
DOTIFANCT-ACD32094/5

Configuration Management and

Software Quality Assurance

Standards for TCAS Logic Systems

J. Stuart Searight

September 16, 1994

';~I?:!;~l jF'\():: >"T~"\;'~-

,. 'f1:,e:~"':, , c;

Engineering, Research, and Development Service

Concepts Analysis Division

FAA Technical Center

Atlantic City International Airport, N.J. 08405

•

EXECUTIVE SUMMARY

This document describes the Software Configuration Management (SCM) and Quality Assurance (QA)
standards and procedures used for all software maintained by Traffic Alert and Collision Avoidance
System (TCAS) Logic Systems personnel at the FAA Technical Center. These standards and procedures
will ensure that integrity is maintained throughout the life-cycle of all TCAS software, and provide a well
defined course of action to implement changes to the baseline software.

1.0 PURPOSE AND SCOPE OF THIS DOCUMENT

This document describes the Software Configuration Management (SCM) and Quality Assurance (QA)
standards and procedures to be used for all software maintained by Traffic Alert and Collision Avoidance
System (TCAS) Logic Systems personnel at the FAA Technical Center. It details the steps required to
make a change to the baseline software. These steps include the procedures for documenting the need or
desire for a change to the baseline software; evaluating the request for change; assigning of the duty of
making a change; changing of the baseline software; testing of the software change for accuracy,
completeness, and proper integration with the existing baseline software; and admitting the changed
software to the baseline.

2.0 BACKGROUND

The FAA Technical Center TCAS Logic Systems personnel have developed software tools to assist in
evaluation of proposed/revised TCAS Illogic version releases, and recorded flight data from the TCAS
Transition Program (TTP). This library of baseline software is currently stored on a Local Area Network
(LAN) file server that connects all TCAS personal computers (PCs) on a Novell Netware 3.21 platform.
The source code is currently in Borland Turbo Pascal 7.0, which is currently run in the MS DOS
5.0fWindows 3.1 environment. For a detailed description of the Turbo Pascal environmen~ refer to
section 5. I ofthis report.

To ensure baseline integrity and effectively mortitor software development efforts, SCM and QA standards
and procedures must be adhered to. This document describes those standards in a formal and detailed
manner.

2.1 SOFlWARE DESCRIPTION

There are two main software systems and support programs in the TCAS baseline. The first is the FAA
Technical Center's Fast Time Encounter Generator (FTEG), with its support routines and post-processing
programs. This software simulates TCAS urtits operating in predefined aircraft encounter geometries. It
can implement a variety of TCAS Logic versions and can simulate thousands of aircraft encounter
geometries in a short period of time. The second system is TCAS Data Reduction and Analysis (DRNA).
This software analyzes data recorded from both the FTEG and actual TCAS units. There are currently
five manufacturers of TCAS I and TCAS 11 units. The data from TCAS units is called "live" data. The
DRNA processing of live data forms the hasis of the FAA Technical Center's evaluation of TCAS
performance which is part of the TCAS Transition Program (TTP). While some software is common to
all live data, much is specific to the various manufacture's recording formals and cycle timing.

The baseline is categorized into groups in two different ways. The first is a physical grouping into two
categories labeled PROGS and UNITS. These labels correspond to two directories on the LAN file server
which contain the entire software baseline of the Logic Systems project. PROGS contains all source code
files that contain Pascal programs. All support routines are found within the UNITS directory. Each is
mapped to a logical drive on the file server. While everyone has read permission to these directories, only
the Configuration Manager (CM) and Technical Program Manager (TPM) have write permissions.

The second grouping is into logical groups, with the baseline broken down into a variety of subsystems.
These are more detailed divisions within the FTEG and DRNA partitions. These groupings include
TCAS logic versions. FTEG and other drivers for the logic, FTEG post-processing, encounter summary
printouts, TTP processing, recorded encounter data processing, recorded track data processing, and
common support routines shared by various subsystems. These subsystems have been assigned among the
FAA staff. The FAA employee is considered the Technical Lead (TL) of his or her assigned subsystems.

Familiarity of source code, code usage, and output evaluation were considerations in the current TL
subsystem assignments. The TL will playa vital role in software development and maintenance.

The TLs and the TPM meet weekly as a confib'Uration management control board (CMCB). In these
meetings submitted Problemrrrouble Reports (PTRs), assigned work, and completed baseline updates are
all discussed. Project short- and mid-range priorities and plans are developed as the different individual
subsystem priorities and issues are merged together. The support contractors join the CMCB every other
week after the CMCB meeting to provide status updates on assigned work, and to exchange feedback on
work loads, priorities, etc..

3.0 CONFIGURATION MANAGEMENT

This section defines the procedures necessary to make an update to the baseline. It covers the entire
process including problem identification, design, coding, and testing.

3.1 PROBLEM DETECTION and CHANGE REQUESTS

Any TCAS personnel can submit a Problemrrrouble Report form to the Configuration Manager at any
time. (This form is shown in Page I of Appendix A) These forms serve as either Change Requests or
Problem Reports. Change Requests are usually used to suggest improvements to the software systems in
areas such as user interface, output formats, documentation, and performance efficiency. Problem
Reports deal with errors such as faulty output, incorrect internal processing, inadequate algorithms,
system crashes, and incorrect error handling. When a Problem Report is submitted, the data set that
caused the problem to be noticed must be cited.

PTRs should be written with respect to the requirements of the system that contains the respective
problem, error, or deficiency. If a requirements specification document exists for the system, the PTR
should reference the requirement being met. If the system does not have a requirements specification
written for it, the author of the PTR should identify the quantifiable and testable requirement(s) of the
system that are not being met and write the PTR in reference to that requirement.

The Configuration Manager will examine the PTR for completeness and accuracy. Once the PTR is
accepted, it will be numbered, and entered into the PTR database. The TL of the identified subsystem will
then evaluate the PTR's priority and, at an appropriate time, assign the PTR to an FAA staff member or a
support contractor. This person will be referred to as the programmer throughout the software
development process. The TL will coordinate with the assigned programmers regarding their work
performed to resolve the PTRs assigned from the TL's particular subsystems.

3.2 UPDATING and UPGRADING OF BASELINE SOFTWARE

This section defines the processes necessary, and the individuals responsible for addressing identified
deficiencies in the baseline, updating applicable source code, and readmitting that code back into the
baseline.

3.2.1 PROCESS OF MAKING UPDATES TO BASELINE

This section lists the steps to create or modify code as dictated by one or more PTRs.

I) The programmer will study the assigned PTR and all applicable code.

2) The programmer will formulate design and implementation considerations for the work needed and
write documentation stating these design and implementation plans. These documents will be reviewed
by the Technical Lead. The process does not continue until the following are agreed upon by both

2

programmer and 11.: design and implementation documentation is developed that specifies a design that
will meet all requirements of the assigned PTR; all documentation that will need revision to reflect the
software update are identified; the level of testing to be performed after coding is complete is specified.

3) The programmer will sign out all files from the Configuration Manager that will undergo changes to
resolve the PTR. The SIGN OUT list is a Word 2.0 file found on the NEW logical LAN drive. All Logic
Systems team members, including contractors. have read/write access to this file. The process of signing
out files involves updating this file with the following information: adding the programmer's name, the
file(s) being signed out, the date and size of the baseline version of the filers), the date signed out, and the
PTR being addressed. A file should only be signed out by one person at one time to prevent simultaneous
updates to the baseline.

4) The programmer will copy the code from tbe LAN's baseline directories to the proper directory local
to the programmer's Pc. Each TCAS Logic Systems PC has directories that mirror the baseline, and
standard compile directories that correspond to this directory structure. (These are specified in section
5.1.)

5) The programmer will edit or create the code to meet the requirements specified in the PTR and
agreed upon in step 2. This includes adhering to all documentation standards described in section 4.

6) The programmer will test the new code to satisfY the 11. and as outlined in section 3.3.

7) Any deficiencies found through the testing phase shall be corrected and the codc retested until no
deficiencies exist.

8) Upon successful completion of the testing procedures, the programmer will complete a CHANGE
FORM (CF) that thoroughly describes the changers) that have been made to new or baseline software (see
Page 2 Appendix A).

9) The programmer will copy the unites) and/or program(s) into the LAN's NEW directory to await
readmittance to the baseline. NEW's subdirectories mirror the baseline directories (PROGS and UNITS).
All TCAS personnel have write permission to the NEW subdirectories. The extension of the unit's file is
to be the initials of the programmer responsible for the changes. This safeguards against duplicate
updates not prevented by the SIGN-oUT sheet.

10) The Technical Lead will review the programmer's submitted code, documentation and test results.

The set of submitted files will include updated or new source code, output files from performed
testing, and output files from the file compare DOS utility of updated files vs. the baseline files. The
submitted source code will be copied into the appropriate NEW subdirectory (UNITS or PROGS) with the
extension being the programmer's initials. The test output files will retain their original extensions and be
copied into the TESTING subdirectory of NEW. File compare outputs will have an extension of'FC', and
be copied into the same subdirectory as the corresponding source code.

Documentation will include completed CF(s), updated reference documents, when applicable, and a
written summary of performed testing. This summary will included what files were tested, a description
of each test's purpose, and its result. The 11. will examine all submitted materials and reference the
original PTR and the design and implementation documents previously agreed to by the 11. and
programmer.

II) The 11. can request the programmer, or perform themselves, any extra testing deemed necessary.

12) If the 11. is satisfied with the update, the CF is filed with the Configuration Manager.

3

13) The Configuration Manager will review the submitted CF(s) and examine completed review process
with TL.

14) The Configuration Manager will check all updated files for CM integrity. This includes checking
that all previous updates are still in submitted tile, date of file matches date of most recent comments, etc..

15) The Configuration Manager will initiate or perform any extra testing deemed necessary.

16) Ifall previous steps have been satisfied, the updated or new code is written into the baseline with a
PAS extension.

3.2.2 CREATING NEW CODE FOR THE BASELINE

If a new program or support unit has been created by TCAS personnel, it must be put into the proper
NEW subdirectory on the LAN. First, a PTR must be written and accepted stating the need for the new
code, and describing the new code's requirements. The new code is to be accompanied by a CHANGE
FORM that is sent to the Technical Lead. This CHANGE FORM should describe the new code's purpose,
its output, and any interface it has with existing baseline software. The new code must go through the
review and testing procedures defined in section 3.3 of this document. Upon successful testing it will
await admittance to the baseline.

3.3 INDIVIDUAL'S RESPONSmILITIES

The above sections described the process of identiJ'ying deficiencies within the baseline, and updating
source code to bring the issue to closure. This section also addresses these activities, but from a different
point of view. The sections below are divided by individuals, and their responsibilities in seeing a PTR
brought to closure. There are four sections. One each for the programmer, Technical Lead,
Configuration Manager, and Technical Program Manager. For all software updates there are three
positions whose roles must be performed: Programmer - completes design, actual updates to baseline code,
and testing; Technical Lead - reviews design, code changes and testing; Configuration Manager - accepts
the change and updates baseline.

It should also be noted that the Technical Leads can function as programmer, the Configuration Manager
is also a Technical Lead, and the TPM can function as any of the other three roles. No one person is to
act in two different capacities for anyone piece of work that leads to an update to the baseline. If, for
example, a TL assigns himselfJherself as progranuner to close out a PTR, they must first solicit another
person to act as TL for the work being done. When a change is being done for a subsystem of which the
CM is TL, the TPM must act as CM for those efforts.

3.3.1 PROGRAMMER

I) Develops thorough design and implementation documentation addressing the assigned problem.
2) Signs out source code after design is approved.
3) Reviews progress and coordinate with TL during and after each step of software development process.
4) Thoroughly tests work before submitting it to TL for final inspection.

3.3.2 TECHNICAL LEAD

I) Review new PTRs for the following:

a) is a duplicate, or similar PTR already in the database?

b) level of urgency

c) magnitude of the change

d) impact on other subsystems

4

e) changes to recorded record structures
f) changes needed to support documentation

2) Assign PTR to a programmer.

3) Review programmer's initial design:

a) Will the design fix the identified problem?

b) Will the design have any effects on other subsystems?

c) Will the design change the format of any recorded record structures'!

d) Does the design conform to defined software standards?

4) Review the programmer's implementation:

a) Are all changes commented in source code'!

b) Examine all changes (use file compare utility).

c) The cited problem is fixed. (New code appears to address problem.)

5) Review programmer's testing coverage and results.
a) Was all necessary testing completcd'!
b) Were there test cases that addressed all concerns?
c) Are results as expected?
d) Are there any side-effects to other subsystems'! Is this acceptable with the TL(s) of those

subsystems?
e) Has all needed documents been updated?

6) Review Change Form(s) submitted with updated code.

a) Are all required fields filled in?

b) Does the CF clearly describe the change(s) made?

3.3.3 CONFIGURATION MANAGER

I) Perform initial review of all submitted PTRs.

a) Are all required fields filled in'!

b) Is proper subsystem identified'!

c) [s priority appropriate for scope of problem cited'!

d) [s problem clearly stated?

2) Number accepted PTR.

3) Forward PTR to appropriate TL.

4) Review submitted code, testing, and documentation after TL has accepted update.

a) Does date at top offile reflect last change?

b) Does file contain all previously accepted changes?

c) Are comment blocks properly updated'!

d) Are updated lines of code properly commented?

e) Does CF reference correct PTR'!

f) Was level of programmer's testing and TL's review appropriate for the change's magnitude.

g) Were all necessary updates to documents completed?

6) Enter CF into database.

7) Update PTR database to have cited PTR reference CF.

8) Update baseline with accepted source code and document changes.

9) Update SIGN OUT list to reflect files being signed back in.

3.3.4 TECHNICAL PROGRAM MANAGER

I) Monitor overall software development and testing processes.
2) Evaluate if the defined processes are:

a) being adhered to

b) effective means of ensuring baseline code reliability

3) Act as CM or TL when needed. (!fa TL has acted as programmer, the TPM might act as TL. !fthe
CM has acted as programmer or TL, the TPM must fill role of CM.)

5

3.4 BASELINE SUPPORT DOCUMENTATION

This section describes the support documentation for the baseline programs and major subsystems. It also
defines the manner in which these documents fall under the configuration management rules and
procedures defined in sections 3.2 and 3.3.

3.4.1 DOCUMENTATION DESCRlPTION

All documents will be stored as part of the TCAS Baseline in a directory named DOC. (This is a
subdirectory ofTCAS just as UNITS and PROGS are.) There will be user documents for all baseline
programs, or groups of similar programs. (For the rest of section 3.6, 'programs' will be equal to the
phrase 'programs, or groups of similar programs'.) There will be output definition files for all programs
that define all fields of the generated output file. There will be desigu documents for all major subsystems
of the TCAS baseline. The three sections below describe these documents in greater detail.

3.4.1.1 USER DOCUMENTS

A user document will be written for all programs. These documents will be named the same as the
program it describes, or that part of the programs' name that is common to all programs. (i.e. SUM for a
document describing the use of BX_SUM, HW_SUM, and RC_SUM.) The extension will be 'USE'.
These documents will describe all user/program interface, available options, default options, and define
needed input files - any restrictions on their location (drives, subdirectories), and their format - and the
available destinations of output.

3.4.1.2 OUTPUT DEFINITION DOCUMENTS

A definition document will be written for all output files that can be generated by baseline programs.
These documents will be named the same as the program's name, or major subsystem from which the file
is generated. (i.e. SUMMARY, LISTER, ERD_CNTS) The extension will be the same as the output file
which the document defines. These documents will describe each field in the output file, its origins,
expected range, units, and display format if text, or storage format if binary.

3.4.1.3 SUBSYSTEM DESIGN DOCUMENTS

A desigu document will be written for all major subsystems of the baseline. These documents will be
named to describe the subsystem as best possible. (i.e. SUMMARY, PRM for pilot response model) The
extension will be 'DSN'. These documents will describe subsystem designs and implementations. This
will include interfaces to programs and other subsystems, data structures filled in or processed, outputs
generated, and algorithms implemented.

3.4.2 CONFIGURATION MANAGEMENT OF DOCUMENTS

This section describes the manner in which the documents described in section 3.6.1 fall under the TCAS
CM practices and standards. As with the UNITS and PROGS directories, the DOC directory is a
subdirectory of TCAS, and only the CM and TPM have write permission to that directory. There is also a
DOC subdirectory of NEW that all programmers have write permission to. It is this directory that updates
are written into, and are promoted to the baseline directory by the CM or TPM.

The originator of a PTR, and the assigned programmer should always be examining if the work they are
doing dictates that any document(s) will need updating as a result of the pending baseline update. It is the
TL's responsibility to ensure that all submitted updates include updates to the corresponding document(s).

6

This is included in the TL's responsibilities defined in section 3.3.2. The Configuration Manager also
must examine if any submitted updates requirc updates to support documentation (section 3.3.3)

3.5 SOFTWARE TESTING STANDARDS and PROCEDURES

This section describes the routines followed when developing and testing new or updated software. There
are two philosophies utilized to assist in the dcvelopment of correct, robust, and reliable software. These
philosophies are used during design and development to assist the programmer, and after the code has
been written or updated to test the programmer's work. Preventive measures, used during the design
review, are taken during software development. These practices are in place to help ensure that work
requirements are thoroughly defined and solutions are logically designed. Corrective measures, used
during implementation verification, are taken after code is updated or written. Testing is done in an effort
to find faults in design or implementation. These procedures are defined below.

3.5.1 DESIGN REVIEW

I) After a programmer has been assigned a PTR and investigated the problem, he/she will develop a
design document as a proposal to bring the PTR to closure. This document will be reviewed by the
subsystem Technical Lead.

2) After the design has been agreed upon, the assigned programmer will submit documentation defining
proposed implementation plans to the subsystem Technical Lead.

3) Actual coding will not begin until both documents have been reviewed and approved by the Technical
Lead.

3.5.2 IMPLEMENTATION VERIFICATION

I) A code inspection is performed. The author of the new or changed code will inspect the code for
logical accuracy, clarity, and adherence to format, naming and documentation conventions of the TCAS
Project. The Technical Lead will also inspect the completed code after it has been suhmitted by the
programmer.

2) The code is to be compiled with the baseline units on the LAN. This will be in the form of a BUILD
to assure the new units compile with all other units and programs in the baseline.

3) The code is to be tested thoroughly to show that the program execution - A) Reflects the changes
the PTR requested. This is done by processing the Problem Data Set(s) data cited in the PTR and showing
that the faulty output, system crash, or improper error handling has been corrected.

B) Does not cause other changes or side-effects that are not desired. This is done by running all
program drivers that implement the unit(s) that have been created or modified against Standard Data Sets
(SDS) that were selected by the programmer BEFORE starting work on the source code. The programmer
will run all applicable programs against the SDSs before code is changed and compare the results with the
output from the updated code.

All test results must be kept for the Technical Lead to inspect. Documentation discussing all testing
performed, the purpose ofeach test, and the results must also be presented to the TL. The Technical Lead
also will review the updated code, and the submitted Change Form. If everything is found to be
acceptable, the CF is forwarded to the Configuration Manager for hislher final inspection.

As coding changes are made, the TL should ask for, or locate sufficient test cases for the change being
made.

7

3.6 ADMITTANCE TO THE BASELINE

Upon receiving a CHANGE FORM from a programmer, along with the respective test results, the
Technical Lead will then inspect the test results and do any additional testing he/she feels is necessary.
The Configuration Manager, after hislher own review, will then copy the new file(s) back into the baseline
with the proper .PAS extension, or hand it back to the programmer with any problems found in the code.
(For more detailed description of the review process, refer to section 3.2 of this document.) If the file(s)
are put back into the baseline, they will be removed from the SIGN OUT sheet by the Configuration
Manager. The Configuration Manager will then cross-reference the PTR that precipitated the change to
the CHANGE FORM. This ensures the traceability of how PTRs were closed out, and why changes to the
baseline were made.

3.7 DELETING CODE FROM BASELINE

PTRs can be subntitted requesting routines be deleted from the baseline if routines or entire units are
identified as dead code, or if it is to be replaced by new code tbat will perform the same tasks in an
improved manner. The PTR must justiJY the reasons for the routine's or file's deletion. The programmer
must also assure the Technical Lead that this deletion will not bave any undesired effects on the rest of the
baseline. The PTR's closure must go through the same procedures and reviews as other PTRs. (For more
detailed description of those procedures, refer to section 3.2 of this document.)

3.8 BASELINE ARCHIVES

The Configuration Manager will archive the entire source code baseline once a month. Archives will also
be saved immediately before any major data collection efforts performed by the Logic Systems team. The
monthly archive will include all intermediate versions of files that bave been updated more than once in
the past month. This ensures that any previous state of the baseline can be recreated. The data collection
archives will include the entire baseline's source code, the executable code used for collecting the data, all
input files used, and all output files generated.

3.9 OFF-SITE CONTRACTORS

For reasons beyond the Logic Systems' control. there exists one major problem with practicing precise
configuration management. Due to a shortage of desk space at the Technical Center, the support
contractors are forced to bave office space off-site. In addition, the Technical Center currently does not
have the capability to allow off-site contractors full LAN connectivity. This has forced Logic Systems to
have the off-site contractors use a copy of the baseline for their software development. While this
adntilledly is not conducive to proper configuration management control, measures have been
implemented to make the best of the Iintitations described above. This section will describe the off-site
contractor's use of the baseline copy, and define procedures implemented to help ensure that this copy is
kept up to date with the baseline maintained at the Technical Center.

3.9.1 OFF-SITE BASELINE

The off-site contractors bave a LAN local to their office. They have set up identical directory structures
used at the Technical Center. This structure has the same read/write permissions as well. There is a
baseline set of directories that are read-perntission only and a NEW directory structure that everyone has
full read and write permission for. One contractor has been appointed CM for the contractors. He and the
contractor's Program Lead (PL) are the only people with write permission to the baseline directories.

3.9.2 OFF-SITE BASELINE UPDATES

8

While the contractors contact the TLs directly during software development, all communication and file
transfers when submitting completed work must go through the contractor's CM. The contractor's CM
should examine the work submitted in the same manner that the FAA CM would before admitting updates
to the baseline. The updated files, CFs, test results, and any updated documents are then passed from the
contractor's CM to the appropriate TL and CM at the Technical Center. There they will go through the
formal review process defined in section 3.2. The contractor's baseline is not to be updated with the new
files until the FAA CM informs the contractor CM that the update has been accepted into the baseline.

When updates to the baseline are made from work done at the Technical Center, the FAA CM will send a
Baseline Update Package (BUP) to the contractor's CM. This BUP will include the following: all updated
programs andlor units archived (using the PKWARE utility PKZIP) into files named UNITS.ZIP andlor
PROGS.ZIP; a copy of all CFs that document the update, any updated documents archived into a file
named DOCS.zIP; the baseline directories' listings captured into files UNITS.DIR and PROGS.DIR; and
a current copy of the SIGN OUT list. The files are archived because the current file transfer software used
(CC:Mail) changes the date of files attached to the electronic correspondence. Using PKZIP preserves the
original date of the files. The directory listings are sent so that the contractors can compare the two
baselines to assure that all files found in the two baselines are the same, and have the same date and file
size. (The contractor has developed a utility that automates this process.)

The FAA and contractor CMs will exchange directory listings weekly (Monday mornings). They will
both use the directory listing comparison utility to check the other's baseline version against their own.
This will ensure that the two baselines have not diverged despite the procedures defined in this section.

4.0 QUALITY ASSURANCE

To ensure Software Quality Assurance, a set of standards has been established that all TCAS Logic
System personnel are required to follow. These standards define conventions documentation, file and data
labeling, and units of measurement.

4.1 SOFTWARE STANDARDS

4.1.1 DOCUMENTATION

Each unit should contain a comment section identifYing the source file, procedures defined, their intended
function, author, update history and referenced Global variables and procedures. This code should be at
the top of the file, immediately after the TURBO PASCAL UNIT name. This should be accompanied by a
date on the top line of the file, and reflects the date of creation, or last date of change. An example of a
comment block follows:

{$O+,F+} (. 12/30/93 .)

(·.. START UNIT M6_INITS COMMENTS.')
(. DESCRIPTION:
(. FILE ITCAS\LOGICIM6_INITS
(. Performs TCAS Ver 6.0 task INITIALIZE. Sets all Global data
(. structures to Null (STRUCTURE ITF, TF, WL, N, G).
(. Initializes TCAS Ver 6.0 Global Variables (STRUCTURE G).
(. MOPS Vol II, Sec 3.1
(* INTERfACE DESCRIPTION:
(. USES TYPE_COM, TYPE_TC;
(. PROCEDURE M_INIT(p:P]TR;G:G]TR);

9

(. USED BY UNITS:
(. INITAL.PAS
(. UPDATED:
(. 12/30/93 : Ed Butlerly, CTA - Deleted unused comment block headings.
(. 08/09/93 : E. Butterly, CTA - Filled in comment blocks.
(. 11/05/92: 1. Bottiger, CTA - Deleted all occurrences ofG".CORRECTIVE.
(. 09/17/92: 1.S.Searight - Replaced TPTS with SIM_RTRN in USES clause.
(. Moved appropriate UNITS out of INTERFACE USES clause,
(. and into IMPLEMENTATION section.
(· ..END UNIT M6_INITS COMMENTS.')

Each subroutine should contain a comment block that lists its name, the data fields input, the data fields

output, and any subroutines called. An example of a comment block follows:

(· ..START PROCEDURE M_INIT COMMENTS.. ')

(. DESCRIPTION:

(. Performs TCAS Ver 6.0 task INITIALIZE. Sets aU Global data

(. structures to Null (STRUCTURE ITF. TF. WL, N, G).

(. Initializes TCAS Ver 6.0 Global Variables (STRUCTURE G).

(. MOPS Vol II, Sec 3-P4

(. INPUTS:

(. PA.zLARGE

(. PA.RADARLOST

(. PA.IDOWN

(. OUTPUTS:

(. G:G]TR

(. CALLED BY UNITIPROCEDURE OR LOCAL:

(. INITIAL :P:INITAL.PAS

(. EXTERNAL PROCEDUREIFUNCTION CALLS:

(. REL_G :P:RELEASE.PAS

(. TPT_UPDATE :P:SIM_RTRN.PAS

(. UPDATED:

(. 11/05192 : 1. Bottiger, CTA - Deleted all occurrences of G".CORRECTlVE.

(·..END PROCEDURE M_INIT COMMENTS.')

The BEGINIEND statements of the body should also identifY the routine.

e.g. BEGIN (. routine name .)

END; (. routine name .)

Each END statement should identifY what it is closing out. e.g.
END; (. CASE .)
END; (. WHILE .)
END; (. IF')
END; (. ELSE .)

4.1.2 STYLE

10

The lines of source code should be nested to reflect the stalement groupings. This nesting will be an
indentation ofat least two spaces for each statement block. BEGINs and ENDs will also be indented two
spaces from the previous line.

ego IF (FLAG = 1RUE) THEN
BEGIN

A:~B;

B :=C;

END (0 IF 0)

ELSE

BEGIN

A:=C;

END; (0 ELSE 0)

WHILE (FLAG = 1RUE) DO
BEGIN

A :=A+B;
IF (A > C) THEN

FLAG := FALSE;
END; (0 WHILE 0)

REPEAT
A:=A+B;

UNTIL (A > C);

FOR I :~ I TO 5 DO

BEGIN

A:~A+C;

END; (0 FOR 0)

4.1.3 CONSTANTS

Only constants that are program specific will be declared within a program or unit file. (e.g. loop controls,
array limits) Constants should be put into their corresponding CONSTANT UNIT whenever applicable.
These CONSTANT UNITS are as follows:

CONST_SU - constants that support the SUMMARY software
CONST_CO - constants for other DRNA software and data, including those for manufacturers live

data
CONST_FT - constants that support the FTEG system
CONST_TC - constants used by the MOPS TCAS Logic

4.1.4 DATA INITIALIZAnON

All programs will use an initialization procedure to ensure that all data fields, data structures, and
memory pointers are properly initialized. The baseline software maintains procedures that initialize all
record structures used by TCAS Logic Systems software. These should be used whenever those records
are created. When a data structure is modified. its associated initialization should also be modified.

The standard initial value for integers and real numbers is the "BAD_VALUE" constant that corresponds
to the field size of the variable being initialized. BAD_VALUE equals -353430, which is the largest
negative value that can be stored in a 32 bit integer divided by the largest scale factor the TCAS Logic
Systems baseline uses (6076 ft per nmi), and then truncated to a multiple of ten. This value can then be
checked as an indication that a field has never been assigned a meaningful value, without overflowing

II

integer values when performing units scale calculations. There are also BAD_VALUE_I and
BAD_VALE_2, for one and two byte fields, which are used to mark undefined fields recorded in binary
record files. Their values are the largest negallve values possible for those fields

Arrays are to be used only when there is a definite number of values being collected. Dynamic memory
allocation is strongly recommended as a means of linking similar pieces of data.

BIT POSITIONS are such that when writing roullnes that manipulate bits, the programmer must be
aware, and adhere to, the bit numbering conventions that are implemented by the various TCAS
manufacturers. It is the programmer's responsibility to identify what data is to be processed, what bit
numbering and accessing specifications where used to collect the data, and develop code to adhere to those
specifications.

4.1.5 NAMING CONVENTIONS

This section describes the standards that TCAS personal adhere to when naming files, procedures,
functions, data types, constants, and variables. There are some standard prefixes for different categories
of files, subroutines, data types, etc.

DV_..... : Dalmo Victor support roullnes
BX_..... : Bendix support routines
HW_ : Honeywell support routines
RC_ : Rockwell Collins support roullnes
BXO.... : Bendix TCAS I support routines
BFG_ : B.F. Goodrich TCAS I support routines
M#_ : A version of a routine used for TCAS II (Minimum), with Change Number
S#_,.... : A version ofa routine used for TCAS II Change 7,
E#_ : A version ofa routine used for TCAS III (Enhanced), with Version Number
BXL : Bendix TCAS II LIP
SDV_ : Sperry Dalmo Victor TCAS II LIP
BXP_ : Bendix TCAS III Prototype
SIM_ : Simulation support/interface
OWN_ : Own summary modules
ENC_.... : Encounter summary modules
ERD_.... : Programs that process files that contain records of

ENCOUNTER_RECORDING_DATA
TRD_ : Programs that process files that contain records of TRACK_RECORDING_DATA
PR_ : Print routines for special fields
WR_ : Write to output file routines

• TERMINOLOGY AND LABELING FREQUENTLY USED:

AOA : ANGLE OF ARRIVAL (BEARING MEASUREMENT)
ADOT,
ZDOT,
ZD : ALTITUDE RATE
RDOT,
RD : RANGE RATE
IDOWN : IDENTIFICATION OF OWN AIRCRAFr
IDINT : IDENTIFICATION OF INTRUDER AIRCRAFr

12

4.1.6 UNITS Of MEASUREMENT

Table 4.1 lists the common fields of measurement processed by lhe TCAS software systems, the units they
are stored and displayed in, their range, and their display format.

Unit storage internal display range display
format units units format

Time of day real6 sec HMS [0 to 86,4000.0)s HH:MM:SS(.s)
System time real6 sec sec [0 TO 1024) sec F7.2 (16 bit)

[0 to 24 hrs ~ 86400 s) F8.2 (32 bit)
TAUs real4 sec sec [0 to 120]s F6.2
Altitude real4 ft ft [-2000 to +64,0001ft 15
Alt. rate real4 ft/sec ft/min ±IO,OOOfpm 15
Range real4 nmi nmi [0 to 301nrni F6.3
Range rate real4 nmilsec knots ±1200kt 14
BearingIHeading real4 degrees degrees [0 to 36010 13
Mode-S ID int4 24 bits Hex Z6
ATCRBS msg int4 DABC DABC/ABCD 12bits 04
ATCRBS Garble int4 DABC DABC/ABCD 12 bits 04
Power/Amplitude int4 dB dB [-80, 80] 13
PitchIRoll real4 degrees degrees [-90, +90] F6.2

TABLE 4,1

4.2 SOFTWARE STANDARDS

GLOBAL variables will not be used except when absolutely necessary. The programmer should explore
every other possibility before implementing the use of a GLOBAL variable. If the programmer decides
one must be used he will first discuss the implementation with the Configuration Manager. Avoiding
GLOBAL variables will prevent variable name conflicts. Routines that share variables should be part of
the same unit.

USES clauses will be carefully checked by the programmer to make sure only those units needed are
included. This will keep EXE and TPU file sizes to a minimum.

The INfERFACE section will contain only those subroutines that will be called by other units, and only
reference units in the USES clause that are required for those routines. The programmer should make an
effort to keep these to a minimum.

5.0 SOFTWARE ENVIRONMENT

All TCAS Personnel use a predefined set of Turbo Pascal default compiler settings to insure that
executable code compiled on different PCs will be identical.

5.1 TURBO PASCAL STANDARDS

5.1.1 SYSTEM CONFIGURATION

Since all TCAS Personnel and the supporting contractors have similar PCs, a standard setup of system
software, and support directories is expected to be upheld. This will help to ensure software integrity, as
everyone will be compiling and linking from identical environments, and will make it easier for TCAS
Personnel to work on any given PC. The minimum DOS path must include the following:
C:IDOS;C:\ZIP;C:ITP7\BIN;D:ITCASITPU.

13

The Turbo Pascal system should be found on the C: drive in a directory named TP7 (C:\TP7\). All Turbo
system subdirectories should be subdirectories of C:\TP7. The D: drive should contain a directory TCAS
(D:\TCAS). This directory should contain at least the following subdirectories: PROGS, UNITS, and
TPU. The directories PROGS and UNITS are to be used to store software an individual is currently
working on. All·.TPP and • .EXE files should be directed to the TPU directory when compiling from
either the Turbo environment or the BPC line command.

The user should be aware of the various ways to compile and link TCAS code. If a baseline compilation is
to be done, then only units on drive U: should be accessed. If someone is testing code they are developing,
their D:\TCAS\UN1TS directory should be searched, and then U:. If someone wants to compile software
that has been submitted for acceptance to the baseline. but it has not yet been accepted, N:UNITS should
be searched before searching U:. This can be easily controlled by having TPC files for all three
circumstances present in the C:\TP7 directory, and copying the appropriate one into BPC.CFG before
compilation. All TPC files should direct ·.TPP, and ·.EXE files to D:\TCAS\TPU. The TPC files should
be named as follows, respectively: BPC.BAS, BPC.LOC, BPC.LAN.

The BPC files must contain the following compiler options after the source code path specifications:
/CP { compile in protected mode }
1M {make}
/GD { generate detailed MAP file }
/$A+ { align words to even addresses }
/$B- { short circuit Boolean evaluation}
/$L- { disable local symbol info }
/$N+ { numeric coprocessor on }
/$Q+ { overflow checking on }
/$R+ { range checking on }
/$M32000 { stack size }

These options must also be the default options in the Turbo Pascal integrated development environment
(IDE).

14

APPENDIX A

-----No:

CHANGE REQUEST / PROBLEM REPORT

Name: T. Choyce Date:

_1_1 Change Request _1_1 Problem Report

1 PRIORITY I II III IV V
1 (circle one) cri tical major minor annoyance other

AREA of CONCERN:

_1_1 SUMMARY _1_1 BENDIX ADDITIONAL COMMENTS:

_1_1 LISTER _1_·_1 HONEYWELL

_1_1 INTERVAL _1_1 ROCKWELL

_1_1 LOGIC VER. _1_1 FTEG

_1_1 OTHER:

DESCRIPTION of PROBLEM:

SUGGESTED RESOLUTION:

Initials & Date:----
STATUS:

1 1 COMPLETED _I_I TESTING _1_1 PLANNING _I_ION HOLD

_I__I REJECTED
Initials & Date:

III- -1 -

I Change No 01
Subsystem Procedure Name Change Date

I Change By: I Unit Name

I Tom Choyce
I

I Category of Failure I II III IV V I
(circle one) critical major minor annoyance other

III Brief Description: (50 character max)

II

Detailed Description:

Software Engineer

Closure Information: Provide date of closure

0 FAA - o 6.00 - o 6.04

0 CTA - o 6001

0 LAN - o 6.02

Follow-up Status

I I
Date:

"
l.

/ /-/-/- " 2.

Closure Description:

/ /

ATTACHMENT #1

TECHNICAL LEAD ASSIGNMENTS

PMK: FTEG· FTEGMAlN program and its support routines.
PLAYBACK· PLAYBACK program.
TRD • All routines that are involved in the recording of TRD output files, and the progra

process them. (TRD_EXCL, TRD_LOOP, TRD]LOT, and TRDJTP)
ms that

KMC: LOGIC - All routines that are called (0 invoke TCAS logic. This applies
Logic, and all TCAS system variables.

to all versions of the

JP TTP Processing· All programs and support routines that are tools used analyze TTP data.
of this code is manufaeturer specific. This is broken down into the following
subdivisions:

- INTERVAL
-LISTER
-LOOP
-SCAN

Much

SUMMARY	 - All SUMMARY programs. and their major subsystems (ERD_REC,
OWN_START_CAS,OWN_END_SURV)

ISS: ERD - All programs and routines that ace involved in processing ERD record files. (ERD_1045,
ERD_73I, ERD_CHK, ERD_CNTS, ERD_CUT, ERD_DEL, ERD_FAIL, ERD_LIST,
ERD_LOOP. ERD_MRG, ERD_NAME, ERD_TTP, ERD_VRSN, ERDMATRX, and
ERDSORTM)

COMMON - All units that contain routines that are shared by more than one major TCAS
system or subsytem.

SUPPORT - All units that contain support routines such as WR_• and PR_" data field or unit
conversion, and file handling routines.

KF : TCAS I - All programs and units that deal solely with TCAS I data processing. (BFG and BXO)

