
CONIC: an integrated approach to distributed
computer control systems

J. Kramer, B.Sc, (Eng.), Ph.D., M.B.C.S., J. Magee, M.Sc, C. Eng., M.I.E.E., M. Sloman, B.Sc, (Eng.), Ph.D.,
and A. Lister, M.A., Dip. Comp. Sc, M.B.C.S.

Indexing terms: Computer applications, Process control

Abstract: Distributed computer control systems (DCCS) have a number of potential advantages over cen-
tralised systems, especially where the application is itself physically distributed. A computer station can be
placed close to the plant being controlled, and a communications network used to enable the stations to
communicate to co-ordinate their actions. However, the software must be carefully designed to exploit the
potential advantages of distribution. In the paper, the CONIC architecture for DCCS is described, con-
centrating on the software structure but also briefly describing the physical architecture designed to support
a CONIC system. The software structure emphasises the distinction between the writing of individual soft-
ware components and the construction and configuration of a system from a set of components. A modular
structure is used to separate programming from configuration. Typed entry and exit ports clearly define
a module interface which, like the plugs and sockets of hardware components, permit modules to be inter-
connected in different ways. On-line modification and extension of the system is supported by permitting
the dynamic creation and interconnection of modules. Message-passing primitives are provided to permit
modules to co-ordinate and synchronise control actions.

1 Introduction

The impact of large-scale integration and microprocessor
technology has been well publicised in the computing world.
The availability of cheap microcomputers has led to their
increasing use in process-control applications. Microcomputers
can be placed physically close to the plant being controlled
and can also be used to replace hardwired control, giving
added flexibility, in addition to cost reduction. Centralised
computer control systems can be replaced by systems com-
posed of distributed microcomputers.

However, new hardware and software architectures are
needed to fully exploit the potential of these distributed
computer systems. The CONIC project provides a unified and
integrated approach to the design, implementation and
management of large distributed computer control systems
(DCCS). It consists of: a network architecture, which permits
the interconnection of large numbers of computer stations;
a software methodology, which supports the design of ap-
plication systems as a set of interconnected re-usable com-
ponents; a distributed operating system and communication
system, which provide runtime support for application soft-
ware; and a management system, which enables a system to
be tailored from a set of components and subsequently
modified and extended to meet changing application needs.

This paper concentrates on the CONIC software structure
but briefly describes the proposed hardware environment for
a typical industrial implementation. In particular, the paper
deals with two aspects of DCCS software: the writing of
application programs which perform subfunctions of the
overall control task, and the construction and configuration of
a complete system from a set of such application programs [1].

Section 2 of the paper gives an overview of a typical DCCS
environment. We also describe our approach to the design of
software for a DCCS, which emphasises the separation of the
programming of software components from the configuration
of such components into a complete system. Section 3 gives
details of the software components (modules) and their
interfaces, and describes how modules are interconnected.
The next Section describes the internal structure of a module

Paper 21 83 E, received 11 th May 1982
Dr. Kramer, Mr. Magee and Dr. Sloman are with the Department of
Computing, Imperial College of Science & Technology, 180 Queensgate,
London SW7 2B2, England. Mr. Lister is with the University of Queens-
land, St. Lucia, Queensland, Australia 4067

IEEPROC, Vol. 130, Pt. E, No. 1, JANUARY 1983

and the message-passing primitives which are available to the
module programmer. Finally, we give an outline of the hardware
and software environment which supports the CONIC archi-
tecture and some information on the current implementation
on five LSI 11 microcomputers. A simple example is used
throughout the paper to illustrate the concepts. The paper
does not deal with the 'lower' operating system or communi-
cation system layers [2] of a DCCS, except where they
impinge directly on the areas of consideration. However,
some desirable properties of these lower layers can be inferred
from the proposals made in this paper.

The work on which this paper is based is part of a research
project funded by the UK National Coal Board, and so coal
mining is used as a focus for requirements and examples [3].
However, the proposals are equally valid for many other
process-control applications.

2 Distributed computer control systems

A DCCS is one where the control function has been parti-
tioned into subfunctions which can be implemented by
a set of physically distributed computer stations. Typically,
a subfunction will be concerned with the local control of an
item of plant or a machine. In order to provide a fast response
time, a computer station which implements such a subfunction
will be located in close physical proximity to the machine
it controls.

Thus, the physical distribution of stations in a DCCS
will, usually, closely correspond to the geographical layout
of the system being controlled. In our coal-mining application,
this means that computers may be separated by distances
of up to 20 km. However, in other process-control applications,
distance of up to 1 or 2 km are more usual.

To enable the overall control function to be performed,
stations co-ordinate and synchronise their actions by ex-
changing messages via a communication network. Because of
the distances between stations, this network must be im-
plemented using serial data-transmission techniques. The
communication network will always have a residual prob-
ability of failure and will introduce delays into communi-
cation between control system components. Consequently,
the components must cope with communication delays
and failures.

The potential advantages of distributed systems over
centralised systems have been well documented elsewhere [4].

0143-7062/83/010001 +10 $01.50/0 1

The advantages for process control can be summarised as:
(a) improved response time by locating computers close

to plant
(b) increased availability, since the effect of physical

faults such as processor failure are confined to one station
(c) ease of extension and modification by adding/taking

away stations and communication links
(d) increased performance by exploiting parallelism.

The above advantages do not accrue automatically from the
use of a distributed hardware architecture. DCCS software
must be carefully designed to exploit the potential advantages
of distributed hardware, while dealing with the problems
caused by interstation communication delays and failures.
It is the issue of DCCS software that this paper primarily
addresses.

2.1 The CONIC approach to DCCS software
A major objective of our software architecture has been to
separate the concerns of writing individual software com-
ponents (programming-in-the-small) from those of con-
structing or configuring a system from a set of components
(programming-in-the-large) [5]. This separation allows
components to be programmed without knowledge of the
configuration in which they will be used. Consequently,
a set of standard components (e.g. 3-term controllers) could
be provided and used in many different system configurations.
This strict separation of programming and system building
also allows a configuration to be modified without re-
compilation of its constituent components. In the following,
we outline the characteristics of CONIC software components
and identify the requirements for configuration of a control
system from these components.

Software components
A software component is executed at a station and imple-
ments some subfunction of the overall control function.
Components can communicate solely by exchanging messages.
Consequently, the interface to a component can be defined
solely in terms of the messages it can transmit and receive.
This characteristic is exploited by our CONIC architecture
to provide a set of message ports as a component interface.
This facilitates the separation of concerns identified above.

We have rejected the possibility of dynamic migration of
operational components between stations. This facility has
been provided in some distributed systems to enhance per-
formance by load sharing and to enable software components
to tolerate hardware failures. However, in DCCS, as outlined
before, stations are typically located with the sensors and
actuators they serve. Migration of the software function
makes little sense when the hardware function cannot be
moved. Fault tolerance may be achieved by replication of
components, or by reconfiguration after failures. The CONIC
system does not automatically save the state of components
and this would have to be recreated by reading hardware
or by explicit checkpoints programmed into the application
software.

However, although software components are not in them-
selves fault tolerant, they must be able to deal with communi-
cation failures and failures in other components of the system.
The loose coupling of stations by serial data links in a DCCS
considerably enhances the system hardware robustness,
since the effect of physical faults is usually confined to one
station. It is important that the software of DCCS mirrors this
characteristic so that failure of one component does not
cause complete system failure. This error confinement objective
is similar to the 'fault isolation' objective of the HXDP
executive [6]. Components interact only by message passing,

so it is primarily the message-passing mechanism that is
affected by this requirement. The message-passing primitives
are described in Section 4 of the paper.

Configuration
Configuration is the construction of a control system from
a set of components. It involves the assignment of these
components to the computer stations on which they will
run and their interconnection for communication.

On-line modification:
In most computer control applications, the configuration
is not fixed indefinitely at installation time but must change
to deal with failures and to meet changing applications needs.
In the coal-mining application, the configuration must be
modified and extended as new coal faces are developed and
old ones become worked out. Additionally, new control
functions must be added to deal with new types of machines.
It is not practical to stop the entire control system to modify
a small part of it, since the system performs some critical
safety functions. Consequently, there is a requirement
for on-line modification and extension to the control system
in a safe and controlled way. This requirement for on-line
modification is not unique to coal mining but applies to any
application where the control system must be continuously
available. CONIC provides for on-line creation, deletion and
interconnection of software components.

Interconnection:
In computer control, components may be interconnected
to form many different structures (e.g. pipelines, hierarchies,
feedback loops). However, all these structures can be provided
by the following three interconnection patterns provided
within our architecture:

(a) One-to-one — between two specific components, e.g.
a command from a controller to an actuator. The connected
path may be two way to permit a response to the command

(b) One-to-many — a component may broadcast a message
to multiple destination components, e.g. sensor readings

(c) Any-to-one — one at a time access by many components
to a server component, e.g. an error logger. The paths con-
nected may be two way to permit reply or response messages.

Section 3 describes how the above configuration and inter-
connection requirements are provided by our software archi-
tecture.

2.2 Example: control of pump for mine drainage
The diagram in Fig. 1 is the schematic of a very simplified
pump installation. It is used to pump mine water, collected
in a sump at shaft bottom, to the surface. The control soft-
ware for this system will be developed in the rest of the
paper.

to surface
to surface
control room

methane sensor

airflow sensor

carbon monoxide
o

sensor

environment
monitoring
station

pump

sump

pump
control
station

-high-water level detector

Mow-water level detector

F ig. 1 Control of mainpump for mine drainage

IEEPROC, Vol. 130, Pt. E, No. 1, JANUARY 1983

Once start has been enabled by a command from the sur-
face, the pump runs automatically, controlled by the water
level as sensed by the high- and low-level detectors. Detection
of high level causes the pump to run until low level is indi-
cated.

The pump is situated underground in a coal mine, and so
for safety reasons it must not be started or continue running
when the percentage of methane (firedamp) in the atmosphere
exceeds a set safety limit. The pump controller obtains infor-
mation on methane level by communicating with a nearby
environmental monitoring station. As well as methane, this
station monitors carbon monoxide level and airflow velocity.
The environment monitoring station provides information
to the surface and other plant controllers as well as to the
pump controller.

3 System configuration

System configuration is the concern of the system designer
or manager. It deals with the software components which
are installed on hardware stations, their interfaces and their
logical interconnection. Our approach facilitates both vali-
dation of module interconnections and on-line modification
and extension of an operational system.

The concepts are introduced and illustrated by extracts
from the pump example.

3 1 Software components: modules
The software architecture which we adopt mirrors the under-
lying structure of microprocessor stations interconnected
by a communications network. We propose the module
as the software abstraction of a station. The module provides
the link between programming activities and those of system
configuration. A module type definition is the largest entity
constructed by the applications programmer, typically to
perform some local monitoring and control function (e.g. a
pump controller). On the other hand, module instances form
the basic building blocks from which the system is configured.
The module is thus the smallest software component which
can be distributed or replaced.

In order to allow multiple instances of similar modules
to exist in the system, we permit programmers to define
parameterised module types. These are the units of com-
pilation. Individual modules are merely instances of a parti-
cular module type. They are created and assigned to stations
at configuration time. A single module cannot be partitioned
among several stations. However, in order to allow efficient
use of a single station without discouraging modularity, we
permit more than one module instance to be assigned to (i.e.
share) a station.

For example, module types 'pumpcontroller' and 'environ-
monit' could be defined by a programmer for pump control
and monitoring the methane, carbon monoxide and airflow,
respectively. Module instances of each type - say,

pumpl: pumpcontroller

and
envl: environmonit

could then be created at particular stations as part of a com-
plete system.

3.2 Module interface: ports
In order to co-operate and synchronise their actions, modules
communicate by message passing. The interface which a
module presents to the rest of the system is given by the
messages which can be sent and received by the module.
In our system we characterise this interface by sets of exit
and entry ports, respectively [7].

An entryport may be thought of as a 'hole' through which
messages can pass into the module, e.g.

IEEPROC, Vol. 130, Pt. E, No. 1, JANUARY 1983

RECEIVE pcommand FROM cmd

where 'cmd' is an entryport. Similarly, an exitport can be
thought of as a 'hole' through which messages are sent out of
a module. Thus a message is directed, not to an entryport of
a receiving module, but to an exitport of the sending module;
e.g.

SEND pumpcommand TO out

where 'out is an exitport. In the case of a 'request-reply'
transaction (see Section 4.2), the reply is received from the
same exitport used for the request, e.g.

SEND pumpcommand TO out WAIT response

and, similarly, the reply message is directed at the same
entryport used for the request, e.g.

RECEIVE pcommand FROM cmd;

REPLY pstate TO cmd

Both entry and exit ports can thus be used for bidirectional
information flow but a transaction is always initiated at an
exitport.

This approach permits the programmer to design and imple-
ment module types without specifying (in the code) the name
of the sending/receiving module or its exit/entry port. From
the point of view of the programmer, entry and exit ports
are local names for arbitrary message source(s) and desti-
nations), respectively. The delayed association between the
exitport of one module and the entryport of another can
be regarded as a deferred binding of a message to its desti-
nation from compile time (when it may not be known) to the
system configuration stage (when it is known). This facilitates
modification and extension of a system by reconfiguration
[8]. It also allows a system to include standard or library'
modules.

For example, Fig. 2 gives an outline of the interfaces for
the 'pumpcontroller' and 'environmonit' module types.

3.3 Module in terconnec tion: port linkage
The discussion above has resulted in the notion of a module
with a set of entryports and a set of exitports. A message
from one module to another is sent to an exitport of the
sender and is received on the entryport of the receiver.

The association between exit and entry ports, called linking,
provides a communication path which can be established
during system installation and re-established as necessary
during system modification. External to a module, a particular
port is addressed as 'modulename.portname' where portname
is unique within a module, and modulename is unique in
the system, e.g.

LINK surface.out TO pumpl.cmd
where surface and pumpl are module instances (Fig. 3).

cmd >
aim •
erq

pumpcontroller

commands
methane alarm
enviroment
status request

aim !•
ale !•
ala 1-
erq <|

environmonit

methane alarm
carbon monoxide alarm
airflow alarm
environment status

request

• exit port -4 entry port

Fig. 2 Pump control example : entryports and exitports

surface

out

Fig. 3 Port linkage

Port linkage provides an explicit module interconnection
structure for a system. An exitport may be linked to one or
more entryports to provide a single or multi-destination
communication path respectively. This satisfies the one-
to-one and one-to-many interconnection structures described
in the preceding text (Section 2.1). Many exitports can be
linked to the same entryport to provide the any-to-one struc-
ture required of servers. Communication and the primitives
provided are further discussed in Section 4.

3.4 Message and port types
Within a module, messages are processed as data objects in
the same way as the simple and structured data (such as arrays,
strings, or records) of conventional programming languages.
Therefore messages are also considered as instances of parti-
cular data types.

In order to communicate, both the sender and receiver
must be aware of the structure and representation of the
message. We need to guarantee that the type of message a
module expects to receive is the same as that which was
sent. Such a guarantee is realised by associating a type with
a port in the same way as with messages, and by allowing
a linkage to be effected only if entry and exit ports are of the
same type. We therefore insist that all port declarations
include a type specification, e.g.

ENTRYPORT cmd: command

where, say, command is defined by enumeration as

command = (start, stop, status).

A message may therefore be sent and received only via
ports of the same type as the message. This scheme gives a
high degree of security with no runtime overhead. Within a
module, the type consistency of messages and ports can be
checked at compile time, and between module ports at linkage
time. Type mismatches at run time can therefore occur only
as a result of hardware corruption within a station or on a
transmission line. This will be detected by error-detection
mechanisms within the station or within the communication
system.

Since the same port types need to be available to those
modules which may potentially be linked, files of common
type definitions must be defined. Those definitions needed
by a particular module can then be included in the module
definition. This approach avoids the problems of checking
multiple type definitions made in different modules.

The modularity and flexibility achieved in software, by the
notions of a module whose interface is a set of typed entry
and exit ports, is similar to but more secure than that achieved
in hardware by components whose interfaces are plugs and
sockets.

*\ cmd command REPLY state

{bidirectional entry port }
<| aim alarm {methane alarm}
!• erq envrequest REPLY envreport

(bidirectional exit port }

environmonitor
|> aim alarm {methane}
!• ale Q.arm {carbon monoxide}
\» ala : alarm { airflow }
•"I erq envrequest REPLY envreport

{ bidirectional entry port}
port ^ entry port

F ig. 4 Pump control example : module interfaces

4

Returning to our pump example, the module ports for the
pump controller and the environment monitor are shown
diagrammatically in Fig. 4. The type definitions for the ports
are stored in a file of definitions called 'pumpdefns':

{ FILE pumpdefns; }
TYPE command = (start, stop, status);

state = (running, ready, stopped, lowstop,
methanestop);

sensor = (methane, carbmonox, airflow);
envreport = RECORD reading : REAL;

sn : sensor
END;

envrequest = sensor;
alarm = signaltype;

{ ENDFILE}

3.5 Configuration management
Configuration management includes all the activities related
to installing, removing or modifying the hardware or software
components of the DCCS in order to extend or change the
system or to reconfigure as a result of failures. Configuring
a distributed control system from predefined module types
involves the stages of loading a module type into a station,
module instance creation, port linkage, and module initiation
as shown in Fig. 5.

conic module source code

Compilation

module type

Load

loaded module type

Create

module instance

I Link

linked module
I Start

runnable module instance

This is part of the programming
rather than configuration pro-
cess, but is shown here for
completenes.

Relocatable, binary object mod-
ule.

Loading a module type at a
station involves generating a load
module with absolute addresses,
reserving code space and loading
the code into the station. This
operation is omitted if the code
is in ROM.

Creates a named module in-
stance at a station, which
involves reserving stack and data
space, substituting parameters,
running initialisation code etc.

Stopped but initialised module.

Linking the modules' exitports
to other modules' entryports.

All the modules' task are made
runnable.

Fig. 5 Stages in installing a module at a station

The first stage is the loading of named module types at par-
ticular stations. This is the mapping of the logical system of
modules onto the physical system of stations. The module
code must be downline loaded if it is not already held locally
at the station (e.g. in ROM):
e-g-

LOAD pumpcontroller AT station 1

IEEPROC, Vol. 130. Pt. E, No. 1, JANUARY 1983

Named instances of module types are then created at the
stations:
e.g.

CREATE pumpl: pumpcontroller AT station 1

As described earlier, module interconnection is performed
by linking together module exit ports to entry ports. Type
checking is performed to ensure compatibility. Linking com-
pletes the mapping of the logical interconnection structure
onto the physical network of stations. Finally, the system (or
parts thereof) can be initiated by starting named modules.
In case of failure, modification or extension of the system,
we allow all configuration stages (including stopping, unlinking
and deleting of modules) to be carried out while the rest of
the system is operational.

Configuration management will make use of a database
which includes type definitions, logical and physical con-
figurations, and provides name to address translation. The
type definitions of modules will be maintained for use by the
loader. Message and port types are used by the compiler (for
module type definition) and the linker (for checking port
links). The logical configuration information will provide an
up-to-date picture of the module instances and the links
between exit and entry ports. The physical configuration
will provide descriptions and status information of stations
and subnetworks (see Section 5). Together, they provide a
logical and physical picture of the current system and a
means of logical name to physical address translation.

3.6 Configuration of pump control system

{Module creation from predefined types. Note: a device
address parameter is passed to the module pumpl}

CREATE pumpl: pumpcontroller (#177562)
AT station2;

CREATE surface : operatormod AT station 1;
CREATE envl:environmonitor AT station3;

{Port linkage with type validation}
LINK surf ace.out TO pumpl.cmd;

{one-one connection}
LINK pump 1 .erq TO envl .erq;

{one of any-one connection}
LINK envl.aim TO pumpl.aim, surface.aim;

{one-many connection}
{Initiation of this configuration}

START pumpl, surface, envl;

The relevant part of the configuration is shown diagram-
matically in Fig. 6. Note that a configuration may be modified
using the available configuration commands: start/stop, link/
unlink, create/ delete.

surface
out aim

cmd
aim <

erq i

1

* 1

1 aim

> erq

pump 1 env 1

F ig. 6 Pump control example : linked exit and entry ports

IEEPROC, Vol. 130, Pt. E, No. 1, JANUARY 1983

4 Application programming

The previous Section identified the 'module' as the unit of
application programming. This Section describes the internal
structure of a module and the message-passing primitives
which are available to the module programmer.

4.1 Module structure
A module-type definition consists of the following elements:

MODULE (identifier) ((parameters))
INCLUDE (file identifier list)
(entry and exit port declarations)
(type definitions)
(variable declarations)
(procedure declarations)
(task declarations)
(link statements)

BEGIN
(initialisation statements)

END.

Module parameters can be used to tailor a standard module
type for a specific use when an instance is created, e.g. to
specify a device address.

Ports
The exit and entry port declaration part specifies the module
interface as described in the preceding Section. The type
definitions for these interface ports are declared in external
definitions files. The contents of these definitions files are
made available for use inside the module by the INCLUDE
statement.

Types, variables and procedures
Those declared at module level have global scope and can be
shared by the tasks within a module but are not visible outside
the module boundary. Consequently, even when installed in
the same station, modules cannot share data or procedures.
Tasks within a module can, however, synchronise access to
shared data by message passing as described below.

Tasks
A module may include one or more tasks. Tasks are the active
entities within a module. They correspond to the 'processes'
of Concurrent Pascal [9] and Modula-1 [10]. Tasks are
instantiated when a module is created at a station, initiated
when the module is started and terminate when the module
is deleted. Consequently, the number of tasks within a module
is defined at compile time. We have chosen this static model
of tasking, as opposed to the more dynamic model incorporated
in Ada [12], primarily for simplicity, and also because flexi-
bility to create and destroy software components is already
provided by modules at the system configuration level. A task
contains the following elements:

TASK (identifier)
(entry and exit port declarations)
(local type, variable, procedure declarations)

BEGIN
(statements)

END

The task-level port declarations specify the exit and entry
ports which are owned by a task. Those ports which are
visible outside the module boundary must also be declared
at module level. In this way, task ports are 'exported' to
form the module interface. Ports which are declared at task
level but do not appear at module level are used for intertask
communication within a module. These 'internal' ports may be

Table 1: Relationship between port declarations, connection patterns and message primitives

Port declarations Connections Message primitives

EXITPORT pump:command REPLY state

ENTRYPORT cmd :command REPLY state

EXITPORT aim :alarm

ENTRYPORT palm :alarm

one-to-one

one-to-one
any-to-one

one-to-one
one-to-many

one-to-one
any-to-one

SEND start TO pump
WAIT response;

RECEIVE cmdmsg FROM cmd
REPLY pumpstate;

SEND signal TO aim;

RECEIVE almmsg FROM palm;

of types which are defined at module level. They are con-
nected by LINK statements within a module. Thus, a task
uses the same message-passing mechanisms to communicate
both with tasks in the same module and with tasks in other
modules.

Tasks within a module may also communicate by shared
access to the data declared at module level. Since a module
instance can never be split over multiple stations, shared data
can legitimately be used to improve efficiency. This avoids
the overheads of message copying involved in message passing,
and is especially useful for large tables, buffers etc. Syn-
chronised access (e.g. for mutual exclusion) to this data can
be accomplished using message communication. The message
primitives available to a task are outlined in the following
text.

4.2 Message primitives
Our system provides two sets of primitives for inter-task
communication by message passing. The reasons for choosing
these primitives and a detailed description has been included
in a previous paper [12]; hence the treatment below is brief.
The same primitives are used for both local and remote com-
munication to allow modules to be located in the same or a dif-
ferent station. Table 1 indicates the port declaration and
permissable interconnection patterns for each message
primitive.

Send-wait & receive-reply
This set of primitives provides the 'command-response' and
'query-status' message transactions commonly found in
computer control systems. The transaction consists of two
messages: a request from a source task to a destination task
which asks the destination to perform some service and,
subsequently, a reply message from destination to source
containing service completion information. This message
exchange is treated as a single transaction from source exit-
port to the destination entryport. The execution of the source
task is suspended between sending the request message and
receiving the reply message. An example of the send primitive
is shown below:

SEND start TO pump
WAIT response
TIMEOUT period
FAIL

END

=) — successful send action
= > — timeout action
=) — unlinked exitport action

where start is a value of type 'command' and response a
variable of type 'state'. The exitport 'pump' would be declared
as:

EXITPORT pump : command REPLY state;

The optional TIMEOUT clause in the send-wait primitive
allows a source task to limit the time it is suspended waiting
for a reply message. It prevents the source task from being

suspended indefinitely, following a communication failure or
destination task failure. The send-wait is similar to the Ada
timed entry call, except that, in Ada, the timeout is on the ac-
ceptance of the call by the destination task (i.e. receipt of the
request message), whereas our timeout is on completion of
the call at the source task (i.e. receipt of the reply message).
We believe our timeout mechanism leads to simpler imple-
mentation and more robust task behaviour in distributed
systems.

The optional FAIL clause allows the source task to detect
that its exitport is not linked to an entryport (due to a con-
figuration change or a communication failure). The task
could perhaps choose to delay and retry periodically, or to
send an error message to some error logger. If no fail clause
is included the system will report the error and abort the
task.

If neither timeout nor fail clauses are used, a simplified
form of send-wait may be used:

SEND start TO pump WAIT response

The receive-reply primitive causes the destination task to be
suspended until a message is available at the designated entry-
port. The destination task may then perfom some processing
on the message before replying. In order to associate the
reply with the message received, the reply must specify the
entryport on which the original message was received, e.g.

RECEIVEcmdmsg FROM cmd;
— process message

REPLY pumpstate TO cmd

In those cases where no processing is necessary, the receive-
reply primitive can be used in a simplified form:

RECEIVE cmdmsg FROM cmd REPLY pumpstate

In both cases, the entryport 'cmd' would be declared as:

ENTRYPORT cmd:command REPLY state;

An exitport with a REPLY part may be linked to only one
destination 'REPLY-type' entryport. There is no requirement
for multiple responses to a request, and also the semantics
for multidestination request-reply connections in the face
of failures tend to be very complex. In order to provide the
any-to-one or server interconnection pattern described in
Section 2, one or more 'REPLY-type' exitports may be
linked to an entryport with REPLY part. Messages sent to
an entryport from more than one source are responded to
in FIFO order as they are received.

As shown below, the receive-reply primitive may be in-
corporated in an Ada-like select statement to enable a task
to wait on messages from a number of potential sources. An
optional guard can precede each receive in order to further
define the conditions upon which messages should be received.
If the guard is false then the corresponding receive is not
available for selection.

IEEPROC, Vol. 130, Pt. E, No. 1, JANUARY 1983

SELECT
WHEN command guard

RECEIVE cmdmsg FROM cmd

REPLY pumpstate TO cmd

OR
WHEN device guard

RECEIVE waterlevel FROM level REPLY signal

OR
RECEIVE

ELSE TIMEOUT Period

= >

END;

As a simple example of the use of receive-reply primitives,
a bounded buffer module is given below:

MODULE boundedbuffer;
ENTRYPORT put char : char REPLY signaltype;

getchar : signaltype REPLY char;

CONST maxsize = 100;
{signaltype is a null reply}

TASK buffer;
ENTRYPORT putchar : char REPLY signaltype;

getchar : signaltype REPLY char;
VAR inp, outp, contents : integer;

buffer : ARRAY [1 . . maxsize] OF char;
BEGIN

inp : = 1; outp : = 0; contents : = 0;
LOOP

SELECT
WHEN (contents< maxsize) {buffer not full}
RECEIVE buffer [inp] FROM putchar
REPLY signal =>

inp : = (inp MOD maxsize) + 1;
contents : = contents + 1;

OR
WHEN (contents > 0) {buffer not empty}
RECEIVE signal FROM getchar

REPLY buffer [outp] =>
outp : = (outp MOD maxsize) + 1;
contents : = contents-1;

END
END

END;
BEGIN END.

Send & receive
The second set of communication primitives provide a uni-
directional, potentially multidestination message passing
service which meets the requirement for the transfer of alarm
and status information. The send operation is asynchronous
in that it does not cause execution of the sending (source)
task to be suspended and so can be used by tasks performing
time-critical functions. Consequently, unlike the send-wait
operation, a source task may execute many send operations
before the destination task executes a receive operation.

The send operation would seem to imply the need for

multiple-message
requires, at most
outstanding at a
dynamic buffer
when no buffers
allocate a fixed,
receive entryport,

buffering, whereas the send-wait operation
, one buffer, as only one message can be
time. However, to avoid the complexity of
management and the problems invoked
are available, we have chosen to statically
dimensionable queue of buffers for each
e.g.

ENTRYPORT in : char QUEUE 80;

When no more buffers are available, the oldest message in the
queue is overwritten. This strategy is simpler than causing
an exception or trying to block the sender, both of which are
difficult in a distributed system. The default allocation is
a single buffer. This buffer, the 'unibuffer' [12], is updated
by successive send operations and emptied by receive oper-
ations. If the source task sends messages faster than they are
being received by the destination task, the unibuffer will be
overwritten (e.g. updates to an operator display). We believe
this general overwrite strategy is reasonable in a computer
control environment in order to provide the most up-to-date
or latest message(s), while still allowing for a known and
controlled discard of messages at times of burst-message
traffic. If it is important that information is not lost, either
the request-reply primitives should be used, or a higher level
protocol can be constructed using the buffering primitives
(e.g. file transfer protocols). An example of the asynchronous
send operation is shown below:

SEND status TO out

where status is a value of type 'statustype' and the exitport
'out' would be declared as:

EXITPORT out : statustype;

Exitports with no reply part may be linked to one or more
entryports to give the one-to-many interconnection pattern
of Section 2.2. A message sent to a multidestination exitport
is transferred to all the entryports to which it is linked. The
receive primitive is syntactically the same as the receive-
reply primitive, except that the REPLY part is omitted.

The CONIC program for the pumpcontroller module type
is given in Appendix 9.

system

management

application software

operating system

communications system

kernel kernel kernel

station station station

transmission media

F ig. 7 CONIC system architecture

IEEPROC, Vol. 130, Pt. E, No. 1, JANUARY 1983

5 The CONIC environment

This Section gives a brief description of the hardware and
software entities which provide the support environment
for installing, modifying and running CONIC application
programs. Fig. 7 identifies the entities which constitute a
CONIC system.

5.1 Hardware

Stations
A computer station will typically consist of two closely
coupled processors — one performing application functions
and the other performing communication functions. The
reasons for this separation are that the functions are inde-
pendent and both may be time critical. The CONIC architecture
also allows for a single processor station for simpler functions.
In all cases the station must implement the standard inter-
face to the communication system.

Network topology
A control system is usually hierarchical, in that the overall
system is functionally or geographicaly structured into sub-
systems which may themselves consist of complex machines
with independent controllers. This structure is reflected in the
physical configuration of a CONIC system. The overall
network consists of subnetworks which can correspond to
a subsystem, a machine or a geographical area of the plant.
The subnetworks are broadcast and are interconnected by
store and forward gateways. The architecture is independent
of the subnet technology and can use whatever suitable
VLSI circuits emerge for the office automation or local
network market, e.g. ring, ETHERNET, IEEE serial highway
[13-15]. Fig. 8 shows a simple network of interconnected
rings and serial highways. The overall network architecture
consists of a mesh of subnets to allow multiple paths between
any two subnets [16].

5.2 Kerne/
Each station has a kernel which implements multi-tasking
and intertask communication, within a station, via message
passing. In addition, it provides the mechanisms required by
the station operating system to manage station resources and
support dynamic module creation and linking of ports.

5.3 Communication system
The communication system supports interstation com-
munication and provides two main services. The first is a
reliable connection-based service for transferring variable
length messages between stations. This service performs
automatic correction of transmission errors and reroutes
around failures. The application programs using this service
need not concern themselves with retransmissions etc. The

second service is a simple datagram type of service with lower
overheads but no guarantee of delivery. This is mainly used for
system management but is also available for application use.

The communication system routes messages from one
subnet to another using tables. These tables are built up and
maintained using a completely distributed algorithm which
automatically recovers from failures. The system also supports
multidestination addressing (i.e. a single message can be
sent to multiple modules) and broadcasting (to all stations on
a subnet).

5.4 Opera ting system
The station operating system provides a set of services which
support the following functions:

(a) down-line loading of module code into station store
(b) creation/deletion of module instances
(c) start/stop of module execution
(d) linking/unlinking of ports resident in the station
(e) detection/reporting of module program errors and

station hardware failures.

The operating system is implemented as a set of CONIC
modules and its services are made available via entryports.
Operating system services can thus be invoked by either
local or remote users through message passing. The operating
system modules in each station co-operate by message passing
to form a distributed, network-wide operating system.

5.5 System management
The management system for CONIC will provide facilities
for system installation and management, including the in-
stallation of hardware and software, changing the configuration
of the components of the system, controlling their status
and initiating maintenance and diagnostic operations.
Facilities for gathering information such as performance
statistics, error reports and status reports will also be pro-
vided. The management system will maintain an up-to-date
picture of the actual system in a database which will allow
selective retrieval of the information. Finally, based on infor-
mation gathered, the management system will provide decision
making facilities such as reconfiguration in the face of failures.

In CONIC, the same mechanisms may be used to manage
the application system, operating system and communication
system, as all are constructed using the same techniques
(modules with interconnected ports). However, different user
interfaces to the management system will be required, e.g.
for the system designer who builds and configures the initial
system, for the site engineer who performs routine modi-
fications, and for the maintenance engineer who examines
fault information and runs diagnostics.

(S)
I

[G]

(S) —

(S) -

T (S) (S)

1
(S)

(S) (S)

(S)

(S)

[G]

. [G] -

I
(S)

Fig. 8 Interconnected subnets
|G], gateway; (S), station

- (S)

- (S)

6 Conclusion

CONIC provides an integrated set of tools for distributed
computer control systems. In particular, the modular software
concepts for program construction and system building
have been found to be especially powerful and versatile.
Modules separate the programming of a functional unit from
its configuration with other units to form a control system.
The use of typed exit and entry ports to clearly define a
module interface promotes the reuse of modules in many
different systems and permits the reconfiguration of a single
system without recompilation of its constituent units. The
ability to dynamically create and interconnect modules
allows on-line modification and extension of a system.

CONIC will be used to construct the application control

IEEPROC, Vol. 130, Pt. E, No. 1, JANUARY 1983

and monitoring software as well as other application facilities,
such as operator interface, diagnostics, logging etc. Further-
more, we believe that the real-time facilities required for
programming and building application software does not
differ significantly from those for writing the system software
(operating system, communications, utilities etc.). Hence,
wherever possible, we have used the CONIC concepts for
implementation of the system software. In fact, even when
a system is not distributed, we have found that its design as
a set of CONIC modules facilitates testing and system in-
tegration.

The module concept and message primitives have been
added to the programming language Pascal. This 'extended
Pascal' is translated by a preprocessor into standard Pascal.
The extra functionality of tasking and message communication
is incorporated as procedure calls to the kernel.

We have implemented the kernel, communications system
and operating system described in Section 5 on a system com-
posed of 5 LSI-11 computers. The LSI-lls are connected by
asynchronous links to form a communications ring. In the
future, the asynchronous links will be replaced by a suitable
local area network, such as a Cambridge Ring [13] or Ethernet
[14].

The kernel has been implemented in Pascal with a small
number of assembly code inserts. It requires 3K bytes of
store for its code and data. The time for a request-reply cycle
(sending a request message to a task in the same station which
immediately replies) on the LSI 11/02 is given by:

2.46 + 0.013 *(Rb + Pb)ms

where Rb is the number of bytes in the request message and
Pb is the number of bytes in the reply message (e.g. 4.25 ms
for 10 byte request and 128 byte reply messages).

The communications system does not as yet handle multi-
ple subnets or provide virtual circuit connections. It supports
a datagram service on a single subnet. It is implemented as
a set of CONIC modules. Its store requirement is 7K bytes
for code, data and buffer space. The processing time required
by the communication system to get a message from an
application module and transmit it out of the station is about
7 ms. To receive an incoming message and pass it to an appli-
cation module takes about 10 ms.

The station operating system has also been implemented as
a set of CONIC modules. It requires 7 K bytes of store.

The store size and runtime of both the kernel and com-
munications system could be optimised by hand coding them
in assembler. However, in the prototype system, which is
subject to change, this would be wasted effort.

A number of utilities have been implemented in CONIC to
run on the system. These include a terminal driver, error
logger, a file server and an interactive debugging aid. Since
the interface to a module is via message passing, the debugging
aid can be used on local or remote modules. Additionally,
a distributed conveyor control simulation has been written in
CONIC and runs on the system.

We are currently implementing the management system,
which enables an operator to interactively configure and
subsequently modify the control system he requires. The
management function is being implemented as a set of
modules which run on the above system.

7 Acknowledgment

Acknowledgment is made to the National Coal Board for a
grant in aid of these studies, but the views expressed are
those of the authors and not necessarily those of the Board.

8 References

1 LISTER, A., MAGEE, J., SLOMAN, M., and KRAMER, J.: 'Dis-
tributed process control systems: programming and configuration'.
Imperial College, Research Report DOC 80/12, May 1980

2 PRINCE, S., and SLOMAN, M.: 'Communication requirements
of a distributed computer control system', IEE Proc. E, Comput.
& Digital Tech., 1981, 128, (1), pp. 21-34

3 SLOMAN, S., KRAMER, J., MAGEE, J., and SAADAT, S.: 'Present
and future coal mining application requirements for distributed
computer control systems'. Imperial College, Research Report
DOC 80/15, July 1980

4 FARBER, G.: 'Principles and applications of decentralised process
control computer systems'. IFAC 1978, Helsinki, Vol. 1 pp. 385-
392

5 DEREMER, F., and KRON, H.: 'Programming-in-the-large versus
programming-in-the-smalT. Proceedings of conference on reliable
software, 1975, pp. 114-121

6 BOEBERT, W., FRANTA, W., JENSEN, E., and KAIN, R.: 'De-
centralised executive control in distributed computer systems'.
Proceedings of int. computer software and applications conference,
Nov. 1978, pp. 254-258

7 KRAMER, J., and CUNNINGHAM, R.: 'Towards a notation for the
functional design of distributed processing systems'. Proceedings of
int. conference on parallel processing, Aug. 1978, pp. 69-76

8 KAIN, R., and FRANTA, W.: 'Interprocess communication schemes
supporting system reconfiguration'. Proceedings of computer
software and applications conference, Oct. 1980, pp. 365-371

9 BRINCH-HANSEN, P.: 'The architecture of concurrent programs'
(Prentice-Hall, 1977)

10 WIRTH, N.: 'Modula: a language for modular multiprogramming',
Software-Pract. & Exper., 1977, 7, pp. 3-35

11 USA DEPARTMENT OF DEFENCE: 'Reference manual for the
ADA programming language: proposed standard document', July
1980

12 KRAMER, J., MAGEE, J., and SLOMAN, M.: 'Intertask com-
munication primitives for distributed computer control systems'.
Proceedings of 2nd int. conference on distributed computing
systems, Paris, Apr. 1981, pp. 404-411

13 WILKES, M., and WHEELER, D.: 'The Cambridge digital communi-
cation ring'. Proceedings of the local area communications network
symposium, Boston, May 1979, pp. 47-61

14 IEEE: 'IEEE 802 local network standard: draft B', Oct 1981
15 XEROX CORPORATION: 'The Ethernet: a local area network -

data link and physical layer specifications'. Version 1.0, Sept. 1980
16 SLOMAN, M., and PRINCE, S.: 'Local network architecture for

process control'. In WEST, A., and JANSON, P. (Eds.), 'Local
networks for computer communications' (North-Holland), pp.
407-428

9 Appendix: Control of pump for mine dranage

Programming: the pumpcontroller
For the sake of brevity, only the pumpcontroller is described
in detail. Its internal structure is shown in Fig. 9.

cmd
aim
erq

pumpcontroller module

• — i

>. •

i — -

pump
task

WL «
I

i

level
task

I W

Fig. 9 Internal structure of pumpcontroller

The pumpcontroller consists of the included type definitions,
pumpdefns, and the two tasks, pump and level. Level is a
simple task which periodically scans the water level sensors
and sends the level reading to the pump task via an internal
link from port W to WL. Task pump performs the required
pump control. A program for the pumpcontroller is given
below:

IEE PROC, Vol. 130, Pt. E, No. 1, JANUARY 1983

MODULE pumpcontroller(scnsoraddr:integer);

{ • Module Interface * }
INCLUDE 'pumpdefns'; {see Section 3.4 for definition}
ENTRYPORT cmd : command REPLY state;

aim : alarm QUEUE 1;
EXITPORT erq : envrequest REPLY envreport;

{* Module Body*}

TYPE waterlevel = (lowlevel, highlevel, normallevel);

TASK level;
EXITPORT W : waterlevel;

CONST period = 10;
VAR wlevel : waterlevel;

BEGIN
LOOP
— scan waterlevel sensors at module parameter address sensoraddr

and put result in wlevel.
SEND wlevel TO W;
DELAY period;

END;
END;

TASK pump;
ENTRYPORT cmd : command REPLY state;

aim : alarm QUEUE I; {Note: QUEUE 1 can be omitted as}
WL : waterlevel QUEUE 1; {it is the default.}

EXITPORT erq : envrequest REPLY envreport;

CONST safetylimit = 1.25;
period = 100;

VAR pstatc : state; palarm : alarm;
plevel : waterlevel; pcommand : command;

FUNCTION startcheck : state; {* request and check methane level'
VAR request : envrequest;

report : envreport;
BEGIN

request : = methane;
SEND request TO erq

WAIT report =) IF report.reading<safetylimit
THEN startcheck : = ready
ELSE startcheck : = methanestop;

TIMEOUT period = > ERROR ("Environment request failure");
startcheck : = methanestop

FAIL =>ERR0R("Environment link failure");
startcheck : = methanestop

{* ERROR is a call to a standard system error logger * }
END

END;

BEGIN
pstate : = stopped;
LOOP

SELECT {* process a command •}
RECEIVE pcommand FROM cmd =>

CASE pcommand OF
stop : BEGIN

IF pstate = running THEN —stoppump;
pstate : = stopped;
END;

start : IF pstate <> running THEN pstate : = ready;
status: {null};
END;
REPLY pstate TO cmd

OR {* process an alarm * }
RECEIVE palarm FROM aim =>

IF pstate = running THEN —stoppump;
•pstate : = methanestop;

OR { * process waterlevel * }
RECEIVE plevel FROM WL =>

CASE plevel OF
highlevel : IF (pstate = ready) OR (pstate = lowstop)

THEN BEGIN
pstate : = startcheck;
IF pstate = ready

THEN BEGIN — startpump;
pstate : = running;

END
END;

lowlevel : IF pstate = running
THEN BEGIN —stoppump;

pstate : = lowstop
END;

normallevel : {null};
END;

END;
END;

END;

LINK W TO WL; {* Internal links within the module • }

BEGIN
END.

Jeff Kramer graduated from the University
of Natal, South Africa, with a degree
in electrical engineering, in 1970. He was
awarded an M.Sc. in 1972, and Ph.D in
1979, both degrees in computer science
from Imperial College, London. After
working as a programmer and a research
assistant, he became a lecturer in the
Department of Computing at Imperial
College in 1976. His research interests
include specification and design of

distributed systems, and tools for the production of verified
software. Together with Dr. Sloman, he is principal investigator
of the CONIC project funded by the National Coal Board.
Dr. Kramer is a founder member of EWICS TC 11 on Appli-
cation Oriented Specifications.

Morris Sloman graduated from the
University of Cape Town with a degree
in electrical engineering in 1970 and
later obtained a Ph.D. in computer
science at the University of Essex.
After working for GEC Computers Ltd.,
he joined the Department of Computing
at Imperial College as a lecturer in 1976.
His research interests include distributed
computer architecture, computer com-
munications and operating systems.

Together with Dr. Kramer, he is principal investigator of the
CONIC Project funded by the National Coal Board. Dr.
Sloman is co-ordinator of a COST 11 funded project on
Local Area Networks involving ten research institutions in
Europe, and is a member of EWICS TC 5 Group on Com-
munications.

Jeff Magee graduated from Queens.
University, Belfast with a degree in
electrical engineering in 1973, and
was awarded an M.Sc. in computing
science from Imperial College in 1978.
He spent six years with the British
Post Office working on the development
of System X. Since 1979, he has been
a Research Assistant at Imperial College,
working on distributed systems for
real-time applications. Mr. Magee is a

member of the EWICS TC 8 group on Real-time Operating
Systems.

Andrew Lister graduated from Cambridge University, and
afterwards lectured in computer science at the Universities
of Lancaster and Essex before moving to the University of
Queensland, where he is currently head of the Department
of Computer Science. His research interests lie in operating
systems and distributed computing, particularly in the area
of interprocess communication. He is author of a textbook
on operating systems and co-author of an introductory text on
computer science.

10 IEEPROC, Vol. 130, Pt. E, No. 1, JANUARY 1983

