$$
\begin{gathered}
\text { FSA Geonetry } \\
\text { End-of-Course } \\
\text { Review Packet } \\
\text { Answer Key } \\
\text { Congruency Similarity } \\
\text { and } \\
\text { Right Triangles }
\end{gathered}
$$

Table of Contents

MAFS.912.G-CO.1.1 EOC Practice 3
MAFS.912.G-CO.1.2 EOC Practice 5
MAFS.912.G-CO.1.4 EOC Practice 7
MAFS.912.G-CO.1.5 EOC Practice 9
MAFS.912.G-CO.1.3 EOC Practice 11
MAFS.912.G-CO.2.6 EOC Practice 13
MAFS.912.G-CO.2.7 EOC Practice 16
MAFS.912.G-CO.2.8 EOC Practice 18
MAFS.912.G-CO.3.9 EOC Practice 20
MAFS.912.G-CO.3.10 EOC Practice 22
MAFS.912.G-CO.3.11 EOC Practice 24
MAFS.912.G-CO.4.12 EOC Practice 29
MAFS.912.G-CO.4.13 EOC Practice 31
MAFS.912.G-SRT.1.1 EOC Practice 34
MAFS.912.G-SRT.1.2 EOC Practice 37
MAFS.912.G-SRT.1.3 EOC Practice 39
MAFS.912.G-SRT.2.4 EOC Practice 41
MAFS.912.G-SRT.2.5 EOC Practice 44
MAFS.912.G-SRT.3.8 EOC Practice 47
MAFS.912.G-SRT.3.6 EOC Practice 51
MAFS.912.G-SRT.3.7 EOC Practice 53

MAFS.912.G-CO.1.1 EOC Practice

Level 2	Level 3		Level 4
uses definitions to choose examples and non-examples	uses precise definitions that are based on the undefined notions of point, line, distance along a line, and distance around a circular arc	analyzes possible definitions to determine mathematical accuracy	explains whether a possible definition is valid by using precise definitions

1. Let's say you opened your laptop and positioned the screen so it's exactly at 90°-a right angle-from your keyboard. Now, let's say you could take the screen and push it all the way down beyond 90°, until the back of the screen is flat against your desk. It looks as if the angle disappeared, but it hasn't. What is the angle called, and what is its measurement?
A. Straight angle at 180°
B. Linear angle at 90°
C. Collinear angle at 120°
D. Horizontal angle at 180°
2. What is defined below?
\qquad : a portion of a line bounded by two points
A. arc
B. axis
C. ray
D. segment
3. Given $\overleftrightarrow{X Y}$ and $\overleftrightarrow{Z W}$ intersect at point A.

Which conjecture is always true about the given statement?
A. $X A=A Y$
B. $\angle X A Z$ is acute.
C. $\overleftrightarrow{X Y}$ is perpendicular to $\overleftrightarrow{Z W}$
D. X, Y, Z, and W are noncollinear.
4. The figure shows lines r, n, and p intersecting to form angles numbered $1,2,3,4,5$, and 6 . All three lines lie in the same plane.

Based on the figure, which of the individual statements would provide enough information to conclude that line r is perpendicular to line p ? Select ALL that apply.

$$
\begin{aligned}
& m \angle 2=90^{\circ} \\
& m \angle 6=90^{\circ} \\
& m \angle 3=m \angle 6 \\
& m \angle 1+m \angle 6=90^{\circ} \\
& m \angle 3+m \angle 4=90^{\circ} \\
& m \angle 4+m \angle 5=90^{\circ}
\end{aligned}
$$

5. Match each term with its definition.

A	A portion of a line consisting of two points and all points between them.
B	A connected straight path. It has no thickness and it continues forever in both directions.
C	A figure formed by two rays with the same endpoint.
D	The set of all points in a plane that are a fixed distance from a point called the center.
E	A portion of a line that starts at a point and continues forever in one direction.
F	Lines that intersect at right angles.
G	A specific location, it has no dimension and is represented by a dot.
H	Lines that lie in the same plane and do not intersect
F	perpendicular lines
C	angle
A	line segment
H	parallel lines
D	circle
G	point
B	line
E	ray

MAFS.912.G-CO.1.2 EOC Practice

Level 2
represents transformations in the plane; determines transformations that preserve distance and angle to those that do not

Level 3	Level 4
uses transformations to develop	uses transformations to develop
definitions of angles, perpendicular	definitions of circles and line
lines, parallel lines; describes	segments; describes rotations and translations as functions

Level 5
[intentionally left blank]

1. A transformation takes point A to point B. Which transformation(s) could it be?
A. Fonly
B. F and R only
C. F and T only
$\overleftrightarrow{A B} \perp \overleftrightarrow{O C} \quad A C=C B$
D. F, R, and T
2. The point $(-7,4)$ is reflected over the line $x=-3$. Then, the resulting point is reflected over the line $y=x$. Where is the point located after both reflections?
A. $(-10,-7)$
B. $(1,4)$
C. $(4,-7)$
D. $(4,1)$

3. Given: $\overline{A B}$ with coordinates of $A(-3,-1)$ and $B(2,1)$ $\overline{A^{\prime} B^{\prime}}$ with coordinates of $A^{\prime}(-1,2)$ and $B^{\prime}(4,4)$
Which translation was used?
A. $\left(x^{\prime}, y^{\prime}\right) \rightarrow(x+2, y+3)$
B. $\left(x^{\prime}, y^{\prime}\right) \rightarrow(x+2, y-3)$
C. $\left(x^{\prime}, y^{\prime}\right) \rightarrow(x-2, y+3)$
D. $\left(x^{\prime}, y^{\prime}\right) \rightarrow(x-2, y-3)$

FSA Geometry EOC Review

4. Point P is located at $(4,8)$ on a coordinate plane. Point P will be reflected over the x-axis. What will be the coordinates of the image of point P?
A. $(-8,4)$
B. $(-4,8)$
C. $(4,-8)$
D. $(8,4)$
5. Point F^{\prime} is the image when point F is reflected over the line $x=-2$ and then over the line $y=3$. The location of F^{\prime} is $(3,7)$. Which of the following is the location of point F ?
A. $(-7,-1)$
B. $(-7,7)$
C. $(1,5)$
D. $(1,7)$
6. $\Delta J K L$ is rotated 90° about the origin and then translated using $(x, y) \rightarrow(x-8, y+5)$. What are the coordinates of the final image of point L under this composition of transformations?

A. $(-7,10)$
B. $(-7,0)$
C. $(-9,10)$
D. $(-9,0)$

Level 2
Level 3
uses transformations to develop definitions of angles, perpendicular lines, parallel lines; describes translations as functions

Level 4
Level 5
[intentionally left blank]

1. The graph of a figure and its image are shown below. Identify the transformation to map the image back onto the figure.

O Reflection
O Rotation
O Translation

O Reflection
O Rotation
O Translation

O Reflection
O Rotation
O Translation

O Reflection
O Rotation
O Translation
2. If triangle $A B C$ is rotated 180 degrees about the origin, what are the coordinates of A^{\prime} ?
$A^{\prime}(-5,-4)$

3. Darien drew a quadrilateral on a coordinate grid.

Darien rotated the quadrilateral 180 and then translated it left 4 units. What are the coordinates of the image of point P?
$P^{\prime}(-9,-2)$

4. What is the image of $M(11,-4)$ using the translation $(x, y) \rightarrow x-17, y+2$?
A. $M^{\prime}(-6,-2)$
B. $M^{\prime}(6,2)$
C. $M^{\prime}(-11,4)$
D. $M^{\prime}(-4,11)$
5. A person facing east walks east 20 paces, turns, walks north 10 paces, turns, walks west 25 paces, turns, walks south 10 paces, turns, walks east 15 paces, and then stops. What one transformation could have produced the same final result in terms of the position of the person and the direction the person faces?
A. reflection over the north-south axis
B. rotation
C. translation
D. reflection over the east-west axis

MAFS.912.G-CO.1.5 EOC Practice

Level 2		Level 3	Level 4
chooses a sequence of two transformations that will carry a given figure onto itself or onto another figure	uses transformations that will carry a given figure onto itself or onto another figure	uses algebraic descriptions to describe rotations and/or reflections that will carry a figure onto itself or onto another figure	applies transformations that will carry a figure onto another figure or onto itself, given coordinates of the geometric figure in the stem

1. Which transformation maps the solid figure onto the dashed figure?
A. rotation 180° about the origin
B. translation to the right and down
C. reflection across the x-axis
D. reflection across the y-axis

2. Ken stacked 2 number cubes. Each cube was numbered so that opposite faces have a sum of 7 .

Figure P

Figure Q

Which transformation did Ken use to reposition the cubes from figure P to figure Q ?
A. Rotate the top cube 180°, and rotate the bottom cube 180°.
B. Rotate the top cube 90° clockwise, and rotate the bottom cube 180°.
C. Rotate the top cube 90° counterclockwise, and rotate the bottom cube 180°.
D. Rotate the top cube 90° counterclockwise, and rotate the bottom cube 90° clockwise.
3. A triangle has vertices at $A(-7,6), B(4,9), C(-2,-3)$. What are the coordinates of each vertex if the triangle is translated 4 units right and 6 units down?
A. $A^{\prime}(-11,12), B^{\prime}(0,15), C^{\prime}(-6,3)$
B. $A^{\prime}(-11,0), B^{\prime}(0,3), C^{\prime}(-6,-9)$
C. $A^{\prime}(-3,12), B^{\prime}(8,15), C^{\prime}(2,3)$
D. $A^{\prime}(-3,0), B^{\prime}(8,3), C^{\prime}(2,-9)$
4. A triangle has vertices at $A(-3,-1), B(-6,-5), C(-1,-4)$. Which transformation would produce an image with vertices $A^{\prime}(3,-1), B^{\prime}(6,-5), C^{\prime}(1,-4)$?
A. a reflection over the x-axis
B. a reflection over the y-axis
C. a rotation 90° clockwise
D. a rotation 90° counterclockwise
5. Triangle $A B C$ and triangle DEF are graphed on the set of axes below.

Which sequence of transformations maps triangle ABC onto triangle DEF?
A. a reflection over the x-axis followed by a reflection over the y-axis
B. a 180° rotation about the origin followed by a reflection over the line $y=x$
C. a 90° clockwise rotation about the origin followed by a reflection over the y-axis
D. a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin
6. Quadrilateral $A B C D$ is graphed on the set of axes below.

When $A B C D$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A^{\prime} B$ ' C ' D '. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?
A. No and $C^{\prime}(1,2)$
B. No and $D^{\prime}(2,4)$
C. Yes and $A^{\prime}(6,2)$
D. Yes and $B^{\prime}(-3,4)$

MAFS.912.G-CO.1.3 EOC Practice

Level 2		Level 3	Level 4
chooses a sequence of two	uses transformations		
transformations that will	uses algebraic descriptions to	applies transformations that will	
that will carry a given	describe rotations and/or	carry a figure onto another figure	
carry a given figure onto	figure onto itself or onto	reflections that will carry a figure or onto itself, given coordinates of itself or onto another figure	another figure

1. Which transformation will place the trapezoid onto itself?

A. counterclockwise rotation about the origin by 90°
B. rotation about the origin by 180°
C. reflection across the x-axis
D. reflection across the y-axis
2. Which transformation will carry the rectangle shown below onto itself?
A. a reflection over line m
B. a reflection over the line $y=1$
C. a rotation 90° counterclockwise about the origin
D. a rotation 270° counterclockwise about the origin

3. Which figure has 90° rotational symmetry?
A. Square
B. Regular hexagon
C. Regular pentagon
D. Equilateral triangle
4. Determine the angle of rotation for A to map onto A^{\prime}.

A. 45°
B. 90°
C. 135°
D. 180°
5. Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?
A. octagon
B. decagon
C. decagon
D. pentagon
6. Which rotation about its center will carry a regular decagon onto itself?
A. 54°
B. 162°
C. 198°
D. 252°

MAFS.912.G-CO.2.6 EOC Practice
Level 2
Level 3
determines if a sequence of transformations will result in congruent figures
uses the definition of congruence in terms of rigid motions to determine if two figures are congruent; uses rigid motions to transform figures

Level 4
Level 5 blank]

1. Figure 1 is reflected about the x-axis and then translated four units left. Which figure results?

Figure 1

Figure A

Figure C

Figure B

Figure D
A. Figure A
B. Figure B
C. Figure C
D. Figure D
2. It is known that a series of rotations, translations, and reflections superimposes sides a, b, and c of Quadrilateral X onto three sides of Quadrilateral Y. Which is true about z, the length of the fourth side of Quadrilateral Y?

A. It must be equal to 6
B. It can be any number in the range $5 \leq z \leq 7$
C. It can be any number in the range $3 \leq z \leq 8$
D. It can be any number in the range $0<z<14$

FSA Geometry EOC Review

3. Which transformation will always produce a congruent figure?
A. $\left(x^{\prime}, y^{\prime}\right) \rightarrow(x+4, y-3)$
B. $\left(x^{\prime}, y^{\prime}\right) \rightarrow(2 x, y)$
C. $\left(x^{\prime}, y^{\prime}\right) \rightarrow(x+2,2 y)$
D. $\left(x^{\prime}, y^{\prime}\right) \rightarrow(2 x, 2 y)$
4. Triangle $A B C$ is rotated 90 degrees clockwise about the origin onto triangle $A^{\prime} B^{\prime} C^{\prime}$. Which illustration represents the correct position of triangle $A^{\prime} B^{\prime} C^{\prime}$?
A.

B.

D.

5. The vertices of $\Delta J K L$ have coordinates $J(5,1), K(-2,-3)$, and $L(-4,1)$. Under which transformation is the image $\Delta J^{\prime} K^{\prime} L^{\prime}$ NOT congruent to $\Delta J K L$?
A. a translation of two units to the right and two units down
B. a counterclockwise rotation of 180 degrees around the origin
C. a reflection over the x-axis
D. a dilation with a scale factor of 2 and centered at the origin
6. Prove that the triangles with the given vertices are congruent.
$A(3,1), B(4,5), C(2,3)$
$D(-1,-3), E(-5,-4), F(-3,-2)$
A. The triangles are congruent because $\triangle A B C$ can be mapped onto $\triangle D E F$ by a rotation: $(x, y) \rightarrow(y,-x)$, followed by a reflection: $(x, y) \rightarrow(x,-y)$.
B. The triangles are congruent because $\triangle A B C$ can be mapped onto $\triangle D E F$ by a reflection: $(x, y) \rightarrow(-x, y)$, followed by a rotation: $(x, y) \rightarrow(y,-x)$.
C. The triangles are congruent because $\triangle A B C$ can be mapped onto $\triangle D E F$ by a translation: $(x, y) \rightarrow(x-4, y)$, followed by another translation: $(x, y) \rightarrow(x, y-6)$.
D. The triangles are congruent because $\triangle A B C$ can be mapped onto $\triangle D E F$ by a rotation: $(x, y) \rightarrow(-y, x)$, followed by a reflection: $(x, y) \rightarrow(x,-y)$.

MAFS.912.G-CO.2.7 EOC Practice

Level 2	Level 3		Level 4
identifies	shows that two triangles are congruent if and		
corresponding			
parts of two	shows and explains, using the congruent corresponding pairs of angles are congruent triangles	using the definition of congruence in terms of rigid motions; applies congruence to solve problems; uses rigid motions to show ASA,	justifies steps of a proof of rigid motions, the congruence of two triangles; uses algebraic descriptions to describe rigid motion that will show ASA, SAS,
	given algebraic descriptions of triangles, using the definition of congruence in SAS, SSS, or HL is true for two triangles	the of rigid motions that the or HL is true for two triangles	using ASA, SAS, SSS, or HL

1. The triangle below can be subject to reflections, rotations, or translations. With which of the triangles can it coincide after a series of these transformations?

Figures are not necessarily drawn to scale.

C.

D.

FSA Geometry EOC Review

2. The image of $\triangle A B C$ after a rotation of 90° clockwise about the origin is $\triangle D E F$, as shown below.

Which statement is true?
A. $\overline{B C} \cong \overline{D E}$
B. $\overline{A B} \cong \overline{D F}$
C. $\angle C \cong \angle E$
D. $\angle A \cong \angle D$
3. If $\triangle A B C \cong \triangle D E F$, which segment is congruent to $\overline{A C}$?
A. $\overline{D E}$
B. $\overline{E F}$
C. $\overline{D F}$
D. $\overline{A B}$
4. If $\Delta T R I \cong \triangle A N G$, which of the following congruence statements are true?

[^0]
MAFS.912.G-CO.2.8 EOC Practice

Level 2	Level 3	Level 4	Level 5
identifies corresponding parts of two congruent triangles	shows that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent using the definition of congruence in terms of rigid motions; applies congruence to solve problems; uses rigid motions to show ASA, SAS, SSS, or HL is true for two triangles	shows and explains, using the definition of congruence in terms of rigid motions, the congruence of two triangles; uses algebraic descriptions to describe rigid motion that will show ASA, SAS, SSS, or HL is true for two triangles	justifies steps of a proof given algebraic descriptions of triangles, using the definition of congruence in terms of rigid motions that the triangles are congruent using ASA, SAS, SSS, or HL

1. Given the information regarding triangles $A B C$ and DEF, which statement is true?

$$
\begin{aligned}
& \angle A \cong \angle D \\
& \angle B \cong \angle E \\
& \overline{B C} \cong \overline{E F}
\end{aligned}
$$

A. The given information matches the SAS criterion; the triangles are congruent.
B. The given information matches the ASA criterion; the triangles are congruent.
C. Angles C and F are also congruent; this must be shown before using the ASA criterion.
D. It cannot be shown that the triangles are necessarily congruent.
2. Zhan cut a drinking straw into three pieces (shown below) to investigate a triangle postulate. He moves the straw pieces to make triangles that have been translated, rotated, and reflected from an original position. The end of one piece is always touching the end of another piece. Which postulate could Zhan be investigating using only these straw pieces and no other tools?

(Note: Not to scale.)
A. The sum of the measures of the interior angles of all triangles is 180°.
B. If three sides of one triangle are congruent to three sides of a second triangle then, the triangles are congruent.
C. The sum of the squares of the lengths of the two shorter sides of a triangle is equal to the square of the length of the longest side of a triangle.
D. If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.
3. Consider $\triangle A B C$ that has been transformed through rigid motions and its image is compared to $\triangle X Y Z$. Determine if the given information is sufficient to draw the provided conclusion. Explain your answers.

Given	Conclusion
$\angle A \cong \angle X$	
$\angle B \cong \angle Y$	$\Delta A B C \cong \triangle X Y Z$
$\angle C \cong \angle Z$	

- true

O FALSE

Given	Conclusion
$\angle A \cong \angle X$	
$\angle B \cong \angle Y$	$\triangle A B C \cong \triangle X Y Z$
$\overline{B C} \cong \overline{Y Z}$	

O TRUE O FALSE

Given	Conclusion
$\angle A \cong \angle X$	
$\overline{A B} \cong \overline{X Y}$	$\Delta A B C \cong \triangle X Y Z$
$\overline{B C} \cong \overline{Y Z}$	

O tRUE
O FALSE
4. For two isosceles right triangles, what is not enough information to prove congruence?
A. The lengths of all sides of each triangle.
B. The lengths of the hypotenuses for each triangle.
C. The lengths of a pair of corresponding legs.
D. The measures of the non-right angles in each triangle.
5. For two triangles with identical orientation, what rigid motion is necessary for SAS congruence to be shown?

A. Translation
B. Rotation
C. Reflection
D. Dilation

MAFS.912.G-CO.3.9 EOC Practice

Level 2 Level 3	Level 4	Level 5	
uses theorems about	completes no more than two steps		
parallel lines with one			
of a proof using theorems about			
transversal to solve	completes a proof for vertical angles are problems; uses the vertical lines and angles; solves problems angles theorem to solve problems	congruent, alternate interior using parallel lines with two to three transversals; solves problems angles are congruent, and corresponding angles are congruent	creates a proof, given statements and reasons, for points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints

1. Which statements should be used to prove that the measures of angles 1 and 5 sum to 180° ?

A. Angles 1 and 8 are congruent as corresponding angles; angles 5 and 8 form a linear pair.
B. Angles 1 and 2 form a linear pair; angles 3 and 4 form a linear pair.
C. Angles 5 and 7 are congruent as vertical angles; angles 6 and 8 are congruent as vertical angles.
D. Angles 1 and 3 are congruent as vertical angles; angles 7 and 8 form a linear pair.
2. Which statement justifies why the constructed line passing through the given point A is parallel to $\overline{C D}$?

A. When two lines are each perpendicular to a third line, the lines are parallel.
B. When two lines are each parallel to a third line, the lines are parallel.
C. When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
D. When two lines are intersected by a transversal and corresponding angles are congruent, the lines are parallel.
3. In the diagram below, transversal $\overleftrightarrow{T U}$ intersects $\overleftrightarrow{P Q}$ and $\overleftrightarrow{R S}$ at V and W, respectively.

If $m \angle T V Q=5 x-22$ and $m \angle T V Q=3 x+10$, for which value of x is $\overleftrightarrow{P Q} \| \overleftrightarrow{R S}$, ?
A. 6
B. 16

C. 24
D. 28

FSA Geometry EOC Review

4. Peach Street and Cherry Street are parallel. Apple Street intersects them, as shown in the diagram below.

If $m \angle 1=2 x+36$ and $m \angle 2=7 x-9$, what is $m \angle 1$?
A. 9
B. 17
C. 54
D. 70
5. In the diagram below of isosceles triangle $A B C, \overline{A B} \cong \overline{C B}$ and angle bisectors $\overline{A D}, \overline{B F}$, and $\overline{C E}$ are drawn and intersect at X.

If $m \angle B A C=50^{\circ}$, find $m \angle A X C$.
$m \angle A X C=130^{\circ}$

MAFS.912.G-CO.3.10 EOC Practice

Level 2	Level 3	Level 4	Level 5
uses theorems about interior angles of a triangle, exterior angle of a triangle	completes no more than two steps in a proof using theorems (measures of interior angles of a triangle sum to 180; base angles of isosceles triangles are congruent, the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length) about triangles; solves problems about triangles using algebra; solves problems using the triangle inequality and the Hinge theorem	completes a proof for theorems about triangles; solves problems by applying algebra using the triangle inequality and the Hinge theorem; solves problems for the midsegment of a triangle, concurrency of angle bisectors, and concurrency of perpendicular bisectors	completes proofs using the medians of a triangle meet at a point; solves problems by applying algebra for the midsegment of a triangle, concurrency of angle bisectors, and concurrency of perpendicular bisectors

1. What is the measure of $\angle B$ in the figure below?
A. 62°
B. 58°
C. 59°
D. 56°

2. In this figure, $\boldsymbol{l} \| \boldsymbol{m}$. Jessie listed the first two steps in a proof that $\angle \mathbf{1}+\angle \mathbf{2}+\angle \mathbf{3}=\mathbf{1 8 0}^{\circ}$.

A. Alternate interior angles are congruent.
B. Corresponding angles are congruent.
C. Vertical angles are congruent.
D. Alternate exterior angles are congruent.

	Step	Justification
1	$\angle 2 \cong \angle 4$	$?$
2	$\angle 3 \cong \angle 5$	$?$

3. Given: $\overline{A D} \| \overline{E C}, \overline{A D} \cong \overline{E C}$

Prove: $\overline{A B} \cong \overline{C B}$

Shown below are the statements and reasons for the proof. They are not in the correct order.

Statement	Reason	
I. $\triangle \mathrm{ABD} \cong \triangle \mathrm{CBE}$	I. AAS	
II. $\angle \mathrm{ABD} \cong \angle \mathrm{EBC}$	II. Vertical angles are congruent.	
III. $\overline{\mathrm{AD}} \\| \overline{\mathrm{EC}}, \overline{\mathrm{AD}} \cong \overline{\mathrm{EC}}$	III. Given	
IV. $\overline{\mathrm{AB}} \cong \overline{\mathrm{CB}}$	IV. Corresponding parts of congruent triangles are congruent.	
V. $\angle \mathrm{DAB} \cong \angle \mathrm{ECB}$	V. If two parallel lines are cut by a transversal, the alternate interior angles are congruent.	

Which of these is the most logical order for the statements and reasons?
A. I, II, III, IV, V
B. III, II, V, I, IV
C. III, II, V, IV, I
D. II, V, III, IV, I
4. $\overline{Y Q}$ and $\overline{X P}$ are altitudes to the congruent sides of isosceles triangle $W X Y$.

Keisha is going to prove $\overline{Y Q} \cong \overline{X P}$ by showing they are congruent parts of the congruent triangles $Q X Y$ and $P Y X$.
A. AAS - because triangle $W X Y$ is isosceles, its base angles are congruent. Perpendicular lines form right angles, which are congruent; and segment $\overline{X Y}$ is shared.
B. SSS - because segment $\overline{Q P}$ would be parallel to segment $\overline{X Y}$.
C. SSA - because segment $\overline{X Y}$ is shared; segments $\overline{X P}$ and $\overline{Y Q}$ are altitudes, and $W X Y$ is isosceles, so base angles are congruent.
D. ASA - because triangle $W X Y$ is isosceles, its base angles are congruent. Segment $\overline{X Y}$ is shared; and perpendicular lines form right angles, which are congruent.
5. The figure above represents a swing set. The supports on each side of the swing set are constructed from two 12foot poles connected by a brace at their midpoint. The distance between the bases of the two poles is 5 feet.

Part A
What is the length of each brace?

$$
2.5 \text { feet }
$$

Part B

Which theorem about triangles did you apply to find the solution in Part A?
The segment joining the midpoints of two sides of a triangle is parallel to the third side and half the length.
6. In the diagram below, $\overline{D E}, \overline{D F}$, and $\overline{E F}$ are midsegments of $\triangle A B C$.

The perimeter of quadrilateral $A D E F$ is equivalent to
A. $A B+B C+A C$
B. $\frac{1}{2} A B+\frac{1}{2} A C$
C. $2 A B+2 A C$
D. $A B+A C$

MAFS.912.G-CO.3.11 EOC Practice

Level 2	Level 3	Level 4	Level 5		
uses properties of	completes no more than two steps in a				
parallelograms to find numerical					
values of a missing side or angle					
proof for opposite sides of a parallelogram					
are congruent and opposite angles of a					
a parallelogram				\quad	creates proofs to show
:---					
the diagonals of a					
parallelogram bisect					
each other, given					
parallelogram are congruent; uses					
theorems about parallelograms to solve					
problems using algebra	\quad	proves that rectangles			
:---					
and rhombuses are					
parallelograms, given					
statements and					
reasons					

1. Two pairs of parallel line form a parallelogram. Becki proved that angles 2 and 6 are congruent. She is first used corresponding angles created by a transversal and then alternate interior angles. Which pairs of angles could she use?
A. 1 and 2 then 5 and 6
B. 4 and 2 then 4 and 6
C. 7 and 2 then 7 and 6
D. 8 and 2 then 8 and 6

2. To prove that diagonals of a parallelogram bisect each other, Xavier first wants to establish that triangles APD and CPB are congruent. Which criterion and elements can he use?
A. SAS: sides AP \& PD and CP \& PB with the angles in between
B. SAS: sides $A D \& A P$ and $C B \& C P$ with the angles in between
C. ASA: sides DP and PB with adjacent angles
D. ASA: sides $A D$ and $B C$ with adjacent angles

3. In the diagram below of parallelogram $S T U V, S V=x+3, V U=2 x-1$, and $T U=4 x-3$.

What is the length of $\overline{S V}$?
A. 2
B. 4
C. 5
D. 7

4. The figure shows parallelogram $A B C D$ with $A E=18$.

not drawn to scale

Let $B E=x^{2}-48$ and let $D E=2 x$. What are the lengths of $\overline{B E}$ and $\overline{D E}$?

$$
\begin{aligned}
& \overline{B E}=16 \\
& \overline{D E}=16
\end{aligned}
$$

5. Ms. Davis gave her students all the steps of the proof below. One step is not needed.

Given: ABCD is a parallelogram
Prove: $\triangle A B D \cong \triangle C D B$

Statements	Reasons
1. $\square \mathrm{ABCD}$ is a parallelogram.	1. Given
2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{DC}}$	2. Opposite sides of a
$\overline{\mathrm{AD}} \cong \overline{\mathrm{BC}}$	parallelogram are \cong.
$3 . \angle \mathrm{A} \cong \angle \mathrm{C}$	3. Opposite angles of a
	parallelogram are \cong.
4. $\overline{\mathrm{BD}} \cong \overline{\mathrm{BD}}$	4. Reflexive property of
	congruence
5. $\triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$	5. SSS

Which step is not necessary to complete this proof?
A. Step 1
B. Step 2
C. Step 3
D. Step 4
6. Given: Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E

Prove: $\triangle A E D \cong \triangle C E B$
Describe a single rigid motion that maps $\triangle A E D$ onto $\triangle C E B$.

Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E (Given). $\overline{A D} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent. $\angle A E D \cong \angle C E B$ (Vertical angles are congruent). $\overline{B C} \| \overline{D A}$ (Definition of parallelogram). $\angle D B C \cong \angle B D A$ (Alternate interior angles are congruent). $\triangle A E D \cong \triangle C E B$ (AAS). 180° rotation of $\triangle A E D$ around point E.
7. The figure shows parallelogram PQRS on a coordinate plane. Diagonals $\overline{S Q}$ and $\overline{P R}$ intersect at point T.

Part A

Find the coordinates of point Q in terms of a, b, and c.
$Q(2 a+2 b, 2 c)$

Part B

Since $P Q R S$ is a parallelogram, $\overline{S Q}$ and $\overline{P R}$ bisect each other. Use the coordinates to verify that $\overline{S Q}$ and $\overline{P R}$ bisect each other.
Student response includes each of the following 2 elements:

- Student states that the midpoint of SQ must be the same as the midpoint of PR
- Provides evidence using appropriate mathematical strategies, reasoning, and/or approaches that verifies $\overline{S Q}$ and $\overline{P R}$ bisect each other

8. Parallelogram $A B C D$ has coordinates $A(0,7)$ and $C(2,1)$. Which statement would prove that $A B C D$ is a rhombus?
A. The midpoint of $\overline{A C}$ is $(1,4)$.
B. The length of $\overline{B D}$ is $\sqrt{40}$.
C. The slope of $\overline{B D}$ is $\frac{1}{3}$
D. The slope of $\overline{A B}$ is $\frac{1}{3}$
9. Missy is proving the theorem that states that opposite sides of a parallelogram are congruent.

Missy is proving the theorem that states that opposite sides of a parallelogram are congruent.
Given: Quadrilateral ABCD is a parallelogram. Prove: $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$
Missy's incomplete proof is shown.

Statement		Reason			
1.	Quadrilateral ABCD is a parallelogram.	1.	given		
2.	$\overline{\mathrm{AB}}\\|\overline{\mathrm{CD}} ; \overline{\mathrm{BC}}\\| \overline{\mathrm{DA}}$	2.	definition of parallelogram		
3.	$?$	3.	$?$		
4.	$\overline{\mathrm{AC}} \cong \overline{\mathrm{AC}}$	4.	reflexive property		
5.	$\Delta \mathrm{ABC} \cong \triangle \mathrm{CDA}$	5.	angle-side-angle congruence postulate		
6.	$\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$ and $\overline{\mathrm{BC}} \cong \overline{\mathrm{DA}}$	6.	Corresponding parts of congruent triangles are congruent (CPCTC).		

Which statement and reason should Missy insert into the chart as step 3 to complete the proof?
A. $\overline{B D} \cong \overline{B D}$; reflexive property
B. $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$; reflexive property
C. $\angle A B D \cong \angle C D B$ and $\angle A D B \cong \angle C B D$; When parallel lines are cut by a transversal, alternate interior angles are congruent.
D. $\angle B A C \cong \angle D C A$ and $\angle B C A \cong \angle D A C$; When parallel lines are cut by a transversal, alternate interior angles are congruent.

MAFS.912.G-CO.4.12 EOC Practice

Level 2	Level 3	Level 4	Level 5
chooses a visual or written step in a construction	identifies, sequences, or reorders steps in a construction: copying a segment, copying an angle, bisecting a segment, bisecting an angle, constructing perpendicular lines, including the perpendicular bisector of a line segment, and constructing a line parallel to a given line through a point not on the line	identifies sequences or reorders steps in a construction of an equilateral triangle, a square, and a regular hexagon inscribed in a circle	explains steps in a construction

1. Which triangle was constructed congruent to the given triangle?

A. Triangle 1

B. Triangle 2
C. Triangle 3
D. Triangle 4

2. A student used a compass and a straightedge to bisect $\angle A B C$ in this figure.

Which statement BEST describes point S?
A. Point S is located such that $S C=P Q$.
B. Point S is located such that $S A=P Q$.
C. Point S is located such that $P S=B Q$.
D. Point S is located such that $Q S=P S$.
3. What is the first step in constructing congruent angles?

A. Draw ray DF.
B. From point A, draw an arc that intersects the sides of the angle at point B and C.
C. From point D , draw an arc that intersects the sides of the angle at point E and F .
D. From points A and D, draw equal arcs that intersects the rays $A C$ and $D F$.
4. Melanie wants to construct the perpendicular bisector of line segment $A B$ using a compass and straightedge.

Which diagram shows the first step(s) of the construction?
A.

B.

C.

D.

MAFS.912.G-CO.4.13 EOC Practice

Level 2	Level 3	Level 4	Level 5
chooses a visual or written step in a construction	identifies, sequences, or reorders steps in a construction: copying a segment, copying an angle, bisecting a segment, bisecting an angle, constructing perpendicular lines, including the perpendicular bisector of a line segment, and constructing a line parallel to a given line through a point not on the line	identifies sequences or reorders steps in a construction of an equilateral triangle, a square, and a regular hexagon inscribed in a circle	explains steps in a construction

1. The radius of circle O is r. A circle with the same radius drawn around P intersects circle O at point R. What is the measure of angle ROP?

A. 30°
B. 60°
C. 90°
D. 120°
2. Carol is constructing an equilateral triangle with P and R being two of the vertices. She is going to use a compass to draw circles around P and R. What should the radius of the circles be?

A. d
B. $2 d$
C. $\frac{d}{2}$
D. d^{2}
3. The figure below shows the construction of the angle bisector of $\angle A O B$ using a compass. Which of the following statements must always be true in the construction of the angle bisector? Select Yes or No for each statement.

$O A=O B$
O YES
O NO
$A P=B P$
O YES
O NO
$A B=B P$
O YES
$O B=B P$
O YES
$\begin{array}{ll}\circ & \text { NO } \\ \text { O NO }\end{array}$
4. Daya is drawing a square inscribed in a circle using a compass and a straightedge. Her first two steps are shown.

Which is the best step for Daya to do next?
A.

C.

B.

D.

FSA Geometry EOC Review

5. Carolina wanted to construct a polygon inscribed in a circle by paper folding. She completed the following steps:

- Start with a paper circle. Fold it in half. Make a crease.
- Take the half circle and fold it in thirds. Crease along the sides of the thirds.
- Open the paper. Mark the intersection points of the creases with the circle.
- Connect adjacent intersection points on the circle with segments.

Which polygon was Carolina most likely trying to construct?
A. Regular nonagon
B. Regular octagon
C. Regular hexagon
D. Regular pentagon

MAFS.912.G-SRT.1.1 EOC Practice

Level 2

identifies the scale factors of dilations

Level 3
chooses the properties of dilations when a dilation is presented on a coordinate plane, as a set of ordered pairs, as a diagram, or as a narrative; properties are: a dilation takes a line not passing through the center of the dilation to a parallel line and leaves a line passing through the center unchanged; the dilation of a line segment is longer or shorter in the ratio given by the scale factor

Level 4
explains why a dilation takes a line not passing through the center of dilation to a parallel line and leaves a line passing through the center unchanged or that the dilation of a line segment is longer or shorter in ratio given by the scale factor

Level 5

explains whether a dilation presented on a coordinate plane, as a set of ordered pairs, as a diagram, or as a narrative correctly verifies the properties of dilations

1. Line b is defined by the equation $y=8-x$. If line b undergoes a dilation with a scale factor of 0.5 and center P, which equation will define the image of the line?

A. $y=4-x$
B. $y=5-x$
C. $y=8-x$
D. $y=11-x$
2. $\mathrm{GH}=1$. A dilation with center H and a scale factor of 0.5 is applied. What will be the length of the image of the segment GH?

A. 0
B. 0.5
C. 1
D. 2
3. The vertices of square $A B C D$ are $A(3,1), B(3,-1), C(5,-1)$, and $D(5,1)$. This square is dilated so that A^{\prime} is at $(3,1)$ and C^{\prime} is at $(8,-4)$. What are the coordinates of D^{\prime} ?
A. $(6,-4)$
B. $(6,-4)$
C. $(8,1)$
D. $(8,4)$
4. Rosa graphs the line $y=3 x+5$. Then she dilates the line by a factor of $\frac{1}{5}$ with $(0,7)$ as the center of dilation.

Which statement best describes the result of the dilation?
A. The result is a different line $\frac{1}{5}$ the size of the original line.
B. The result is a different line with a slope of 3 .
C. The result is a different line with a slope of $-\frac{1}{3}$.
D. The result is the same line.
5. The figure shows line $A C$ and line $P Q$ intersecting at point B. Lines $A^{\prime} C^{\prime}$ and $P^{\prime} Q^{\prime}$ will be the images of lines $A C$ and $P Q$, respectively, under a dilation with center P and scale factor 2 .

Which statement about the image of lines $A C$ and $P Q$ would be true under the dilation?
A. Line $A^{\prime} C^{\prime}$ will be parallel to line $A C$, and line $P^{\prime} Q^{\prime}$ will be parallel to line $P Q$.
B. Line $A^{\prime} C^{\prime}$ will be parallel to line $A C$, and line $P^{\prime} Q^{\prime}$ will be the same line as line $P Q$.
C. Line $A^{\prime} C^{\prime}$ will be perpendicular to line $A C$, and line $P^{\prime} Q^{\prime}$ will be parallel to line $P Q$.
D. Line $A^{\prime} C^{\prime}$ will be perpendicular to line $A C$, and line $P^{\prime} Q^{\prime}$ will be the same line as line $P Q$.
6. A line that passes through the points whose coordinates are $(1,1)$ and $(5,7)$ is dilated by a scale factor of 3 and centered at the origin. The image of the line
A. is perpendicular to the original line
B. is parallel to the original line
C. passes through the origin
D. is the original line
7. In the diagram below, $\overline{C D}$ is the image of $\overline{A B}$ after a dilation of scale factor k with center E .

Which ratio is equal to the scale factor k of the dilation?
A. $\frac{E C}{E A}$
B. $\frac{B A}{E A}$
C. $\frac{E A}{B A}$
D. $\frac{E A}{E C}$

8. On the graph below, point $A(3,4)$ and $\overline{B C}$ with coordinates $B(4,3)$ and $C(2,1)$ are graphed.

What are the coordinates of B^{\prime} and C^{\prime} after $\overline{B C}$ undergoes a dilation centered at point A with a scale factor of 2 ?
A. $B^{\prime}(5,2)$ and $C^{\prime}(1,-2)$
B. $B^{\prime}(6,1)$ and $C^{\prime}(0,-1)$
C. $B^{\prime}(5,0)$ and $C^{\prime}(1,-2)$
D. $B^{\prime}(5,2)$ and $C^{\prime}(3,0)$

MAFS.912.G-SRT.1.2 EOC Practice

Level 2	Level 3
determines if two given figures are similar	uses the definition of similarity in terms of similarity transformations to decide if two figures are similar; determines if given information is sufficient to determine similarity

Level 4
shows that corresponding angles of two similar figures are congruent and that their corresponding sides are proportional

Level 5

explains using the definition of similarity in terms of similarity transformations that corresponding angles of two figures are congruent and that corresponding sides of two figures are proportional

1. When two triangles are considered similar but not congruent?
A. The distance between corresponding vertices are equal.
B. The distance between corresponding vertices are proportionate.
C. The vertices are reflected across the x-axis.
D. Each of the vertices are shifted up by the same amount.
2. Triangle $A B C$ was reflected and dilated so that it coincides with triangle $X Y Z$. How did this transformation affect the sides and angles of triangle $A B C$?

A. The side lengths and angle measure were multiplied by $\frac{X Y}{A B}$
B. The side lengths were multiplied by $\frac{X Y}{A B}$, while the angle measures were preserved
C. The angle measures were multiplied by $\frac{X Y}{A B}$, while the side lengths were preserved
D. The angle measures and side lengths were preserved
3. In the diagram below, $\triangle A B C \sim \triangle D E F$.

If $A B=6$ and $A C=8$, which statement will justify similarity by SAS?
A. $D E=9, D F=12$, and $\angle A \cong \angle D$
B. $D E=8, D F=10$, and $\angle A \cong \angle D$
C. $D E=36, D F=64$, and $\angle C \cong \angle L F$
D. $D E=15, D F=20$, and $\angle C \cong \angle L F$
4. Kelly dilates triangle $A B C$ using point P as the center of dilation and creates triangle $A^{\prime} B^{\prime} C^{\prime}$.

By comparing the slopes of $A C$ and $C B$ and $A^{\prime} C^{\prime}$ and $C^{\prime} B^{\prime}$, Kelly found that $\angle A C B$ and $\angle A^{\prime} C^{\prime} B^{\prime}$ are right angles.
Which set of calculations could Kelly use to prove $\triangle A B C$ is similar to $\triangle A^{\prime} B^{\prime} C^{\prime}$?
A.
slope $A B=\frac{7-(-7)}{2-(-5)}=\frac{14}{7}=2$
slope $A^{\prime} B^{\prime}=\frac{7-3}{-3-(-5)}=\frac{4}{2}=2$
C.
$\tan \angle \mathrm{ABC}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{7}{14}$
$\tan \angle \mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}=\frac{\mathrm{A}^{\prime} \mathrm{C}^{\prime}}{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}=\frac{2}{4}$
B.

$$
\begin{aligned}
& \mathrm{AB}^{2}=7^{2}+14^{2} \\
& \mathrm{~A}^{\prime} \mathrm{B}^{\prime 2}=2^{2}+4^{2}
\end{aligned}
$$

D.

$$
\begin{aligned}
& \angle \mathrm{ABC}+\angle \mathrm{BCA}+\angle \mathrm{CAB}=180^{\circ} \\
& \angle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\angle \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{A}^{\prime}+\angle \mathrm{C}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime}=180^{\circ}
\end{aligned}
$$

5. In the diagram below, triangles $X Y Z$ and $U V Z$ are drawn such that $\angle X \cong \angle U$ and $\angle X Z Y \cong \angle U Z V$.

Describe a sequence of similarity transformations that shows $\triangle X Y Z$ is similar to $\triangle U V Z$.
Check student work.

Level 2	Level 3	Level 4	Level 5
identifies that two triangles are similar using the AA criterion	establishes the AA criterion for two triangles to be similar by using the properties of similarity transformations	proves that two triangles are similar if two angles of one triangle are congruent to two angles of the other triangle, using the properties of similarity transformations; uses triangle similarity to prove theorems about triangles	proves the Pythagorean theorem using similarity

1. Kamal dilates triangle $A B C$ to get triangle $A^{\prime} B^{\prime} C^{\prime}$. He knows that the triangles are similar because of the definition of similarity transformations. He wants to demonstrate the angle-angle similarity postulate by proving $\angle B A C \cong \angle B^{\prime} A^{\prime} C^{\prime}$ and $\angle A B C \cong \angle A^{\prime} B^{\prime} C^{\prime}$.

Kamal makes this incomplete flow chart proof.

What reason should Kamal add at all of the question marks in order to complete the proof?
A. Two non-vertical lines have the same slope if and only if they are parallel.
B. Angles supplementary to the same angle or to congruent angles are congruent.
C. If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.
D. If two parallel lines are cut by a transversal, then each pair of alternate interior angles is congruent.
2. Given: $A D=6 ; D C=3 ; B E=4 ;$ and $E C=2$

Prove: $\triangle C D E \sim \triangle C A B$

	Statements	Reasons
1.		Given
2.	$C A=C D+D A$ $C B=C E+E B$	Segment Addition Postulate
3.	$\frac{C A}{C D}=\frac{9}{3}=3 ; \frac{C B}{C E}=\frac{6}{2}=3$	Division Property
4.	$\frac{C A}{C D}=\frac{C B}{C E}$	Transitive Property
5.	$\angle D C E \cong \angle A C B$	Reflexive Property
6.	$\triangle C D E \sim \triangle C A B$	SAS Similarity Theorem

MAFS.912.G-SRT.2.4 EOC Practice

| Level 2 | Level 3 | Level 4 | Level 5 |
| :--- | :--- | :--- | :--- | :--- |
| identifies that two
 triangles are similar
 using the AA criterion | establishes the AA
 criterion for two triangles
 to be similar by using the
 properties of similarity
 transformations | proves that two triangles are similar if two angles
 of one triangle are congruent to two angles of
 the other triangle, using the properties of
 similarity transformations; uses triangle
 similarity to prove theorems about triangles | proves the Pythagorean
 theorem using similarity |

1. Lines $A C$ and $F G$ are parallel. Which statement should be used to prove that triangles $A B C$ and DBE are similar?

A. Angles $B D E$ and $B C A$ are congruent as alternate interior angles.
B. Angles BAC and BEF are congruent as corresponding angles.
C. Angles BED and BCA are congruent as corresponding angles.
D. Angles BDG and BEF are congruent as alternate exterior angles.
2. A diagram from a proof of the Pythagorean Theorem is shown. Which statement would NOT be used in the proof?

A. $(A B)^{2}+(A C)^{2}=(B C)[(B D)+(D C)] \Rightarrow(A B)^{2}+(A C)^{2}=(B C)$
B. $\triangle B A C \sim \triangle B D A \sim \triangle A D C$
C. $\frac{A B}{B C}=\frac{B D}{A B}$ and $\frac{A C}{B C}=\frac{D C}{A C}$
D. $\triangle A B C$ is a right triangle with an altitude $\overline{A D}$.
3. Ethan is proving the theorem that states that if two triangles are similar, then the measures of the corresponding angle bisectors are proportional to the measures of the corresponding sides.

Given: $\triangle A B C \sim \triangle E F G$.
$\overline{B D}$ bisects $\angle A B C$, and $\overline{F H}$ bisects $\angle E F G$.
Prove: $\frac{A B}{E F}=\frac{B D}{F H}$

Ethan's incomplete flow chart proof is shown.

Which statement and reason should Ethan add at the question mark to best continue the proof?
A. $\triangle A B D \sim \triangle E F H$; AA similarity
B. $\angle B C A \cong \angle F G E$; definition of similar triangles
C. $\frac{A B}{B C}=\frac{E F}{G H}$; definition of similar triangles
D. $m \angle A D B+m \angle A B D+m \angle B A D=180^{\circ} ; m \angle E F H+m \angle E H F+m \angle F E H=180^{\circ}$; Angle Sum Theorem
4. In the diagram, $\triangle A B C$ is a right triangle with right angle C, and $\overline{C D}$ is an altitude of $\triangle A B C$. Use the fact that $\triangle A B C \sim \triangle A C D \sim \triangle C B D$ to prove $a^{2}+b^{2}=c^{2}$

Statements	Reasons

MAFS.912.G-SRT.2.5 EOC Practice

Level 2	Level 3	Level 4	Level 5
finds measures of sides and angles of congruent and similar triangles when given a diagram	solves problems involving triangles, using congruence and similarity criteria; provides justifications about relationships using congruence and similarity criteria	completes proofs about relationships in geometric figures by using congruence and similarity criteria for triangles	proves conjectures about congruence or similarity in geometric figures, using congruence and similarity criteria

1. Given the diagram below, what is the value of x ?

A. 13.5
B. 14.6
C. 15.5
D. 16.6
2. A scale model of the Millennium Dome in Greenwich, England, was constructed on a scale of 100 meters to 1 foot. The cable supports are 50 meters high and form a triangle with the cables. How high are the cable supports on the scale model that was built?

A. 0.5 foot
B. 1 foot
C. 1.5 feet
D. 2 feet
3. Hector knows two angles in triangle A are congruent to two angles in triangle B. What else does Hector need to know to prove that triangles A and B are similar?
A. Hector does not need to know anything else about triangles A and B.
B. Hector needs to know the length of any corresponding side in both triangles.
C. Hector needs to know all three angles in triangle A are congruent to the corresponding angles in triangle B.
D. Hector needs to know the length of the side between the corresponding angles on each triangle.
4. Figure $A B C D$, to the right, is a parallelogram.

What is the measure of $\angle A C D$?
A. 59°
B. 60°
C. 61°
D. 71°

(Not drawn to scale)
5. In the diagram below, $\Delta J K L \cong \triangle O N M$.

Based on the angle measures in the diagram, what is the measure, in degrees, of $\angle N$? Enter your answer in the box.
6. In $\triangle S C U$ shown below, points T and 0 are on $\overline{S U}$ and $\overline{C U}$, respectively. Segment $\overline{O T}$ is drawn so that $\angle C \cong \angle O T U$.

If $T U=4, O U=5$, and $O C=7$, what is the length of $\overline{S T}$?
A. 5.6
B. 8.75
C. 11
D. 15
7. In the diagram below, $\overline{C D}$ is the altitude drawn to the hypotenuse $\overline{A B}$ of right triangle $A B C$.

Which lengths would not produce an altitude that measures $6 \sqrt{2}$?
A. $A D=2$ and $D B=36$
B. $A D=3$ and $A B=24$
C. $A D=6$ and $D B=12$
D. $A D=8$ and $A B=17$
8. To find the height of a lamppost at a park, Rachel placed a mirror on the ground 20 feet from the base of the lamppost. She then stepped back 4 feet so that she could see the top of the lamp post in the center of the mirror. Rachel's eyes are 5 feet 6 inches above the ground. What is the height, in feet, of the lamppost?

MAFS.912.G-SRT.3.8 EOC Practice

Level 2	Level 3	Level 4
calculates unknown side lengths using the Pythagorean theorem given a picture of a right triangle; recognizes the sine, cosine, or tangent ratio when given a picture of a right triangle with two sides and an angle labeled	solves for sides of right triangles using trigonometric ratios and the Pythagorean theorem in applied problems; uses the relationship between sine and cosine of complementary angles	assimilates that the ratio of two sides in one triangle is equal to the ratio of the corresponding two sides of all other similar triangles leading to definitions of trigonometric ratios for acute angles; explains the relationship between the sine and cosine of complementary angles; solves for missing angles of right triangles using sine, cosine, and tangent

Level 5

uses the modeling context to solve problems that require more than one trigonometric ratio and/or the Pythagorean theorem; solves for sides of right triangles using trigonometric ratios and the Pythagorean theorem when side lengths and/or angles are given using variables

1. A 30 -foot long escalator forms a 41° angle at the second floor. Which is the closest height of the first floor?

A. 20 feet
B. 22.5 feet
C. 24.5 feet
D. 26 feet
2. Jane and Mark each build ramps to jump their remote-controlled cars.

Both ramps are right triangles when viewed from the side. The incline of Jane's ramp makes a 30-degree angle with the ground, and the length of the inclined ramp is 14 inches. The incline of Mark's ramp makes a 45-degree angle with the ground, and the length of the inclined ramp is 10 inches.

Part A

What is the horizontal length of the base of Jane's ramp and the base of Mark's ramp? Enter your answer in the box.
12.12 and 7.07

Part B

Which car is launched from the highest point? Enter your answer in the box.

Mark's

3. In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C , and the first aid station, F . The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

$$
\begin{gathered}
x=\sqrt{.55^{2}-.25^{2}} \cong 0.49 \mathrm{No}, \quad .49^{2}=.25 y \quad .9604+.25<1.5 \\
.9604=y
\end{gathered}
$$

4. The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

```
23
```

5. In $\triangle A B C$, the complement of $\angle B$ is $\angle A$. Which statement is always true?
A. $\tan \angle A=\tan \angle B$
B. $\sin \angle A=\sin \angle L B$
C. $\cos \angle A=\tan \angle B$
D. $\sin \angle A=\cos \angle B$
6. In the figure below, a pole has two wires attached to it, one on each side, forming two right triangles.

Based on the given information, answer the questions below.
How tall is the pole? Enter your answer in the box.
29.6 ft .

How far from the base of the pole does Wire 2 attach to the ground? Enter your answer in the box.
23.1 ft .

How long is Wire 1? Enter your answer in the box.
45.1 ft .
7. As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?
A. 29.7
B. 16.6
C. 13.5
D. 11.2
8. Leah needs to add a wheelchair ramp over her stairs. The ramp will start at the top of the stairs. Each stair makes a right angle with each riser.

Note: Not to scale

Part A

The ramp must have a maximum slope of $\frac{1}{12}$. To the nearest hundredth of a foot, what is the shortest length of ramp that Leah can build and not exceed the maximum slope? Enter your answer in the box.
15.05 ft .

Part B

Leah decides to build a ramp that starts at the top of the stairs and ends 18 feet from the base of the bottom stair. To the nearest hundredth of a foot, what is the length of the ramp? Enter your answer in the box.
20.04 ft .

Part C

To the nearest tenth of a degree, what is the measure of the angle created by the ground and the ramp that Leah builds in part B? Enter your answer in the box.

3.6 degrees

MAFS.912.G-SRT.3.6 EOC Practice

Level 2	Level 3	Level 4	Level 5
calculates unknown side lengths using the Pythagorean theorem given a picture of a right triangle; recognizes the sine, cosine, or tangent ratio when given a picture of a right triangle with two sides and an angle labeled	solves for sides of right triangles using trigonometric ratios and the Pythagorean theorem in applied problems; uses the relationship between sine and cosine of complementary angles	assimilates that the ratio of two sides in one triangle is equal to the ratio of the corresponding two sides of all other similar triangles leading to definitions of trigonometric ratios for acute angles; explains the relationship between the sine and cosine of complementary angles; solves for missing angles of right triangles using sine, cosine, and tangent	uses the modeling context to solve problems that require more than one trigonometric ratio and/or the Pythagorean theorem; solves for sides of right triangles using trigonometric ratios and the Pythagorean theorem when side lengths and/or angles are given using variables

1. What is the sine ratio of $\angle P$ in the given triangle?
A. $\frac{8}{17}$
B. $\frac{8}{15}$
C. $\frac{15}{17}$

D. $\frac{15}{8}$
2. Kendall drew a right triangle. The tangent value for one angle in her triangle is 1.8750 . Which set of side lengths could belong to a right triangle similar to the triangle Kendall drew?
A. $16 \mathrm{~cm}, 30 \mathrm{~cm}, 35 \mathrm{~cm}$
B. $8 \mathrm{~cm}, 15 \mathrm{~cm}, 17 \mathrm{~cm}$
C. $6 \mathrm{~cm}, 8 \mathrm{~cm}, 10 \mathrm{~cm}$
D. $1.875 \mathrm{~cm}, 8 \mathrm{~cm}, 8.2 \mathrm{~cm}$
3. Angles F and G are complementary angles.

- As the measure of angle F varies from a value of x to a value of $\mathrm{y}, \sin (F)$ increases by 0.2 .

How does $\cos (G)$ change as F varies from x to y ?
A. It increases by a greater amount.
B. It increases by the same amount.
C. It increases by a lesser amount.
D. It does not change.
4. Triangle $A B C$ is similar to triangle $W Y Z$.

Select all angles whose tangent equals $\frac{3}{4}$.

5. The figure shows right $\triangle A B C$.

Of the listed values are equal to the sine of B ? Select ALL that apply.
$\square \quad \frac{b}{c}$
$\square \quad \frac{c}{a}$
$\square \quad \frac{b}{a}$The cosine of B
The cosine of C
The cosine of $\left(90^{\circ}-B\right)$
The sine of $\left(90^{\circ}-C\right)$

MAFS.912.G-SRT.3.7 EOC Practice

Level 2		Level 3	
calculates unknown side	solves for sides of right lengths using the	assimilates that the ratio of two sides in one triangle is equal to the ratio of Pythagorean theorem given a picture of a right triangle; recognizes the using trigonometric ratios and sine, cosine, or tangent ratio when given a picture of a right triangle with two the Pythagorean sides and an angle labeled	theorem in applied problems; uses the relationship between sine and cosine of complementary angles cofingo sides of all
	definitions of trigonometric ratios for acute angles; explains the relationship between the sine and cosine of complementary angles; solves for missing angles of right triangles using sine, cosine, and tangent		

Level 5

uses the modeling context to solve problems that require more than one trigonometric ratio and/or the Pythagorean theorem; solves for sides of right triangles using trigonometric ratios and the Pythagorean theorem when side lengths and/or angles are given using variables

1. Explain why $\cos (x)=\sin (90-x)$ for x such that $0<x<90$

The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.
2. Which is equal to $\sin 30^{\circ}$?
A. $\cos 30^{\circ}$
B. $\cos 60^{\circ}$
C. $\sin 60^{\circ}$
D. $\sin 70^{\circ}$
3. Adnan states if $\cos 30^{\circ} \approx 0.866$, then $\sin 30^{\circ} \approx 0.866$. Which justification correctly explains whether or not Adnan is correct?
A. Adnan is correct because $\cos x^{\circ}$ and $\sin x^{\circ}$ are always equivalent in any right triangle.
B. Adnan is correct because $\cos x^{\circ}$ and $\sin x^{\circ}$ are only equivalent in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
C. Adnan is incorrect because $\cos x^{\circ}$ and $\sin (90-x)^{\circ}$ are always equivalent in any right triangle.
D. Adnan is incorrect because only $\cos x^{\circ}$ and $\cos (90-x)^{\circ}$ are equivalent in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
4. In right triangle $\mathrm{ABC}, m \angle B \neq m \angle C$. Let $\sin B=r$ and $\cos B=s$. What is $\sin C-\cos C$?
A. $r+s$
B. $r-s$
C. $s-r$
D. $\frac{r}{s}$
5. In right triangle $A B C$ with the right angle at $C, \sin A=2 x+0.1$ and $\cos B=4 x-0.7$.

Determine and state the value of x. Enter your answer in the box.

```
0.4
```


[^0]: $\square \overline{T R} \cong \overline{A N}$

 - $\overline{T I} \cong \overline{A G}$
 $\overline{R I} \cong \overline{N G}$
 $\overline{T I} \cong \overline{N A}$
 $\angle T \cong \angle A$
 $\angle R \cong \angle N$
 $\angle I \cong \angle G$
 $\angle A \cong \angle N$

