

Chapter 31. Current and Resistance

Topics:

- Conductivity and Resistivity
- Resistance and Ohm's Law

Chapter 32. Simple circuits

- Capacitors in series and parallel
- Resistors in series and parallel
- Kirchhoff's Rules

ConcepTest 1

Electric Current
Compare the currents I_{1} and $I_{2} \cdot \frac{1 . I_{1}>I_{2}}{\text { 2. } I_{1}=I_{2}}$ 3. $I_{1}<I_{2}$

Consider a battery with a wire connecting its terminals.

(a) In which direction (CW or CCW) does
an electron travel through the wire?
(b) In which direction (CW or CCW) does an electron travel through the wire?
(c) How does an electron's potential energy change as it moves through the wire?
(d) What happened to that energy? Where did it come from, or where did it go?

Resistivity

- The electric field is directly proportional to the current density in the wire.

$$
\vec{E}=\rho \vec{J}
$$

- ρ is called resistivity, R is the resistance
$>$ a measure of how hard a charge can move in a material
$V=R I$
- SI unit: V.m / A = Ω. m

Table 25.1 Resistivities at Room Temperature $\left(20^{\circ} \mathrm{C}\right)$

	Substance	$\rho(\Omega \cdot m)$	Substance	$\rho(\Omega \cdot m)$
Conductors	Semiconductors			
Metals:	Silver	1.47×10^{-8}	Pure carbon (graphite)	3.5×10^{-5}
	Copper	1.72×10^{-8}	Pure germanium	0.60
	Gold	2.44×10^{-8}	Pure silicon	2300
	Aluminum	2.75×10^{-8}	Insulators	
	Tungsten	5.25×10^{-8}	Amber	5×10^{14}
	Steel	20×10^{-8}	Glass	$10^{10}-10^{14}$
	Lead	22×10^{-8}	Lucite	$>10^{13}$
	Mercury	95×10^{-8}	Mica	$10^{11}-10^{15}$
Alloys:	Manganin (Cu 84\%, Mn 12\%, Ni 4\%)	44×10^{-8}	Quartz (fused)	75×10^{16}
	Constantan ($\mathrm{Cu} 60 \%$, Ni 40\%)	49×10^{-8}	Sulfur	10^{15}
	Nichrome	100×10^{-8}	Teflon	$>10^{13}$
			Wood	$10^{8}-10^{11}$
Copyright © 2004 Pearson Education, Inc, publishing as Addison Wesley.				

- A perfect conductor has zero resistivity. A perfect insulator has infinite resistivity
- The reciprocal of resistivity $(1 / \rho)$ is called conductivi

$$
\sigma \vec{E}=\vec{J}
$$

PHYS 1022: Chap. 31-32, Pg 6

Temperature dependence of Resistivity

- The resistivity of a material depends on temperature.

Metal near room temperature: $\rho(T)=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$

Table 25.2 Temperature Coefficients of Resistivity (Approximate Values Near Room Temperature)			
Material	$\boldsymbol{\alpha}\left[\left({ }^{\circ} \mathbf{C}\right)^{-\mathbf{1}}\right]$	Material	$\boldsymbol{\alpha}\left[\left({ }^{\circ} \mathbf{C}\right)^{-\mathbf{1}}\right]$
Aluminum	0.0039	Lead	0.0043
Brass	0.0020	Manganin	0.00000
Carbon (graphite)	-0.0005	Mercury	0.00088
Constantan	0.00001	Nichrome	0.0004
Copper	0.00393	Silver	0.0038
Iron	0.0050	Tungsten	0.0045
Copyight © 2004 Pearson Education, Inc., publsising as Addson Wesley.			

(a) Metal:
ρ increases
with increasing T

(b) Semiconductor: ρ decreases with increasing T

(c) Superconductor: $\rho=0$ for $T<T_{\text {c }}$

ConcepTest 3

If a metal is heated, what happens to its conductivity?

Conductivity

1. increases
2. does not change
3. decreases
```
A Ase collisions wit's postrive
    jons unone fregyentr?
How does i'sesj esjfecis itse
    dsifts speed?
- Does ingis unakes es bejfrer
    os wosse concluctios?
```

ConcepTest 2 (Fosti)Ohm's Law

What is the value of R ?

1. 0.25Ω
2. 0.5Ω

Draw the greaph for the case where the lengith of the resistion is doubled.

ConcepTest 3(Posif)Ohm's Law

Rank the currents in the resistors shown below

1. $I_{3}>\left(I_{1}=I_{4}\right)>I_{2}$
2. $\left(I_{1}=I_{3}\right)>\left(I_{2}=I_{4}\right)$
3. $\left(I_{1}=I_{2}\right)>\left(I_{3}=I_{4}\right)$
4. $I_{1}>\left(I_{2}=I_{3}\right)>I_{4}$
5. $I_{3}>I_{1}>\left(I_{2}=I_{4}\right)$

A wire consist's of two segment's of different diametrers of the same matierial.
(a) Compare the currents I_{1} and I_{2}.
(b) Compare the current densities J_{1} and J_{2}.
(c) Compare the electric field strengths E_{1} and E_{2}.
(d) Compare the electron drift speeds v_{1} and v_{2}.

A wire consists of two segments with equal diameters, but their conductivities and electron densities differ $\left(\sigma_{2}>\sigma_{1}\right.$ and $n_{2}>n_{1}$).

Chapter 31. Current and Resistance

Topics:

- Conductivity and Resistivity
- Resistance and Ohm's Law

Chapter 32. Simple circuits

- Capacitors in series and parallel
- Resistors in series and parallel
- Kirchhoff's Rules

Capacitors in parallel

- Potential difference between points a and b is the same for all 3 capacitors

$$
>V_{1}=V_{2}=V_{3}=V
$$

- However, charges add:

$$
Q_{1}+Q_{2}+Q_{3}=Q
$$

- Since $Q=C V$, we have

$$
C_{1} V+C_{2} V+C_{3} V=C V
$$

C is called an equivalent capacitor.

Capacitors in series

- Each capacitor has to hold the same charge:

$$
>Q_{1}=Q_{2}=Q_{3}=Q
$$

- However, voltages add:

$$
\rangle V_{1}+V_{2}+V_{3}=V
$$

- Since $V=Q / C$, we have

$$
\downarrow Q / C_{1}+Q / C_{2}+Q / C_{3}=Q / C
$$

$$
\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}
$$

ConcepTest 5 capacitors

How does the voltage V_{1} across the C_{1} compare to the voltage

$$
\mathrm{V}_{2} \operatorname{across} \mathrm{C}_{2} \text { ? }
$$

4) all voltages are zero

ConcepTest 6 capacitors

How does the charge Q_{1} across
C_{1} compare to the charge Q_{2}

$$
\text { across } \mathrm{C}_{2} \text { ? }
$$

Each capacitor in the circuits below has capacitance C. What is the equivalent capacitance of the group of capacitors?

Capacitor calculations

- Find the charge, potential difference, and energy stored in each capacitor.

Resistors in series

- Same charge has to flow through all the resistors

$$
\text { same current: } \quad I_{1}=I_{2}=I_{3}=I
$$

- Total work done by battery must equal sum of energy lost as charge moves through resistors

$$
\text { voltages add: } V=V_{1}+V_{2}+V_{3}
$$

- Ohm's Law, V = I R, gives:

$$
I R_{e q}=I R_{1}+I R_{2}+I R_{3}
$$

$$
R_{e q}=R_{1}+R_{2}+R_{3}
$$

Resistors in parallel

- Current splits up into several branches. However, total current must be conserved!
>currents add: $I=I_{1}+I_{2}+I_{3}$
- But the voltage is the same across each resistor

$$
\downarrow V=V_{1}=V_{2}=V_{3}
$$

From Ohm's Law, V $=I R$, we find:

$$
\frac{V}{R_{e q}}=\frac{V}{R_{1}}+\frac{V}{R_{2}}+\frac{V}{R_{3}}
$$

$\mathrm{R}_{\text {eq }}$ is the reciprocal of the sum of the reciprocals.

Kirchhoff's Junction Rule

At any junction point, the sum of all currents entering the junction must equal the sum of all currents leaving.
(or: what goes in has to come out!)

$$
I_{3}=I_{1}+I_{2}
$$

This rule follows from conservation of
charge!

ConcepTest 7 Junction Rule

What is the current at point P ?

1) 2 A
2) 5 A

3) 10 A

ConcepTest $8\left(\right.$ Postit Parallel Resistors 2

What fraction of the current goes through the 3Ω resistor?

1.	100% (all of $i t$)
2.	75%
3.	50%
4.	33%
5.	0%

ConcepTest $9\left(\mathrm{P}_{\mathrm{F}} \mathrm{F}_{\mathrm{i}}\right)$ Kirchhoff's Laws

Rank the resistors in the part of the circuit below.

1. $R_{1}>R_{2}>R_{3}$
2. $R_{2}>R_{1}>R_{3}$
3. $R_{3}>\left(R_{2}=R_{1}\right)$
4. $R_{3}>R_{1}>R_{2}$
5. $R_{1}=R_{2}=R_{3}$

Distance

ConcepTest $10(\mathrm{P}$

Rank the currents shown in the circuit below.

1. $I_{3}>I_{2}>I_{1}$
2. $I_{2}>I_{1}>I_{3}$
3. $I_{1}>\left(I_{2}=I_{3}\right)$
4. $I_{1}>I_{3}>I_{2}$ 5. $I_{1}>I_{2}>I_{3}$

ConcepTest 11 (P)sti)Real Batteries

If the resistor R increases, what happens to the terminal voltage $\Delta \mathrm{V}_{\text {bat }}$ of the battery?

4. goes to zero

ConcepTest $12\left(\right.$ POstit Parallel Resistors $^{\text {PO }}$

Which resistor dissipates the

$P=V^{2} / R$

ConcepTest 13 (P)sit)Light Bulbs

Which bulb glows brighter? For a 100 W bulb, $\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$, where $V=110 \mathrm{~V}$.

1. 60 W is brighter
2. 100 W is brighter
3. both equally bright

In the circuits below, the two batteries are identical and all of the resistors have the same value.
(a) Compare $\Delta V_{\text {ab }}$ and $\Delta V_{\text {ed }}$.
(b) Rank the currents (from high to low).

Find the equivalent resistance of each resistor natwork.

b.

c.

Rank the equivalent resistances (large to small).

What is the equivalent resistance between points A and B in the network below?

