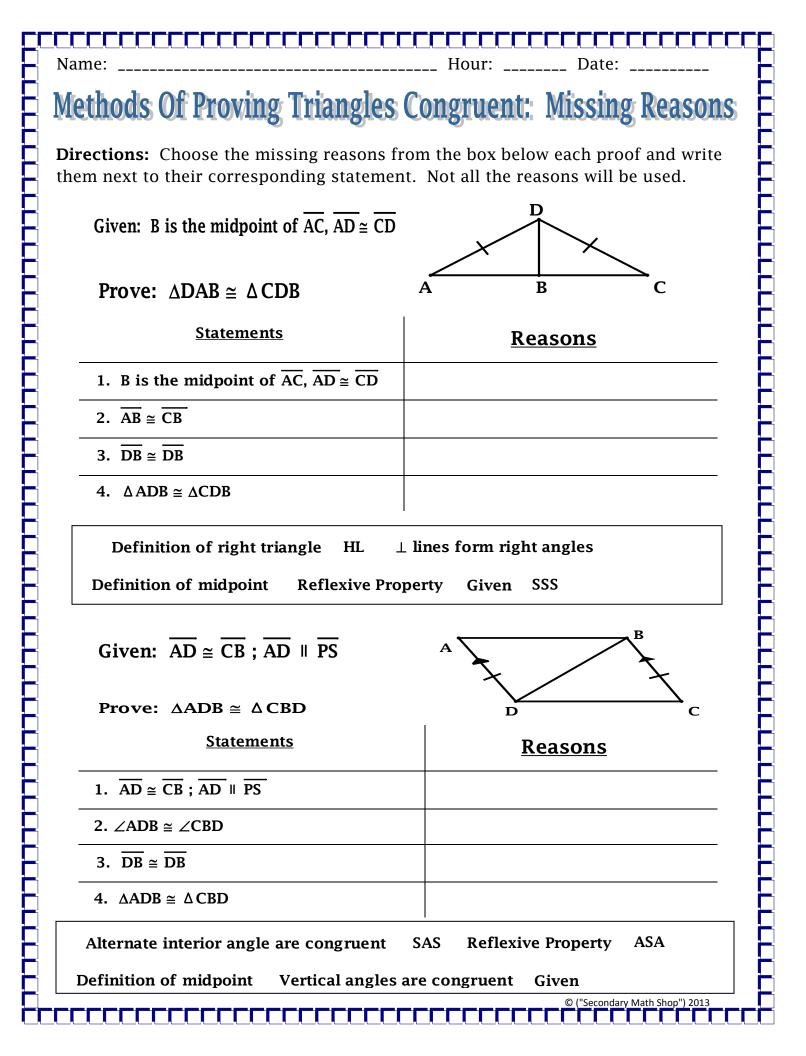
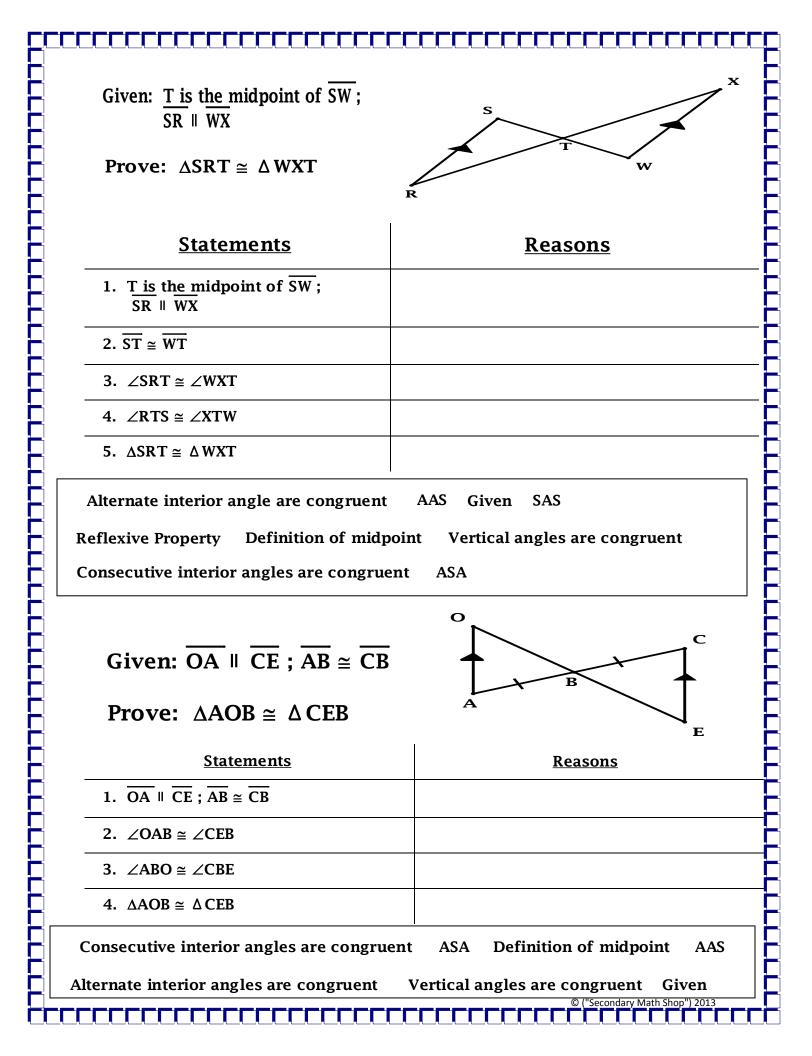
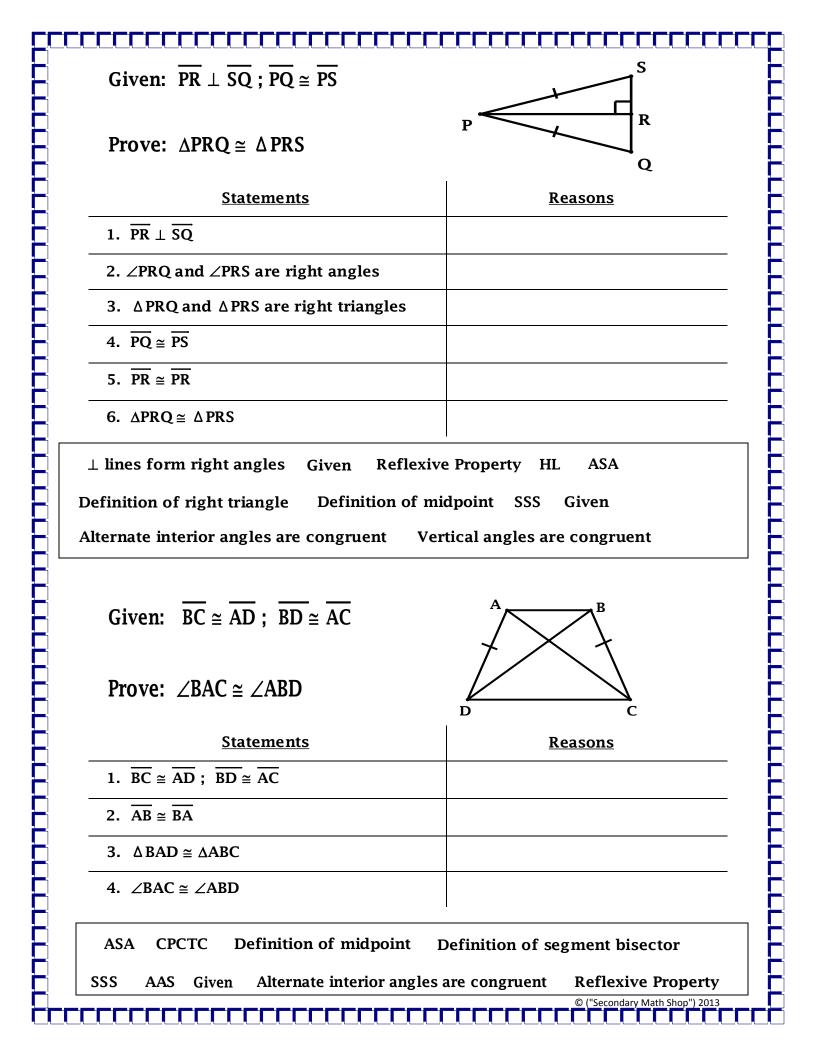
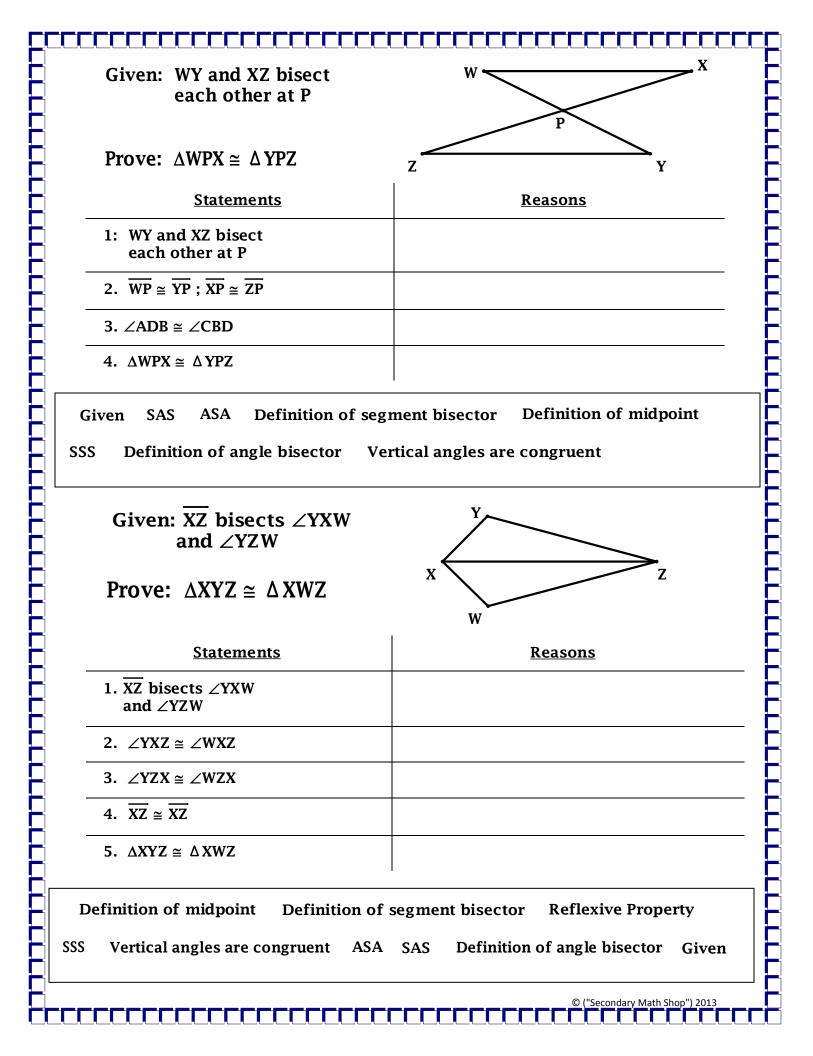
Congruent Triangles: Missing Reasons Activity

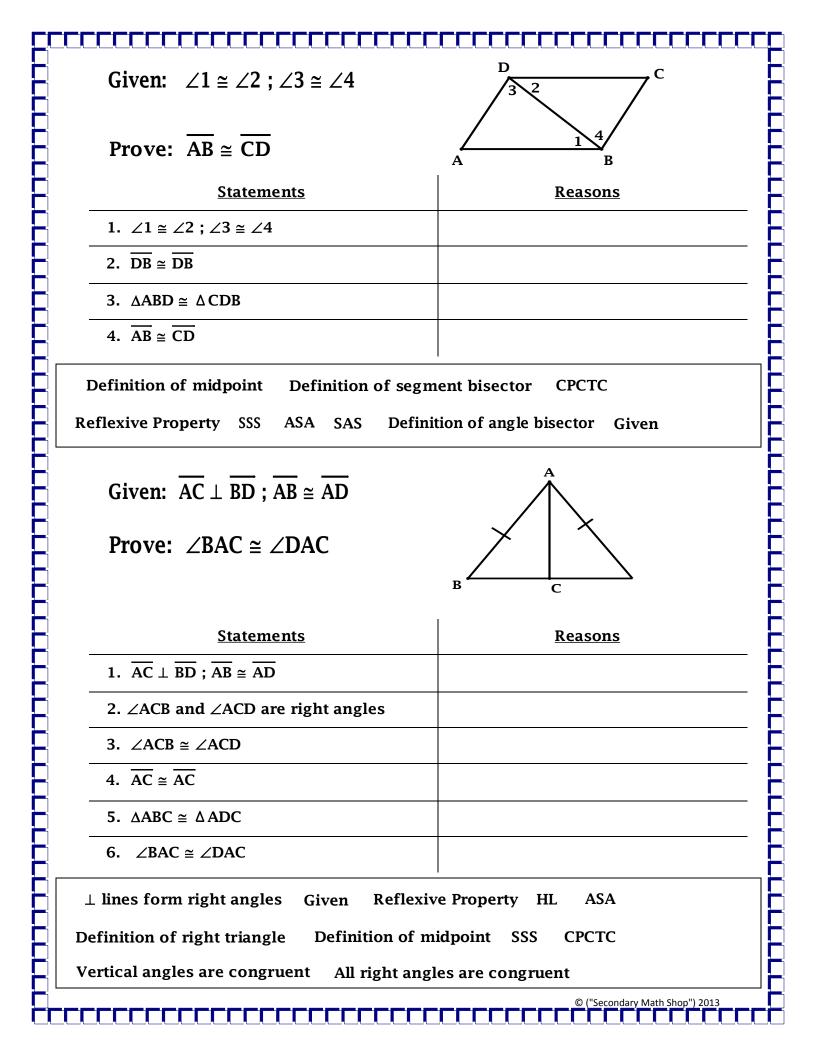
N	Methods Of Proving Traingres of Directions: Choose the missing reasons from them next to their corresponding statement. Given: B is the midpoint of AC, AD = CD	n the box below each proof and write Not all the reasons will be used.	FEEE Statement No	ne box below each proof and write
	Prove: $\Delta DAB \cong \Delta CDB$ Statements	A B C Reasons		
	1. B is the midpoint of $\overline{\wedge C}$, $\overline{AD} \equiv \overline{CD}$	Definition of midpoint	- E s	Reasons
1	2. AB = CB	Reflexive Property	- E	
	3. DB = DB	\$\$\$	TEC	
	4. Δ ADB = ΔCDB	⊥ lines form right angles		-
	Definition of map	property Given SSS	EL es form	
	Given: $\overline{AD} \equiv \overline{CB}$; $\overline{AD} \equiv \overline{BC}$ prove: $\triangle ADB \equiv \triangle CBD$			Secondar
	Prove: AADA -	Reasons	- EE	Math Sho
	Statement	Given	ongruent	


Jame:Answer Key	Hour: Date:
lethods Of Proving Trian	gles Congruent: Missing Reasons
_	sons from the box below each proof and write tement. Not all the reasons will be used.
Given: B is the midpoint of \overline{AC} , \overline{AD}	Ū≅ CD D
Prove: $\triangle DAB \cong \triangle CDB$	A B C
<u>Statements</u>	<u>Reasons</u>
1. B is the midpoint of \overline{AC} , $\overline{AD} \cong$	CD Given
2. $\overline{AB} \cong \overline{CB}$	Definition of midpoint
3. $\overline{\text{DB}} \cong \overline{\text{DB}}$	Reflexive Property
4. $\triangle ADB \cong \triangle CDB$ SSS	
Definition of right triangle H Definition of midpoint Reflexit	IL ⊥ lines form right angles ve Property Given SSS
Given: $\overline{AD} \cong \overline{CB}$; $\overline{AD} \parallel \overline{PS}$	A
Prove: $\triangle ADB \cong \triangle CBD$	
<u>Statements</u>	<u>Reasons</u>
1. $\overline{\text{AD}} \cong \overline{\text{CB}}$; $\overline{\text{AD}} \parallel \overline{\text{PS}}$	Given
2. ∠ADB \cong ∠CBD	Alternate interior angle are congruent
3. $\overline{\text{DB}} \cong \overline{\text{DB}}$	Reflexive Property
4. $\triangle ADB \cong \triangle CBD$	SAS
Alternate interior angle are congru	uent SAS Reflexive Property ASA

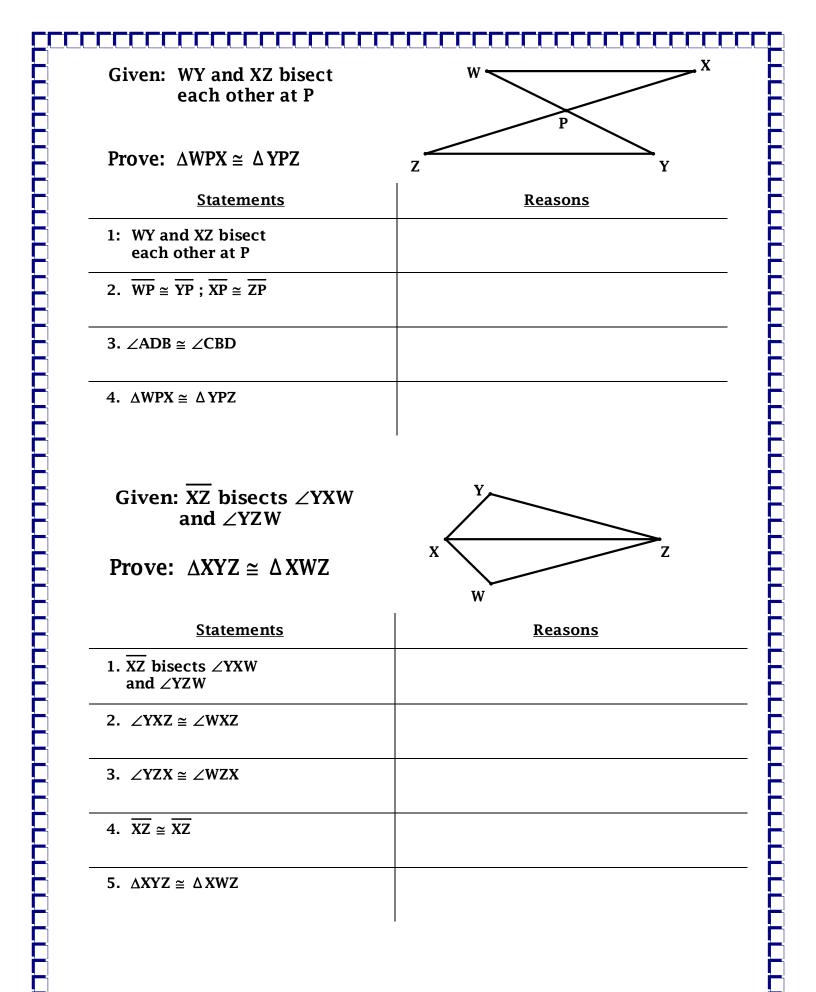

Given: $\frac{T \text{ is the midpoint of } \overline{SW}}{SR \parallel WX}$ Prove: $\triangle SRT \cong \triangle WXT$	x x x x x
<u>Statements</u>	Reasons
1. <u>T is</u> the midpoint of SW; SR WX	Given
2. $\overline{ST} \cong \overline{WT}$	Definition of midpoint
3. \angle SRT $\cong \angle$ WXT	Alternate interior angles are congruent
4. $\angle RTS \cong \angle XTW$	Vertical angles are congruent
5. \triangle SRT $\cong \triangle$ WXT	AAS
Alternate interior angle are congru	
Reflexive Property Definition of m Consecutive interior angles are cong	nidpoint Vertical angles are congruent
Reflexive Property Definition of m Consecutive interior angles are cong Given: $\overrightarrow{OA} \parallel \overrightarrow{CE}$; $\overrightarrow{AB} \cong \overrightarrow{OA}$	nidpoint Vertical angles are congruent gruent ASA
Reflexive Property Definition of m Consecutive interior angles are cong Given: $\overrightarrow{OA} \parallel \overrightarrow{CE}$; $\overrightarrow{AB} \cong \overrightarrow{OA}$ Prove: $\triangle AOB \cong \triangle CEB$	nidpoint Vertical angles are congruent gruent ASA \overline{CB} O O O C C C C C C C E
Reflexive Property Definition of m Consecutive interior angles are cong Given: $\overrightarrow{OA} \parallel \overrightarrow{CE}$; $\overrightarrow{AB} \cong \overrightarrow{OA}$	nidpoint Vertical angles are congruent gruent ASA \overline{CB} O O O C
Reflexive Property Definition of m Consecutive interior angles are cong Given: $\overrightarrow{OA} \parallel \overrightarrow{CE}$; $\overrightarrow{AB} \cong \overrightarrow{OA}$ Prove: $\triangle AOB \cong \triangle CEB$ <u>Statements</u>	nidpoint Vertical angles are congruent gruent ASA $\overline{CB} \qquad \overset{O}{\underset{A}{}} \underbrace{\overset{O}{\underset{B}{}} \underbrace{\overset{O}{\underset{B}{}} \underbrace{\overset{C}{\underset{E}{}} \underbrace{Reasons}} \underbrace{Reasons}$
Reflexive PropertyDefinition of m Consecutive interior angles are congGiven: $\overline{OA} \parallel \overline{CE}$; $\overline{AB} \cong \overline{OB}$ Prove: $\Delta AOB \cong \Delta CEB$ Statements1. $\overline{OA} \parallel \overline{CE}$; $\overline{AB} \cong \overline{CB}$	nidpoint Vertical angles are congruent gruent ASA \overrightarrow{CB} \overrightarrow{O}
Reflexive PropertyDefinition of m Consecutive interior angles are congGiven: $\overrightarrow{OA} \parallel \overrightarrow{CE}$; $\overrightarrow{AB} \cong \overrightarrow{OB}$ Prove: $\triangle AOB \cong \triangle CEB$ Statements1. $\overrightarrow{OA} \parallel \overrightarrow{CE}$; $\overrightarrow{AB} \cong \overrightarrow{CB}$ 2. $\angle OAB \cong \angle CEB$	nidpoint Vertical angles are congruent gruent ASA $\overrightarrow{CB} \qquad \overbrace{ASA} \qquad \overbrace{CB} \qquad \overbrace{ASA} \qquad \overbrace{CB} \qquad \overbrace{Acc} \qquad \overbrace{C} \stackrel{C} \ \overbrace{C} \stackrel{C} \ \overbrace{C} \stackrel{C} \ \overbrace{C} \stackrel{C} \stackrel{C} \ \overbrace{C} \stackrel{C} \stackrel{C} \stackrel{C} \stackrel{C} \stackrel{C} \stackrel{C} \stackrel{C} \stackrel$
Reflexive PropertyDefinition of m Consecutive interior angles are congGiven: $\overrightarrow{OA} \parallel \overrightarrow{CE}$; $\overrightarrow{AB} \cong \overrightarrow{OB}$ Prove: $\triangle AOB \cong \triangle CEB$ Statements1. $\overrightarrow{OA} \parallel \overrightarrow{CE}$; $\overrightarrow{AB} \cong \overrightarrow{CB}$ 2. $\angle OAB \cong \angle CEB$ 3. $\angle ABO \cong \angle CBE$	nidpoint Vertical angles are congruent gruent ASA \overline{CB} $\stackrel{O}{\bigoplus}_{A}$ $\stackrel{C}{\bigoplus}_{B}$ $\stackrel{C}{\bigoplus}_{E}$ <u>Reasons</u> Given Alternate interior angles are congruent Vertical angles are congruent ASA

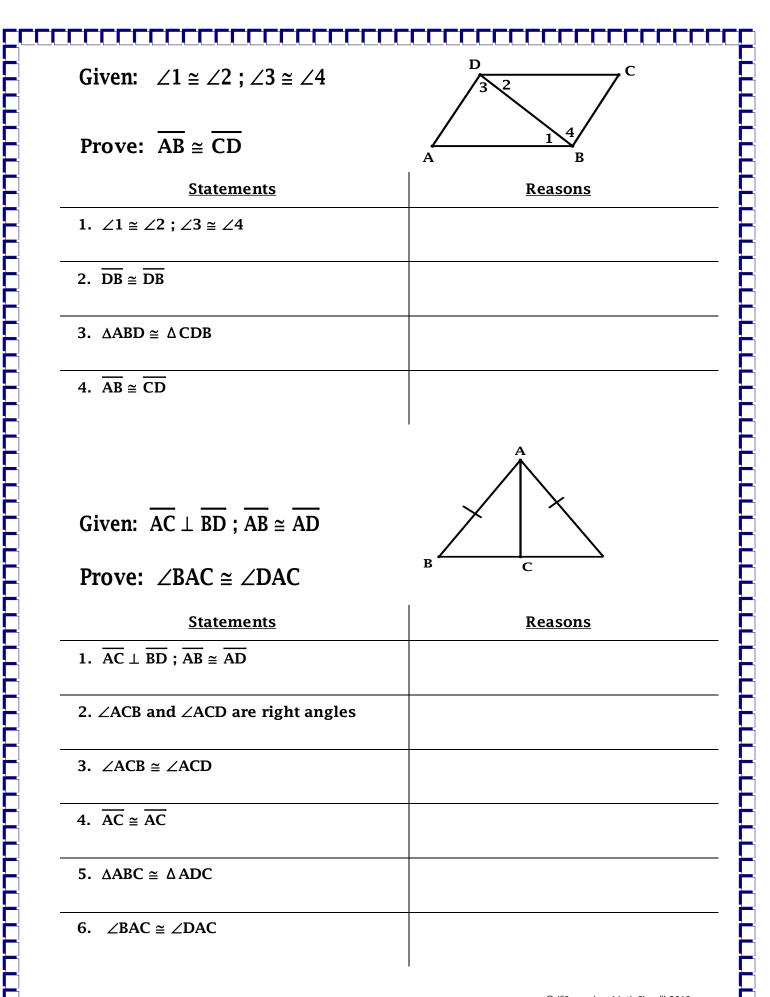

Given: $\overrightarrow{PR} \perp \overrightarrow{SQ}$; $\overrightarrow{PQ} \cong \overrightarrow{PS}$	s
Prove: $\triangle PRQ \cong \triangle PRS$	
<u>Statements</u>	<u>Reasons</u>
1. $\overline{PR} \perp \overline{SQ}$	Given
2. \angle PRQ and \angle PRS are right angles	\perp lines form right angles
3. \triangle PRQ and \triangle PRS are right triangles	Definition of right triangle
4. $\overline{PQ} \cong \overline{PS}$	Given
5. $\overline{PR} \cong \overline{PR}$	Reflexive Property
6. $\triangle PRQ \cong \triangle PRS$	HL
finition of right triangle Definition of mi	e Property HL ASA dpoint SSS Given tical angles are congruent
finition of right triangle Definition of mi	dpoint SSS Given
finition of right triangle Definition of mi ernate interior angles are congruent Ver	dpoint SSS Given tical angles are congruent
finition of right triangle Definition of mi ternate interior angles are congruent Ver Given: $\overline{BC} \cong \overline{AD}$; $\overline{BD} \cong \overline{AC}$	idpoint SSS Given rtical angles are congruent
finition of right triangle Definition of mi ernate interior angles are congruent Ver Given: $\overrightarrow{BC} \cong \overrightarrow{AD}$; $\overrightarrow{BD} \cong \overrightarrow{AC}$ Prove: $\angle BAC \cong \angle ABD$	idpoint SSS Given etical angles are congruent
finition of right triangle Definition of mi ernate interior angles are congruent Ver Given: $\overrightarrow{BC} \cong \overrightarrow{AD}$; $\overrightarrow{BD} \cong \overrightarrow{AC}$ Prove: $\angle BAC \cong \angle ABD$ <u>Statements</u>	dpoint SSS Given etical angles are congruent A D D C Reasons
finition of right triangle Definition of mi ernate interior angles are congruent Ver Given: $\overrightarrow{BC} \cong \overrightarrow{AD}$; $\overrightarrow{BD} \cong \overrightarrow{AC}$ Prove: $\angle BAC \cong \angle ABD$ <u>Statements</u> 1. $\overrightarrow{BC} \cong \overrightarrow{AD}$; $\overrightarrow{BD} \cong \overrightarrow{AC}$	dpoint SSS Given etical angles are congruent A D D Reasons Given
finition of right triangle Definition of mile ernate interior angles are congruent Ver Given: $\overrightarrow{BC} \cong \overrightarrow{AD}$; $\overrightarrow{BD} \cong \overrightarrow{AC}$ Prove: $\angle \overrightarrow{BAC} \cong \angle \overrightarrow{ABD}$ <u>Statements</u> 1. $\overrightarrow{BC} \cong \overrightarrow{AD}$; $\overrightarrow{BD} \cong \overrightarrow{AC}$ 2. $\overrightarrow{AB} \cong \overrightarrow{BA}$	adpoint SSS Given etical angles are congruent A A B C D C Reasons Given Reflexive Property
finition of right triangle Definition of mile ernate interior angles are congruent Ver Given: $\overrightarrow{BC} \cong \overrightarrow{AD}$; $\overrightarrow{BD} \cong \overrightarrow{AC}$ Prove: $\angle BAC \cong \angle ABD$ <u>Statements</u> 1. $\overrightarrow{BC} \cong \overrightarrow{AD}$; $\overrightarrow{BD} \cong \overrightarrow{AC}$ 2. $\overrightarrow{AB} \cong \overrightarrow{BA}$ 3. $\triangle BAD \cong \triangle ABC$ 4. $\angle BAC \cong \angle ABD$	dpoint SSS Given stical angles are congruent A B D C Reasons Given Reflexive Property SSS

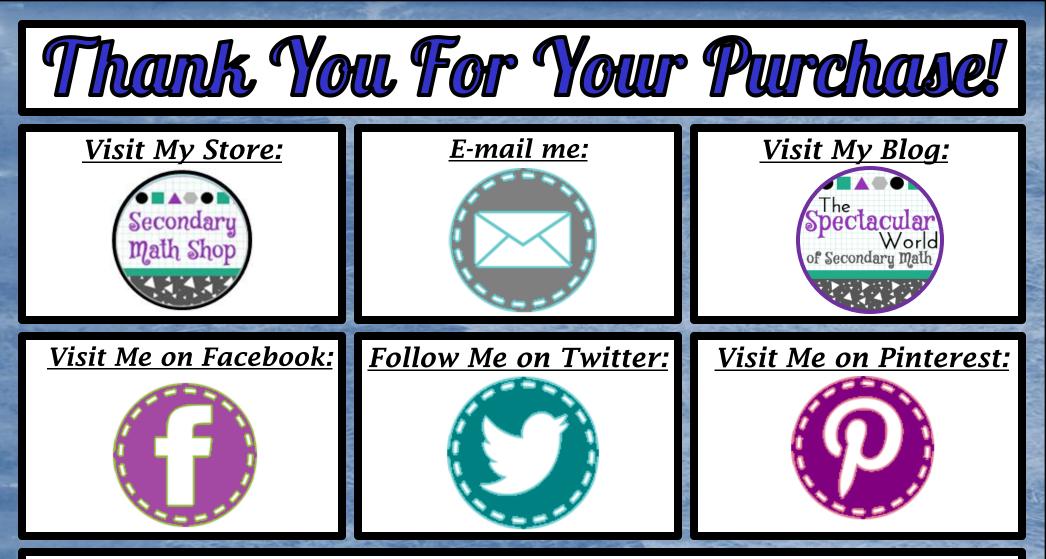

Given: WY and XZ bisect each other at P	W P X
Prove: \triangle WPX \cong \triangle YPZ	z Y
<u>Statements</u>	<u>Reasons</u>
1: WY and XZ bisect each other at P	Given
2. $\overline{WP} \cong \overline{YP}$; $\overline{XP} \cong \overline{ZP}$	Definition of segment bisector
3. ∠ADB \cong ∠CBD	Vertical angles are congruent
4. $\triangle WPX \cong \triangle YPZ$	SAS
Given: XZ bisects ∠YXW and ∠YZW Prove: ∆XYZ ≅ ∆XWZ	x
<u>Statements</u>	W <u>Reasons</u>
1. XZ bisects ∠YXW and ∠YZW	Given
2. $\angle YXZ \cong \angle WXZ$	Definition of angle bisector
3. $\angle YZX \cong \angle WZX$	Definition of angle bisector
4. $\overline{\text{XZ}} \cong \overline{\text{XZ}}$	Reflexive Property
5. $\triangle XYZ \cong \triangle XWZ$	ASA
	f segment bisector Reflexive Property A SAS Definition of angle bisector Given


Given: $\angle 1 \cong \angle 2$; $\angle 3 \cong \angle 4$	$\frac{D}{\sqrt{3}}$
Prove: $\overline{AB} \cong \overline{CD}$	A B
<u>Statements</u>	Reasons
1. $\angle 1 \cong \angle 2$; $\angle 3 \cong \angle 4$	Given
2. $\overline{\text{DB}} \cong \overline{\text{DB}}$	Reflexive Property
3. $\triangle ABD \cong \triangle CDB$	ASA
4. $\overline{AB} \cong \overline{CD}$	СРСТС
Definition of midpoint Definition of seg Reflexive Property SSS ASA SAS Defin	ment bisector CPCTC nition of angle bisector Given
Given: $\overrightarrow{AC} \perp \overrightarrow{BD}$; $\overrightarrow{AB} \cong \overrightarrow{AD}$ Prove: $\angle BAC \cong \angle DAC$	B C
Statements	Reasons
1. $\overline{AC} \perp \overline{BD}$; $\overline{AB} \cong \overline{AD}$	Given
2. $\angle ACB$ and $\angle ACD$ are right angles	\perp lines form right angles
3. $\angle ACB \cong \angle ACD$	All right angles are congruent
4. $\overline{AC} \cong \overline{AC}$	Reflexive
5. $\triangle ABC \cong \triangle ADC$	HL
6. $\angle BAC \cong \angle DAC$	СРСТС
\perp lines form right angles Given Reflex	ive Property HL ASA
Definition of right triangle Definition of	midpoint SSS CPCTC gles are congruent

Name:	Hour: Date:
Methods Of Proving Triangle	s Congruent: Missing Reasons
Directions: Complete each proof below to mark the given information on the dia	by supplying the missing reasons. Be sure grams to assist you.
Given: B is the midpoint of \overline{AC} , $\overline{AD} \cong \overline{CI}$	
Prove: $\triangle DAB \cong \triangle CDB$	A B C
<u>Statements</u>	<u>Reasons</u>
1. B is the midpoint of \overline{AC} , $\overline{AD} \cong \overline{CD}$	
2. $\overline{AB} \cong \overline{CB}$	
3. $\overline{\text{DB}} \cong \overline{\text{DB}}$	
4. $\triangle ADB \cong \triangle CDB$	
Given: $\overline{AD} \cong \overline{CB}$; $\overline{AD} \parallel \overline{PS}$	A
Prove: $\triangle ADB \cong \triangle CBD$	
<u>Statements</u>	<u>Reasons</u>
1. $\overline{AD} \cong \overline{CB}$; $\overline{AD} \parallel \overline{PS}$	
2. ∠ADB \cong ∠CBD	
3. $\overline{\text{DB}} \cong \overline{\text{DB}}$	
4. $\triangle ADB \cong \triangle CBD$	


Given: $\frac{T \text{ is the midpoint of } \overline{SW};}{SR \parallel WX}$ Prove: $\triangle SRT \cong \triangle WXT$	S T W
<u>Statements</u>	<u>Reasons</u>
1. <u>T is</u> the midpoint of SW ; SR WX	
2. $\overline{ST} \cong \overline{WT}$	
3. ∠SRT ≅ ∠WXT	
4. $\angle RTS \cong \angle XTW$	
5. \triangle SRT $\cong \triangle$ WXT	
Given: $\overrightarrow{OA} \parallel \overrightarrow{CE}$; $\overrightarrow{AB} \cong \overrightarrow{CB}$	
Prove: $\triangle AOB \cong \triangle CEB$	A E
Statements	Reasons
1. $\overrightarrow{OA} \parallel \overrightarrow{CE}$; $\overrightarrow{AB} \cong \overrightarrow{CB}$	
2. ∠OAB \cong ∠CEB	
3. ∠ABO ≅ ∠CBE	
4. $\triangle AOB \cong \triangle CEB$	


Г


ÌΤ

Given: $\overrightarrow{PR} \perp \overrightarrow{SQ}$; $\overrightarrow{PQ} \cong \overrightarrow{PS}$	s
Prove: $\triangle PRQ \cong \triangle PRS$	
<u>Statements</u>	<u>Reasons</u>
1. $\overline{PR} \perp \overline{SQ}$	
2. \angle PRQ and \angle PRS are right angles	
3. \triangle PRQ and \triangle PRS are right triangles	
4. $\overline{PQ} \cong \overline{PS}$	
5. $\overline{PR} \cong \overline{PR}$	
6. $\triangle PRQ \cong \triangle PRS$	
Given: $\overrightarrow{BC} \cong \overrightarrow{AD}$; $\overrightarrow{BD} \cong \overrightarrow{AC}$	
Prove: \angle BAC $\cong \angle$ ABD	
<u>Statements</u>	<u>Reasons</u>
1. $\overline{BC} \cong \overline{AD}$; $\overline{BD} \cong \overline{AC}$	
2. $\overline{AB} \cong \overline{BA}$	
3. $\triangle BAD \cong \triangle ABC$	

Г

© Secondary Math Shop 2016

All right reserved by the author. The purchase of this product is for a single classroom use only. No part of this product may be distributed, published, or transmitted electronically or otherwise, without the written permission of the author. This product may not be posted on the internet, classroom or district websites included. Additional licenses for department members or other teachers may be purchased from my store at a discount price!