Conditional Random Fields

Mike Brodie CS 778

• Part-Of-Speech Tagger

CC	Coordinating conjunction
CD	Cardinal number
DT	Determiner
EX	Existential there
FW	Foreign word
IN	Preposition or subordinating conjunction
JJ	Adjective
JJR	Adjective, comparative
JJS	Adjective, superlative
LS	List item marker
MD	Modal
NN	Noun, singular or mass
NNS	Noun, plural
NNP	Proper noun, singular
NNPS	Proper noun, plural
PDT	Predeterminer
POS	Possessive ending
PRP	Personal pronoun

Possessive pronoun
Adverb
Adverb, comparative
Adverb, superlative
Particle
Symbol
to
Interjection
Verb, base form
Verb, past tense
Verb, gerund or present participle
Verb, past participle
Verb, non-3rd person singular present
Verb, 3rd person singular present
Wh-determiner
Wh-pronoun
Possessive wh-pronoun
Wh-adverb

object

I object!

object

'Do you see that object?'

• Part-Of-Speech Tagger - Java CRFTagger

INPUT FILE - Logan.txt

Logan woke up this morning and ate a big bowl of Fruit Loops. On his way to school, a small dog chased after him. Fortunately, Logan's leg had healed and he outran the dog.

• Part-Of-Speech Tagger - Java CRFTagger

OUTPUT FILE - Logan.txt.pos

Logan/NNP woke/VBD up/RP this/DT morning/NN and/CC ate/VB a/DT big/JJ bowl/NN of/IN Fruit/ NNP Loops/NNP ./. On/IN his/PRP\$ way/NN to/ TO school/VB ,/, a/DT small/JJ dog/NN chased/ VBN after/IN him/PRP ./. Fortunately/RB ,/, Logan/ NNP 's/POS leg/NN had/VBD healed/VBN and/ CC he/PRP outran/VB the/DT dog/NN ./.

- Stanford Named Entity Recognition
 - Recognizes names, places, organizations
 - <u>http://nlp.stanford.edu:8080/ner/process</u>

Image Applications

Segmentation

Multi-Label Classification

Labels: Hat, Shirt Cup, Stanley

Bioinformatics Applications

RNA Structural Alignment Protein Structure Prediction

Cupcakes with Rainbow Filling

#IMHAPPYBECAUSE

Background Isn't it about time... ... for Graphical Models?

#IMHAPPYBECAUSE

Represent distribution as a product of local functions that depend on a smaller subset of variables

Generative vs Discriminative

- Generative models describe how a label vector y can probabilistically "generate" a feature vector x.
- Discriminative models describe how to take a feature vector x and assign it a label y.
- Either type of model can be converted to the other type using Bayes' rule

P(x|y)P(y) = P(x,y) = P(y|x)P(x)

Joint Distributions P(x,y)

Problems: ?

Joint Distributions P(x,y)

Problems:

- Modeling inputs => intractable models
- Ignoring inputs => poor performance

Joint Distributions P(x,y)

Naive Bayes

Generative model Strong assumptions to simplify computation

$$p(y, \mathbf{x}) = p(y) \prod_{k=1}^{K} p(x_k | y)$$

Generative vs Discriminative

Naive Bayes

Logistic Regression

18

$$p(y, \mathbf{x}) = p(y) \prod_{k=1}^{K} p(x_k | y)$$

Generative vs Discriminative

Naive Bayes

Logistic Regression

If trained to maximize conditional likelihood

Generative vs Discriminative

Naive Bayes

Logistic Regression

Background Sequence Labeling

Hidden Markov Model (HMM)

$$p(\mathbf{y}, \mathbf{x}) = \prod_{t=1}^{\mathrm{T}} p(y_t | y_{t-1}) p(x_t | y_t)$$

Background Sequence Labeling

Hidden Markov Model (HMM)

$$p(\mathbf{y}, \mathbf{x}) = \prod_{t=1}^{T} p(y_t | y_{t-1}) p(x_t | y_t)$$

ASSUMPTIONS:

 $y_t \perp \!\!\!\perp y_1, \ldots, y_{t-2} | y_{t-1}$ $x_t \perp \!\!\!\perp Y \setminus \{y_t\}, X \setminus \{x_t\} | y_t$

Background Sequence Labeling

Hidden Markov Model (HMM)

$$p(\mathbf{y}, \mathbf{x}) = \prod_{t=1}^{\mathrm{T}} p(y_t | y_{t-1}) p(x_t | y_t)$$

PROBLEMS:

- Later labels cannot influence previous labels
- Cannot represent overlapping features

Background Improvements to HMMs Maximum Entropy Markov Model

Consider the *Principle of Maximum Entropy* [Jaynes, 1957, Good, 1963], which states that the correct distribution p(a, b) is that which maximizes entropy, or "uncertainty", subject to the constraints, which represent "evidence", i.e., the facts known to the experimenter. [Jaynes, 1957] discusses its advantages:

...in making inferences on the basis of partial information we must use that probability distribution which has maximum entropy subject to whatever is known. This is the only unbiased assignment we can make; to use any other would amount to arbitrary assumption of information which by hypothesis we do not have.

Background Improvements to HMMs Conditional Markov Model

PROS: More flexible form of context dependence

Independence assumptions among labels, not observations Only models log-linear distribution over component transition distributions

CONS:

$$p(\mathbf{s}|\mathbf{o}) = \prod_{t=1}^{N} p(s_t|s_{t-1}, \mathbf{o})$$

Background Improvements to HMMs Label Bias Problem

Conditional Random Fields

- Drop Local
 Normalization Constant
- Normalize GLOBALLY Over Full Graph

Avoids Label Bias Problem

Conditional Random Fields

Calculate path probability by normalizing the path score by the sum of the scores of all possible paths

Poorly matching path -> low score (probability) Well-matching path -> high score

Conditional Random Fields

Similar to CMM

- Discriminative
- Model Conditional Distribution p(y|x)
- Allow arbitrary, overlapping features

Conditional Random Fields

Similar to CMM

- Discriminative
- Model Conditional Distribution p(y|x)
- Allow arbitrary, overlapping features

TAKEAWAY:

Retains advantages of CMM over HMM Overcomes label bias problem of CMM and MEMM

Linear-Chain CRFs

Conditional Random Fields Remember the HMM

$$p(\mathbf{y},\mathbf{x}) = \prod_{t=1}^{^{\mathrm{T}}} p(y_t|y_{t-1})p(x_t|y_t)$$

$$p(\mathbf{y}, \mathbf{x}) = \frac{1}{Z} \exp\left\{\sum_{t} \sum_{i,j \in S} \lambda_{ij} \mathbf{1}_{\{y_t=i\}} \mathbf{1}_{\{y_{t-1}=j\}} + \sum_{t} \sum_{i \in S} \sum_{o \in O} \mu_{oi} \mathbf{1}_{\{y_t=i\}} \mathbf{1}_{\{x_t=o\}}\right\},$$
(1.13)

Linear-Chain CRFs

Conditional Random Fields Remember the HMM

$$p(\mathbf{y},\mathbf{x}) = \prod_{t=1}^{^{\mathrm{T}}} p(y_t|y_{t-1})p(x_t|y_t)$$

$$p(\mathbf{y}, \mathbf{x}) = \frac{1}{Z} \exp\left\{\sum_{t} \sum_{i,j \in S} \lambda_{ij} \mathbf{1}_{\{y_t=i\}} \mathbf{1}_{\{y_{t-1}=j\}} + \sum_{t} \sum_{i \in S} \sum_{o \in O} \mu_{oi} \mathbf{1}_{\{y_t=i\}} \mathbf{1}_{\{x_t=o\}}\right\},$$
(1.13)

$$p(\mathbf{y}, \mathbf{x}) = rac{1}{Z} \exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, x_t)\right\}$$

Linear-Chain CRFs Conditional Random Fields

$$p(\mathbf{y}, \mathbf{x}) = \frac{1}{Z} \exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, x_t)\right\}$$
$$\mathbf{y} = \frac{p(\mathbf{y}, \mathbf{x})}{\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, x_t)}$$

$$p(\mathbf{y}|\mathbf{x}) = \frac{p(\mathbf{y}, \mathbf{x})}{\sum_{\mathbf{y}'} p(\mathbf{y}', \mathbf{x})} = \frac{\exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, x_t)\right\}}{\sum_{\mathbf{y}'} \exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y_t', y_{t-1}', x_t)\right\}}$$

By expanding Z, we have the conditional distribution $p(\mathbf{y}|\mathbf{x})$

Feature Functions

students.cs.byu.edu/~mbrodie/778

#
Linear-Chain CRFs Conditional Random Fields

- Larger feature set benefits:
 - Greater prediction accuracy
 - More flexible decision boundary
- However, may lead to overfitting

Label-Observation Features

$$f_{pk}(\mathbf{y}_c, \mathbf{x}_c) = \mathbf{1}_{\{\mathbf{y}_c = \tilde{\mathbf{y}}_c\}} q_{pk}(\mathbf{x}_c)$$

Where q_{pk} is an observation function rather than a specific word value

For example: "word x_t is capitalized" "word x_t ends in *ing*"

Unsupported Features

For example: word x_t is 'with' and label y_t is 'NOUN'

Greatly increases the number of parameters.

Unsupported Features

For example: word x_t is 'with' and label y_t is 'NOUN'

Greatly increases the number of parameters. However, usually gives a slight boost in accuracy

> Can be useful -> Assign negative weights to prevent spurious labels from receiving high probability

Boundary Labels

Boundary labels (start/end of sentence, edge of image) can have different characteristics from other labels.

For example:

Capitalization in the middle of the sentence generally indicates a proper noun (but not necessarily at the beginning of a sentence).

Other Methods

- Feature Induction
 - Begin with a number of base features.
 - Gradually add conjunctions to those features
- Normalize Features
 - Convert categorical to binary features
- Features from Different Time Steps

Other Methods

• Features as Model Combination

 $f_t(y, \mathbf{x}) = p_{\text{hmm}}(y_t = y | \mathbf{x})$

- Input Dependent Structure
 - e.g. Skip-Chain CRFs
 - Encourage identical words in a sentence to have the same label
 - Do this by adding an edge in the graph

Linear-Chain CRFs Conditional Random Fields

HMM-like CRF

Previous observation affects transition

Feature Effects

Pseudo Weighted Functions on the Brown Corpus: 38 Training, 12 Test Sentences

Features	Accuracy	# Feature Functions
yt-1 and yt	0.0449	296
xt and yt	0.6282	486
xt and yt AND xt and yt-1and yt	0.6603	1176
xt and yt AND yt-1 and yt	0.0929	782

We want to find parameters for feature functions:

 $\theta = \{\lambda_k\}$

We want to find parameters for feature functions:

$$\theta = \{\lambda_k\}$$

Maximize the conditional log likelihood:

$$\ell(\theta) = \sum_{i=1}^{N} \log p(\mathbf{y}^{(i)} | \mathbf{x}^{(i)})$$

$$p(\mathbf{y}|\mathbf{x}) = \frac{p(\mathbf{y}, \mathbf{x})}{\sum_{\mathbf{y}'} p(\mathbf{y}', \mathbf{x})} = \frac{\exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, x_t)\right\}}{\sum_{\mathbf{y}'} \exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y_t', y_{t-1}', x_t)\right\}}$$

$$p(\mathbf{y}|\mathbf{x}) = \frac{p(\mathbf{y}, \mathbf{x})}{\sum_{\mathbf{y}'} p(\mathbf{y}', \mathbf{x})} = \frac{\exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, x_t)\right\}}{\sum_{\mathbf{y}'} \exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y'_t, y'_{t-1}, x_t)\right\}}$$

Which becomes...

$$\ell(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)})$$

$$p(\mathbf{y}|\mathbf{x}) = \frac{p(\mathbf{y}, \mathbf{x})}{\sum_{\mathbf{y}'} p(\mathbf{y}', \mathbf{x})} = \frac{\exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, x_t)\right\}}{\sum_{\mathbf{y}'} \exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y'_t, y'_{t-1}, x_t)\right\}}$$

Which becomes...

$$\ell(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)})$$

Penalize large weight vectors

$$\ell(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)}) - \sum_{k=1}^{K} \frac{\lambda_k^2}{2\sigma^2}$$

 $\ell(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)}) - \sum_{k=1}^{K} \frac{\lambda_k^2}{2\sigma^2}$

$$\frac{\partial \ell}{\partial \lambda_k} = \sum_{i=1}^N \sum_{t=1}^T f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)})$$

 $\ell(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)}) - \sum_{k=1}^{K} \frac{\lambda_k^2}{2\sigma^2}$

$$\frac{\partial \ell}{\partial \lambda_k} = \sum_{i=1}^N \sum_{t=1}^T f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^N \sum_{t=1}^T \sum_{y,y'} f_k(y, y', \mathbf{x}_t^{(i)}) p(y, y' | \mathbf{x}^{(i)})$$

 $\ell(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)}) - \sum_{k=1}^{K} \frac{\lambda_k^2}{2\sigma^2}$

$$\frac{\partial \ell}{\partial \lambda_k} = \sum_{i=1}^N \sum_{t=1}^T f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^N \sum_{t=1}^T \sum_{y,y'} f_k(y, y', \mathbf{x}_t^{(i)}) p(y, y' | \mathbf{x}^{(i)}) - \sum_{k=1}^K \frac{\lambda_k}{\sigma^2}$$

$\begin{array}{l} \mbox{Linear-Chain CRFs} \\ \mbox{Parameter Estimation} \\ \mbox{How to optimize } \ell(\theta) \, ? \\ \ell(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)}) - \sum_{k=1}^{K} \frac{\lambda_k^2}{2\sigma^2} \end{array}$

Steepest ascent along Gradient

Newton's Method (L-) BFGS

$\begin{array}{l} \mbox{Linear-Chain CRFs} \\ \mbox{Parameter Estimation} \\ \mbox{How to optimize } \ell(\theta) \ ? \\ \ell(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)}) - \sum_{k=1}^{K} \frac{\lambda_k^2}{2\sigma^2} \end{array}$

Steepest ascent along Gradient

Newton's Method (L-) BFGS

$\begin{array}{l} \mbox{Linear-Chain CRFs} \\ \mbox{Parameter Estimation} \\ \mbox{How to optimize } \ell(\theta) ? \\ \ell(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)}) - \sum_{k=1}^{K} \frac{\lambda_k^2}{2\sigma^2} \end{array}$

Steepest ascent along Gradient

Newton's Method

(L-) BFGS

$\begin{aligned} & \text{Linear-Chain CRFs} \\ & \text{Parameter Estimation} \\ & \text{How to optimize } \ell(\theta) ? \end{aligned}$ $\ell(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)}) - \sum_{k=1}^{K} \frac{\lambda_k^2}{2\sigma^2} \end{aligned}$

Steepest ascent along Gradient

Newton's Method

Feature Effects Pseudo Weighted Functions on the Brown Corpus: 38 Training, 12 Test Sentences

Features	Accuracy	# Feature Functions	Trained Accuracy 10 Epochs
yt-1 and yt	0.0449	296	0.1185
xt and yt	0.6282	486	0.6538
xt and yt AND xt and yt-1and yt	0.6603	1176	0.6731
xt and yt AND yt-1 and yt	0.0929	782	0.2724

During Training

Marginal Distributions for each edge

$$p(y_t, y_{t-1} | \mathbf{x})$$

Compute Z(x)

During Testing

Viterbi Algorithm to compute the most likely labeling

$$\mathbf{y}^* = rg\max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$$

Use Forward-Backward Approach in HMM:

 $p(\mathbf{y}, \mathbf{x}) = \prod_t \Psi_t(y_t, y_{t-1}, x_t)$ where Z = 1

Use Forward-Backward Approach in HMM:

$$p(\mathbf{y}, \mathbf{x}) = \prod_t \Psi_t(y_t, y_{t-1}, x_t)$$
 where $Z = 1$

Factor Definition:

$$\Psi_t(j, i, x) \stackrel{\text{def}}{=} p(y_t = j | y_{t-1} = i) p(x_t = x | y_t = j)$$

Use Forward-Backward Approach in HMM:

$$p(\mathbf{y}, \mathbf{x}) = \prod_t \Psi_t(y_t, y_{t-1}, x_t)$$
 where $Z = 1$

Factor Definition:

$$\Psi_t(j, i, x) \stackrel{\text{def}}{=} p(y_t = j | y_{t-1} = i) p(x_t = x | y_t = j)$$

Rewrite Using Distributive Law:

$$p(\mathbf{x}) = \sum_{\mathbf{y}} \prod_{t=1}^{T} \Psi_t(y_t, y_{t-1}, x_t)$$

= $\sum_{y_T} \sum_{y_{T-1}} \Psi_T(y_T, y_{T-1}, x_T) \sum_{y_{T-2}} \Psi_{T-1}(y_{T-1}, y_{T-2}, x_{T-1}) \sum_{y_{T-3}} \cdots$

Use Forward-Backward Approach in HMM: This leads to a set of **forward variables**

$$\alpha_t(j) \stackrel{\text{def}}{=} p(\mathbf{x}_{\langle 1...t \rangle}, y_t = j) \\ = \sum_{\mathbf{y}_{\langle 1...t-1 \rangle}} \Psi_t(j, y_{t-1}, x_t) \prod_{t'=1}^{t-1} \Psi_{t'}(y_{t'}, y_{t'-1}, x_{t'}),$$

Use Forward-Backward Approach in HMM: This leads to a set of **forward variables**

$$\begin{aligned} \alpha_t(j) &\stackrel{\text{def}}{=} p(\mathbf{x}_{\langle 1...t \rangle}, y_t = j) \\ &= \sum_{\mathbf{y}_{\langle 1...t-1 \rangle}} \Psi_t(j, y_{t-1}, x_t) \prod_{t'=1}^{t-1} \Psi_{t'}(y_{t'}, y_{t'-1}, x_{t'}), \end{aligned}$$

Compute α_t by recursion

$$\alpha_t(j) = \sum_{i \in S} \Psi_t(j, i, x_t) \alpha_{t-1}(i),$$

Use Forward-Backward Approach in HMM:

Similarly, we computer a set of **backward variables**

$$\beta_t(i) \stackrel{\text{def}}{=} p(\mathbf{x}_{\langle t+1\dots T \rangle} | y_t = i)$$
$$= \sum_{\mathbf{y}_{\langle t+1\dots T \rangle}} \prod_{t'=t+1}^{T} \Psi_{t'}(y_{t'}, y_{t'-1}, x_{t'}),$$

Compute β_t by recursion

$$\beta_t(i) = \sum_{j \in S} \Psi_{t+1}(j, i, x_{t+1}) \beta_{t+1}(j),$$

Compute Marginals Needed for Gradient Using Forward and Backward Results

$$p(y_{t-1}, y_t | \mathbf{x}) = \Psi_t(y_t, y_{t-1}, x_t) \\ \left(\sum_{\mathbf{y}_{\langle 1...t-2 \rangle}} \prod_{t'=1}^{t-1} \Psi_{t'}(y_{t'}, y_{t'-1}, x_{t'}) \right) \\ \left(\sum_{\mathbf{y}_{\langle t+1...T \rangle}} \prod_{t'=t+1}^{T} \Psi_{t'}(y_{t'}, y_{t'-1}, x_{t'}) \right)$$

Compute Marginals Needed for Gradient Using Forward and Backward Results

$$p(y_{t-1}, y_t | \mathbf{x}) \propto \alpha_{t-1}(y_{t-1}) \Psi_t(y_t, y_{t-1}, x_t) \beta_t(y_t)$$

How does this compare to CRF training/inference?

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, \mathbf{x}_t)\right\}$$

How does this compare to CRF training/inference?

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, \mathbf{x}_t)\right\}$$

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{t=1}^{T} \Psi_t(y_t, y_{t-1}, \mathbf{x}_t)$$

How does this compare to CRF training/inference?

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp\left\{\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, \mathbf{x}_t)\right\}$$

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{t=1}^{T} \Psi_t(y_t, y_{t-1}, \mathbf{x}_t)$$

$$\Psi_t(y_t, y_{t-1}, \mathbf{x}_t) = \exp\left\{\sum_k \lambda_k f_k(y_t, y_{t-1}, \mathbf{x}_t)\right\}$$
Breakthrough

My Implementation

- 3 Different Implementations
 - 1. Tensorflow

Tensorflow Tips Do NOT start with CRFs

$$\mathcal{L}(\mathcal{T}) = \sum_{(\vec{x},\vec{y})\in\mathcal{T}} \left[\log \left(\frac{\exp\left(\sum_{j=1}^{n} \sum_{i=1}^{m} \lambda_{i} f_{i}\left(y_{j-1}, y_{j}, \vec{x}, j\right)\right)}{\sum_{\vec{y}'\in\mathcal{Y}} \exp\left(\sum_{j=1}^{n} \sum_{i=1}^{m} \lambda_{i} f_{i}\left(y_{j-1}, y_{j}', \vec{x}, j\right)\right)}\right) \right] - \sum_{i=1}^{m} \frac{\lambda_{i}^{2}}{2\sigma^{2}}$$

$$= \sum_{(\vec{x},\vec{y})\in\mathcal{T}} \left[\left(\sum_{j=1}^{n} \sum_{i=1}^{m} \lambda_{i} f_{i}\left(y_{j-1}, y_{j}, \vec{x}, j\right)\right) - \left(\sum_{j=1}^{m} \sum_{i=1}^{m} \lambda_{i} f_{i}\left(y_{j-1}, y_{j}', \vec{x}, j\right)\right) \right] - \sum_{i=1}^{m} \frac{\lambda_{i}^{2}}{2\sigma^{2}}$$

$$= \underbrace{\sum_{(\vec{x},\vec{y})\in\mathcal{T}} \sum_{j=1}^{n} \sum_{i=1}^{m} \lambda_{i} f_{i}\left(y_{j-1}, y_{j}, \vec{x}, j\right) - \left(\sum_{(\vec{x},\vec{y})\in\mathcal{T}} \log \underbrace{\left(\sum_{\vec{y}'\in\mathcal{Y}} \exp\left(\sum_{j=1}^{n} \sum_{i=1}^{m} \lambda_{i} f_{i}\left(y_{j-1}, y_{j}', \vec{x}, j\right)\right)\right)}_{\mathcal{Z}_{\vec{\lambda}}(\vec{x})} - \sum_{\vec{x}_{\vec{\lambda}}(\vec{x})} \underbrace{\sum_{\vec{x}_{\vec{\lambda}}(\vec{x})} \sum_{\vec{x}_{\vec{\lambda}}(\vec{x})} \underbrace{\left(\sum_{\vec{y}'\in\mathcal{Y}} \exp\left(\sum_{j=1}^{n} \sum_{i=1}^{m} \lambda_{i} f_{i}\left(y_{j-1}', y_{j}', \vec{x}, j\right)\right)\right)}_{\mathcal{Z}_{\vec{\lambda}}(\vec{x})} - \underbrace{\sum_{\vec{x}_{\vec{\lambda}}(\vec{x})} \underbrace{\sum_{\vec{x}_{\vec{\lambda}}(\vec{x})} \sum_{\vec{x}_{\vec{\lambda}}(\vec{x})} \underbrace{\sum_{\vec{x}_{\vec{\lambda}}(\vec{x})} \underbrace{\sum_{\vec{x}_{\vec{\lambda}}(\vec{x})} \underbrace{\sum_{\vec{x}_{\vec{\lambda}}(\vec{x})} \underbrace{\sum_{\vec{x}_{\vec{\lambda}}(\vec{x})} \underbrace{\sum_{\vec{\lambda}_{\vec{\lambda}}(\vec{x})} \underbrace{\sum_{\vec{\lambda}_{\vec{\lambda}}($$

Tensorflow Tips

Be prepared for awkward, sometimes unintuitive formats

import tensorflow as tf

```
filename_queue = tf.train.string_input_producer(["iris.csv"])
reader = tf.TextLineReader(skip_header_lines=1)
key, value = reader.read(filename_queue)
record_defaults = [[0.0], [0.0], [0.0], [0.0], [""]]
sepal_length, sepal_width, petal_length, petal_width, iris_species = \
    tf.decode_csv(value, record_defaults=record_defaults)
features = tf.pack([
    sepal_length,
    sepal_width,
    petal_length,
    petal_width])
with tf.Session() as sess:
    tf.initialize_all_variables().run()
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)
    for row in range(0,150):
            example, label = sess.run([features, iris_species])
            print(example, label)
```

Tensorflow

- Gaaaaah!!
- len(X) => X.get_shape().dims[0].value
- Start out with Theano
 - More widely used
 - More intuitive

My Implementation

- 3 Different Implementations
 - 1. Tensorflow
 - 2. Scipy Optimization (fmin_l_bfgs_b)

My Implementation

- 3 Different Implementations
 - 1. Tensorflow
 - 2. Scipy Optimization (fmin_l_bfgs_b)
 - 3. Gradient Descent
 - A. Trainable Version

B. Simplified, Web-based Version

Experiments Data Sets

Brown Corpus News Articles

Penn Treebank Corpus WSJ

- 5,000 POS Sentences
- 27,596 Tags
- 75/25 Train-Test Split
- 3,914 sentence SAMPLE
- \$1,700 (or free BYU version)
- 75/25 Train-Test Split

Experiments Comparison Models Python Natural Language Toolkit (NLTK)

- Hidden Markov Model
- Conditional Random Field
- Averaged-Multilayer Perceptron
 - Average the weight updates -> prevent radical changes due to different training batches

Experiments

Brown Corpus Results

Experiments

Penn Corpus Results

Pros/Cons of Implementation

Pros

- Can use forward/ backward and Viterbi Algorithm
- Learn weights for features

Cons

Slow

 Limited to gradient descent training

Extensions

- General CRFs
- Skip-chain CRFs
- Hidden Node CRFs

CRF-RNN + CNN

- Problem: Traditional CNNs produce coarse outputs for pixel-level labels.
- Solution: Apply CRF as a post-processing refinement

Figure 3. The End-to-end Trainable Network. Schematic visualization of our full network which consists of a CNN and the CNN-CRF network. Best viewed in colour.

BI-LSTM-CRF

Table 2: Comparison of tagging performance on POS, chunking and NER tasks for various models.

		POS	CoNLL2000	CoNLL2003
	Conv-CRF (Collobert et al., 2011)	96.37	90.33	81.47
	LSTM	97.10	92.88	79.82
	BI-LSTM	97.30	93.64	81.11
Random	CRF	97.30	93.69	83.02
	LSTM-CRF	97.45	93.80	84.10
	BI-LSTM-CRF	97.43	94.13	84.26
	Conv-CRF (Collobert et al., 2011)	97.29	94.32	88.67 (89.59)
Senna	LSTM	97.29	92.99	83.74
	BI-LSTM	97.40	93.92	85.17
	CRF	97.45	93.83	86.13
	LSTM-CRF	97.54	94.27	88.36
	BI-LSTM-CRF	97.55	94.46	88.83 (90.10)

Bidirectional LSTM-CRF Models for Sequence Tagging

Future Directions

- New model combinations of CRFs
- Better training approximations (i.e. besides MCMC sampling methods)
- Additional 'hidden' architectures

Bibliography

т

Trevor A. Cohn. Scaling Conditional Ran- dom Fields for Natural Language Process- ing. 2007.	Laurens Maaten, Max Welling, and Lawrence K. Saul. <i>Hidden-Unit Condi-</i> <i>tional Random Fields</i> .		
Roman Klinger and Katrin Tomanek. Classical Probabilistic Models and Condi- tional Random Fields. 2007.	Andrew McCallum. "Efficiently Inducing Features of Conditional Random Fields". In: Proceedings of the Nineteenth Confer- ence on Uncertainty in Artificial Intelli-		
John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. "Condi- tional Random Fields: Probabilistic Mod- els for Segmenting and Labeling Se-	<pre>gence. UAI'03. Acapulco, Mexico: Morgan Kaufmann Publishers Inc., 2003, pp. 403- 410. ISBN: 0-127-05664-5. URL: http:// dl . acm . org / citation . cfm ? id =</pre>		
quence Data". In: Proceedings of the Eigh-	2100584.2100633.		
teenth International Conference on Ma- chine Learning. ICML '01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 282–289. ISBN: 1-55860- 778-1. URL: http://dl.acm.org/	Charles A. Sutton. "Efficient Training Methods for Conditional Random Fields". AAI3315485. PhD thesis. 2008. ISBN: 978- 0-549-66363-8.		

Bibliography

A. Pass, J. Zhang, and D. Stewart. "Hidden Conditional Random Fields for Visual Speech Recognition". In: *Machine Vi*sion and Image Processing Conference, 2009. IMVIP '09. 13th International. Sept. 2009, pp. 117–122. DOI: 10.1109/ IMVIP.2009.28.

Fei Sha and Fernando Pereira. "Shallow Parsing with Conditional Random Fields". In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1. NAACL '03. Edmonton, Canada: Association for Computational Linguistics, 2003, pp. 134–141. DOI: 10. 3115/1073445.1073473. URL: http:// dx.doi.org/10.3115/1073445.1073473.

Jeremy J. Morris. "A Study on the Use of Conditional Random Fields for Automatic Speech Recognition". AAI3417603. PhD thesis. Columbus, OH, USA, 2010. ISBN: 978-1-124-15313-1.

Charles Sutton and Andrew McCallum. "An Introduction to Conditional Random Fields". In: *Found. Trends Mach. Learn.* 4.4 (Apr. 2012), pp. 267–373. ISSN: 1935-8237. DOI: 10.1561/2200000013. URL: http://dx.doi.org/10.1561/ 2200000013.

Xiaojin Zhu. CS838-1 Advanced NLP: Conditional Random Fields. 2007.

Hanna M. Wallach. *Conditional random fields: An introduction*. Tech. rep. 2004.

Bibliography

Other Resources

- Tom Mitchell's Machine Learning. Online draft version of 'Generative and Discriminative Classifiers: Naive Bayes and Logistic Regression.' http://www.cs.cmu.edu/~tom/mlbook/ NBayesLogReg.pdf. Accessed January 25, 2016.
- Edwin Chen Blog. *Introduction to Conditional Random Fields*. http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/. Accessed February 2, 2016.
- LingPipe Tutorial: http://alias-i.com/lingpipe/demos/ tutorial/crf/read-me.html. Accesed February 2, 2016.

Thank You

Questions?

