

Connector
For SWIFT gpi

Tracker API Specification
This document provides the description of the different APIs available on the gpi Tracker.

09 February 2018

Connector for SWIFT gpi
Tracker API Specification Table of Contents

09 February 2018 2

Table of Contents
Preface ... 3

1 gpi API Overview .. 4

2 gpi Payment Transaction Data .. 6
2.1 Payment Transaction .. 6
2.2 Payment Transaction Data ... 7

3 gpi API.. 13
3.1 gpi API URL and RBAC Roles ..13
3.2 gpi API Supported ...14
3.3 gpi API Description ..14
3.4 gpi API Failure ...19
3.5 gpi API Detailed Specifications ...22

A.1 Local Authentication Introduction .. 24

A.2 Local Authentication Details ... 24

B.1 Use of ApplAPIKey ... 27

Legal Notices .. 28

Connector for SWIFT gpi
Tracker API Specification Preface

09 February 2018 3

Preface
About this document

These technical specifications provide information about how to use Web services to access
payment transaction information. The document describes the APIs in JSON format.

The purpose of this document is to provide the necessary information to assess the
business use of the API by potential users of the API.

This version of the API technical specification incorporates the feedback given on the
preliminary version.

Intended audience

This document is for the following audience:
• Business analysts to understand the functionality of the API
• Business architects to understand the functionality of the API and how to integrate the

use of the API within their organisation
• Software developers of applications using the API to assess the complexity of the API

First edition

This is the first edition of the document.

Related documentation
• Connector for SWIFT gpi Tracker API Detailed Specification
• Connector for SWIFT gpi Tracker API JSON Schemas
• Connector for SWIFT gpi Service Description
• SWIFT gpi Service Description

https://www2.swift.com/go/book/bookext051648/pdf
https://www2.swift.com/go/book/bookext051650/html
https://www2.swift.com/go/book/bookext050515/pdf
https://www2.swift.com/go/book/bookext050647/bookext050647/html

Connector for SWIFT gpi
Tracker API Specification gpi API Overview

09 February 2018 4

1 gpi API Overview
Overall context view of the API

Figure 1 - gpi Tracker API context diagram

Figure 1 shows the components that play a role when using the gpi APIs.

The components are the following:
• Institution's application(s) - this is the business application that requires an up-to-date

information of a payment transaction involving gpi participants or that generate status
confirmations

• Corporate application or browser - in case the institution integrates the use of gpi APIs
into its web applications offered to its corporate customers.

• The SWIFT provided gpi Connector runs at the institution and exposes the gpi APIs,
which means this component act as a proxy that manages security aspects: The gpi
Connector can run in two ways
− gpi Connector runs embedded in Alliance Access or Alliance Messaging Hub

SAG/SNL + HSM
− gpi Connector runs standalone using certificates on HSM

SAG/SNL+HSM
• VPN box configured for SNL or the host running gpi Connector connecting the

institution through the MV-SIPN
• The components running in SWIFT's Operating Centre (OPC) providing the Tracker

API

Note The information in this section is an introduction to configuration items or
software deployments that are required to run the API. The information is
provided to understand the overall picture of running the API, but is not needed
to understand the purpose and use of the API itself.

API Specification in this document

The gpi API exposed to the institution's applications is the same API as used towards the
API Gateway running at SWIFT.

Connector for SWIFT gpi
Tracker API Specification gpi API Overview

09 February 2018 5

The SWIFT provided API component running at the institution is managing the security
aspects to properly authenticate the applications initiating the gpi API. This mandatory
authentication is based on HMAC using a symmetric key. This authentication mechanism is
not specific for the API specified in this document, but is a generic requirement for all API
services offered through SWIFT. Detailed information can be found in Local Authentication.

The API itself requires an API Key to identify the institution application that is using the API.
The process to get the API Key is not further described in this document.

The API uses the SWIFTNet API framework that requires an authentication using the
SWIFT Identity Services. The actual protocol of doing so is handled by the SWIFT provided
API component and is not further described in this document.

REST design principles

The API follows REST design principles that provide simple and predictable URLs to access
data.

API calls

HTTP requests use standard HTTP methods like GET, PUT, POST, and DELETE. The gpi
APIs only use POST.

API responses

HTTP responses are UTF-8 encoded JSON objects.

gpi API live and pilot service

There is a live and a pilot API service. This is visible within the URLs to be used. For more
information see gpi API URL and RBAC Roles and gpi API Supported.

Use of RBAC roles

The gpi API is only allowed when an appropriate RBAC (Role Based Access Control) role
has been granted by the institution's security officer(s) to the certificate that is used by the
SWIFT provided API component to authenticate itself using the SWIFT Identity Services.
These roles are different for updating or for retrieving information.

The roles are different for pilot and for live services.

The same certificate can be used for live or for pilot API services. This is under full control of
the security officer(s).

See gpi API URL and RBAC Roles for more information.

Multi-BIC support

The multi-BIC support is controlled through the appropriate RBAC role. This allows the
same authenticated certificate to perform API calls for different BICs. See gpi API URL and
RBAC Roles for more information.

Type of information retrieved by the API

The gpi API is used to get information on a payment transaction. The concept of a payment
transaction and the different participants is described in Payment Transaction.

Type of information updated by the API

The only update is providing a status confirmation of a payment transaction.

Connector for SWIFT gpi
Tracker API Specification gpi Payment Transaction Data

09 February 2018 6

2 gpi Payment Transaction Data
2.1 Payment Transaction

Payment transaction

Currently, a transaction is a serial flow of payment messages between an originator and a
beneficiary.

Figure 2 - Payment transaction

The figure shows 4 gpi banks participating in the payment transaction. The MT 103
exchanged between them carry 2 fields in the user header (block 3 of the FIN message), the
field 111 containing the service type and the field 121 having the unique End-to-End
transaction reference (UETR).

The transaction information of those MTs 103 is recorded into the gpi Tracker.

Similarly, the MT 199 containing the status updates contains the field 111 and 121 in the
user header. The example flow contains only one MT 199 issued by the Instructed gpi
Agent.

In the example flow in figure 2, the message coming from the originator (MT 101) and the
message sent to the beneficiary (MT 910) are not recorded in the gpi Tracker.

gpi Agents

There are 5 different agents in the payment flow. These are:
• Ordering institution - the financial institution of the ordering customer. This can be a

financial institution that subscribed to gpi or can be non-gpi financial institution.
• Instructing gpi Agent - the first gpi institution in the chain.
• Intermediary gpi Agent or intermediary institution - any subsequent gpi institution in the

chain that forwarded the payment to the next one in the payment chain.
• Instructed gpi Agent - the last gpi institution in the payment chain. This is the institution

that indicates the final status of the payment.
• Beneficiary institution or account with institution - the financial institution holding the

account of the customer to be credited. This can be a financial institution that
subscribed to gpi or can be non-gpi financial institution.

Tracking a payment

A payment transaction is one or more payment messages between gpi participants for
which the status is reported through status confirmations.

Status updates can be MT 199 or a status update through an API.

How to know the status of a payment transaction

The status can be known by checking it using a SWIFT provided GUI where an entitled user
can check the status of a payment transaction.

The status can also be known by using an API or by receiving a status confirmation from the
Tracker if configured.

Instructing
Agent

Intermediary
Agent

Intermediary
Agent

101 >

Originator Beneficiary

103 > 103 > 910>

Instructed
Agent

103 >

< 199

Connector for SWIFT gpi
Tracker API Specification gpi Payment Transaction Data

09 February 2018 7

2.2 Payment Transaction Data
Overview of Payment Transaction Data

The payment transaction data for a given payment consists of all events identified by the
same UETR

A payment transaction is a serial flow of payment messages (MT 103) sent between gpi
institutions. The order of payment messages is based on the time when each payment
message is sent.

Figure 3 - Payment Transaction Data

Similarly, the status confirmation events are linked with a given payment message and if
several updates are made for a given payment message these are also ordered in time of
sending the update through an MT 199 or the time of update through the API.

Figure 3 also shows invalid events. These are events which are identified as being
inconsistent or syntactically invalid. Invalid events can be categorised as follows:
• Inconsistent payment messages - these are payment messages that seem to be for a

different transaction. As an example, the instructed amount is different. All status
confirmation updates that are sent through an MT 199 for such invalid payment
message are considered to be invalid as well. A status confirmation update for such
inconsistent payment message sent by an API update is immediately nacked and not
recorded in the Tracker.

• Inconsistent status confirmation updates - these are MTs 199 that are syntactically
correct but whose status does not seem to be consistent with the transaction flow
recorded. As an example, an intermediary agent sends a status confirmation update
that the account is credited. Such status confirmation update through an API would be
immediately nacked.

It is unlikely but possible that a status confirmation update becomes invalid at a later time
because of a subsequent update. This is only the case when a status confirmation
update that made a payment transaction final is followed by a new valid payment sent
with that UETR.

• Incorrectly formatted status confirmation updates - these are MTs 199 which contain a
badly formatted status confirmation update. Such status confirmation updates cannot
be assigned to a payment and are tracked immediately under the UETR. Such invalid
formatted status confirmation update is not possible using the API since an invalid

Payment
Status

Payment
Status

Payment

UETR
Transaction

Events

Payment Payment PaymentPayment

Payment
Status

Payment
Status

Payment
Status

Payment
Status

SendDateTime ordering for Payments

SendDateTime
ordering for

Payment Statuses

Payment
Status

Valid event

Invalid event

Order irrelevant

Duplicate event
(IsDuplicateOf filed)

Payment Status -> Payment relation
(UpdatePayment field)

Payment
Status

Connector for SWIFT gpi
Tracker API Specification gpi Payment Transaction Data

09 February 2018 8

status confirmation would be immediately nacked and not be stored. The behaviour of
immediately nacking an incorrectly formatted status confirmation update may also
become available for the MT 199.

Attributes of a transaction available in the API

The attributes of a transaction are related to the transaction, to a payment message or a
status confirmation. Attributes reuse the ISO 20022 components available within the ISO
20022 repository. The attributes are described below in a table.

The table contains 4 columns:
• The name of the attribute
• A short description of the attribute
• The field in the MT 103, MT 199, or API from which the attribute is derived from
• An indication of the sensitivity of the attribute. This can be:

− Public - anyone knowing the UETR can retrieve this attribute
− Low - anyone participating in the transaction can retrieve this attribute
− High - any gpi financial institution participating in the transaction can retrieve this

attribute. For non-gpi financial institutions this may be returned as configured in
the tracker. To retrieve such attribute a specific RBAC role is needed. See gpi API
URL and RBAC Roles for more information.

2.2.1 Transaction Attributes
Description of attributes

Attribute Description MT field Sensitivity

TransactionIdentification Unique End-to-End
transaction reference
(UETR)

{3:{121: Public

TransactionStatus The status of
transaction as reported
in the last status
confirmation of the last
payment

:79:line2 Public

PreviousInstructingAgent Ordering institution :52A:
If 52A in first payment
absent then sender of
payment

Low

CreditorAgent Account with BIC :57A: Low

InitiationTime Date+time in UTC
based on
SendDateTime of first
Payment

 Public

CompletionTime Date+time in UTC
based on
SendDateTime of
Status confirmation
containing a final status
ACSC

 Public

InstructedAmount Currency+Amount :33B: Low

ConfirmedAmount Currency+Amount :79:line4 or
ConfirmedAmount of
API

High

InterbankSettlementDate Value date :32A: Low

LastUpdateTime Date+time in UTC
based on

 Low

Connector for SWIFT gpi
Tracker API Specification gpi Payment Transaction Data

09 February 2018 9

SendDateTime of last
Payment or Status
confirmation

2.2.2 Payment Message Attributes
Description of attributes

This table lists the attributes for the payment message. It is possible that some attributes are
not present in case they are not present in the payment message.

Attribute Description MT field Sensitivity

TransactionIdentification Unique End-to-End
transaction
reference (UETR)

{3:{121: Public

BusinessService This qualifies the
usage of the UETR
and indicates what
business rules apply

{3:{111: Low

NetworkReference Reference assigned
by the network when
sending the payment
Primary Key

MIR Low/High

MessageNameIdentification Message type of the
MT

{2:MessageType
"103"

Low

Valid Computed boolean
indicating if a
payment is
consistent or not

Computed Low

InvalidityReason Code indicating why
not valid

Computed Low

InvalidityDescription Textual description
of the code

Computed Low

SenderReference Reference outside of
the payload
assigned by the
sender of the
payment. For MT
format this is the
MUR

{3:{108 Low

InstructionIdentification Payload reference of
the message

:20: Low

From BIC11 of the sender
of the input message

{1:BIC Low/High

To BIC11 of the
receiver of the input
message

{2:BIC Low/High

Orginator Equal to the sender {1:BIC Low/High

PreviousInstructingAgent The ordering
institution

:52A: Low

CreditorAgent The financial
institution having the
account of the
beneficiary

:57A: Low/High

SenderAcknowledgementReceipt DateTime in UTC at
which the message
was acked

FIN Ack
{177:

Low/High

Connector for SWIFT gpi
Tracker API Specification gpi Payment Transaction Data

09 February 2018 10

ReceivedDate DateTime in UTC at
which the message
was acked by the
receiver

Reception of FIN
Ack as recorded by
SWIFT

Low/High

InstructedAmount Currency and
amount as instructed
by the ordering
customer

:33B:
:32A: if 33B absent

Low

InterbankSettlementAmount Currency and
amount of the
interbank payment

:32A: Low/High

InterbankSettlementDate Value date of the
interbank payment

:32A: Low/High

ChargeBearer Specification of
which party will bear
the charges for the
transaction ("BEN",
"OUR", or "SHA")

:71A: High

ChargeAmount List of repetitive field
specifying the
currency and
amount of the
transaction charges
deducted by the
sender and by
previous banks in
the transaction
chain.

:71F: High

ExchangeRate Exchange rate :36: High

DuplicateMessageReference Network reference of
the payment that is
the original recorded
payment

 Low

CopiedBusinessService Used only when
message is copied

{3:{103 Low

When the sensitivity is "Low/High" it means that the data is considered to be highly sensitive
for non-gpi institutions as configured by the gpi institution. For instance, the ordering
institution may not see charges and routing related information if its gpi institution decides
so.

2.2.3 Status Confirmation Attributes
Description of attributes

This table lists the attributes from the status confirmation. It is possible that some attributes
are not present in case they are not present in the status confirmation.

Attribute Description MT field Sensitivit
y

TransactionIdentification Unique End-to-End
transaction
reference

{3:{121: Public

BusinessService This qualifies the
usage of the UETR
and indicates what
business rules
apply

{3:{111: Low

NetworkReference Reference
assigned by the

MIR for MT199
NetworkReference from

Low/High

Connector for SWIFT gpi
Tracker API Specification gpi Payment Transaction Data

09 February 2018 11

network when
sending the
payment
Primary Key

UpdatePaymentStatus API

MessageNameIdentification Message type of
the MT

{2:MessageType
"199"
Or "camt.a01.001.02" for API

Low

Valid Computed boolean
indicating if a
status confirmation
is consistent or not

Computed Low

InvalidityReason Code indicating
why not valid

Computed Low

InvalidityDescription Textual description
of the code

Computed Low

SenderReference Reference outside
of the payload
assigned by the
sender of the
payment. For MT
format this is the
MUR

{3:{108
NULL in case of API

Low

InstructionIdentification Payload reference
of the message

:20: for MT199
InstructionIdentification from
UpdatePaymentStatus API

Low

TransactionStatus Status of the
transaction

:79:line 2 or
TransactionStatus from
UpdatePaymentStatus API

Public

ForwardedAgent The BIC to which
the originator has
forwarded the
payment
transaction

:79:line 3 "forwarded to" part or
ForwardedAgent from
UpdatePaymentStatus API

Low/High

From 11-character BIC of
the sender of the
input message or
8-character BIC
issuing the API call

{1:BIC for MT199 or
8-character BIC of API

Low/High

Orginator BIC11 reporting the
status update

:79:line3 or
Originator of API

Low/High

FundsAvailable DateTime in UTC
as reported in the
ACSC status
update

:79:line1 or
FundsAvailable of API

Low

SenderAcknowledgementRe
ceipt

DateTime in UTC
at which the
message was
acked

FIN Ack
{177:
Or DateTime of reception of
UpdatePaymentStatus API

Low

ConfirmedAmount Currency and
amount confirmed
by originator

:79:line4 or
ConfirmedAmount of API

High

ChargeAmount List of repetitive
field specifying the
currency and
amount of the
transaction
charges deducted

:79: lines containing //:71F:
Or
ChargeAmount in
UpdatePaymentStatus API

High

Connector for SWIFT gpi
Tracker API Specification gpi Payment Transaction Data

09 February 2018 12

by the sender and
by previous banks
in the transaction
chain.

ForeignExchangeDetails Exchange rate :79: line containing //EXCH
Or
ForeignExchangeDetails in
UpdatePaymentStatus API

High

UpdatePayment Contains the
network reference
of the payment for
which the status
confirmation was
applicable

 Low/High

DuplicateMessageReferenc
e

Network reference
of the payment that
is the original
recorded Payment

 Low

When the sensitivity is "Low/High" it means that the data is considered to be highly sensitive
for non-gpi institutions as configured by the gpi institution. For instance, the ordering
institution may not see charges and routing related information if its gpi institution decides
so.

Connector for SWIFT gpi
Tracker API Specification gpi API

09 February 2018 13

3 gpi API
3.1 gpi API URL and RBAC Roles

How the URL identifies the live or test services

The URL used for each API consists of 2 items. One is the specific domain to be used in
order to reach the SWIFT provided component within the financial institution and the
remaining is the actual API call.

For live data, the URL looks like:
https://local-api-domain/swift-apitracker/v1/api-specific-part

For test data, the URL looks like:
https://local-api-domain/swift-apitracker-pilot/v1/api-specific-part

Note The exact name of the local-api-domain is not specified in this document. It will
be described within the SWIFT provided component documentation.
The SWIFT provided component maps the local-api-domain to the public domain
apigtw.swiftnet.sipn.swift.com

The API-specific part

The API specific part consists of an indication of the resource it is managing and additional
parameters. In the gpi API Description section, the API-specific part of the URL is provided
per API.

RBAC roles

SWIFT uses RBAC roles to control access to the payment transaction data. The main
purpose is to identify what privileges are given by the security officer(s) of the institution to
the certificate used to connect to SWIFT. This certificate is managed by the local SWIFT
component but the roles are managed by the institution's security officers.

There are currently 3 RBAC roles foreseen for live and 3 RBAC roles for test.

The roles are:
• Update - used to control who can perform a status update for a payment.
• StandardViewer - used to control who can get the low sensitive information for a

payment transaction.
• FullViewer - used to control who can get all information for a payment.

The scope of each of these roles is for a given business party identifier. This is indicated by
qualifying the role name with the scope of a given BIC. Roles are therefore triples.
RoleName/Scope/BIC8

Examples are:
Update/Scope/bankbeb0

StandardViewer/Scope/zyacnl20

FullViewer/Scope/userus33

In these examples, the first two are for the test API service and the last for the live API
service. This is because the two first have a Test & Training BIC and the last a live BIC.

It is possible to assign to the same certificate roles of a different business party identifier on
condition that this has been provisioned by SWIFT. This provisioning is not described further
in this document.

See gpi API Description for more details on how to specify in the API what RBAC roles are
applicable for a given API invocation.

Connector for SWIFT gpi
Tracker API Specification gpi API

09 February 2018 14

Granting RBAC roles

This is done by the security officer(s) just like any other RBAC role. The result of the
granting of the roles is that a given certificate used to establish a session with the API
Gateway can issue API requests for other BICs.

Note The service names are swift.apitracker for live and swift.apitracker!p for
test. These service names are visible to the security officer(s) when assigning the
RBAC roles. A simple convention is used to derive the URL used, namely
replace the "." by a "-" and "!p" by "-pilot".

3.2 gpi API Supported
Current APIs

The APIs that are targeted for the first release are all related to payment transactions.
• POST …/status_confirmations: Updating the status of a payment transaction
• POST …/get_payment_transaction_details: Getting a payment transaction
• POST …/get_payment_transactions: Searching for payment transactions
• POST …/get_changed_payment_transactions: Getting the history of payment

transactions
• POST …/get_invalid_events: Getting invalid events

These 5 API are described in gpi API Description.

Future APIs

New APIs may be identified to cover the need of applications handling the current payment
transaction data as described in gpi Payment Transaction Data.

New APIs are required in case the payment transaction data is extended to other type of
data, for instance to supporting documentation of a payment transaction. Such APIs may be
the appropriate way to handle such data flows.

3.3 gpi API Description
Note The JSON structure will be added in the final version of the document. However,

the information in the request and response attributes is sufficient to understand
the functionality offered by the API.

Specifying RBAC roles in the API

The designer of the application calling the gpi API can control the scope of a given API to be
restricted to a given BIC or list of BICs.

The instruction is within a dedicated HTTP header. To ensure that the application exercises
this control, this HTTP header is mandatory.

As an example, for the status update API the application calling the API needs to indicate
for what BIC the update API is invoked. This is done through adding an RBACRole HTTP
header as follows:
RBACRole: [Update/Scope/zyacgb20]

This example is for the test service since the BIC is a Test and Training BIC. It shows that
the role is a triple separated by "/". The "[" and "]" brackets are mandatory.

In case more than one BIC is in scope, then those are enumerated as follows:
RBACRole: [Update/Scope/zyacgb20/zyacnl20]

Note This field is signed locally between the application generating the API and the gpi
Connector. See for more information Local Authentication.

Connector for SWIFT gpi
Tracker API Specification gpi API

09 February 2018 15

Filtering attributes on responses

When applicable, a table is added to explain what filtering is done on the response. This
filtering depends on the role the BIC is playing within the transaction, and, whether the BIC
is a gpi participant.

The table looks like:

gpi? Not
participating

Ordering
BIC

Instructing
gpi Agent

Intermediary
gpi Agent

Instructed
gpi Agent

Beneficiary
BIC

Yes

No

The first column "gpi?" indicates if the BIC in the RBACRole is a gpi participant or not.

The second column "Not participating" applies when the BIC is not an agent in the payment
transaction. The different agent roles are described in Payment Transaction. When this
column contains "Not applicable", it indicates that the payment transaction is not applicable
for the API response and therefore nothing is returned for that payment transaction.

The last 5 columns are the different agents that can participate in a payment transaction.

3.3.1 Payment Transactions: Updating the Status of a Payment
Transaction

Purpose of the API

This API is a status confirmation update to inform the Tracker about the updated status of a
given payment.

RBAC role required

The HTTP header requires a field specifying the RBAC role to be checked. This is the
business party identifier for which the status update is done.
RBACRole: [Update/Scope/bankbeb0]

There is only one such field and one role to be specified.

Request URI

POST …/status_confirmations

Request/response body structure and elements

See "UpdatePaymentStatus" API in Connector for SWIFT gpi Tracker API Detailed
Specification.

3.3.2 Payment Transactions: Getting a Payment Transaction
Purpose of the API

This API is a payment query to get detailed information regarding a given payment. It
requires the UETR to be known.

Examples of use cases are:
• Debtor status check - ordering BIC or ordering customer wants to see the status
• Creditor status check - beneficiary BIC or beneficiary customer wants to see the status

RBAC role required

The HTTP header requires a field specifying the RBAC role to be checked. There are 2
possible roles that can be used as shown in the table:

RBAC role Description

[StandardViewer/Scope/bankbeb0] Low sensitive data is requested for a specific BIC to be checked

Connector for SWIFT gpi
Tracker API Specification gpi API

09 February 2018 16

to be in scope of the certificate

[FullViewer/Scope/bankbeb0] Low and high sensitive data is requested for a specific BIC to be
checked to be in scope of the certificate

Since the application is typically not aware about what roles are assigned to a given
certificate, both roles should be put as follows:
RBACRole: [StandardViewer/Scope/bankbeb0] [FullViewer/Scope/bankbeb0]

In case multiple BIC are used these should be enumerated by adding additional BIC
separated by a "/" as follows:
RBACRole: [StandardViewer/Scope/bankbeb0/usrvgb20]
[FullViewer/Scope/bankbeb0/usrvgb20]

The API succeeds when at least one of the roles is granted for all BICs enumerated to the
certificate.

Request URI

POST …/get_payment_transaction_details

Request/response body structure and attributes

See "GetPayment" API in Connector for SWIFT gpi Tracker API Detailed Specification.

The response attributes are filtered according to the BIC in the request. The following table
gives the sensitivity of the data returned depending on the type of BIC:

gpi? Not
participating

Ordering
BIC

Instructing
gpi Agent

Intermediary
gpi Agent

Instructed
gpi Agent

Beneficiary
BIC

Yes Public RBAC driven:
High if FullViewer RBAC role is granted to the certificate
Low if StandardViewer RBAC role and no FullViewer role is granted

No Public RBAC
driven as
above and
additionally
restricted
to
Low/High
as decided
by
Instructing
gpi Agent

 RBAC driven
as above and
additionally
restricted to
Low/High as
decided by
Instructed gpi
Agent

3.3.3 Payment Transactions: Searching for Payment Transactions
Purpose of the API

This API is a payment transaction search to get transaction-level information regarding all
payments that match the search criteria. To have full information of a given payment
transaction the API defined in Payment Transactions: Getting a Payment Transaction can
be used.

Examples of use cases are:
• Investigation by a participating institution based on criteria given by a customer, such

as instructed amount, time of initiation
• Flow monitoring, for instance to find payments that are "stuck" for which the institution

is the beneficiary institution
• Feed a dashboard - give all payment transactions with their last status

Connector for SWIFT gpi
Tracker API Specification gpi API

09 February 2018 17

RBAC role required

The HTTP header requires a field specifying the RBAC role to be checked. There are 2
possible roles that can be used as shown in the table:

RBAC role Description

[StandardViewer/Scope/bankbeb0] Low sensitive data is requested for a specific BIC to be checked
to be in scope of the certificate

[FullViewer/Scope/bankbeb0] Low and high sensitive data is requested for a specific BIC to be
checked to be in scope of the certificate

Since the application is typically not aware about what roles are assigned to a given
certificate, both roles should be put as follows:
RBACRole: [StandardViewer/Scope/bankbeb0] [FullViewer/Scope/bankbeb0]

In case multiple BIC are used these should be enumerated by adding additional BIC
separated by a "/" as follows:
RBACRole: [StandardViewer/Scope/bankbeb0/usrvgb20]
[FullViewer/Scope/bankbeb0/usrvgb20]

The API succeeds when at least one of the roles is granted for all BICs enumerated to the
certificate.

Request URI

POST …/get_payment_transactions

Request/response body structure and attributes

See "GetPaymentTransaction" API in Connector for SWIFT gpi Tracker API Detailed
Specification.

The response attributes are filtered according to the BIC in the request. The following table
gives the sensitivity of the data returned depending on the type of BIC:

gpi? Not
participating

Ordering
BIC

Instructing
gpi Agent

Intermediary
gpi Agent

Instructed
gpi Agent

Beneficiary
BIC

Yes Not
applicable

RBAC driven:
High if FullViewer RBAC role is granted to the certificate
Low if StandardViewer RBAC role and no FullViewer role is granted

No Not
applicable

RBAC
driven as
above and
additionally
restricted
to
Low/High
as decided
by
Instructing
gpi Agent

 RBAC driven
as above and
additionally
restricted to
Low/High as
decided by
Instructed gpi
Agent

3.3.4 Payment Transactions: Getting the Last Changed Payment
Transactions

Purpose of the API

This API is a delta query to get all payment update information starting from a given date
and time. This API allows synchronization of a local database with the Tracker database.
There is a paging mechanism in case the response becomes too large. This is done through
returning a "More" token in the response, so that the delta query can continue from the last
returned result.

Connector for SWIFT gpi
Tracker API Specification gpi API

09 February 2018 18

All use cases applicable for the get and search of payment transactions apply also for this
API.

The use of the API to get the last changed payment transactions is driven by an
architectural choice to feed a local database and to optimise the flow between the Tracker
and the API caller.

RBAC role required

The HTTP header requires a field specifying the RBAC role to be checked. This is the
FullViewer role for the given business party identifier as follows:
RBACRole: [FullViewer/Scope/bankbeb0]

In case multiple BIC are used these should be enumerated by adding additional BIC
separated by a "/" as follows:
RBACRole: [FullViewer/Scope/bankbeb0/usrvgb20]

The API succeeds when the role is granted for all BICs enumerated to the certificate.

Request URI

POST …/get_changed_payment_transactions

Request/response body structure and attributes

See "GetChangedPaymentTransactions" API in Connector for SWIFT gpi Tracker API
Detailed Specification.

The response attributes are filtered according to the BIC in the request. The following table
gives the sensitivity of the data returned depending on the type of BIC:

gpi? Not
participating

Ordering
BIC

Instructing
gpi Agent

Intermediary
gpi Agent

Instructed
gpi Agent

Beneficiary
BIC

Yes Not
applicable

RBAC driven: this API requires a FullViewer role

No Not
applicable

RBAC
driven as
above and
additionally
restricted
to
Low/High
as decided
by
Instructing
gpi Agent

 RBAC driven
as above and
additionally
restricted to
Low/High as
decided by
Instructed gpi
Agent

3.3.5 Payment Transactions: Getting Invalid Events
Purpose of the API

This API is a payment events' query to get invalid events for payment transactions within a
given time frame. An event is either a payment or a status confirmation.

The API is typically used for support or audit purposes, where all invalid messages sent or
received are retrievable by one API call.

RBAC role required

The HTTP header requires a field specifying the RBAC role to be checked. This is the
FullViewer role for the given business party identifier as follows:
RBACRole: [FullViewer/Scope/bankbeb0]

In case multiple BIC are used these should be enumerated by adding additional BIC
separated by a "/" as follows:

Connector for SWIFT gpi
Tracker API Specification gpi API

09 February 2018 19

RBACRole: [FullViewer/Scope/bankbeb0/usrvgb20]

The API succeeds when the role is granted for all BICs enumerated to the certificate.

Request URI

POST …/get_invalid_events

Request/response body structure and attributes

The response attributes are filtered according to the BIC in the request. Since the
FullViewer role was checked for that BIC, all data of the invalid event as recorded is
returned. This may include High sensitive information as well.

See "GetInvalidEvents" API in Connector for SWIFT gpi Tracker API Detailed Specification.

3.4 gpi API Failure
Structure of a status indicating a failure

At failure, all previously described APIs shall return the following "Status" structure instead
of the successful response body:

Attribute Format Description

severity Text The severity of the error (Transient, Fatal, Logic)

code Text The error code

text Text The error message targeting the consumer application

Using the "severity"

When the severity is "Transient" then a retry of the same API may work, depending whether
the condition that resulted in the error has been resolved. The retry should be paced and not
be done longer than 5 minutes.

When the severity is "Fatal" then this indicates something wrong with the API. A retry will fail
again. In some cases the error is related to configuration that is not related to the service for
which the API is done.

When the severity is "Logic" then this indicates a protocol violation of some sort that can be
resolved by some action such as issuing another API. The expected behaviour is
documented as part of some product or vendor documentation. If the error is not recognized
and the expected behaviour thus not implemented then the retry is done as for Transient
errors.

Errors related to gpi processing

The following errors may be returned by gpi.

Error Description HTTP Response Code JSON Object

Syntax error 400 – Bad Request {“status”: {
“severity”: “Fatal”,
“code”: “X001”,
“text”: “Syntax error” }}

Status originator not
allowed to update
status of this
payment.

400 – Bad Request {“status”: {
“severity”: “Fatal”,
“code”: “X002”,
“text”: “Status originator not allowed to update
status of this payment” }}

Status update of
payment message
not allowed because
already in final state

400 – Bad Request {“status”: {
“severity”: “Fatal”,
“code”: “X003”,
“text”: “Status update of payment message not

Connector for SWIFT gpi
Tracker API Specification gpi API

09 February 2018 20

Error Description HTTP Response Code JSON Object
allowed because already in final state” }}

No payment
information tracked
for this transaction
identifier. Unknown
transaction identifier

400 – Bad Request {“status”: {
“severity”: “Fatal”,
“code”: “X004”,
“text”: “No payment information tracked for this
transaction identifier. Unknown transaction
identifier” }}

Status update sent by
institution that does
not participate in
transaction

400 – Bad Request {“status”: {
“severity”: “Fatal”,
“code”: “X008”,
“text”: “Status update sent by institution that does
not participate in transaction” }}

Invalid request 400 – Bad Request {“status”: {
“severity”: “Fatal”,
“code”: “Sw.gpi.InvalidRequest”,
“text”: “Invalid request” }}

Mandatory field
missing

400 - Bad Request {“status”: {
“severity”: “Fatal”,
“code”: ”Sw.gpi.MandatoryFieldMissing”,
“text”: “Mandatory field %field missing” }}

MyInstitution
authorization failure

401 - Unauthorized {“status”: {
“severity”: “Fatal”,
“code”: “Sw.gpi.MyInstitutionAuthorizationFailure”,
“text”: “MyInstitution %MyInstitution does not have
the appropriate RBAC role” }}

From authorization
failure

401 - Unauthorized {“status”: {
“severity”: “Fatal”,
“code”: “Sw.gpi.FromAuthorizationFailure”,
“text”: “From %From does not have the appropriate
RBAC role” }}

No result found 404 - Not Found {“status”: {
“severity”: “Transient”,
“code”: “Sw.gpi.NoResultFound”,
“text”: “Request did not return any result. This may
be a transient condition” }}

Unknown transaction 400 - Bad Request {“status”: {
“severity”: “Fatal”,
“code”: “Sw.gpi.UnknownTransaction”,
“text”: “Transaction is not known.” }}

Invalid RBAC role 400 - Bad Request {“status”: {
“severity”: “Fatal”,
“code”: “Sw.gpi.InvalidRBACRole”,
“text”: “RBAC Role” }}

Internal error 500 – Internal Server
Error

{“status”: {
“severity”: “Transient”,
“code”: “Sw.gpi.InternalError”,
“text”: “Internal error” }}

Note New errors can be added reflecting enhancements implemented, or, existing
errors may be changed to better describe the error condition it is reporting upon.

Connector for SWIFT gpi
Tracker API Specification gpi API

09 February 2018 21

Errors related to the API framework

These error codes may be returned by SWIFT. These error codes are listed below:

Error Description HTTP Response Code JSON Object

API service not
provisioned

401 – Unauthorized
WWW-Authenticate:
Bearer realm=”SwAP”

{“status”: {
“severity”: “Fatal”,
“code”: “SwAP001”,
“text”: “API service not provisioned” }}

Requestor has no
role for service

401 – Unauthorized
WWW-Authenticate:
Bearer realm=”SwAP”

{“status”: {
“severity”: “Logic”,
“code”: “SwAP002”,
“text”: “Requestor has no role for service” }}

Authentication failure 401 – Unauthorized
WWW-Authenticate:
Bearer realm=”SwAP”

{“status”: {
“severity”: “Fatal”,
“code”: “SwAP003”,
“text”: “Authentication failure” }}

Missing or Invalid API
key

401 – Unauthorized
WWW-Authenticate:
Bearer realm=”SwAP”

{“status”: {
“severity”: “Fatal”,
“code”: “SwAP005”,
“text”: “Missing or Invalid API key” }}

Service quota
exceeded

429 – Too many
requests

{“status”: {
“severity”: “Transient”,
“code”: “SwAP006”,
“text”: “Service quota exceeded” }}

System quota
exceeded

429 – Too many
requests

{“status”: {
“severity”: “Transient”,
“code”: “SwAP007”,
“text”: “System quota exceeded” }}

Bad response
received from service
provider

502 – Bad Gateway {“status”: {
“severity”: “Transient”,
“code”: “SwAP008”,
“text”: “Invalid response received from Service
Provider” }}

Service provider is
temporarily
unavailable

503 – Service
Unavailable

{"status":{
"severity": "Transient",
"code": "SwAP010", "text": "Service provider is
temporarily unavailable"}}

Service provider time
out

504 – Gateway
Timeout

{“status”: {
“severity”: “Transient”,
“code”: “SwAP009”,
“text”: “Service Provider time out” }}

One of the roles listed
is not valid or none of
the requested roles
are granted to user.

401 – Unauthorized
WWW-Authenticate:
Bearer realm=”SwAP”

{"status":{
"severity": "Logic",
"code": "SwAP011",
"text": "Invalid HTTP RBAC header"}}

Internal SwAP API
Gateway error

500 – Internal Server
Error

{“status”: {
“severity”: “Transient”,
“code”: “SwAP099”,
“text”: “Internal SwAP API Gateway error” }}

ADC WAF violation 401 – Unauthorized {"status":{

Connector for SWIFT gpi
Tracker API Specification gpi API

09 February 2018 22

Error Description HTTP Response Code JSON Object
WWW-Authenticate:
Bearer realm=”SwAP”

"severity": "Fatal",
"code": "SwAP090",
"text": "There was an error while processing the
request. Please consult SWIFT support and
mention the following code
<%TS.request.ID()%>"}}

Note New errors can be added reflecting enhancements implemented, or, existing
errors may be changed to better describe the error condition it is reporting upon.

3.5 gpi API Detailed Specifications
Overview

The detailed specifications can be found in the document Connector for SWIFT gpi Tracker
API Detailed Specification. This document is generated similar to the documentation for ISO
20022 messages.

The ISO 20022 data dictionary is used and the same data definitions are taken as much as
possible. This chapter contains additional restrictions applicable to the gpi API.

3.5.1 Additional Restrictions
Overview

This section summarizes some additional restrictions applicable on the requests for the
APIs.

8-character BIC versus 11-character BIC

MyInstitution is limited to 8-character BIC only. This is because the RBAC role used to
validate this field is also limited to 8-character BIC only.

GMT or Zulu time only

All times are Zulu time only.

3.5.2 gpi Specific Code List
Overview

The invalidity status as discussed in Payment Transaction Data is returned within the API in
the InvalidityReason and InvalidityDescription. These codes are an external code
list following the ISO 20022 format for code lists. The possible values can be found in this
table

Code Description

X001 Syntax error.

X002 Status originator not allowed to update status of this
payment.

X003 Status update of payment message not allowed because
already in final state.

X004 No payment information tracked for this transaction
identifier. Unknown transaction identifier.

X005 Instructed amount of payment message does not match
previously sent payment messages for the same
transaction identifier.

X006 Payment message does not match previously sent
payment messages for the same transaction identifier.

X007 Payment message tracked that invalidates the status

Connector for SWIFT gpi
Tracker API Specification gpi API

09 February 2018 23

update.

X008 Status update sent by institution that does not participate in
transaction.

X009 PreviousInstructingAgent in payment message does not
match previously sent payment messages for the same
transaction identifier.

Connector for SWIFT gpi
Tracker API Specification Local Authentication

09 February 2018 24

Appendix A Local Authentication
A.1 Local Authentication Introduction

Local Authentication concept

Local authentication is a simple protocol between two parties that allows the authentication
of one party to the other by means of a signature based on a shared secret symmetric key.

In our case, the parties are the application that generates the API request and the gpi
Connector that will forward the request to SWIFT once that request has been properly
authenticated.

Local Authentication algorithm

The algorithm is HMAC-SHA-256, as described in ISO/IEC 9797.

The key is at least 128 bits long.

The message authentication code is the first 128 bits of the result of the algorithm.

Local Authentication keys

Local authentication keys have to be configured at both parties. They must be stored
securely, using access control and encryption. The local authentication keys must be
unpredictable, for instance by using a pseudo random generator.

The gpi Connector uses a 4-eyes principle where the Local Authentication key consists of a
left and a right part, which are configured separately by two operators (also known as left
security officer and right security officer).

What is protected by the Local Authentication signature?

Besides some HTTP entity header fields as described below that are ensuring that a
signature cannot be easily replayed, the following data is signed:

• The API specific part of the URI for the request
• The body of the HTTP request or response

A.2 Local Authentication Details
Local Authentication on API

The Local Authentication uses a set of dedicated HTTP entity header fields. They all start
with LAU.

The current implementation foresees following headers:

• LAUApplicationID: ID that identifies the application generating the API and used by the
gpi Connector to retrieve the related LAU keys.

• LAUVersion: version of the LAUSigned header. Mandatory. "1.0" for this first release.
• LAUCallTime: timestamp in UTC of the API call in the format YYYY-MM-

DDTHH:MM:SS.sssZ. As an example 2016-11-30T09:22:45.321Z Mandatory. The
gpi Connector will compare its value (that must be a timestamp) with the actual time
and will reject the request if the difference is more than a predefined value (for
example, 5 minutes) in the past or in the future. That timestamp validation is a
protection against replay attacks.

• LAURequestNonce: a random value generated by the client. Provided with the request
and copied by the gpi Connector on the response.

• LAUResponseNonce: a random value generated by the gpi Connector on the
response.

• LAUSigned: service specific HTTP headers
• LAUSignature: contains the LAU signature , base64 encoded.

Connector for SWIFT gpi
Tracker API Specification Local Authentication

09 February 2018 25

LAU header field presence

The table shows what LAU headers are to be added by the application.

LAU Header field Request Response

LAUApplicationID 1..1 Equal to the Request

LAUVersion 1..1 Equal to the Request

LAUCallTime 1..1 1..1

LAURequestNonce 1..1 Equal to the Request

LAUResponseNonce Forbidden 1..1

LAUSigned 1..1 for gpi 0..1 (but for gpi not present)

LAUSignature 1.1 1..1

LAUApplicationID

The LAUApplicationID contains the name of the application that generates the API. This
name is configured within the gpi Connector. The configuration in the gpi Connector
includes parameters that control how the TLS 1 way session is set up between the
application and the gpi Connector.

LAUVersion

The LAUVersion is currently "1.0". It may be changed when new security algorithms are
implemented or new LAU specific headers are added. This version is not indicating the
version of the API that is exchanged using the gpi Connector.

Note SWIFT reconsiders the algorithms and key lengths used by SWIFTNet at regular
intervals. Vendors should be aware that SWIFT may advise changes to them
following a suitable notice period.

LAUCallTime

The LAUCallTime is set by the client application having the LAU key to the current time in
UTC. This requires that system times are kept up to date.

The LAUCallTime is the defense against the replay of copied requests at a later time. The
short period in which the LAU result remains useable allows a reasonable difference in the
setting of the time between different systems initiating the API call.

LAURequestNonce

The LAURequestNonce ensures that each response has a different signature. Indeed, the
LAURequestNonce is replayed in the response and signed. Additionally it ensures that each
request has a different signature in case the LAUCallTime would be the same.

The format of the LAURequestNonce is left open, as long as it is the result of a pseudo
random generated value.

LAUResponseNonce

This is the defense used by the gpi Connector against signing the same response. The
LAUResponseNonce is generated by the gpi Connector using a pseudo random generator
available in Java.

LAUSigned

The LAUSigned header field contains the signed headers that are passed to SWIFT in the
request.

The service specific header fields that are to be provided are

• ApplAPIKey
• RBACRole

Connector for SWIFT gpi
Tracker API Specification Local Authentication

09 February 2018 26

To respect the HTTP header format, the ApplAPIKey and RBACRole headers are grouped
by comma separated headers as follows

“(” HTTPHeaderName “=” HTTPHeaderValue “)” [“,(” HTTPHeaderName “=”
HTTPHeaderValue “)”]*.

As an example:
LAUSigned: (ApplAPIKey=ddfb7833-58eb-4ed2-ae2e-13bc521f5731),(RBACRole=
[FullViewer/Scope/bankbeb0])

Note Within the response, such headers should be provided to the application. For the
gpi API all business data is in the message body. Therefore, the LAUSigned is
not present within the response.

LAUSignature

The LAUSignature field contains the result of the HMAC algorithm using the LAU key on the
data to be signed.

The data signed on the request

The data to be signed is for the request is the concatenated string of the following

• All HTTP headers fields starting with "LAU", ordered in lexicographic order, and where
the leading and trailing spaces and tabs are removed. The HTTP header itself including
the ":" and the CRLF at the end of the HTTP header field are included.

• The abs_path and the optional query part of the request URI including the CRLF at the
end. In case the abs_path is absent, then an "/" is used instead.

Note This data is the URL without the domain specific part and optional port number.
The terminology abs_path is coming from RFC 2616. This specifies within
section 3.2.2 http URL the syntax of the URL as follows:
http_URL = "http:" "//" host [":" port] [abs_path ["?" query]]
What is signed is abs_path ["?" query]
Example: if the URL is equal to
https://example.com:4546/swift.apitracker/v1/api-specific-part?query
then the data signed is
/swift.apitracker/v1/api-specific-part?queryCRLF
with CRLF the control characters added at the end.

• The message body, where the CRLF separator that separates the HTTP header from
the message body is not included. If there is no message body, then only the HTTP
headers starting with "LAU" and the request URI part are signed.

The data signed on the response

The data to be signed is for the response is the concatenated string of the following

• All HTTP header fields starting with "LAU", ordered in lexicographic order, and where
the leading and trailing spaces and tabs are removed. The CRLF at the end of the
HTTP header field is included.

• The message body, where the CRLF separator that separates the HTTP header from
the message body is not included.

Verification of a signature

When verifying a signature the same data has to be used as input to the HMAC algorithm.

This means that the HTTP header field LAUSignature has to be excluded from the HTTP
header fields starting with "LAU".

Otherwise the same process as for signing has to be followed.

Connector for SWIFT gpi
Tracker API Specification Use of ApplAPIKey

09 February 2018 27

Appendix B Use of ApplAPIKey
B.1 Use of ApplAPIKey

Concept of APIKey

An APIKey is used to identify an application generating an API to the server consuming the
API.

There are two components involved in sending the API, namely the gpi Connector and the
application generating the API.

Therefore there will be two APIKey within the request received by SWIFT: the APIKey
identifying the gpi Connector and the ApplAPIKey identifying the application generating the
API.

APIKey for the gpi Connector

This APIKey is known and inserted in the API request by the gpi Connector. Its value is
checked by SWIFT.

ApplAPIKey for the application

This ApplAPIKey is to be registered to be used for gpi by the developer of the application
calling the API.

The ApplAPIKey is in the form of an UUID as specified in IETF's RFC 4122. The format is
therefore xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx in lower case.

The ApplAPIKey is generated by the application vendor using the gpi APIs and must be
used within each API request as part of the LAUSigned HTTP header field.

The ApplAPIKey will be checked by SWIFT at a later date. Further details about the
registration process will be provided at a later stage.

Connector for SWIFT gpi
Tracker API Specification Legal Notices

09 February 2018 28

Legal Notices
Copyright
SWIFT © 2018. All rights reserved.

Disclaimer
SWIFT supplies this publication for information purposes only. The information in this publication may change from
time to time. You must always refer to the latest available version.

Translations
The English version of SWIFT documentation is the only official and binding version.

Trademarks
SWIFT is the trade name of S.W.I.F.T. SCRL. The following are registered trademarks of SWIFT: the SWIFT logo,
SWIFT, SWIFTNet, Sibos, 3SKey, Innotribe, the Standards Forum logo, MyStandards, and SWIFT Institute. Other
product, service, or company names in this publication are trade names, trademarks, or registered trademarks of
their respective owners.

	Title Page
	Table of Contents
	Preface
	1 gpi API Overview
	2 gpi Payment Transaction Data
	2.1 Payment Transaction
	2.2 Payment Transaction Data
	2.2.1 Transaction Attributes
	2.2.2 Payment Message Attributes
	2.2.3 Status Confirmation Attributes

	3 gpi API
	3.1 gpi API URL and RBAC Roles
	3.2 gpi API Supported
	3.3 gpi API Description
	3.3.1 Payment Transactions: Updating the Status of a Payment Transaction
	3.3.2 Payment Transactions: Getting a Payment Transaction
	3.3.3 Payment Transactions: Searching for Payment Transactions
	3.3.4 Payment Transactions: Getting the Last Changed Payment Transactions
	3.3.5 Payment Transactions: Getting Invalid Events

	3.4 gpi API Failure
	3.5 gpi API Detailed Specifications
	3.5.1 Additional Restrictions
	3.5.2 gpi Specific Code List

	Appendix A Local Authentication
	A.1 Local Authentication Introduction
	A.2 Local Authentication Details

	Appendix B Use of ApplAPIKey
	B.1 Use of ApplAPIKey

	Legal Notices

