$\qquad$

## Congruent Triangle Proofs

What are the 5 ways to prove two triangles are congruent to one another?


In order to PROVE that 2 triangles are congruent to one another, you must be able to show one of the 5 reasons above is true.

When you are completing proofs in geometry it is important to "squeeze" as much information from our givens as possible. Assume that every statement below is the beginning of a new proof. What information could you conclude?

1. $m \angle 1=m \angle 2$

GIVEN
$\square$
2. $\mathrm{m} \angle 1+\mathrm{m} \angle 5=90$ degrees

GIVEN
3. $\angle 1$ and $\angle 7$ form a linear pair GIVEN
4. $\angle 4$ and $\angle 7$ are complementary
5. $\angle 8$ and $\angle 9$ are vertical angles GIVEN

|  |  |
| :--- | :--- |
|  |  |
|  |  |

6. $\angle \mathbf{H}$ and $\angle \mathbf{P}$ form a linear pair

GIVEN

|  |  |
| :--- | :--- |
|  |  |
|  |  |

7. $\mathrm{TI}=\mathrm{FG}, \mathrm{FG}=\mathrm{SD}$

GIVEN

The type of proof we have been doing is called a two column proof. In a two column proof you list statements that follow logically from a given statement to a conclusion (what you are trying to prove). Across from each statement you give a reason that you can make the claim you did. This is where you use definitions and properties that we have talked about.


## Examples:

1. Given $\mathrm{AB} \cong \mathrm{CD}$ and $\mathrm{AD} \cong \mathrm{CB}$, show that the statement below is true.


## $\triangle A B D \cong \triangle C D B$

## Statement

Reason

| Bank for statements: | Bank for Reasons: |
| :---: | :--- |
| $\overline{\mathrm{BD}} \cong \overline{\mathrm{BD}}$ | Reflexive Property |
| $\Delta \mathrm{ABD} \cong \triangle \mathrm{CDB}$ | Given |
| $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$ | SSS Congruent Theorem |
| $\overline{\mathrm{AD}} \cong \overline{\mathrm{CB}}$ | Given |

2. Given the information in the triangles below, show that the statement below is true.
Prove: $\triangle X W Y \cong \triangle W Z Y$


## Statement

Reason

| Bank for statements: | Bank for Reasons: |
| :---: | :--- |
| $\overline{W Y} \cong \overline{W Y}$ | Definition of congruent |
| $\overline{X Y} \cong \overline{Z Y}$ | Given |
| $\mathrm{XW}=6=\mathrm{ZW}$ | SSS Congruent Theorem |
| $\mathrm{WY}=4=\mathrm{WY}$ | Given |
| $\Delta \mathrm{XWY} \cong \mathrm{ZWY}$ | Definition of congruent |
| $\mathrm{XY}=9=\mathrm{ZY}$ | Given |
| $\overline{X W} \cong \overline{Z W}$ | Definition of congruent |

3. Given: LN and JM bisect each other

Prove: $\triangle N K J \cong \Delta L K M$


## Statement

## Reason

| Bank for statements: | Bank for Reasons: |
| :---: | :--- |
| $\overline{\mathrm{KK}} \cong \overline{\mathrm{KM}}$ |  |
| $\Delta \mathrm{NKJ} \cong \Delta \mathrm{LKM}$ | Definition of Bisector |
| $\overline{\mathrm{LK}} \cong \overline{\mathrm{NK}}$ | Given |
| $<\mathrm{JKN} \cong<\mathrm{MKL}$ | Definition of Bisector |
| LN and JM bisect each other | SAS Congruence Theorem |
|  | Vertical Angles |

4. Given: $\overline{C B}$ is the perpendicular bisector of $\overline{A D}$ Prove: $\triangle A B C \cong \triangle D B C$


Reason

| Bank for statements: | Bank for Reasons: |
| :---: | :--- |
| $\overline{\mathrm{AB}} \cong \overline{\mathrm{DB}}$ |  |
| $\Delta \mathrm{ABC} \cong \triangle \mathrm{DBC}$ | SAS Congruence Theorem |
| $\overline{\mathrm{CB}} \cong \overline{\mathrm{CB}}$ | Definition of Perpendicular |
| $<\mathrm{CBD} \cong<\mathrm{CBA}$ | Given |
| CB is the perpendicular bisector of AD | Definition of Bisect |
| $\mathrm{m}<\mathrm{CBD}=90^{\circ}=\mathrm{m}<\mathrm{CBA}$ | Reflexition of Equal angles |
|  |  |

5. Given: $\overline{X Z} \cong \overline{Y W}$ and $<\mathrm{YXZ} \cong<\mathrm{WYX}$ Prove: $\triangle W X Y \cong \triangle Z Y X$



| Bank for statements: | Bank for Reasons: |
| :---: | :--- |
| $\overline{\mathrm{XZ}} \cong \overline{\mathrm{YW}}$ | Reflexive Property |
| $\Delta \mathrm{WXY} \cong \Delta \mathrm{ZYX}$ | Given |
| $\overline{\mathrm{XY}} \cong \overline{\mathrm{XY}}$ | SAS Congruent Theorem |
| $<Y X Z \cong<W Y X$ | Given |
|  |  |

6. Given: $\overline{S R} \cong \overline{Q R}$ and $\overline{S T} \cong \overline{Q T}$ Prove: $\triangle S R T \cong \triangle Q R T$


Statement Reason

| Bank for statements: | Bank for Reasons: |
| :---: | :--- |
| $\overline{\mathrm{TR}} \cong \overline{\mathrm{TR}}$ | Reflexive Property |
| $\Delta \mathrm{SRT} \cong \triangle \mathrm{QRT}$ | Given |
| $\overline{\mathrm{SR}} \cong \overline{\mathrm{QR}}$ | SSS Congruent Theorem |
| $\overline{\mathrm{ST}} \cong \overline{\mathrm{QT}}$ | Given |

7. Given: $\overline{J G} \cong \overline{F H}$ and $\overline{G F} \| \overline{H J}$ Prove: $\Delta J G H \cong \triangle F H G$


## Statement

 Reason| Bank for statements: | Bank for Reasons: |
| :---: | :--- |
| $\overline{J G} \cong \overline{F H}$ | Alternate Interior Angles Theorem |
| $\Delta J G H \cong \Delta F H G$ | Reflexive Property |
| $\overline{G H} \cong \overline{G H}$ | Given |
| $\overline{G F} \\| \overline{H J}$ | SAS Congruent Theorem |
| $<G H F \cong<H G J$ | Given |

8. Given: $\overline{A B} \cong \overline{D B}, \overline{B C} \perp \overline{A D}$ Prove: $\triangle A B C \cong \triangle D B C$


| Statement | Reason |
| :---: | :---: |
| Statement |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| Bank for statements: | Bank for Reasons: |
| $\overline{\mathrm{BC}} \simeq \overline{\mathrm{BC}}$ | Definition of perpendicular |
| $\mathrm{BC} \cong \mathrm{BC}$ | Definition of perpendicular |
| $\triangle \mathrm{ABC} \cong \triangle \mathrm{DBC}$ | Definition of perpendicular |
| $\overline{\mathrm{AB}} \cong \overline{\mathrm{DB}}$ | Given |
| $\overline{\mathrm{BC}} \perp \overline{\mathrm{AD}}$ | Reflexive Property |
| $\mathrm{m}<\mathrm{BCD}=90$ | Given |
| $\mathrm{m}<\mathrm{ACB}=90$ | HL Congruence Theorem |

9. Given: $\overline{J K} \cong \overline{M K}$ and $<\mathrm{J} \cong<\mathrm{M}$ Prove: $\triangle N K J \cong \triangle L K M$


| Bank for statements: | Bank for Reasons: |
| :---: | :--- |
| $\overline{\mathrm{JK}} \cong \overline{\mathrm{MK}}$ |  |
| $\Delta \mathrm{NKJ} \cong \Delta \mathrm{LKM}$ | ASA Congruence Theorem |
| $<\mathrm{J} \cong<\mathrm{M}$ | Given |
| $<\mathrm{JKN} \cong<\mathrm{LKM}$ | Vertical Angles Theorem |
|  | Given |

10. Given: $\overline{J N} \cong \overline{M L}$ and $<\mathrm{J} \cong<\mathrm{M}$ Prove: $\triangle N K J \cong \Delta L K M$


Statement
Reason

| Bank for statements: | Bank for Reasons: |
| :---: | :--- |
| $\overline{\mathrm{JN}} \cong \overline{\mathrm{ML}}$ |  |
| $\Delta \mathrm{NKJ} \cong \Delta \mathrm{LKM}$ | AAS Congruence Theorem |
| $<\mathrm{J} \cong<\mathrm{M}$ | Given |
| $<\mathrm{JKN} \cong<\mathrm{LKM}$ | Vertical Angles Theorem |
|  | Given |

11. Given: $\overline{J N} \cong \overline{L M}$ and $\overline{N K} \cong \overline{M K}$ and $<\mathrm{K}$ is a right angle Prove: $\triangle N K J \cong \triangle M L K$


Statement
Reason

| Bank for statements: | Bank for Reasons: |
| :---: | :--- |
| $\overline{\mathrm{JN}} \cong \overline{\mathrm{LM}}$ |  |
| $\Delta \mathrm{NKJ} \cong \Delta \mathrm{MLK}$ | HL Congruence Theorem |
| $<\mathrm{LKM} \cong<\mathrm{JKN}$ | Given |
| $\overline{\mathrm{NK}} \cong \overline{\mathrm{MK}}$ | Vertical Angles Theorem |
| $<\mathrm{K}$ is a right angle | Given |
| $\mathrm{m}<\mathrm{LKM}=90$ | Given |
|  | Definition of Congruent Angles |

12. Given: $\overline{J N} \cong \overline{L M}$ and $\overline{N K} \cong \overline{M K}$ and $<\mathrm{N} \cong<\mathrm{M}$ Prove: $\triangle N K J \cong \triangle M K L$


## Statement

 Reason| Bank for statements: | Bank for Reasons: |
| :---: | :--- |
| $\overline{\mathrm{JN}} \cong \overline{\mathrm{LM}}$ |  |
| $\Delta \mathrm{NKJ} \cong \Delta \mathrm{MKL}$ | SAS Congruence Theorem |
| $<\mathrm{N} \cong<\mathrm{M}$ | Given |
| $\overline{\mathrm{NK}} \cong \overline{\mathrm{MK}}$ | Given |
|  | Given |

