefore the completed tree diagram should be as follows:

b i $\mathrm{P}($ Bill travels by train and is late $)=0.3 \times 0.05=0.015$
ii To find $\mathrm{P}($ Bill is late $)$, sum $\mathrm{P}($ Bill travels by car and is late $), \mathrm{P}($ Bill travels by bus and is late $)$ and P (Bill travels by train and is late).
$\mathrm{P}($ Bill is late $)=0.1 \times 0.55+0.6 \times 0.3+0.3 \times 0.05=0.25$
c $\mathrm{P}($ Bill travels by bus or train \mid Bill is late $)=\frac{0.6 \times 0.3+0.3 \times 0.05}{0.25}=0.78$

10 a The two counters being drawn from box A can be modelled using a tree diagram. In each case, the number of counters of each colour in box B is then known, and so the third set of branches can be labelled to represent the drawing of the counter from box B. Therefore the completed tree diagram should be:

b $\mathrm{P}(C)=\mathrm{P}(G G)+\mathrm{P}(B B)=\left(\frac{4}{7} \times \frac{1}{2}\right)+\left(\frac{3}{7} \times \frac{1}{3}\right)=\frac{2}{7}+\frac{1}{7}=\frac{3}{7}$

10 c $\mathrm{P}(D)=\mathrm{P}(G G B)+\mathrm{P}(G B B)+\mathrm{P}(B G B)+\mathrm{P}(B B B)$

$$
\begin{aligned}
& =\left(\frac{4}{7} \times \frac{1}{2} \times \frac{3}{7}\right)+\left(\frac{4}{7} \times \frac{1}{2} \times \frac{4}{7}\right)+\left(\frac{3}{7} \times \frac{2}{3} \times \frac{4}{7}\right)+\left(\frac{3}{7} \times \frac{1}{3} \times \frac{5}{7}\right) \\
& =\frac{6}{49}+\frac{8}{49}+\frac{8}{49}+\frac{5}{49}=\frac{27}{49}
\end{aligned}
$$

d The calculation will be similar to that for $\mathrm{P}(\mathrm{D})$, but with the first and second counters being the same colour.

$$
\mathrm{P}(C \cap D)=\mathrm{P}(G G B)+\mathrm{P}(B B B)=\left(\frac{4}{7} \times \frac{1}{2} \times \frac{3}{7}\right)+\left(\frac{3}{7} \times \frac{1}{3} \times \frac{5}{7}\right)=\frac{6}{49}+\frac{5}{49}=\frac{11}{49}
$$

e Use the addition formula

$$
\mathrm{P}(C \cup D)=\mathrm{P}(C)+\mathrm{P}(D)-\mathrm{P}(C \cap D)=\frac{3}{7}+\frac{27}{49}-\frac{11}{49}=\frac{21+27-11}{49}=\frac{37}{49}
$$

f The required probability is:

$$
\frac{\mathrm{P}(G G G)}{\mathrm{P}(G G G)+\mathrm{P}(B B B)}=\frac{\frac{4}{7} \times \frac{1}{2} \times \frac{4}{7}}{\left(\frac{4}{7} \times \frac{1}{2} \times \frac{4}{7}\right)+\left(\frac{3}{7} \times \frac{1}{3} \times \frac{5}{7}\right)}=\frac{\frac{8}{49}}{\frac{8}{49}+\frac{5}{49}}=\frac{8}{13}=0.615(3 \text { s.f. })
$$

11 She has not taken into account the fact that after the first jelly bean is selected, there are only 9 jelly beans left in the box. So if the first jelly bean selected is sweet, the probability that the second bean is sweet is $\frac{6}{9}$ not $\frac{7}{10}$.
This is the correct solution.
$\mathrm{P}($ both jelly beans are sweet $)=\frac{7}{10} \times \frac{6}{9}=\frac{7}{15}$
$\mathrm{P}($ at least one jelly bean is sweet $)=1-\mathrm{P}($ neither jelly bean is sweet $)=1-\left(\frac{3}{10} \times \frac{2}{9}\right)=\frac{14}{15}$
$\mathrm{P}($ both are sweet given at least one is sweet $)=\frac{\frac{7}{\frac{15}{14}}}{\frac{7}{15}}=\frac{7}{14}=0.5$
The correct answer is therefore 0.5 .

