CSCA67 TUTORIAL, WEEK 5 Oct. 19th-Oct. 23rd, 2015

COMPILED BY G. Singh Cadieux

ADAPTED FROM A. Bretscher, CSCA67 Week 5 Lecture Notes & Evans and Rosenthal. Probability and Statistics: The Science of Uncertainty. W. H. Freeman and Company, 2010.

1 Review of week 5's lecture

1.1 The Birthday Problem

Q: What is the probability that, in a group of n people, at least 2 have the same birthday?

Let us represent the days of the year by the integers 1, 2, ..., 365. Then we choose our sample space S to be {all possible combinations of n birthdays}. That is, we include all possible combinations of n days, with repetition (up to n repetitions of the same day, where all n birthdays fall on the same day).

For example, if n = 3, we include:

- all the single days of the year (eg. $(1, 1, 1), (2, 2, 2), (3, 3, 3), \ldots$), in the case that all 3 birthdays fall on the same day,
- all combinations of 2 different days of the year (eg. (1, 1, 2), (1, 1, 3), (1, 1, 4), ...), in the case that 2 of the birthdays fall on the same day, and
- all combinations of 3 different days of the year (eg. (1, 2, 3), (1, 2, 4), (1, 2, 5), ...), in the case that all 3 birthdays fall on different days

Suppose that all birthdays are equally likely. Then, by the classical definition of probability,

$$P(\{\text{at least 2 people share a birthday}\}) = \frac{|\{\text{at least 2...}\}|}{|S|}$$

We know from counting principles that

|S| = # of ways to select the first birthday $\times \#$ of ways to select the second birthday $\times \ldots \times \#$ of ways to select the *n*th birthday $= 365 \times 365 \times \ldots \times 365$ $= 365^n$

and that

 $|\{\text{at least } 2...\}| = \# \text{ of arrangements of } n \text{ birthdays where } 2 \text{ people share a birthday}$ + # of arrangements of n birthdays where 3 people share a birthday + ... + # of arrangements of n birthdays where n people share a birthday $P(\{\text{at least 2 people share a birthday}\}) = \frac{|\{2 \text{ people share a birthday}\}| + \ldots + |\{n \text{ people share a birthday}\}|}{365^n}$

HOWEVER, this seems very laborious to compute, particularly if n is large. We can instead use the complement rule to determine that

$$P(\{\text{at least 2 people share a birthday}\}) = 1 - P(\{\overline{\text{at least 2 people share a birthday}}\})$$
$$= 1 - P(\{\text{no shared birthdays}\})$$
$$= 1 - \frac{\# \text{ of ways to select } n \text{ unshared birthdays}}{365^n}$$
$$= 1 - \frac{365 \times 364 \times \ldots \times (365 - n + 1)}{365^n}$$

NOTICE that, if n > 365, the above calculation produces

$$P(\{\text{at least } 2...\}) = 1 - \frac{365 \times (365 - 1) \times ... \times (365 - 364) \times (365 - 365) \times ... \times (365 - n + 1)}{365^n}$$

= $1 - \frac{365 \times ... \times 0 \times ... \times (365 - n + 1)}{365^n}$
= $1 - \frac{0}{365^n}$
= $1 - 0 = 1$

Why does this make sense?

By the pigeonhole principle, if we have n objects to place in fewer than n pigeonholes, at least 1 pigeonhole will contain multiple objects. In this case, if there are more than 365 birthdays to distribute over 365 days, at least 2 birthdays will fall on the same day. Thus, the probability of at least 2 people sharing a birthday is 1, or absolutely certain.

NOTE that this counting method counts ordered n-tuples: for example, where n = 3, we consider (1, 1, 2) and (1, 2, 1) to be different combinations of birthdays.

If we were to instead consider unordered *n*-tuples, we could not use the classical definition of probability, since not all outcomes would be equally likely. For example, where n = 3, the unordered combination (1, 1, 2) is more likely than the unordered combination (1, 2, 3), since there are more ways in which the former can occur.

1.2 Conditional Probability

Given two events A and B for an experiment, the CONDITIONAL PROBABILITY of A given B, written P(A|B), represents the fraction of time that A occurs once we know that B occurs.

P(E) represents the fraction of time that an event E occurs. For example, if P(E) = 50% and we conduct 10 trials of our experiment, 5 of those trials will result in E.

Recall that $A \cap B$ is the event that both A and B occur.

Thus, the conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad \text{with } P(B) > 0$$

represents the ratio between the fraction of time that B occurs and the fraction of time that $A \cap B$ occurs.

 So

CONSIDER the experiment of tossing two fair coins. Let A be the event that the first coin is heads, and let B be the event that exactly two coins are heads.

If we let our sample space S be $\{HH, HT, TH, TT\}$, then this is an equally-likely sample space and we can compute that

$$P(A) = \frac{|A|}{|S|} = \frac{|\{HH, HT\}|}{|\{HH, HT, TH, TT\}|} = \frac{2}{4} \qquad P(B) = \frac{|B|}{|S|} = \frac{|\{HH\}|}{|\{HH, HT, TH, TT\}|} = \frac{1}{4}$$

$$P(A \cap B) = \frac{|A \cap B|}{|S|} = \frac{|\{HH\}|}{|\{HH, HT, TH, TT\}|} = \frac{1}{4}$$

Using the definition above, we can also compute that

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{|A \cap B|/|\mathcal{S}|}{|B|/|\mathcal{S}|} = \frac{|A \cap B|}{|B|} = \frac{|\{HH\}|}{|\{HH\}|} = 1$$

NOTICE that $P(A \cap B) = \frac{|A \cap B|}{|S|}$ is very similar to $P(A|B) = \frac{|A \cap B|}{|B|}$. The difference is that, in the former case, we consider the fraction of time that $A \cap B$ occurs out of *all* possible outcomes, while in the latter case, we consider the fraction of time that $A \cap B$ occurs out of the times that B occurs (ignoring the times that B does *not* occur).

Put another way: P(B|A) answers the question, "if B occurs, what is the probability that A also occurs?"

NOTICE ALSO that, in this example, P(A|B) > P(A). This tells us that B occurring increases the likelihood that A will occur.

Intuitively, this makes sense: if both coins are heads (B occurs), then the first coin *must* be heads (event A occurs with probability 1); but if we do not know whether either coin is heads, it is possible for the first coin to be tails (event A occurs with probability < 1).

However, if C is the event that exactly two coins are tails, then

$$P(A|C) = \frac{|A \cap C|}{|C|} = \frac{|\emptyset|}{|\{TT\}|} = 0$$

Here, P(A|C) < P(A) - that is, C occurring *decreases* the likelihood that A will occur.

Again, intuitively, this makes sense: if both coins are tails (C occurs), then the first coin *cannot* be heads (event A occurs with probability 0); but if we do not know whether either coin is heads, it is possible for the first coin to be heads (event A occurs with probability > 0).

And if D is the event that the second coin is heads, then

$$P(A|D) = \frac{|A \cap D|}{|D|} = \frac{|\{HH\}|}{|\{TH, TT\}|} = \frac{1}{2}$$

Here, P(A|D) = P(A) - that is, D occurring does not affect the likelihood that A will occur.

Independence of Events

If P(E|F) = P(E) or P(F|E) = P(F) for two events E and F, where P(F) > 0 or P(E) > 0 respectively, we say that E and F are INDEPENDENT. Intuitively, this means that the occurrence of E does not affect the probability of F occurring, and vice versa.

Product Rule

We can reformulate the above definition of conditional probability for two events A and B as:

$$P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$$

This allows us to compute the probability of $A \cap B$ when we are given the probability of A and the conditional probability of B given A, or the probability of B and the conditional probability of A given B.

NOTICE that, if A and B are independent, then

$$P(A \cap B) = P(A|B) \cdot P(B) = P(A) \cdot P(B) \quad and$$

$$P(A \cap B) = P(B|A) \cdot P(A) = P(B) \cdot P(A)$$

which is an alternative definition of independence for two events A and B.

Bayes' theorem

We can also reformulate the above definition of conditional probability for two events A and B as:

$$\mathbf{P}(\mathbf{A}|\mathbf{B}) = \frac{P(A \cap B)}{P(B)} = \frac{P(A \cap B)}{P(B)} \cdot \frac{P(A)}{P(A)} = \frac{P(A \cap B)}{P(A)} \cdot \frac{P(A)}{P(B)} = \mathbf{P}(\mathbf{B}|\mathbf{A}) \cdot \frac{\mathbf{P}(\mathbf{A})}{\mathbf{P}(\mathbf{B})} \quad \text{with } P(A), P(B) > 0$$

This allows us to compute the conditional probability of B given A when we are given the probability of A, B, and the conditional probability of A given B.

For example, suppose that the probability of snow is 20%, and the probability of a traffic accident is 10%. Suppose further that the conditional probability of an accident, given that it snows, is 40%.

Q: What is the conditional probability that it snows given that there is a traffic accident?

Using Bayes' theorem with A = snow and B = traffic accident, we can calculate that

$$P(\text{snow}|\text{traffic accident}) = \frac{P(\text{snow})}{P(\text{traffic accident})} \cdot P(\text{traffic accident}|\text{snow})$$
$$= \frac{0.2 \cdot 0.4}{0.1}$$
$$= 0.8 = 80\%$$

Law of Total (Conditioned) Probability

Let E_1, E_2, \ldots, E_n be events that form a partition of the sample space S, each with positive probability. Let $A \subseteq S$ be any event. Then

$$P(A) = P(E_1 \cap A) + P(E_2 \cap A) + \dots + P(E_n \cap A)$$

= $P(E_1) \cdot P(A|E_1) + P(E_2) \cdot P(A|E_2) + \dots + P(E_n) \cdot P(A|E_n)$ [by the product rule]
= $\sum_{i=1}^{n} P(E_i) \cdot P(A|E_i)$

Represented as a Venn diagram (with n = 7):

For example, suppose that a class contains 60% girls and 40% boys. Suppose that 30% of the girls have long hair and 20% of the boys have long hair.

Q: IF A STUDENT IS CHOSEN RANDOMLY FROM THE CLASS, WHAT IS THE PROBABILITY THAT HE OR SHE HAS LONG HAIR?

Let \mathcal{S} be the class of students.

If we let E_1 be the event that we choose a girl, and E_2 be the event that we choose a boy, then E_1 and E_2 partition S (since either E_1 or E_2 must occur, but E_1 and E_2 cannot both occur).

Using the law of total (conditioned) probability, we can calculate that

$$P(\text{long hair}) = P(\text{girl}) \cdot P(\text{long hair}|\text{girl}) + P(\text{boy}) \cdot P(\text{long hair}|\text{boy})$$
$$= 60\% \cdot 30\% + 40\% \cdot 20\%$$
$$= 26\%$$

2 PROBABILITY PROBLEMS

Suppose that we roll four fair six-sided dice. Q: What is the conditional probability that the first die shows 2, conditional on the event that exactly three dice show 2?

Let our (equally-likely) sample space S be $\{(1, 1, 1, 1), (1, 1, 1, 2), \dots, (6, 6, 6, 6)\}$. Let A be the event that exactly three dice show 2, and let B be the event that the first die shows 2. Then we know from the definition of conditional probability that

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{|A \cap B|/|\mathcal{S}|}{|A|/|\mathcal{S}|} = \frac{|A \cap B|}{|A|}$$

 $A \cap B$ is the event that exactly three dice show 2, including the first die. So $A = \{(2, 2, 2, 1), (2, 2, 2, 3), \dots, (6, 2, 2, 2)\}$, and of this, $A \cap B = \{(2, 2, 2, 1), (2, 2, 2, 3), \dots, (2, 6, 2, 2)\}$.

We calculate that $|A| = (4 \text{ ways to choose the die not showing } 2) \times (5 \text{ ways to choose its value}) = 20 \text{ and } |A \cap B| = (3 \text{ ways to choose the die not showing } 2) \times (5 \text{ ways to choose its value}) = 15. So$

$$P(B|A) = \frac{15}{20} = \frac{3}{4}$$

Suppose we deal five cards from an ordinary 52-card deck. Q: What is the conditional probability that all five cards are spades, given that at least four of them are spades?

Let our (equally-likely) sample space S be all possible combinations of 5 cards. Let A be the event that all five cards are spades, and let B be the event that at least four of the cards are spades. Then we can use the definition of conditional probability to calculate

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{|A \cap B|/|S|}{|B|/|S|} = \frac{|A \cap B|}{|B|}$$
$$= \frac{|\{5 \text{ spades and at least 4 spades}\}|}{|\{at \text{ least 4 spades}\}|} = \frac{|\{5 \text{ spades}\}|}{|\{at \text{ least 4 spades}\}|}$$
$$= \binom{13 \text{ spades}}{5 \text{ spades}} / \left(\binom{13 \text{ spades}}{4 \text{ spades}}\right) \cdot \binom{39 \text{ non-spades}}{1 \text{ non-spade}} + \binom{13 \text{ spades}}{5 \text{ spades}}\right)$$
$$= \frac{1287}{29172} \approx 0.044$$

Suppose that we have one jar with 3 red and 2 blue balls, and a second jar with 4 red and 7 blue balls.

Q: If we pick one of the jars at random, and then pick one of the balls in that jar at random, what is the probability that

a) the second jar is picked and then a blue ball is picked?

Let A be the event that the second jar is picked, and let B be the event that a blue ball is picked. Then we can use the product rule to calculate

$$P(A \cap B) = P(A) \cdot P(B|A)$$
$$= \frac{1}{2} \cdot \frac{7 \text{ blue balls}}{11 \text{ total balls}}$$
$$= \frac{7}{22}$$

b) a blue ball is picked?

Let B be the event that a blue ball is picked. Let A_1 be the event that the first jar is picked, and let A_2 be the event that the second jar is picked.

Then we can use the law of total (conditioned) probability to calculate

$$P(B) = P(E_1) \cdot P(A|E_1) + P(E_2) \cdot P(A|E_2)P(A_1) \cdot P(B|A_1) + P(A_2) \cdot P(B|A_2)$$
$$= \frac{1}{2} \cdot \frac{2 \text{ blue balls}}{5 \text{ total balls}} + \frac{1}{2} \cdot \frac{7 \text{ blue balls}}{11 \text{ total balls}}$$
$$= 0.5\overline{18}$$

c) the second jar was picked, given that we picked a blue ball?

Again, let A be the event that the second jar is picked, and let B be the event that a blue ball is picked. Since we know P(A), P(B), P(B|A), we can use Bayes' theorem to calculate

$$P(A|B) = \frac{P(A)}{P(B)} \cdot P(B|A)$$
$$= \frac{1/2}{0.5\overline{18}} \cdot \frac{7 \text{ blue balls}}{11 \text{ total balls}}$$
$$\approx 0.614$$

Suppose that we roll two fair six-sided dice.

Let A be the event that the two dice show the same value.

Let B be the event that the sum of the two dice is equal to 12.

Let C be the event that the first die shows 4.

Let D be the event that the second die shows 4.

Q: Which events are independent of one another?

Let us choose $\{(1,1), (1,2), \ldots, (6,6)\}$ as our (equally-likely) sample space S. Then

$$P(A) = \frac{|A|}{|S|} = \frac{|\{(1,1), (2,2), \dots, (6,6)\}|}{6^2} = \frac{6}{6^2} = \frac{1}{6} \quad P(C) = \frac{|C|}{|S|} = \frac{|\{(4,1), (4,2), \dots, (4,6)\}|}{6^2} = \frac{6}{6^2} = \frac{1}{6}$$
$$P(B) = \frac{|B|}{|S|} = \frac{|\{(6,6)\}|}{6^2} = \frac{1}{6^2} \quad P(D) = \frac{|D|}{|S|} = \frac{|\{(1,4), (2,4), \dots, (6,4)\}|}{6^2} = \frac{6}{6^2} = \frac{1}{6}$$

We know that two events E and F are independent if P(E|F) = P(E) or if P(F|E) = P(F), with P(E), P(F) > 0. And we know from the definition of conditional probability that $P(E|F) = \frac{P(E \cap F)}{P(F)}$. So

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{|A \cap B|/|S|}{P(B)} = \frac{|\{(6,6)\}|/6^2}{1/6^2} = \frac{1/6^2}{1/6^2} = 1 \neq P(A) \implies A \text{ and } B \text{ are not independent}$$

$$P(A|C) = \frac{P(A \cap C)}{P(C)} = \frac{|A \cap C|/|S|}{P(C)} = \frac{|\{(4,4)\}|/6^2}{1/6} = \frac{1/6^2}{1/6} = \frac{1}{6} = P(A) \implies A \text{ and } C \text{ are independent}$$

$$P(A|D) = \frac{P(A \cap D)}{P(D)} = \frac{|A \cap D|/|S|}{P(D)} = \frac{|\{(4,4)\}|/6^2}{1/6} = \frac{1/6^2}{1/6} = \frac{1}{6} = P(A) \implies A \text{ and } D \text{ are independent}$$

$$P(B|C) = \frac{P(B \cap C)}{P(C)} = \frac{|B \cap C|/|S|}{P(C)} = \frac{|\emptyset|/6^2}{1/6} = \frac{0}{1/6} = 0 \neq P(B) \implies B \text{ and } C \text{ are not independent}$$

$$P(B|D) = \frac{P(B \cap D)}{P(D)} = \frac{|B \cap D|/|S|}{P(D)} = \frac{|\emptyset|/6^2}{1/6} = \frac{0}{1/6} = 0 \neq P(B) \implies B \text{ and } C \text{ are not independent}$$

$$P(C|D) = \frac{P(C \cap D)}{P(D)} = \frac{|C \cap D|/|\mathcal{S}|}{P(D)} = \frac{|\{(4,4)\}|/6^2}{1/6} = \frac{1/6^2}{1/6} = \frac{1}{6} = P(C) \implies C \text{ and } D \text{ are independent}$$

Monty Hall Problem

SEE The Monty Hall Problem OR Monty Hall Problem for Dummies - Numberphile.

3 Additional practice problems

Q: What is the probability of having the same birthday as your mother?

Q: Approximately how many people in the world have the same birthday as their mother?

Q: Approximately how many people in the world have the same birthday as their mother, father, and spouse?

Suppose we deal five cards from an ordinary 52-card deck.

Q: What is the conditional probability that the hand contains all four aces, given that the hand contains at least four aces?

Q: What is the conditional probability that the hand contains no pairs, given that it contains no spades?

Suppose we roll a fair six-sided die and then flip a number of fair coins equal to the number showing on the die (eg. if the die shows 4, then we flip 4 coins).

Q: What is the probability that the number of heads equals 3?

Q: Conditional on knowing that the number of heads equals 3, what is the probability that the die showed the number 5?

Suppose a baseball pitcher throws fastballs 80% of the time and curveballs 20% of the time. Suppose a batter hits a home run on 8% of all fastball pitches, and on 5% of all curveball pitches.

Q: What is the probability that this batter will hit a home run on this pitcher's next pitch?