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ABSTRACT: In this article, we theoretically investigated the vortex configuration of mesoscopic samples of different 
geometries, imbedded in an external magnetic field. We use the Ginzburg-Landau theory to obtain the spatial distribution 
of the superconducting electron density in long prisms with a square and triangular cross-section. Taking into account de 
Gennes boundary conditions via the extrapolation length, b, we study the properties of a mesoscopic superconducting square 
surrounded by different materials (metallic and another superconductor at higher critical temperature) in the presence of an 
external magnetic field applied perpendicularly to the square surface. The b-limit for the occurrence of a single vortex in the 
sample of area d2 is determined. Also, we obtain the vortex configurations for a mesoscopic triangle with the magnetic field 
applied perpendicularly to a sample plane. In most of the configurations, the vortices present twofold or threefold symmetry. 
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RESUMEN: En el presente trabajo investigamos teóricamente la configuración de vórtices en muestras mesoscópicas de diferentes 
geometría, inmersas en un campo magnético externo. Usamos la teoría Ginzburg-Landau para obtener la distribución espacial 
de la densidad de electrones superconductores en un prisma con sección transversal cuadrada y triangular. Tomando en cuenta 
las condiciones de frontera de de Gennes vía la longitud de extrapolación b, estudiamos las propiedades de un superconductor 
cuadrado rodeado por diferentes materiales (metálicos y superconductor a mayor temperatura crítica) en presencia de un campo 
magnético aplicado perpendicular a la superficie del cuadrado. Determinamos el límite de b de ocurrencia de un solo vórtice en 
la muestra de área d 2. Además, obtenemos la configuración de vórtices para un triangulo mesoscópico con el campo magnético 
aplicado perpendicularmente al plano de la muestra. En muchas de las configuraciones los vórtices presentan simetría doble o triple.

PALABRAS CLAVE: Mesoscópico, Ginzburg-Landau, dinámica molecular, parámetro de de Gennes.

1.  INTRODUCTION 

The advances in nanofabrication technologies in recent 
years allowed for intensive investigation efforts in 
nanostructured superconductors, both in the experimental 
and theoretical fronts. It is well know that, for very 
confined geometries, the superconducting normal magnetic 
field transition is increased extraordinarily. It was 
experimentally observed that for an aluminum square 
and very thin film with the size of a few micrometers, the 
upper critical field HC2(T) can be increased up to 3.32 times 
with the inclusion of defects, which is 2.01 times larger 
than the usual value of HC2(T) [1,2]. Another important 
issue in confined geometries is the occurrence of giant 
vortices. The experimental observation of a giant vortex 
in a mesoscopic superconductor is still a controversial 

issue. Through multi-small-tunnel-junction measurements 
in a aluminum thin disk film, Kanda et al [3] developed 
the multiple-small-tunnel-junction method to distinguish 
between multivortex and giant vortex states in mesoscopic 
superconductors, arguing that, as the vorticity increased, 
giant vortex configuration will occur. Also, scanning 
SQUID microscopy on Nb thin film, both square and 
triangle, cannot guarantee giant vortex configurations, at 
least for low vorticity [4]. On the other hand, applications of 
superconducting materials necessarily require controlling 
the density and/or the movement of vortices. 

Today it is possible to work out important advances 
towards vortex manipulation. Strong enhancement of 
critical properties, such as critical current and field, and 
highly controllable flux-quanta manipulation have been 



Dyna 168, 2011 159

achieved by reducing the sample size to the mesoscopic 
scale. Another way of enhancing or changing the 
properties of superconducting samples can be realized 
by controlling the sample boundary conditions or 
introducing into the sample mesoscopic features, such 
as antidots and insulate, metallic or magnetic dots [5-
9]. Theoretically, one can simulate different types of 
materials by varying the boundary conditions for the 
order parameter via de Gennes extrapolation length b. 

In this article, we present the properties of both 
mesoscopic superconducting square and triangle prisms 
in the presence of an external applied magnetic field. 
This article is organized as follows. Section II presents 
the numerical method used to solve the time dependent 
Ginzburg-Landau equations and how to find the vortex 
configurations and their energies in mesoscopic squares 
and triangles [10-12]. The discussion of the results is 
presented in Section III. We present results concerning 
the vortex state in long mesoscopic superconductors 
with a square and triangular cross-section. Also, we 
discuss meta-stable configurations for given values of 
total vorticity. It is possible that these configurations 
and their occurrence frequencies can be observed 
experimentally due to surface barriers. Finally, we 
present our conclusions in Section IV.

2.  THEORETICAL FORMALISM 

2.1 Ginzburg–Landau Equations

The time-dependent Ginzburg-Landau equations 
(TDGL) [13] which govern the superconductivity 
order parameter Ψ and the vector potential A in the 
zero electric potential gauge are given by:
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2.1.1  Boundary Conditions

The dynamical equations are complemented with 
the appropriate boundary conditions for the order 
parameter. The general boundary condition for 
superconductors, found by de Gennes [14], is given by:
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where n̂  is the unity vector perpendicular to the surface 
of the superconductor. b  is a real number determining 
the boundary conditions: a superconductor/vacuum 
interface is realized for ∞→b , which means that 
no superconducting currents can flow out of the 
superconductor;  0>b  describes a superconductor/
metal interface, which will cause superconductivity to 
be weaker at the edge of the sample (suppressed surface 
superconductivity); 0<b  enhances superconductivity 
because it simulates the presence of a material with 
higher 

cT  in contact with the superconducting sample; 
the case of 0=b  is found for a superconductor/
ferromagnet interface or superconducting surfaces with 
a high density of defects.

2.1.2. Numerical Method

The full discretization of the TDGL equations can 
be found in more detail in Ref. [15]. We use the Ψ−U  
method [16] to solve the TDGL equations in a discrete 
grid. Complex link variables xU  and yU  are introduced 
to preserve the gauge-invariant properties of the 
discretized equations. xU  and yU   are related to A by:
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The link variable method is used since a better 
numerical convergence is obtained at high magnetic 
fields [16]. The TDGL equations (1,2) can be written 
in the following form:
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where υ = (x,y) and Im indicates the imaginary part. 
We used this method to obtain our results. The outline 
of this simulation procedure is as follows: the sample 
is divided in a rectangular mesh consisting of NxxNy 
cells, with mesh spacing axxay. To derive the discrete 
equations, let us define by xi = (i-1)ax, yi = (i-1)ay, an 
arbitrary vertex point in the mesh and: 
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Then the discretized version of the TDGL equations 
maintaining second order accuracy in space is given by:
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The open boundary conditions are:
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In our simulation we use the well know Euler method 
with 108 time steps of size 002.0=∆t  and grid spacing

125.0== yx aa . Ha is the magnetic external field and 
is increased linearly with the time from 0 to 1, with 
small intervals of 

810H −∆ = . 10κ =  for the square 
sample and 25κ =  for triangular sample. T = 0.25 for 
all simulations. The procedure begins at zero applied 
magnetic field, and the order parameter is initialized 

as 1)0( ==Ψ t , i.e. the variables are homogeneously 
initialized to a perfect Meissner state, and A(t=0)=1 (for 
every point in the domain). The stationary state found 
for a fixed He is used then as initial condition for the 
next field value HH ∆+ , using a small increments of 

H∆ . The applied magnetic field is increased smoothly 
from zero to a value where the superconductivity 
will be destroyed completely. For each applied field 
we follow the temporary evolution of the magnetic 
induction and of the superconducting order parameter 
to obtain a stationary solution.

The Ginzburg Landau equations describe the gradient 
flow for the Gibbs free energy. Thus, in principle, the 
output of the time dependent Ginzburg Landau should 
correspond to the global minimum of the energy of 
the system. The energy, in units of βα 22

0 CTG = , is 
given by:
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The discrete version of this equation is:
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3.  RESULTS 

In this section, we study two mesoscopics systems, a) 
a mesoscopic superconducting square imbedded by 
a metallic material or by another superconductor at 
higher critical temperature and b) a triangular sample 
surrounded by an insulating material.  The resulting |Ψ| 
for square and triangular configurations with 16 vortices 
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are depicted in Fig. 1. We present the phase diagram 
in the square size-b parameter plane, for seven square 
samples with d = 4ξ(0), 5ξ(0), 6ξ(0), 7ξ(0), 8ξ(0), 9ξ(0) 
and 10ξ (0). We found b = 3.5ξ(0), 0.46ξ(0), 0.055ξ(0), 
0.006ξ(0), 0.0008ξ(0), 0.00008ξ(0) and 0.00001ξ(0), 
respectively in Fig. 2. We can observe a linear behavior 
of d as a function of lnb, separating the type I from the 
type II superconductors. The fitted curve corresponds 
to ( )42 10 exp 2b d≈ × − .

 
Fig.1. Modulus of the order parameter (|Ψ |) for meta-
stable configurations with L=16 at Ha=0.02. Dark and 

bright regions represent values of the modulus of the order 
parameter (as well as Δφ⁄2π, from 0 to 1).

 

Fig.2. Phase diagram on the square size-b parameter plane.

In Fig. 3 we show the phase diagram in the Ha-1/b plane 
for a square sample with d = 4ξ(0). We observe that 
for 0<1≤1/b<0.35, a single quantized vortex enters the 
sample. For 0.35<1/b<0.42, the transition between the 
Meissner and the mixed state occurs with the entrance 
of two single quantized vortices. Finally, for 1/b>0.42, 
the sample behaves as a Type I superconductor with no 
vortex state observed. Furthermore, for samples with 
d<4ξ(0), we do not observe vortex formation for any 
magnetic field or b value due to the size restriction of 
the sample. The above results seem to be in reasonable 
agreement with previous studies [6]. Also, we study 

a superconducting square imbedded by another 
superconductor at higher critical temperature. We use 
(a) b = -5.0ξ(0), (b) b = -1.0ξ(0), (c) b = -0.895ξ(0), 
(d) b = -0.8935ξ(0), (e) b = -0.893ξ(0) and (f) b = 
-0.88ξ(0).

Fig.3. Phase diagram Ha-b
-for d=4ξ(0).

The magnetization curve as a function of b is shown 
in Fig. 4. We can observe a linear behavior of M(b) in 
the interval [-0.01,-0.06], with m = -0.02±0.0001 as the 
slope. For this b interval, the sample always remains 
in the Meissner state and will be more pronounced for 
smaller values of |b|. 

 

Fig.4. Magnetization as a function of b for a square 
sample imbedded by another superconductor at a higher 

critical temperature.

The superconductor electrons density as a function of b 
is shown in Fig. 5. We observed a power law behavior 
in the interval [-0.01,-0.06] and obtained a slope of 
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m = -3.32±0.03. For superconductor–superconductor 
interfaces, the surface barrier is enhanced, resulting in 
a stronger compression of the vortices in the square. 
However, if the d-size is dx≤5ξ(0), no vortices are 
possible in the sample. For dx>5ξ(0), vortices appear. 
The limit of the occurrence of a single vortex state is 
represented in the 5ξ(0)x5ξ(0) sample for an applied 
field of 0.42Hc2. Furthermore, for samples with 
dx<5ξ(0) thickness, no vortex can be formed for any 
magnetic field due to the size restriction.

 

Fig.5. Superconductor electrons density as a function of b.

We studied an equilateral triangle of a=15ξ(0) side 
length. We obtained the stable and meta-stable vortex 
configurations for L ranging from 0 to 37 vortices, at 
different magnetic fields. Giant vortices can also be 
considered, but the states with lower energy are formed 
only by singly-quantized vortices [17]. 

Figure 6 depicts the streamlines of the ground state 
configurations for L from 1 to 10. The corresponding 
magnetic field is also plotted on the top or bottom of 
each figure. The ground state vortex configurations for 
the triangular numbers L=1, L=3, L=6, L=15, L=28, 
and L=36, have the Abrikosov lattice-like vortex 
arrangement together with both three-fold axial and 
middle plane reflection symmetries. Therefore, these 
configurations satisfy both the vortex-vortex repulsion 
and confinement geometry. On the other hand, the 
ground state configurations with L=2, L=5, L=7, L=9, 
depicted in Fig. 6, for example, have only middle plane 
reflection symmetry. In such cases it is preferable 
to form a vortex molecule configuration, with part 
of it made of a stable configuration with lower total 
vorticity and the rest of the vortices distributed along 
the triangle side. 

Fig. 6. Streamlines of the ground states vortex 
configurations for L, from 1 to 10. The total vorticity and 
the corresponding magnetic field are depicted at the top or 

the bottom of each figure.

Fig. 7. Current streamlines of the meta-stable vortex 
configurations (a) L=7 for Ha=0.0150, (b) L=19 for 

Ha=0.0215, (c) L=24 for Ha =0.0255.

In Fig. 7 we present the meta-stable configurations 
obtained for L=7 at Ha=0.0150 (Fig. 7(a)), L=19 at 
Ha=0.0215 (Fig. 7(b)), L=24 at Ha=0.0255 (Fig. 7(c)). 
For L=7, L=9, and L=24, the configurations with the 
lowest energy [depicted at the left of Figs. 7(a), 7(b), 
and 7(c)] posses only middle plane reflection symmetry. 
Also, these configurations appear more frequently than 
other meta-stable ones. For L=7 and L=9 the other 
meta-stable configurations have both middle plane 
reflection and threefold axial rotation symmetries. 
Meanwhile, for L=24 one meta-stable configuration 
has middle plane reflection symmetry and the other 
one has both symmetries.
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4.  CONCLUSIONS

For a superconducting square embedded by a metallic 
material, we determine the limit of the occurrence of 
a single vortex state as a function of the de Gennes 
boundary condition. We observe a linear behavior of 
lnb as a function of square size. For a superconducting 
square embedded by another superconductor at higher 
critical temperature, we found a linear behavior for 
the magnetization and a power law for the Cooper 
pair density with the de Gennes parameter. For a 
superconducting equilateral triangle, we obtained the 
vortex configurations for different meta-stable states for 
given values of L and Ha. To increase the probability 
of finding the lowest energy states, we performed a 
large number of attempts. Moreover, we also studied 
the meta-stable configurations, observing that they 
usually occur less frequently than the lowest energy 
configuration obtained at the same conditions.
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